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Abstract 
 

When it comes to speech recognition for low resourced languages, researchers are confronted 

with low data problems and the lack of linguistic expertise. Also, there is a minor political and 

economic interest in developing automated speech recognition systems for these languages. 

Nevertheless, it is an essential technology when it comes to collecting and preserving 

individual and cultural information thus it is desirable to develop ASR systems for uncommon 

languages. 

This thesis investigates the influence of different data augmentation strategies on the 

performance of speech recognition systems for low resourced languages. 

With Amharic as target language, the effect of 4 different augmentation methods on Gaussian 

Mixture Model based and Time Delayed Neural Network based acoustic models observed.  

The Amharic language has a rich morphology and thus many different words. In order to 

handle the problem of out of vocabulary words, a sub word unit language model with 

graphemes of the Amharic writing system was proposed and the results are compared to 

word-based language models. 

The results showed, that Time Delayed Neural Networks and data augmentation strategies 

are good approaches to improve the accuracy of speech recognition systems for low resourced 

languages. 

The grapheme-based language model is able to detect out of vocabulary words, but the overall 

performance of word-based language models is much better. 

 

 

  



 

 V 

  



 

 VI 

Content 

List of Abbreviations ................................................................................................................................ VII 

List of Figures .......................................................................................................................................... VIII 

List of Tables ............................................................................................................................................... IX 

1 Introduction ........................................................................................................................................... 1 

1.1 Motivation .................................................................................................................................... 2 

1.2 Research Question ....................................................................................................................... 5 

1.3 Low resourced languages ........................................................................................................... 5 

1.3.1 Amharic .................................................................................................................................... 8 

2 Speech Recognition Basics ................................................................................................................. 12 

2.1 Acoustic Model .......................................................................................................................... 14 

2.1.1 Suitable Units for Speech Recognition ................................................................................ 15 

2.1.2 Gaussian Mixture Model ...................................................................................................... 18 

2.1.3 Time Delay Neural Networks .............................................................................................. 19 

2.2 Pronunciation Dictionary ......................................................................................................... 21 

2.3 Language Modeling .................................................................................................................. 23 

2.4 Hidden Markov Models ........................................................................................................... 26 

3 Related Work ....................................................................................................................................... 29 

3.1 Data Augmentation ................................................................................................................... 29 

3.2 Speech Recognition for Amharic ............................................................................................. 31 

4 Experiments ......................................................................................................................................... 33 

4.1 Data .............................................................................................................................................. 33 

4.2 Measuring Error Rates .............................................................................................................. 36 

4.3 Experiment Setup ...................................................................................................................... 37 

5 Results .................................................................................................................................................. 42 

5.1 GMM-based Results .................................................................................................................. 42 

5.2 TDNN-based Results................................................................................................................. 47 

6 Discussion ............................................................................................................................................ 51 

7 Future Work ........................................................................................................................................ 55 

8 References ............................................................................................................................................ 56 

  

 



 

 VII 

List of Abbreviations 
 

Abbreviation: Explanation: 

AM Acoustic Model 

ANN Artificial Neural Network 

ASR Automated Speech Recognition 

CV Consonant-Vowel 

EM Expectation Maximization 

GMM Gaussian Mixture Model 

GMM Gaussian Mixture Model based approach 

HMM Hidden Markov Model 

HLT Human Language Technology 

LM Language Model 

OOV Out of Vocabulary 

P Pitch based approach 

PDF Probability Distribution Function 

S Speed-based augmentation strategy 

SER Sentence Error Rate 

SyER Syllable Error Rate 

SYL Syllable-based Language Model approach 

T Tempo-based augmentation strategy 

T/P Tempo + Pitch-based augmentation strategy 

TDNN Time Delayed Neural Network 

TDNN Time Delayed Neural Network based approach 

VTLN Vocal Tract Length Normalization 

VTLP Vocal Tract Length Perturbation 

WER Word Error Rate 

WORD Word-based Language Model approach 



 

 VIII 

List of Figures 

Figure 1: Illustration of the proportion between languages of the world and humans that 

speak these languages 4 

Figure 2: Example of the roman alphabet 8 

Figure 3: Example of the Amharic script 8 

Figure 4: Categories of Amharic consonants. Lab=Labial; Den=Dental; Pal=Palatal; Vel=Velar; 

Glo=Glottal (Abate and Menzel, 2007) 10 

Figure 5: The speech recognition process as illustrated by Jurafsky and Martin (2014) with 

the acoustic model P(A|W), and the language model P(W) 13 

Figure 6: Example of a phonetic decision tree  (Young et al., 1994) 17 

Figure 7: The TDNN as presented by (Waibel et al., 1989) for phoneme recognition 20 

Figure 8: The architecture of a TDNN that uses sub-sampling (red connections) and no sub-

sampling (red and blue connections) as illustrated by (Peddinti et al., 2015) 21 

Figure 9: HMM-based phone model (Gales et al., 2008) 27 

Figure 10: The total WER of all approaches that are compared in this thesis 42 

Figure 11: The relative improvement in terms of WER of the GMM+WORD based approaches 

when different augmentation strategies are applied 44 

Figure 12: The relative improvement of the WER for the GMM+SYL based approaches when 

different augmentation strategies are applied 45 

Figure 13: The relative improvement (deterioration) in terms of SER for different 

augmentation strategies of the GMM approaches 46 

Figure 14: The relative improvement in terms of WER of the TDNN+WORD based 

approaches when different augmentation strategies are applied 48 

Figure 15: The relative improvement of the WER for the TDNN+SYL based approaches when 

different augmentation strategies are applied 50 

Figure 16: The relative improvement (deterioration) in terms of SER for different 

augmentation strategies of the TDNN approaches 50 

 

  



 

 IX 

List of Tables 

Table 1: Categories of Amharic vowels (Abate and Menzel, 2007) 10 

Table 2: The ten most frequent words in the dataset with the total number of occurrences 34 

Table 3: The graphemes of the dataset with the total number of occurrences 35 

Table 4: The results in terms of WER, SyER and SER for the GMM based approaches and 

words as base-unit for the language model 43 

Table 5: The results in terms of word error rate (WER), syllable error rate (SyER) and 

Sentence error rate (SER) for the GMM based approaches with syllables as base-unit for 

the language model 44 

Table 6: The results in terms of word error rate (WER), syllable error rate (SyER) and 

Sentence error rate (SER) for the TDNN based approaches and words as base-unit for the 

language model 47 

Table 7: The results in terms of word error rate (WER), syllable error rate (SyER) and 

Sentence error rate (SER) for the TDNN based approaches with syllables as base-unit for 

the language model 49 

  



 

 1 

1 Introduction 

The field of Human Language Technologies (HLT) deals with the processing of human 

language. Popular languages like English receive more attention in research, since they 

are more attractive than other, less common languages. On the one hand there is a high 

political and economic interest in developing speech recognition systems for popular 

languages, on the other hand there are large datasets of transcribed recorded speech data 

available for these languages.  

For humans, language is the natural means of communication and information 

exchange. This information can be individual of collective ideas, memories, findings and 

practices. Language is also a key aspect in cultural identity and empowerment.  

Globalization and digitalization connect the people of the world and opens possibilities 

and reasons to communicate with each other. This may give the opportunity to share 

and preserve cultural knowledge and information about a low resourced language. But 

globalization and digitalization also bears the risk of language extinction for low 

resourced languages which would be a loss for the whole human culture (Besacier et al., 

2014).  

 

Languages, where huge datasets are available for research, are called well-resourced 

languages whereas low resourced languages lack these datasets. Large datasets allow 

complex model training and lead to a superior performance of speech recognition 

systems.  

For well-resourced popular languages there are well transcribed datasets of high quality, 

some of them recorded only to support HLT research (Zhang and Glass, 2009). 

Nevertheless, the development of speech recognition systems for low resourced 

languages is an important and challenging task for HLT.  

Developing speech recognition systems for low resourced languages may weaken 

factors that causes an unpopular language to die and thus preserve parts of the human 

culture.  



 

 2 

This master thesis will analyze the problems of developing speech recognition systems 

for low resourced languages. The main problem when developing automated speech 

recognition systems for low resourced languages is the lack of data. Therefore, the 

influence of several data augmentation techniques on different acoustic and language 

models is investigated for the Amharic language. 

 

This thesis begins with an introductory motivation followed by the research questions. 

To introduce the topic, there is a general overview of the topic of speech recognition, in 

which different language and acoustic models are discussed. Chapter 3 then examines 

relevant research that focuses primarily on speech recognition for the Amharic language 

and explains augmentation methods. This serves as a transition to the following chapter, 

in which the approaches and experiments of this thesis are described. The results are 

then presented in chapter 5 and serve as the basis for the discussion that follows, which 

ultimately picks up and answers the research questions again. The thesis is concluded 

by considering open research areas and recommendations for further work. 

 

1.1 Motivation 

Automated Speech recognition systems provide a lot of advantages. Since spoken 

language is the main natural method of human communication, these systems have a 

broad range of applications. They can help individuals in their everyday life by taking 

away the task of writing things down or translating a spoken input into a computational 

command and thus make it easier and more intuitive to operate with computers. This is 

especially useful for disabled people and can help them to be more independent. For 

example, people who are physically unable to use a keyboard can use their spoken 

language to write an e-mail. 

Speech recognition systems can also help larger projects to acquire processable data from 

audio sources. The ability to translate spoken language into plain text can help 

companies, for example, to predict their customers' wishes by transcribing verbal 

feedback and making it automatically processable. 
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A spoken sentence usually contains information with the intention to transfer this 

information. The technology to record audio data is much older than the attempt to 

recognize the spoken content of these recordings. According to this, there is a lot of 

recorded spoken data which contains historical and cultural information. So, another 

important application of speech recognition is to process recordings of the past to 

digitize this information. This task will become more and more important because with 

modern technology it is possible for almost everyone to record situations of their life and 

make them public. Due to this, there is a lot of data which may contain useful 

information but without the ability of automatically transcribing this data, remains 

inoperative. 

As mentioned before, modern technologies provide the possibility for individuals to 

store and share knowledge across the world. For low resourced languages, this may 

provide the opportunity to preserve and share cultural knowledge and. As Besacier et 

al. (2014) stated, globalization and digitalization also bears the risk for low resourced 

languages to be repressed by other more popular languages, which would be a loss for 

the whole human culture.  

Language can be a barrier when it comes to human-to-human communication, so 

developing speech recognition systems for low resourced languages may weaken factors 

that causes a low resourced language to suffer and thus preserve parts of the human 

culture.  

For the human brain the task of recognizing a spoken sentence seems fairly easy. Based 

on their experience, humans have an enormous memory of related knowledge to decode 

perceived sentences. We can use this knowledge to verify a spoken sentence in terms of 

grammatical correctness and furthermore analyze the sense of the utterance and check 

the pragmatical correctness. When it comes to automated speech recognition, many 

challenges must be overcome to recognize the content of an utterance correctly. 

 

According to Isern and Fort (2014), language evolution is a slow process. It can take over 

a thousand years for any language to develop to other languages. As the world gets more 

globally connected, the language extinction rate fastens. As Figure 1 illustrates, from 
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approximately 7000 languages, only 4% are spoken by 96% of the world’s population 

and since this is a long tail distribution, about 25% have less than 1000 speakers.  

 

 

Figure 1: Illustration of the proportion between languages of the world and humans 

that speak these languages 

 

According to Besacier et al. (2014) the pressure on a language is crucial for its survival. 

Languages with high pressure and few speakers have low chances of survival. The 

pressure can have natural causes like earthquakes or other disasters that can wipe out 

cultures and languages but the main pressure comes from other surrounding languages. 

The dominance of another language can result in cultural convergence. Speakers of the 

endangered languages have an interest to adapt to the dominant culture due to potential 

economic benefits and especially the young generations are affected (Isern and Fort, 

2014). 

There are already well-developed language processing systems for several popular 

languages. It is hard to tell how many languages exist but it is estimated, that there are 

about 7000 languages in the world (Isern and Fort, 2014; Besacier et al., 2014) and only a 

fraction of them are suitable for language processing systems due to a lack of data. 

Therefore, the main focus in language processing research is on languages where much 

data is available for training and testing the system. Another factor is whether it is in the 

political or economic interest to develop such systems for a specific language. As a result, 

96%

~7000 total Lanugages

Spoken by 96% of the worlds population

Spoken by 4% of the worlds population
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for many languages in developing countries, research on language processing systems 

receives very little attention (Besacier et al., 2014). 

 

1.2 Research Question 

The main research question of this thesis is: 

 

What kind of model can be recommended for automated speech recognition when working with 

low resourced languages? 

 

To answer this question, the following questions must be answered first: 

1. Is it possible to improve the performance of automated speech recognition systems for 

low resourced languages with data augmentation techniques? 

1.1: Which data augmentation techniques are suitable for low resourced languages? 

1.2: Which augmentation strategy works best? 

2. Is it possible to improve speech recognition for low resourced languages using 

different acoustic and language models? 

2.1: Which acoustic model is best suited for the task of speech recognition for low 

resourced languages? 

2.2: Which language model is best suited for the task of speech recognition for low 

resourced languages? 

3. What is the best combination of augmentation strategy, acoustic model and language 

model? 

4. Since we use Amharic as a low resourced language target, can the concluded model 

be transferred to other low resourced languages? 

 

1.3 Low resourced languages 

As Besacier et al. (2014) stated, an low resourced language refers to a language that 

fulfills some, but not necessarily all, of the following aspects: 
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• The first aspect is the lack of a stable orthography or writing system. Since 

Automated Speech Recognition deals with the processing of spoken language to 

plain text, it is a precondition for a sufficient recognizer, that the language has a 

stable orthography and writing system. Without such, the results of the standard 

training and testing phase are doomed since the recognition may be correct but 

the related test phrase is spelled in another way. Models that deal with these 

kinds of languages need additional expert knowledge to overcome this barrier. 

• Another aspect is the rare occurrence of this language on the web in written as 

well as in recorded format. Since the best performing of machine learning 

algorithms generally depend on the available amount of data for training, 

researchers use the web to expand their corpora with additional data to improve 

the results of speech recognizer (Zhu and Rosenfeld, 2001).  

• The lack of linguistic expertise and the lack of electronic data available for speech 

processing such as mono- or bi-lingual corpora, dictionaries as well as 

pronunciation dictionaries and transcribed speech are also factors, that define if 

a language is low resourced. 

 

As mentioned before, globalization and digitalization bear risks and opportunities for 

low resourced languages. On the one hand, it connects people and opens possibilities 

and reasons to share and preserve cultural knowledge and information about a low 

resourced language. On the other hand, more popular and dominant languages have a 

larger influence on low resourced languages and thus the risk of a low resourced 

languages to suffer  rises (Besacier et al., 2014).  

Language can be a barrier when it comes to human-to-human communication, so 

developing speech recognition systems for low resourced languages may alleviate 

factors that causes an unpopular language to extinct and thus preserve parts of the 

human culture.  

 Vries et al. (2014) stated, that the future economic sustainability of a language can be 

strengthened with automated speech recognition systems as they can support domains 
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such as education, health-information services, information-access, and government 

services and agriculture. 

It is hard to say how many languages exist but it is estimated, that there are about 6000-

7000 languages in the world (Isern and Fort, 2014; Besacier et al., 2014) and only a fraction 

of them are suitable for language processing systems due to lack of data. Vries et al. 

(2014) stated, that there are only about 30 languages where the amount of data available 

for machine learning is suitable. Therefore, the main focus in language processing 

research is on languages where much data is available for training and testing the 

system. Another factor is whether it is in the political or economic interest to develop 

such systems for a specific language. As a result, for many languages in developing 

countries, research on language processing systems receives very little attention(Besacier 

et al., 2014). 

But as already motivated, there are good reasons to develop speech recognition systems 

for the low resourced languages too.  

Since the performance of speech recognition systems strongly depends on the size of the 

dataset, the main problem of rare languages is the available amount of data of for 

training and testing the models.  

 

In different cultural environments the human race has developed different kinds of 

writing systems. These systems may differ in the shape of symbols, as well as the 

meaning of a single character.  

As Killer et al. (2003) stated, alphabets are very common and represent consonants and 

vowels. The most common alphabet is the roman alphabet which is used by most 

European nations, as well as most of the African American and Oceanian nations. Even 

some Asian nations use the roman alphabet. Although these nations share the same 

alphabet many languages have modified the roman alphabet with extra letters. Figure 2 

shows an example of the popular roman script. 
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Figure 2: Example of the roman alphabet 

 

Similar to alphabets are abjads or consonant alphabets. An abjad represents only 

consonants (or sometimes even a few vowels) and are usually right-to-left written. Some 

written languages, like Arabic, can be used as alphabet and as abjad. 

In contrast to alphabets, a syllabic writing system consists of symbols that represent 

either a single vowel. Figure 3 shows an example of the Amharic syllabic writing system. 

 

 

Figure 3: Example of the Amharic script 

 

A syllabary is a special form of a syllabic alphabet where each syllable of the language 

is represented by its own symbol. An example of syllabary is the Japanese Hiragana. 

Logographic writing systems usually have the largest set of symbols. Each symbol 

represents not only a sound but also a meaning. Theoretically, there is no upper limit for 

the number of distinct symbols. Chinese is for example a logographic language. 

There are some alternative writing systems that do not fit in the classification above. 

These scripts are invented for example in books, movies or computer games (Killer et al., 

2003).  

1.3.1 Amharic 

Amharic is a South Semitic Ethiopian language and belongs to the Afro-Asian language 

family. 

According to Kramer (2009), there are three main branches within the semitic languages: 

East (Akkadian, Old Babylonian, etc.), Central (Hebrew, Aramaic, Arabic, etc.) and 

South (South Arab, Ethiopian). Amharic is a member of the Ethiosemitic languages and 

is classified within Ethiosemitic along with Argobba, Harari and the languages of East 

abcdef 

ቅርጸ 
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Gurage for example Southern Transversal. Other Ethiopian languages include Tigre and 

Tigrinya, both of which are spoken in northern parts of Ethiopia, and some minority 

languages spoken in Ethiopia and Eritrea, such as Gafat, Mesmes, and Inor. 

Amharic is the semitic language group that has the largest number of speakers after 

Arabic (Abate et al., 2005) and is the national language of Ethiopia, which is taught in 

schools and used in national newspapers and government publications. In Ethiopia, 

about eighty languages are spoken, including thirteen other Semitic languages, many 

Cushitic languages (including Oromo, Sidamo and Afar), many Omotic languages and 

several languages from the Nilo-Saharan family. According to Sarah Adam (2019), there 

are about 30 million Amharic native speakers. 

There are five different dialects for Amharic, based on regions: Addis Ababa, Gojjam, 

Gondor, Wollo and Menz, where Addis Ababa is the most spoken one (Abate et al., 

2005). 

The Amharic pronunciation system is characterized by a homogeneous phonology 

distinguishing between 234 distinct Consonant-Vowel (CV) syllables. 

Like other languages, there are some unique sounds that cannot be found in other 

languages for example some click-like characters (Abate et al., 2005). 

 

The Amharic language consists of seven vowels shown in Table 1 and thirty-one 

consonants. As Figure 4 shows, the consonants can be generally classified in five 

categories: stops, fricatives, nasals, liquids and semi-vowels (Abate and Menzel, 2007). 
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Figure 4: Categories of Amharic consonants. Lab=Labial; Den=Dental; 

Pal=Palatal; Vel=Velar; Glo=Glottal (Abate and Menzel, 2007) 

 

 

 front center back 

high ሊ [i] ል [ɨ] ሉ [u] 

mid ሌ [e] ለ [ə] ሎ [o] 

low  ላ [a]  

Table 1: Categories of Amharic vowels (Abate and Menzel, 2007) 

 

Abate and Menzel (2007) state that each of the five dialects use the same writing system. 

According to Leslau (2000) there is in general a one-to-one mapping between the spoken 

syllables and the grapheme symbols. Each grapheme represents a combination between 

a consonant and a vowel (CV-syllable) or a single vowel. 

The Amharic alphabet consist of 276 different characters, but there are redundant 

graphemes for the same syllable, so in total there are 234 distinct syllables. 

 

Amharic is a morphologically rich language because it has an inflectional and 

derivational morphology (Abate and Menzel, 2007). This has the consequence that there 
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are many individual words in a dataset. For automated speech recognition, this is a 

serious problem, because there is a high chance that the model is confronted with unseen 

words, so called out of vocabulary (OOV) words. The problems of OOVs and approaches 

to be able to deal with them will be explained in detail in section 2.3. 
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2 Speech Recognition Basics 

As Jurafsky and Martin (2014) stated, an automated speech recognition system deals 

with the task of transcribing a spoken utterance into a plain text representation. The 

problem of speech recognition can be described as: 

 

Ŵ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑤

 𝑝(𝑊 ∣ 𝐴) 

 

Where Ŵ is the word-sequence that maximizes the conditional probability and p(W|A) 

is the probability that the word sequence W was observed given the acoustic evidence 

A. 

This can be transformed using Bayes Theorem: 

 

Ŵ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑤

𝑝(𝐴 ∣ 𝑊)𝑝(𝑊)

𝑝(𝐴)
 

 

Where p(A) is the probability, that the acoustic evidence A has occurred, p(A|W) is the 

probability, that A is observed knowing, that the speaker spoken W and p(W) is the 

probability of the word-sequence W. 

The probability p(A) will not change for a given input and thus it can be disregarded in 

this equation, so the task of speech recognition can be formulated as finding Ŵ where Ŵ 

is: 

 

Ŵ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑤

 𝑝(𝐴 ∣ 𝑊)𝑝(𝑊) 

 

In Figure 5 Jurafsky and Martin (2014) illustrated the basic speech recognition process 

with its main components which also shows, how the different probabilities are used to 

recognize a sentence. 
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Figure 5: The speech recognition process as illustrated by Jurafsky and Martin 

(2014) with the acoustic model P(A|W), and the language model P(W) 

 

The feature extraction gets an audio signal as input and transforms it into spectral 

features. The acoustic model computes the probability p(A|W) using the pronunciation 

dictionary whereas the language model computes the probability of the sentence W. The 

decoder uses the output of the feature extraction, the acoustic model and the language 

model to search for the sentence that maximizes the product of p(A|W) and p(W). 

 

The difficulties of ASR-systems lie in aligning the data (for example where does a word 

or a phone start and end), the complexity of the data (how many different words are 

there and how many different combinations of all those words are possible), the 

variability of the speakers (women compared to men have a higher fundamental 

frequency; or microphones, telephones limit the bandwidth, etc.), the ambiguity of 

words (two vs. too) or word boundaries (interface vs. in her face), syntax (he saw the 

grand canyon flying to New York) and ambiguities (time flies like an arrow). Automatic 

Speech Recognition started with speaker-dependent single word recognizers that 

processed only a small amount of words in quiet surroundings.  

Today's focus lies on system development for spontaneous or colloquial speech with a 

noisy background as it can be found in a car. The systems must be able to adapt to new 

situations quickly and optimally. 
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Zhu and Rosenfeld (2001) stated, that in general, there are two kinds of methods when 

it comes to improving the performance of a speech recognition system.  

The first kind focuses on improving the estimation methods for fixed datasets to get 

better results. Examples for these techniques are among others: n-gram length, 

smoothing techniques, vocabulary clusters, decision trees and probabilistic context free 

grammars etc.  

The second method focuses on acquiring more data that can be useful for training the 

model. Examples are language independent acoustic models, cross-language transfer 

and language-adaption, bootstrapping and using tools to collect data from the web 

(Vries et al., 2014). 

2.1 Acoustic Model  

The Acoustic Model (AM) models the conditional probability P(A|W) of an acoustic 

signal X given a word sequence W. Therefore we need an appropriate design that 

approximates the problem. A word can sound very different depending on 

coarticulation effects, speaker dependent pronunciation variants or characteristics of the 

transmission channel. Since it is infeasible to model P(X|W) for each word sequence 

(there are way too many possible word combinations), smaller units are modeled.  

The fragmentation of words into smaller units introduces a few other problems. First of 

all, a pronunciation dictionary is required to split the words into the subunits. Secondly 

a time alignment is needed. The beginning and ending of subunits have to be found first. 

There are various other problems in automatic speech recognition. There are 

coarticulation effects at word transitions (a word be pronounced very differently 

depending on the context). For example, American English has a lot of coarticulation 

effects.  

Most known continuous speech recognition systems at time are based on the idea of 

Hidden Markov Models (HMMs). Speech can be seen as a stochastic process. This 

captures that the same phoneme can be pronounced very individually by various people 

and even the same person pronounces phonemes differently. 
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2.1.1 Suitable Units for Speech Recognition 

In the beginnings of speech recognition, when the task was to recognize and identify 

single words, usually the base recognition units have been words or morphemes as 

subunits of words (Killer et al., 2003). The problem with using whole words as 

recognition units is, that - since every word has to be trained separately - information in 

form of parameters cannot be shared among different words and the dataset used for 

training must be very large to cover all possible words sufficiently (Thangarajan et al., 

2008). Another problem with word-based approaches is the memory requirement, which 

grows linear with the number of recognizable units. The number of different words for 

languages, especially morphological rich ones, can grow very large for spontaneous 

speech. Since this thesis deals with low resourced languages, the datasets can be 

considered comparably small, so there is a need for another solution for recognizable 

units. 

 

Words can be segmented into sub-word units called morphemes. Morphemes are the 

smallest meaningful units in a language. Some morphemes may be complete words and 

thus are called a root, for example ‘go’ is a root-morpheme. Other morphemes are 

prefixes and suffixes with can be combined with a root-morpheme to build a word for 

example the word ‘ongoing’ consists of three morphemes: ‘on+go+ing’. 

Morphemes are well fitted for a single word recognizer. But with morphemes we have 

a similar problem as with words as recognition units. Although the total number of 

morphemes is smaller than the total number of words for a language, the amount of 

possible words and word combinations is so large, that it is laborious to write down all 

possible morphemes and it is nearly impossible to find enough training data for each 

such recognition-unit (Killer et al., 2003).  

 

Another way to split up words is to decompose them into their syllables. Since a syllable 

is a combination of phones, coarticulation effects between phones are already covered to 

a certain degree. The total number of syllables is way below the number of words or 

morphemes, but the problems mentioned above may still arise.  
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An even smaller unit than the syllables are the phonemes and thus the number of 

different units also decreases. Usually, there are in between 30 to 50 phonemes and sub-

phonemes (Killer et al., 2003).  

Because of the low number of phonemes, it is possible to look at them with respect to 

their context and consider also their left and right neighbor. A phoneme-based 

recognition unit that also considers the left and right context is called a triphone and is 

widely used in state-of-the-art speech recognition systems. Despite its name, a triphone 

often uses phonemes instead of phones. A phone represents a single sound (for example 

a ‘r’ can be pronounced rolled and unrolled which results in two different phones), 

whereas a phoneme combines phones with no difference in meaning, so the words do 

not change when using different phones of the same phoneme to pronounce the words. 

If the neighborhood of the phoneme is unspecified it is called a polyphone. The larger 

the context of a polyphone, the larger grows the total number of different units and like 

for the higher-level recognition units the trainability may suffer. The total number of 

possible polyphones depends on the set of phones, the dictionary and, if available, 

grammatical constrains.  

Young et al. (1994) stated, that when including cross-word triphones, the total number 

of possible triphones will result in a large number of states in the models and many 

triphone occurrences in the test-data will have a close to zero probability because there 

are very few occurrences in the training-data. Furthermore, context dependent models 

generalize less the wider the context neighborhood (Killer et al., 2003). One way to deal 

with this problem is to use phoneme clusters instead of definite phonemes as context. 

Therefore, Young et al. (1994) proposed a model which uses state tying. Contextually 

equivalent HMM states are found by using phonetic decision trees. Therefore, clustering 

algorithms are used to merge the various contexts of a phoneme together. The clustering 

procedure can be based on a decision tree which clusters states of the same phoneme in 

occurring different contexts. A phonetic decision tree is a binary tree where a question 

is asked in each node. The questions are phone-related and ask for information about 

the left and the right context. The question always has the form: ’Is the left or right phone 

a member of the set X’ where X can be used to model different phonetic categories such 
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as nasal, stops, fricatives etc. or even individual phones. An example question may be: 

‘Is the phone on the left of the current phone nasal?’ (Young et al., 1994). Usually the 

questions that split the branches of the decision tree are linguistically motivated and 

formulated by an expert (Killer et al., 2003). Questions of the decision trees are scored 

based on their entropy loss and those questions that have the highest score are applied 

next to split the node into two child nodes.  

Clustering the nodes in the context brings another advantage. It is quite conceivable that 

triphones that were not seen in the training phase appear in the test data set, especially 

when the model uses cross-word dependencies (Young et al., 1994). When clustering the 

context of a polyphone with decision trees, unseen triphones can be synthesized by 

constructing the triphones based on the tied state association for that triphone’s context, 

which is the leaf node of the decision tree. 

Figure 6 shows an example of a phonetic decision tree. 

 

 

Figure 6: Example of a phonetic decision tree  (Young et al., 1994) 

 

Young et al. (1994) proposed a method to create decision trees using the top-down 

sequential optimization procedure. 

In the first step all the states are located in the root node of the tree. The log likelihood is 

calculated on the assumption, that all the states are tied in the root node. In the second 

step, the states are assigned to two child nodes by finding the best question which 
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separates the states with a maximum increase in log likelihood. This step will be repeated 

for the split which results in the largest log likelihood gain until the improvement fells 

under a certain threshold. To ensure that all of the nodes have enough data to be 

sufficiently covered, there is a minimum threshold for states in a node. 

The performance of automated speech recognition systems can be improved when using 

context dependent models. Choosing the right context is essential though and depends 

on the language as well as on the amount of available training data.  

2.1.2 Gaussian Mixture Model 

A widely used method for modeling the acoustic probabilities is the Gaussian Mixture 

Model as described by (Reynolds, 2009), since it is a good way of approximating 

probability distributions. 

The GMM models the probability of an observation, given a class, with a mixture of 

Gaussian. For each feature in the input vector the GMM models the mean and variance 

of the probability distribution function PDF for each acoustic unit. The result is a 

weighted sum of several Gaussian probability distribution functions for each acoustic 

unit. 

Due to computational complexity instead of using the full co-variance matrix, often the 

diagonal co-variance matrix is used which only contains the variances of each feature. 

This means that in practice we are keeping only a single separate mean and variance for 

each feature in the feature vector. 

Each acoustic unit is modeled by a mixture of Gaussian and the GMM is trained by the 

Expectation Maximization (EM) algorithm: 

 

• M: For each utterance, taking the words and align each acoustic unit to the 

corresponding acoustic feature vectors using the maximum likelihood. This way, 

the acoustic frames get labeled. 

 

• E: Given the alignment, the mean and variance (μ,σ) for each acoustic unit are 

estimated. 
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The M and E step are repeated until the improvement on the training data is under a 

certain threshold. 

A clear advantage of GMMs is, that this method is highly parallelizable. Having a model, 

the alignment step can be done for each utterance in parallel. After the alignment step, 

the information about each acoustic unit can be collected and every single mixture model 

can be trained in parallel for a specific acoustic unit. 

The disadvantage of GMMs is that during the alignment step each frame is aligned to 

exactly one corresponding acoustic unit and in the M step the frames train only the 

specific model of the aligned acoustic unit, so there is no generalization. 

 

2.1.3 Time Delay Neural Networks 

Waibel et al. (1989) presented a method called Time Delay Neural Network (TDNN) to 

model the acoustic properties of phonemes. To ensure, that the network is able to learn 

complex nonlinear decision surfaces, the TDNN is a feed-forward neural network with 

multiple layers and links between the units in each of these layers. 

The network aims to represent the relation of events based on different time steps with 

no temporal per-alignment of acoustic units during training. 

Usually for neural networks, the basic unit computes the weighted sum of its inputs and 

passes the result through an activation function (for example sigmoid or threshold). 

However, the TDNN is slightly modified, since it uses multiple time-steps as input. 

Assuming the model uses N=2 delays (D1, …, DN) with J=16-dimensional feature input 

vectors, units in the first hidden layer are receiving 48 weighted input connections. This 

way the network has the ability to relate the input of the current frame to events in the 

past. 

Figure 7 shows an example of a 3-layer TDNN for phoneme recognition. The feature 

vectors used consists of 16 normalized Mel Frequency Cepstral Coefficients (MFCC). The 

second layer is fully connected to a 3-frame window from the input layer. It consists of 
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eight time-delayed hidden units, each connected with the 16 corresponding inputs of the 

current frame and the 32 inputs of the delayed frames. 

 

Figure 7: The TDNN as presented by (Waibel et al., 1989) for phoneme recognition 

 

The second hidden layer consists of three hidden units and uses a 5-frame window of 

the one hidden layer, so the number of incoming connections for each unit in this layer 

is 40. The larger window of frames is motivated by the assumption, that higher level 

units should consider a larger period of time when making decisions. 

By summing up the evidence from each of the three nodes in the second hidden layer 

and applying a sigmoid function, the resulting phoneme can be obtained from the nodes 

in the output layer. 

In conclusion each unit of the TDNN is able to encode temporal relations based on the 

range of the delays, where higher level units consider a larger period of time. 
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Training of an TDNN is done via error-back-propagation, where the weights of the 

TDNN are iteratively adjusted, using labeled training data, so that the error for the 

training data gets minimized (Jurafsky and Martin, 2014). 

Based on the assumption, that there are large context overlaps between activations 

computed at neighboring frames, Peddinti et al. (2015) proposed a TDNN that uses sub-

sampling by allowing gaps between the delays in each layer. While the first hidden layer 

is fully connected to a 5-frame window from the input layer, the higher-level units only 

use the output of two nodes from the previous layer. 

 

Figure 8: The architecture of a TDNN that uses sub-sampling (red connections) and no 

sub-sampling (red and blue connections) as illustrated by (Peddinti et al., 2015) 

 

The architecture of a TDNN with and without sub-sampling can be seen in Figure 8. This 

strongly reduces the number of computations during training and the process can be 

done in a fifth of the time compared to no sub-sampling training. 

 

2.2 Pronunciation Dictionary 

The pronunciation dictionary is one the core components of an automated speech 

recognition system. In the pronunciation dictionary, each word is divided into its 

subunits. For speech recognition systems with very large vocabularies, it is a bad idea to 
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use whole words as basis for unit-classification, because the number of states is so large 

that it is nearly impossible to get enough training data to cover the states sufficiently. 

Furthermore, there is a high risk of being confronted with untrained words in the 

training data, these words have no chance of being recognized correctly. With the 

pronunciation dictionary, the number of recognizable states is highly reduced. Instead 

of using the whole word as recognition unit, the words are represented in subunits. This 

method is more robust, because the subunits occur far more often and are shared 

between the different words in the lexicon. This makes it even possible to deal with 

unseen words, because they can be decomposed into their subunits. Usually, words are 

decomposed into their phoneme-representation and thus the pronunciation dictionary 

defines the pronunciation of the words (Killer et al., 2003). 

The pronunciation dictionary can have a strong impact on the results of the speech 

recognition system and the choice of subunits is an important task. If similar sounds, for 

example in English ‘D’ and ‘T’, would be represented by the same subunit the recognizer 

could not differ between ‘BAD’ and ‘BAT’ (Singh et al., 2002). Because of the importance 

of the pronunciation dictionary, usually language experts are given the task to manually 

create these phoneme-based dictionaries. The problem with rare languages is, that the 

interest in developing speech recognition system for these languages is comparably low 

and thus there is low effort in creating these dictionaries (Besacier et al., 2014). So, in 

order to create applicable pronunciation dictionaries other methods are needed. 

There has been effort in automatically creating pronunciation dictionaries and 

researchers have come up with different solutions. Most approaches use segmentation 

and clustering methods to treat the problem of identifying sub-word units (Singh et al., 

2002). These approaches heavily rely on the available training data and thus may be not 

suited for rare languages. 

It is also possible to use trained models of other languages to build the pronunciation 

dictionary. This method uses multiple phoneme recognizers for different languages and 

uses them to decode an acoustic frame for each of these languages. A voting mechanism 

then decides witch hypothesis is the best fitting one. Experiments however showed, that 

this method produces rather poor results (Stüker et al.). 
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Fukada and Sagisaka (1997) obtained good experimental results by using a 

pronunciation dictionary for spontaneous speech. Spontaneous speech differs from read 

speech in that it varies more in terms of pronunciation. A phone recognizer and its 

results were used to train multi-layer perceptron neural networks. The goal was to 

predict the correct pronunciation from a symbol sequence. In the next step, these 

networks were used to generate the pronunciation dictionary. 

A grapheme-based pronunciation dictionary divides each word into its single characters 

and uses these as recognition units. This approach may have some shortages to manually 

created pronunciation dictionaries and the results are expected to be not as good, but on 

the other hand, a grapheme-based pronunciation dictionary can be created fast without 

expert knowledge. But this can only work if the words of a language are represented in 

multiple graphemes. Chinese Hanzi (a logographic script system) for example uses one 

unique grapheme for each word and thus the words cannot be divided into multiple 

grapheme-based subunits (Killer et al., 2003). When dealing with writing systems other 

than the roman one, it is possible to convert the written text into the roman writing 

system. This method is called romanization and makes it possible to perform grapheme-

based language processing even for logographic languages. 

Killer et al. (2003) showed, that the performance of grapheme-based recognizers in four 

different languages (English, Spanish, German and Swedish) are not as good as the ones 

with phoneme-based recognizers but stated, that for some languages the performance 

of grapheme based recognizers may be close to phoneme based recognizer. In 

conclusion, the performance of grapheme-based recognizer is strongly dependent on the 

language. 

2.3 Language Modeling 

A Language Model (LM) describes how sentences of a language are structured. 

Therefore, it models the possible word transitions and determine how words can be 

combined to word sequences which result in whole sentences. 
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The LM is one of the key components in an automated speech recognition system and 

the performance strongly depends on how well the it models the actual structure of a 

language. 

One way to deal with this task is to create grammars. A grammar basically consists of a 

dictionary with all possible words and word-classes and hand-written rules about how 

to build a phrase and how phrases can be combined to from a sentence. 

There are different kinds of grammars like context free grammars or unification 

grammar (Jurafsky and Martin, 2014). 

This approach may be well suited for tasks with a small dictionary and simple rules for 

sentence construction but as soon as it comes to recognizing free speech, the effort of 

creating such models increases dramatically. 

To create a grammar a linguistic expert with extensive understanding of the target 

language is needed. For rare languages, like Amharic, it is hard to create a sufficiently 

representative grammar due to the lack of linguistic expertise. 

Another way to create language models is the statistical approach. These models have 

the major advantage that no expert knowledge is needed, since these statistical language 

models are corpus based. 

Statistical LMs have the basic assumption, that the probability of a word depends on the 

previous sequence of words. 

Given a word sequence W = w1, w2, ..., wq the probability p(W) of this sequence can be 

calculated by: 

 

p(W) = p(w1) p(w2|w1), p(w3|w1w2), …, p(wq|w1w2 ... wq-1) 

 

or: 

 

𝑝(𝑊) = ∏ 𝑝(𝑤𝑖 ∣ 𝑤1, … , 𝑤𝑖−1)

𝑞

𝑖=1
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Using the whole word history however is not applicable in practice. The longer a 

sequence gets, the less is its probability to occur in a dataset. This makes it hard to 

estimate good parameters especially for free speech since most sequences will only occur 

a few times and others might not occur at all in the training data.  

A solution to overcome this problem is to use n-gram models (Jurafsky and Martin, 

2014). This technique is based on the Markov assumption, which indicates that the 

probability of an event in the future can be predicted by only looking at some of the 

previous words. 

So instead of looking at the entire sequence of words, an n-gram language model uses 

the previous n – 1 words to estimate the probability of a word in a sequence. 

For example, to approximate the probability of a word with a bi-gram model (n = 2), only 

the immediate predecessor word is taken into account. 

The probabilities in the n-gram LM are computed using maximum likelihood estimation, 

which basically counts all sequences of length n in the corpus and determines the 

probability for each sequence based on the total number of occurrences of this sequence 

normalized by the total number of all sequences, so that the resulting probability lies 

between 0 and 1: 

 

𝑝(𝑤𝑞 ∣ 𝑤𝑞−𝑁+1, . . . , 𝑤𝑞−1) =
𝐶(𝑤𝑞 ∣ 𝑤𝑞−𝑁+1, . . . , 𝑤𝑞)

𝐶(𝑤𝑞 ∣ 𝑤𝑞−𝑁+1, . . . , 𝑤𝑞−1)
 

 

The complexity of the model increases with higher ordered n-gram models. This effect 

can be shown by a simple example. Assuming we have a small dictionary with 100 

different words, the number of possible uni-grams (n = 1) is the total number of words, 

since we do not take any previous words into account. When we use a bi-gram model, 

the number of n-grams increases by a factor of 100 since (theoretically) each word can be 

combined with every other word to compute the dependent probability. Any next higher 

order would increase the possible number of n-grams again by a factor of 100. Since the 

number of n-grams represents the number of search states in the model and thus have a 

high impact on the computation time.  
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When increasing the number of states, the coverage for each of these states gets lower. 

This makes it especially harder to estimate the probabilities of low frequent sequences. 

That is why usually the order of n-grams is usually not higher than 4. 

Another problem with higher ordered n-grams is the data sparsity. The best-case 

scenario is, that every n-gram occurs several times in the data-set, so that it is possible to 

sufficiently estimate the probabilities. As mentioned before, when the order of the n-

gram model increases, the number of total n-grams also strongly increases and thus each 

single n-gram occurs less often. This may lead to worse results since the probabilities 

cannot be estimated adequately. 

Since the probability-distribution strongly depends on the corpus and its context, this 

method benefits from large training sets, but even with a large training set it is still 

probable, that possible sequences of words do not occur in the training examples. To 

handle the problem of unknown sequences of words, smoothing techniques can be used. 

This way the unseen word sequences get a low probability above zero and thus the LM 

has the ability of detecting those sequences.  

Especially for morphological rich languages there is even a high risk, that individual 

words do not occur in the corpus which is called the Out-of-Vocabulary (OOV) problem 

(Tachbelie, 2010). This may lead to a negative impact on the performance of the speech 

recognition system.   

2.4 Hidden Markov Models 

As mentioned in Section 2.1.1 each spoken word w of an input sequence is partitioned 

into a sequence of Kw basic sound units called base phones. The resulting sequence is called 

the pronunciation of the spoken word 𝒒1:𝐾𝑤

(𝑤)
= 𝑞1, … , 𝑞𝐾𝑤

. 

Figure 9 shows, how the base phones are represented as continuous density Hidden 

Markov Models (HMMs) with {aij} as transition probability and {bj()} as output 

observation distribution (Gales et al., 2008). 
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Figure 9: HMM-based phone model (Gales et al., 2008) 

At each step, an HMM makes a transition from the current state si to the next state sj, 

where the transition and emission probabilities are considered when deciding which 

next state will be chosen. 

This way, the conditional independence assumptions of an HMM are ensured (Gales et 

al., 2008): 

The first conditional independence assumption is, that states are only conditionally 

depend on the preceding state. In reverse this means that a state only influences the next 

state and no other. 

The second assumption states, that observations are not dependent on each other but 

only on the coherent state and its output observation distribution. 

Jurafsky and Martin (2014) summarized the parameters of a Hidden Markov Model as: 

• The states: 𝒒1:𝐾𝑤

(𝑤)
= 𝑞1, … , 𝑞𝐾𝑤

 

• The transition probabilities: The transition probabilities A = a01, a02, …, an1, …, ann. 

The set can be seen as a transition probability matrix where each aij is the 

transition probability from state i to state j. 

• The observation likelihood: Each state i may result in multiple observations yt, 

so the set of observation likelihoods is Y = bi(yt), where bi(yt)may have any value 

from 0.0 to 1.0 and expresses the probability of an observation yt being generated 

from a state i. 
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• The initial distribution: An HMM needs to start in a specific state, so  is the 

initial probability distribution over all states. The probability, that state i is an 

initial state and the HMM will start in i is given by i There may be states j where 

j = 0 which indicates, that these states do not occur at the beginning of words. 
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3 Related Work 

This chapter will give an overview of researches in the past that are related to the topic 

of this thesis. In section 3.1 different data augmentation techniques are explained and 

discussed of they are applicable for low resourced languages. Section 3.2 provides 

information about speech recognition for Amharic and states approaches and results of 

researches in the past.  

 

3.1 Data Augmentation 

As mentioned before, there are often no well-developed transcribed datasets for low 

resourced languages. This circumstance makes is hard to estimate robust parameters for 

the speech recognition system (Ragni et al., 2014). One way to overcome this shortage is 

to transform the input in a way that does not change the label or transcription of the 

data. This method - called data augmentation - first was used for visual object 

recognition, where the input was horizontally or vertically transformed, rescaled or local 

image distortions where added to obtain more training examples from the given data 

(LeCun et al., 1998). In speech recognition, data augmentation is a common method to 

increase the quantity of your training examples (Ko et al., 2017) and it is especially useful 

for small datasets where the number of examples is low. 

Since data augmentation methods do not really create new samples but rather create a 

new perspective on the available data, the performance of a speech recognition system 

would benefit more from not previously seen utterances, but due to the limited resources 

problem, data augmentation offers a suitable attempt to handle this problem for low 

resourced languages. 

  

One way to augment speech datasets is to alter the audio examples with the Vocal Tract 

Length Perturbation (VTLP) method (Jaitly and Hinton, 2013). VTLP maps the frequency 

of an audio signal f to a new frequency f´ by applying a warp factor α to the frequency 

of the input data: 
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𝑓′ = {

𝑓α, 𝑥 ≤ 𝐹ℎ𝑖min (α, 1)/α   

𝑆

2
−

𝑆 2⁄ − 𝐹ℎ𝑖 min (α, 1)

𝑆 2⁄ −
𝐹ℎ𝑖 min(α, 1)

α

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

With the sampling frequency S and a boundary frequency 𝐹ℎ𝑖 that covers the significant 

formants. 

Jaitly and Hinton (2013) stated, that the warp factor α is usually chosen between 0.8 and 

1.2 because a larger range tends to create unmanageable distortions. 

Vocal Tract Length Normalization (VTLN) in speech recognition is used to reduce the 

variability between different speakers that results from different lengths of the speaker’s 

vocal tract. Based on the VTLP method, Jaitly and Hinton (2013) proposed an advanced 

method to improve data augmentation for speech recognition systems. They showed, 

that transforming inputs by using VTLN to generate a larger augmented training base 

can increase the recognition accuracy by up to 1.1% on an English speech recognition 

task. Jaitly and Hinton (2013) used this method to augment an acoustic dataset by 

randomly generating a wrap factor for each utterance in training to generate new 

utterances. 

 

Tempo perturbation as mentioned by Ko et al. (2015) is a method, that modifies the 

tempo rate but ensures, that the signal keeps its original pitch level and spectral 

envelope. By always combining two frames into one at a certain distance in the input 

signal, it is possible to shorten the signal. When extending the signal, additional frames 

are inserted at a certain distance over the whole signal which can be synthesized by the 

neighboring frames. By applying this method with modification factors α of 1.1 and 0.9 

it is possible to generate a training set which is three times as large as the original one.  

 

Ko et al. (2015) also proposed an approach to augment a speech dataset by means of 

speed. Instead of altering the frequency of an utterance with VTLP or simply applying 

tempo perturbation, they developed a method that uses speed perturbation which 

produces a warped time signal and is a combination of VTLP and tempo perturbation. 

Let α be the warping factor and a given audio signal x(t), then: 

𝑥′(𝑡) = 𝑥(αt) 
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This results in a new length of the audio signal and thus also affects the number of frames 

for each input signal. Ko et al. (2015) showed, that this method does not only alters the 

length, and thus the tempo for a given signal, but also shifts the spectrum in a way that 

is similar to the results of VTLP.  

Salamon and Bello (2017) described a method to augment audio datasets by adding 

background noise to the signal. Therefore, the samples get mixed with different types of 

noise, for example street and park sounds. This augmentation strategy may improve the 

results in a lower rate than time or pitch augmentation, but it can be combined with other 

techniques to obtain further improvements.  

Voice conversion can transform an utterance to a different speaker. This way each 

training example can be used several times. This might be a good approach to augment 

the speech dataset, but according to Jaitly and Hinton (2013) the number of target 

speakers is limited, since a lot of speaker individual data is required to develop the 

models for sufficient voice conversion. Thus, this method is not applicable for low 

resourced languages.  

 

3.2 Speech Recognition for Amharic 

This chapter gives a summary of research in the past that has dealt with speech 

recognition for Amharic. 

Since it is crucial for every automated speech recognition system to have a recorded 

corpus for training, Abate et al. (2005) developed a read-speech corpus with 20 hours 

recorded data from 100 different speakers. This corpus is widely used for Amharic 

speech recognition systems. 

Seid and Gambäck (2005) used a hybrid HMM/ANN (Artificial Neural Network) model 

for speaker independent Amharic speech recognition and showed, that this model is 

superior to pure HMM models. 

Abate and Menzel (2007) used a syllable based HMM-recognizer. This was motivated by 

the Amharic orthography, which has an almost one-to-one mapping to corresponding 
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syllabic sounds. According to them this is a promising alternative to tri-phone 

recognizers. 

Gizaw (2008) used a multiple pronunciation model based on a phone based HMM 

recognizer and concluded, that this approach can improve the performance for Amharic 

speech recognition. 

To improve speech recognition for Amharic, especially for the OOV-problem of this 

morphologically rich language, Tachbelie et al. (2009) used a morpheme based statistical 

language model. Their experiments showed, that using morpheme-based language 

models can bring a slight performance improvement by up to 3% und thus are superior 

in comparison to word-based language models for Amharic. Since they assumed a 

closed vocabulary where all words that are tested are trained at least once, it is plausible 

that on an open vocabulary task where OOVs actually occur the improvement of 

morpheme-based models is even more effective. With a total word error rate of 7.08% 

the results look very promising, but the assumption of a closed vocabulary for Amharic 

as target language is unrealistic. 

Melese et al. (2016) used a domain specific speech recognition task for Amharic where 

they trained the acoustic model on the dataset developed by (Abate et al., 2005) and 

tested the performance on a self-developed dataset in the tourism domain. They 

compared morpheme and word-based language models and showed, that morphemes 

as sub-word units can improve the results compared to word-based language models by 

57.39%. The morpheme-based approach showed a WER of 19.6%. 
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4 Experiments 

This chapter will explain the experiments in detail. In section 4.1 the dataset used in the 

experiments will be described and internal information about it will be provided. Section 

4.2 gives an overview about different measures to compare the performance of 

automated speech recognition systems. Section 4.3 describes the different models used 

in the experiments to investigate the effects of different data augmentation techniques 

for different models. 

 

4.1 Data 

The dataset used for the experiments was constructed by Abate et al. in 2005. It consists 

of 10,850 audio-files in .wav format. The dataset is a read-speech corpus, so there is no 

spontaneous speech in it. 

The corpus is already cleaned, in that spelling and grammar errors have been corrected, 

abbreviations have been written out, foreign words have been eliminated, numbers have 

been textually written out and concatenated words have been separated. 

There are 100 different speakers, 80 of the Addis Ababa dialect who read 100 sentences 

each and 20 of the other four dialects who read 120 sentences each. For recording, a 

headset close speaking microphone with noise canceling was used. 

Each audio-file contains one spoken sentence in Amharic and has a total length of 

103.909 words with 28.615 unique words.  

On average each sentence has a length of approximately 9.55 words and each word has 

a mean-occurrence of approximately 3.63.  
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Word Count 

ነው 2300 

ናቸው 745 

ውስጥ 609 

የኢትዮጵያ 606 

ኢትዮጵያ 580 

ላይ 573 

ወደ 464 

መንግስት 393 

ግን 371 

ደግሞ 333 

Table 2: The ten most frequent words in the dataset with the total number of 

occurrences 

As in all languages, there are words in the dataset that are much more frequent than 

others. As Table 2 shows, the word ‘ነው’ (in English equivalent with ‘it is’) is the most 

frequent word with a total count of 2,300 occurrences. 

Due to the comparably small dataset and the rich morphology of the Amharic language, 

there are many words in the dataset that are unique and occur only once. The total 

number of words which occur only once in the whole dataset is 18,755, so from our 

28,615 different words and that is 65.5%. These single words represent 18% of the total 

words in the dataset. 

When one of these words occurs in the training-set there is no chance that it will be 

recognized properly because there are no examples in the training-set. 

On the grapheme level, there are 451,766 total graphemes in the dataset with 207 

different graphemes. This gives a much better base to cover datapoints, since we have a 

mean occurrence of ca 2,182 for each grapheme. In contrast to the word level, even the 

least frequent grapheme occurs several times and each grapheme in the test also occurs 

in the training set. 

Table 3 shows the graphemes of the dataset and how often they occur. 
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ን 28252 ግ 5043 ሮ 2160 ሲ 1154 ዜ 697 ጭ 463 ጁ 160 ቭ 54 

ት 19877 ላ 4795 ሁ 2138 ቻ 1137 ቴ 696 ኘ 429 ጄ 141 ጒ 52 

ው 17874 ረ 4485 ሆ 2028 ፕ 1124 ዴ 690 ኳ 419 ኡ 132 ጼ 52 

ስ 13957 ብ 4450 ጋ 1972 ጉ 1089 ኙ 688 ፉ 402 ሾ 123 ጢ 51 

አ 13556 ድ 4415 ሊ 1940 ዝ 1088 ኔ 657 ጂ 390 ጳ 114 ኜ 50 

ያ 13015 ሰ 4413 ቶ 1929 ቢ 1051 ፋ 622 ጓ 361 ጩ 113 ዢ 49 

የ 12785 ከ 4213 ካ 1864 ሶ 1003 ዶ 621 ፌ 347 ቪ 111 ፑ 49 

ተ 11641 ወ 4150 ቱ 1825 ዚ 986 ጽ 610 ጹ 342 ዥ 111 ጺ 48 

በ 11309 ኢ 4033 ፈ 1789 ጀ 982 ፊ 595 ቂ 296 ኰ 109 ኚ 46 

ል 10316 ታ 3957 ጣ 1635 ቁ 967 ጫ 590 ኬ 282 ጌ 104 ዣ 46 

ለ 10095 ዳ 3812 ፍ 1564 ሱ 960 ለ 582 ኪ 268 ፐ 103 ጶ 46 

ር 9527 ክ 3760 ሀ 1558 ኖ 946 ቆ 580 ጦ 255 ኸ 100 ቩ 42 

እ 9125 ዮ 3739 ሞ 1531 ኩ 920 ኞ 564 ሹ 254 ቬ 98 ዉ 42 

መ 8809 ዋ 3378 ዊ 1516 ቋ 874 ጻ 555 ፎ 251 ጐ 98 ጴ 41 

ች 8458 ህ 3032 ሽ 1505 ኒ 855 ሴ 541 ዬ 248 ፔ 94 ጔ 40 

ም 8449 ጵ 2850 ዘ 1462 ሌ 854 ጎ 539 ሺ 243 ዡ 86 ጰ 40 

ና 8413 ጥ 2791 ሬ 1427 ቹ 853 ጊ 538 ፒ 242 ቈ 84 ቊ 38 

ደ 8124 ሪ 2656 ኮ 1412 ቤ 841 ቦ 535 ጆ 237 ዪ 79 ዦ 38 

ነ 7387 ቀ 2614 ኤ 1411 ዱ 814 ዩ 527 ሂ 236 ቼ 70 ቮ 34 

ገ 7155 ጠ 2580 ሎ 1342 ጸ 783 ሄ 524 ቨ 221 ቺ 66 ኲ 33 

ማ 6039 ቅ 2568 ኛ 1269 ጡ 763 ጨ 517 ቾ 213 ቫ 65 ዠ 30 

ባ 5937 ዲ 2459 ቡ 1266 ሸ 746 ኦ 506 ጮ 195 ጬ 61 ጲ 23 

ይ 5651 ዎ 2427 ሙ 1226 ዙ 741 ፖ 506 ዞ 189 ሼ 60 ቌ 20 

ሚ 5463 ሩ 2357 ቃ 1210 ኝ 721 ሜ 503 ጤ 188 ዌ 57 ኴ 18 

ቸ 5086 ሳ 2355 ዛ 1207 ጅ 718 ሻ 494 ቄ 183 ዤ 55 ጱ 10 

ራ 5057 ሉ 2285 ኑ 1202 ቲ 716 ፓ 481 ጪ 164 ጾ 55   

Table 3: The graphemes of the dataset with the total number of occurrences 



 

 36 

Compared to large training datasets for popular languages, this dataset is small with 20 

hours of recording. 

Since the effort of creating a phone-based pronunciation dictionary is very high and 

requires Amharic linguistic expertise, we took advantage of the syllabic writing system 

(see section 1.3) and used the Amharic graphemes as base-unit for a syllable based 

pronunciation dictionary. 

For training the language model the Amharic Web Corpus developed by Rychly et al. 

(2016) was used. It consists of approximately 1,200,000 sentences and was crawled from 

the web in 2013, 2015 and 2016 by the SpiderLing1. 

Since many sentences in the corpus contain digits, e-mail addresses and other symbols 

or graphemes that do not belong to the Amharic writing system, these sentences were 

sorted out and not used to train the language model. The remaining 300,000 sentences 

were cleaned by removing the punctuation marks. 

 

4.2 Measuring Error Rates 

To calculate the errors of the recognition process one compares a reference sentence 

with the recognized hypothesis sentence. Errors are described in terms of substitution 

(word of hypothesis and reference differ), deletion (the word is left out in the hypothesis) 

and 

insertions (there is an extra word in the hypothesis) errors. The word error rate WER is 

a combination of them: 

 

𝑊𝐸𝑅 =
𝑁𝑠𝑢𝑏 + 𝑁𝑖𝑛𝑠 + 𝑁𝑑𝑒𝑙

𝑁
 

Where N is the total number of words in the reference sentence, 𝑁𝑠𝑢𝑏 is the total number 

of substitutions, 𝑁𝑖𝑛𝑠 is the total number of insertions and 𝑁𝑑𝑒𝑙 is the total number of 

deletions. 

 
1 http://corpus.tools/wiki/SpiderLing (visited on 01/24/2020) 

http://corpus.tools/wiki/SpiderLing
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The word error rate is a suitable measure to compare recognition performance within a 

language but is not always a good choice to compare performance across different 

languages since it is based on words. (Different languages might have different notions 

of the concept ‘word’). 

The syllable error rate SyER is calculated in a similar way to the word error rate but 

syllables (in our case the graphemes) are used as base unit instead of words. 

Another important error rate in the field of speech recognition is the sentence error rate 

SER which states the relative proportion of incorrectly recognized sentences. 

 

𝑆𝐸𝑅 = 1 −  
𝐶

𝑁
 

Where C is the number of correctly recognized sentences and N is the total number of 

sentences in the test-set. 

 

4.3 Experiment Setup 

This thesis compares, how different data augmentation methods affect the performance 

of speech recognition systems for rare languages. For this purpose, different language 

models based on different recognition units are developed and the impact on 

performance when applying data augmentation methods are compared. 

As acoustic models the well-known GMM as described in section 2.1.2 which from now 

on will be written as GMM. The other model will be the time delayed neural network as 

described in section 2.1.3 which from now on will be marked as TDNN are used. Due to 

the lack of linguistic expertise to create a ‘real’ phoneme-based model, grapheme-based 

syllables are used as base recognition units for the acoustic models. 

To train the acoustic models the dataset developed by Abate et al. (2005) was randomly 

split into 90% training data and 10% test data. 

As language model, the statistical n-gram as described in section 2.3 is used in the 

experiments. 

Two different language models and their influence of data augmentation are compared. 

For training the language model, the 90% of the sentences from the dataset developed 
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by Abate et al. (2005) which are also used to train the acoustic model are combined with 

the 300.000 sentences selected from the dataset that was developed by Rychly et al. 

(2016). First a standard statistical word-based 3-gram language model is used, which 

will be called WORD from now on. As can be seen in section 4.1 this model suffers from 

the rich morphology of the Amharic language since the proportion of low frequent and 

single words is very high. This will result in many out of vocabulary words during the 

experiments. To avoid the problem of OOVs second model uses a syllable based 4-gram 

language model. Since the coverage of syllables and sequences of syllables is much 

higher than for words, we allow a higher n-gram order of 4. This model uses a special 

silent token <w> to mark the word boundary and is able to detect out of vocabulary 

words, since it is focused to detect small sub-word units instead of whole words. The 

syllable-based language model will be marked as SYL from now on. 

In section 3.1 different augmentation strategies are explained. In our experiments we use 

four different augmentation approaches. For data augmentation the ffmpeg tool was 

used, a cross-platform tool for video and audio manipulation2. 

The first strategy is a 3-fold tempo augmentation with manipulation factor of 0.9, 1.0 and 

1.1, where 1.0 is the original data, and will be marked as T. For this augmentation the 

following command was used: 

 

ffmpeg -i $f -filter:a "atempo=1.1" 

ffmpeg -i $f -filter:a "atempo=0.9" 

 

The second strategy is a 3-fold pitch augmentation with a manipulation factor of 0.9, 1.0 

and 1.1 and will be marked as P. For this augmentation the following command was 

used (the base sample-rate is 8.0K): 

 

ffmpeg -i $f -filter:a "asetrate=r=8.8K" 

ffmpeg -i $f -filter:a "asetrate=r=7.2K" 

 

 
2 https://www.ffmpeg.org (visited on 01/24/2020) 

https://www.ffmpeg.org/
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The next augmentation approach combines the augmented sets from T and P which 

results in a 5-fold augmentation and will be marked as T/P. 

And finally, the last strategy is a 3-fold speed augmentation with a manipulation factor 

of 0.9, 1.0 and 1.1 which is basically a combination of tempo and pitch augmentation. 

So, in conclusion we can derive 20 different Models: 

 

GMM+WORD: 

This model uses a standard tri-phone acoustic model and the 3-gram language 

model is based on words. No augmentation strategies are applied. 

 

GMM+WORD+T: 

Based on the TRI+WORD approach but with 3-fold tempo augmentation. 

 

GMM+WORD+P: 

Based on the TRI+WORD approach but with 3-fold pitch augmentation. 

 

GMM+WORD+S: 

Based on the TRI+WORD approach but with 3-fold speed augmentation. 

 

GMM+WORD+T/P: 

Based on the TRI+WORD approach but with both tempo and pitch augmentation 

which results in a 5-fold augmentation. 

 

GMM+SYL: 

This model uses the GMM acoustic model and a syllable-based 4-gram language 

model with no augmentation on the dataset. 

 

GMM+SYL+T: 

 Based on the TRI+SYL approach but with 3-fold tempo augmentation. 

 

GMM+SYL+P: 

 Based on the TRI+SYL approach but with 3-fold pitch augmentation. 
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GMM+SYL+S: 

 Based on the TRI+SYL approach but with 3-fold speed augmentation. 

 

GMM+SYL+T/P: 

Based on the TRI+SYL approach but with combined 5-fold tempo and pitch 

augmentation. 

 

TDNN+WORD: 

This model uses a TDNN acoustic model and the 3-gram language model is 

word-based with no augmentation strategies. 

 

TDNN+WORD+T: 

Based on the TDNN+WORD approach but with 3-fold tempo augmentation. 

 

TDNN+WORD+P: 

Based on the TDNN+WORD approach but with 3-fold pitch augmentation. 

 

TDNN+WORD+S: 

Based on the TDNN+WORD approach but with 3-fold speed augmentation. 

 

TDNN+WORD+T/P: 

Based on the TDNN+WORD approach but with combined 5-fold tempo and pitch 

augmentation. 

 

TDNN+SYL: 

This model uses the TDNN acoustic model and a syllable-based 4-gram language 

model with no augmentation on the dataset. 

 

TDNN+SYL+T: 

Based on the TDNN+SYL approach but with 3-fold tempo augmentation. 
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TDNN+SYL+P: 

Based on the TDNN+SYL approach but with 3-fold pitch augmentation. 

 

TDNN+SYL+S: 

Based on the TDNN+SYL approach but with 3-fold speed augmentation. 

 

TDNN+SYL+T/P: 

Based on the TDNN+SYL approach but with combined 5-fold tempo and pitch 

augmentation. 
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5 Results  

This section presents the results of the experiments. Figure 10 shows the results of all 

approaches in terms of WER. Generally, in terms of WER the word-based LMs 

approaches are clearly superior to the SYL-based approaches and the TDNNs bring an 

improvement compared to the GMM-based approaches.  

First the results of the GMM based approaches will be shown and after that, the results 

of the TDNN based approaches will be presented. 

The performance of the different models will be compared in terms of WER, SyER and 

SER. 

 

Figure 10: The total WER of all approaches that are compared in this thesis 

 

5.1 GMM-based Results 

Table 4 shows the results of the different augmentation strategies based on the Gaussian 

Mixture Model approaches with words as base-unit for the statistical language model. 

With the basic GMM+WORD we obtained a word error rate of 23.28%, a syllable error 

rate of 22.92% and a sentence error rate of 46.83%. 
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Approach: WER: SyER: SER: 

GMM+WORD 23.28% 22.92% 46.83% 

GMM +WORD+T 22.85% 22.96% 46.37% 

GMM +WORD+P 22.54% 22.79% 44.89% 

GMM +WORD+S 22.47% 22.64% 44.8% 

GMM +WORD+T/P 22.79% 22.9% 45.17% 

Table 4: The results in terms of WER, SyER and SER for the GMM based 

approaches and words as base-unit for the language model 

 

All of the data augmentation strategies are leading to an improvement of the results in 

terms of WER and SER. The speed augmentation (GMM+WORD+S) strategy brings the 

highest improvement with a total WER of 22.47%, which is a relative improvement by 

3.48%. In comparison to the GMM+WORD strategy, the SER of the GMM+WORD+S 

approach decreases by 2.3% from 46.83% to a total SER of 44.8%.  

As can be seen in Figure 11, the relative improvement in terms of WER of the 

GMM+WORD+S approach was the highest, followed by the P augmentation. The 

GMM+WORD+T and the GMM+WORD+T/P approach had lower impact on the 

performance where the GMM+WORD+T/P showed slightly better improvements in 

terms of WER.  
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Figure 11: The relative improvement in terms of WER of the GMM+WORD 

based approaches when different augmentation strategies are applied  

 

In Table 5 the results of the GMM approach with syllables as base-unit for the language 

model are presented. 

Approach: WER: SyER: SER: 

GMM+SYL 59.71% 37.22% 93.38% 

GMM+SYL+T 59.52% 37.37% 91.81% 

GMM+SYL+P 59.40% 37.71% 93.19% 

GMM+SYL+S 59.87% 38.47% 94.02% 

GMM+SYL+T/P 60.06% 37.83% 95.12% 

Table 5: The results in terms of word error rate (WER), syllable error rate (SyER) 

and Sentence error rate (SER) for the GMM based approaches with syllables as 

base-unit for the language model 

 

The WER of the basic GMM+SYL approach with no augmentation strategy is 59.71%, the 

SyER 37.22% and the SER 93.38%. 

When augmenting the training data with the tempo augmentation strategy 

(GMM+SYL+T), the SyER get worse in that it increases by 0.15%, which is a relative 

increasement of 0.4%. The GMM+SYL+P approach increases the SyER even more by 

0.49%, which is a relative increasement of 1.37% in comparison to the basic GMM+SYL 
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approach. In contrast to that, the SER and WER decreases for both approaches. For the 

GMM+SYL+T approach there was a relative improvement of the SER by 1.68% and the 

absolute SER is 91.81, while with the GMM+SYL+P strategy the improvement was 

smaller and the absolute SER is 93.19, which is a relative improvement of 0.19%. 

With the GMM+SYL+T/P approach we obtained the worst results in terms of WER. The 

WER increased to 60.06% and there was also a relative increasement of the SyER by 

1.64%, so the absolute SyER is 37.83% and the SER increased to 95.12% which is a relative 

deterioration of 1.86%. 

Both, the T/P strategy and the S strategy failed to improve the results in terms of WER. 

The SyER and SER also increased for both approaches. Interesting in this context is that 

the relative increasement of SyER for the S strategy (3.36%) is much higher than for the 

T/P strategy (1.63%). In contrast to that, the WER and SER of the S strategy are slightly 

better compared to the T/P approach. 

 

 

Figure 12: The relative improvement of the WER for the GMM+SYL based 

approaches when different augmentation strategies are applied 

 

When comparing the relative improvements of the word based approaches (Figure 11) 

and the Syllable based approaches (Figure 12), it is clear to see that the augmentation 

strategies work much better with the word-based approaches, since the relative 

improvement of the WER is much higher. For the SYL approaches the P strategy have 
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brought the highest improvement and for the WORD approaches the S strategy showed 

the best results.  

 

Figure 13 illustrates the relative improvement and deterioration of the different 

augmentation strategies in terms of SER. Similar as for the WER, the augmentation 

strategies where more effective when applied on the WORD models. In fact, only the 

tempo augmentation strategy achieved to improve the results for the GMM-based 

models. For the WORD approaches the best improvement in terms of SER was achieved 

by augmenting the data with the S strategy and the tempo augmentation obtains the 

least improvement. 

When using the syllable-based language model, the tempo augmentation results in the 

largest relative improvement, while the pitch augmentation only gives a minimal 

improvement in terms of SER and the combined T/P and S augmentation strategy even 

worsen the SER. 

 

 

Figure 13: The relative improvement (deterioration) in terms of SER for different 

augmentation strategies of the GMM approaches 
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5.2 TDNN-based Results 

The results of the TDNN+WORD and the effect of the different data augmentation 

strategies are shown in Table 6. 

Approach: WER: SyER: SER: 

TDNN+WORD 21.67% 22.27% 42.31% 

TDNN+WORD+T 21.44% 21.97% 46.37% 

TDNN+WORD+P 21.29% 21.91% 41.95% 

TDNN+WORD+S 21.22% 21.82% 41.31% 

TDNN+WORD+T/P 21.59% 22.1% 43.70% 

Table 6: The results in terms of word error rate (WER), syllable error rate (SyER) 

and Sentence error rate (SER) for the TDNN based approaches and words as 

base-unit for the language model 

 

The basic TDNN+WORD approach without any data augmentation technique applied 

obtained a word error rate of 21.67%, a syllable error rate of 22.27% and a sentence error 

rate of 42.31%. Similar to the SYL-based approaches, all of the data augmentation 

strategies lead to improved results in terms of WER. The speed TDNN+WORD+S 

strategy scored the best results with a total WER of 21.22%, which is a relative 

improvement by 2.08%. This approach also scored the best SyER and WER compared to 

all other approaches used in the experiments.  

As you can see in Figure 14, the relative improvement in terms of WER of the 

TDNN+WORD+S approach was the highest, followed by the P augmentation, which is 

similar to the GMM+WORD based approaches. In contrast to GMM+WORD, the T/P 

showed the lowest improvement for the TDNN+WORD approaches.  
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Figure 14: The relative improvement in terms of WER of the TDNN+WORD 

based approaches when different augmentation strategies are applied  

 

Table 7 shows the results of the TDNN approaches with syllables as base-unit for the 

language model. 
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Approach: WER: SyER: SER: 

TDNN+SYL 47.8% 29.92% 83.9% 

TDNN+SYL+T 50.14% 31.99% 88.87% 

TDNN+SYL+P 46.85% 30.58% 86.38% 

TDNN+SYL+S 47.74% 38.47% 94.02% 

TDNN+SYL+T/P 48.58% 31.21% 88.68% 

Table 7: The results in terms of word error rate (WER), syllable error rate (SyER) 

and Sentence error rate (SER) for the TDNN based approaches with syllables as 

base-unit for the language model 

 

The basic TDNN+SYL approach with no augmentation strategy scored a total WER of 

47.8%, a SyER of 29.92% and a SER of 83.9%. 

Only the pitch and speed augmentation technique had a positive effect on their 

performance in terms of WER, where the speed strategies improvements are very low. 

Similar to the GMM+SYL approaches, the SyER increases for all augmentation strategies 

on the TDNN+SYL approaches. Interesting is, that the S augmentation showed the 

lowest performance in terms of SyER but still was able to improve the WER. 

The SER of the TDNN+SYL approaches get worse when applying any of the 

augmentation strategies. The highest effect has the S strategy, which also obtains the 

highest SyER increasement, where the SER shows a relative increasement of 12.06%. 

With the TDNN+SYL+T/P and TDNN+SYL+T approaches the WER increases compared 

to the standard TDNN+SYL approach. For the TDNN+SYL+T/P strategy, the WER 

increased to 48.58% which is a relative increasement of 1.63% whereas the WER of the 

TDNN+SYL+T approach increased by 4.89%, so it showed the worst results with a WER 

of 50.14%.  

As Figure 15 shows, the T and T/P strategies had a negative impact on the WER, the P 

augmentation technique improved the performance by 1.99% and the S approach had 

no great impact on the WER. 
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Figure 15: The relative improvement of the WER for the TDNN+SYL based 

approaches when different augmentation strategies are applied 

 

Similar to the GMM approaches, the augmentation strategies show better and more 

reliable improvements when applied on word based LMs instead of syllable based LMs.  

 

Figure 16 illustrates, that the SER for most TDNN approaches increases. All of the 

syllable-based models obtained a worse SER. Of the WORD approaches, only the speed 

and pitch augmentation showed an improving SER. 

 

 

Figure 16: The relative improvement (deterioration) in terms of SER for different 

augmentation strategies of the TDNN approaches 
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6 Discussion 

Using data augmentation techniques to extend the audible dataset is a useful approach 

to improve the performance of speech recognition systems. This is especially relevant 

for low resourced languages, where the available data often is strongly limited. This 

thesis presented three different augmentation approaches, which can be easily applied 

to any speech recognition dataset. 

To answer the key research question, this chapter discusses the sub-questions as 

mentioned in section 1.2.  

 

1. Is it possible to improve the performance of automated speech recognition systems for 

low resourced languages with data augmentation techniques? 

1.1: Which data augmentation techniques are suitable for low resourced languages? 

1.2: Which augmentation strategy works best? 

 

In section 3.1 different augmentation techniques are presented. Most techniques like the 

speed, tempo and pitch augmentation can be simply applied on single audio files and 

thus are suitable for low resourced languages. Others like speaker adaption need lots of 

training data and thus are not applicable for low resourced languages. 

For the syllable-based language models, the augmentation strategies show unreliable 

and both improving and deteriorating effects on the performance. The overall deficient 

performance of the syllable-based models might be the reason why the data 

augmentation techniques show these contradictory results. 

The experiments showed that for Amharic, out of the compared augmentation 

techniques (speed, tempo and pitch), the speed augmentation obtains the largest 

improvement on the word-based language models with a relative improvement of 

2.08%. 

Since the speed augmentation combines more variation in the augmented files, it is 

absolutely reasonable that the resulting model learned more robust parameters than the 

tempo or pitch only augmentation. The T/P approach combines the tempo augmented 
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files and the pitch augmented files and thus learns variations in the frequency and time 

domain, but the speed augmentation is still superior. This leads to the assumption that, 

when applying several augmentation techniques it may be better to apply them on top 

of each other rather than creating new files for each single augmentation method. 

 

2. Is it possible to improve speech recognition for low resourced languages using 

different acoustic and language models? 

2.1: Which acoustic model is best suited for the task of speech recognition for low 

resourced languages? 

2.2: Which language model is best suited for the task of speech recognition for low 

resourced languages? 

 

The results show, that the TDNN acoustic model is superior to the GMM acoustic model 

in the experiments with an average relative improvement of 19.24% for the syllable-

based LMs and 5.89% for the Word based LMs. As described in section 2.1.2 The 

advantage of the GMM, that it is highly parallelizable and thus can train on massive 

amounts of data, cannot be used when it comes to low resourced languages, since there 

are no large datasets we can train on. The advantage of TDNNs over GMMs is that they 

can generalize over multiple time delays as explained in section 2.1.3. The drawback that 

this model needs a lot of computation time for training is manageable for low resourced 

languages, since the data for training is often very limited. 

In the experiments, the word-based language models show much better results 

compared to the syllable-based language model approaches. The syllable-based 

approaches obtained word error rates around 50%-60% whereas the WER of the word-

based LMs range from 21.22% to 23.28%. For the syllable-based approaches this means 

that almost half of the words could be recognized correctly by this approach although 

not a single one of them occurred as a ‘word’ in the pronunciation dictionary or the 

language model. The results are probably so poor, because of the fact that this language 

model can not only recognize every possible word but also every impossible word 
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(words that do not exist in Amharic) and the proportion of the possible words is much 

smaller. 

 

3. What is the best combination of augmentation strategy, acoustic model and language 

model? 

 

Out of the 20 approaches compared in this thesis, the TDNN+WORD+S model scored the 

best WER (21.22%), SER (21.91%) and SyER (41,31). As mentioned before, the word-

based language models performed better than the syllable language models, the TDNN 

outperforms the GMM based models and the speed augmentation obtained the best 

improvements in terms of WER. Since the TDNN+WORD+S model scores the best results 

in term of WER, SER and SyER, the different strategies can be combined well to further 

improve the recognition rate. 

 

4. Since we use Amharic as a low resourced language target, can the concluded model 

be transferred to other low resourced languages? 

 

Using a TDNN is highly recommended for low resourced languages. Since the datasets 

for training are often relatively small for low resourced languages, the high 

computational effort to train a TDNN is acceptable. The generalization over the time 

improves the performance and outperforms the GMM in the experiments. 

The speed augmentation showed the best improve for the Amharic language, but since 

every language has unique articulation properties, most likely there is no general 

superior augmentation approach that shows the best improve for every language. 

 

An interesting finding in the results is, that when the performance in terms of WER 

improves the SyER often worsen. The data-augmentation strategies showed in 12 out of 

16 experiments an improvement in terms of WER and only in 7 out of these 12 there was 

also an improvement of the SyER. Obviously these two measures are related since 0% 



 

 54 

WER also means 0% SyER and 100% SyER will result in a 100% WER. Still this 

observation shows, that a lower WER does not automatically imply a lower SyER. 

Graphemes as base acoustic units for the pronunciation dictionary are suitable for 

Amharic. This has the major advantage, that no linguistic expert knowledge is needed 

to create the pronunciation dictionary. But this method is not applicable for all languages 

and only works for Amharic due to the close one-to-one mapping of spoken syllables 

and written graphemes. Other low resourced languages which share this property could 

also use graphemes as base for the pronunciation dictionary.  

Compared to the results from Tachbelie (2010), who scored a WER of 7.08% and Melese 

et al. (2016) who scored a WER of 19.1% the results of this thesis seem poorer with a WER 

of 21.22%. This is probably because this thesis assumes an open vocabulary, while 

Tachbelie (2010) uses a closed vocabulary with no OOVs and Melese et al. (2016) used a 

domain specific vocabulary which results in less OOVs compared to an open vocabulary. 
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7 Future Work 

The experiments showed that training a model on an augmented dataset can improve the 

performance of speech recognition systems for Amharic. In our experiments different 

augmentation techniques were compared and the speed augmentation showed the best 

results. The augmentation techniques used in this thesis rely on the time and frequency 

dimension. It is also plausible to augment the dataset by changing the volume, add noise and 

echo or emulate different spatial environments. Comparing the effect of other combinations 

of augmentation strategies may bring more insight to how to improve the models for low 

resourced languages. Another interesting field of research would be if the augmentation 

techniques show similar improvements for other low resourced languages than Amharic.  

Using a grapheme-based language model to detect out of vocabulary words showed a 

strongly decreasing performance. Researches in the past have shown, that using morphemes 

instead of words can improve the performance (Tachbelie et al., 2009; Melese et al., 2016). 

Since morphemes, like graphemes, are sub word units, it is possible to detect out of 

vocabulary words with morpheme-based language models. A TDNN-based Speech 

recognition system that uses a morpheme-based language model and a speed augmented 

dataset will probably get better results than the proposed TDNN+WORD+S approach. 
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