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Abstract

Abstract

This thesis presents the novel document annotation tool ActiveAnno. The fo-
cus of ActiveAnno is to be a well-functioning general-purpose annotation tool
for document-level annotations. Through high configurability, users can optimize
for high-quality annotations and e�ciency. One of the main features to enable
this is a machine learning integration with the ability to provide pre-annotations
and to integrate ActiveAnno into an active learning process. In this context, two
experiments with ActiveAnno were conducted in an industry setting. In the first
experiment, the e↵ects of document-level pre-annotations on annotation quality
and e�ciency were analyzed in comparison to the manual annotation process.
The results show a 28% decrease in annotation duration using pre-annotations. At
the same time, annotator accuracy and inter-annotator agreement show no signifi-
cant changes. The second experiment compared model performance for incremental
learning with random sampling and active learning with uncertainty sampling for
a new annotation task in ActiveAnno, using its machine learning integration ca-
pabilities and a fastText-based external classification service. The results show a
worse performance for a model trained with active learning when not providing
any pre-trained word vectors to it. Using pre-trained word vectors, both, models
trained with random sampling and uncertainty sampling perform better overall,
without a significant di↵erence between each other. These results show that the
choice of classifier is relevant in an active learning setting and that using unsuper-
vised methods in form of pre-trained word vectors can prevent the sampling bias
of uncertainty sampling in this context.
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Zusammenfassung

Zusammenfassung

Diese Masterarbeit stellt ein neues Annotationstool für Dokumente namens Ac-
tiveAnno vor. Der Fokus von ActiveAnno liegt darauf, ein gut funktionierendes,
vielseitig einsetzbares Annotationstool für Annotationen auf Dokumentenebene zu
sein. Durch hohe Konfigurierbarkeit können die Nutzer sowohl für hochqualitative
Annotationen als auch für einen e�zienten Annotationsprozess optimieren. Eine
der wichtigsten Funktionen, um dies zu ermöglichen, ist eine Machine Learning In-
tegration mit der Möglichkeit, Pre-Annotationen bereitzustellen sowie ActiveAnno
in einen Active Learning Prozess zu integrieren. In diesem Kontext wurden zwei
Experimente mit ActiveAnno innerhalb eines Industrieumfelds durchgeführt. Im
ersten Experiment wurde der E↵ekt von Pre-Annotationen auf Dokumentenebene
mit Bezug auf Qualität der Annotationen und E�zienz analysiert und mit dem
manuellen Annotationsvorgang verglichen. Die Ergebnisse zeigen eine 28% kürzere
Annotationsdauer mit Pre-Annotationen. Gleichzeitig gab es keine signifikanten
Änderungen bei der Genauigkeit der Annotatoren oder dem Inter-Annotator Agree-
ment. Das zweite Experiment vergleicht die Performance von Models für Incremen-
tal Learning mit Random Sampling und Active Learning mit Uncertainty Sampling
für eine neue Annotationsaufgabe in ActiveAnno, unter Nutzung der Möglichkeiten
zur Machine Learning Integration und einem auf fastText basierenden, externen
Classification Service. Die Ergebnisse zeigen eine schlechtere Performance für ein
mit Active Learning trainiertes Model, wenn keine vortrainierten Wort-Vektoren
bereitgestellt wurden. Unter Verwendung von vortrainierten Wort-Vektoren per-
formen sowohl Models trainiert mit Random Sampling als auch Uncertainty Sam-
pling besser, ohne, dass es zwischen beiden signifikante Unterschiede gibt. Diese
Ergebnisse zeigen, dass die Wahl des Classifiers im Kontext von Active Learning
relevant ist und Unsupervised Learning Methoden in der Form von vortrainierten
Wort-Vektoren den Sampling Bias von Uncertainty Sampling in diesem Fall ver-
hindern können.
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Chapter 1

Introduction

Annotation tools are software programs that provide users, the annotators, a
user interface to annotate some documents with additional information. Documents
can be texts, images, videos, audio files or have a complex multimodal structure.
Each type of document has specific kinds of annotation targets: Texts can have
annotations for specific substrings or spans. Images can have annotations for a
subset of pixels, audio files for a specific time range and videos can be annotated
for time ranges, frames or subsets of pixels in those frames. On a higher abstraction
level, all documents, regardless of their type, can have annotations on the document
as a whole, called the document level. This thesis focuses on document-level

annotations for text documents.
Typical use cases for annotation tools are found in research as well as in an

industry context. In natural language processing research, annotation tools can be
used for tasks such as named entity recognition (NER) [7]. In social sciences, con-
tent analysis [14] can be used to assign codes to documents, for example to extract
important topics from interview transcripts in order to generate quantitative data.
In supervised machine learning or classification tasks, which are used in research
and industry alike, a machine learning model learns to predict the correct label for
a given input, like a text document. An example for this would be a spam filter
in a mail program, assigning a spam or no spam label to each new email based
on previously labeled emails. Both codes and labels can be seen as analogous to
annotations. In all those cases, there is a human involved at some point to annotate
the documents, which would typically be done through an annotation tool.

While annotation tools can be used to train a machine learning classifier, these
classifiers can also be integrated into annotation tools to create a more e�cient
annotation process. If a well-trained machine learning model already exists, it can
be leveraged to pre-annotate documents and display those in the user interface.
Alternatively, the model can be used to automatically annotate all or a subset of
the documents. When no trained machine learning model exists at the beginning
of an annotation task, incremental learning can be used to iteratively train
new versions of machine learning models based on the annotations created by a
human in the annotation tool. A special version of incremental learning is active
learning, where a deliberate choice is made about which documents to annotate
first in order to make the machine learning model learn faster with less training
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1.1. Context

samples required. Finally, the newly trained model can be used to automatically
annotate either all or a subset of the documents, greatly reducing the manual labor
required to finish the annotation task.

1.1 Context

During the Web Interfaces for Language Processing Systems project at the Univer-
sity of Hamburg, the author created the document annotation tool ActiveAnno1,
which was done in cooperation with a local company. ActiveAnno is an open-source
annotation tool with focus on document-level annotations. For this master thesis,
ActiveAnno was improved and extended to have a machine learning integration
and active learning capabilities to pursue the goal of creating high-quality anno-
tations while minimizing e↵ort. The thesis was also done in cooperation with the
local company, o↵ering the ability to conduct experiments with annotators, tasks
and data from an industry environment.

1.2 Research Questions

By leveraging the ability to conduct experiments in a practical setting, two research
questions are investigated. Both revolve around using machine learning to improve
annotation processes with regards to annotation quality and e�ciency.

Research Question 1 What is the e↵ect of pre-annotations in the form of gener-
ated document-level annotations from a machine learning model on the annotation
quality and the e�ciency with which these annotations are created?

Research Question 2 How does active learning with uncertainty sampling com-
pare to incremental learning with random sampling with regards to the generated
annotation quality given a new machine learning model without preexisting train-
ing data?

1.3 Contribution

The contribution of this thesis is fourfold.
First, ActiveAnno is extended by a machine learning integration and active

learning capabilities, further providing users of ActiveAnno with the ability to
design e�cient annotation processes.

Secondly, ActiveAnno is used in an industry setting as well as for the research
purposes of this thesis and improved for requirements from both contexts, further-
ing the quality and stability of ActiveAnno as an open-source document annotation
tool.

1https://github.com/maxmello/activeanno
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1.4. Terminology

Thirdly, two experiments are conducted, answering the research questions above
about ways to e�ciency create high-quality annotations for a practical use case.

Lastly, through the experiments, it is also demonstrated how to design, con-
duct and analyze controlled experiments with ActiveAnno as a reference for other
researchers.

1.4 Terminology

The specific terminology used for concepts like documents and annotations can
vary between papers or research contexts. Therefore, the terminology used in Ac-
tiveAnno and this thesis is defined here.

A document is a single record of related data, which are of basic data types
such as strings, numbers and Boolean values. A document contains exactly one
document text, which is the main attribute of the document and of type string.
All other data attributes are regarded as meta data of the document, for example
an associated creation time or the name of the creator. Every document can be
annotated for any number of annotation projects. A project is created for a spe-
cific annotation task and defines among other properties an annotation schema.
The annotation schema is an ordered list of annotation definitions associated
with their project-specific configuration. The annotation definition specifies what
has to be annotated about a document, for example the sentiment of a comment
as a choice of predefined tag set options, the key topics of a news item defined as
an extensible list of tags, or the usefulness of an app review expressed through a
number between one and ten. The annotation is the combination of the annota-
tion definition and the created annotation value, for example the value positive
for the annotation definition sentiment. The set of all annotations produced for
an annotation schema is called an annotation result. Each document can have a
completely di↵erent set of annotation results for each project associated with the
document.

In the context of machine learning, the term label is seen as analogous to the
annotation. A document used as training data might also be called a (training)
sample or instance. For text classification, the term class is seen as analogous to
a tag set option as defined in the context of annotation tools.

1.5 Thesis Structure

The remaining structure of this thesis is as follows: The second chapter describes
the related work regarding annotation tools with support for document-level anno-
tations, text classification, active learning and the e↵ects of using pre-annotations.
The third chapter gives an overview of the concepts, architecture and functionality
of ActiveAnno. The fourth chapter presents the two experiments conducted using
ActiveAnno in an industry setting and the fifth and final chapter summarizes the
findings and gives an outlook on the future work regarding ActiveAnno.
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Chapter 2

Related Work

To provide context for the design decisions of ActiveAnno, this chapter gives an
overview of existing annotation tools with relevance for document-level annota-
tions. Additionally, relevant topics from machine learning, specifically text classi-
fication and active learning, are presented for the understanding of the machine
learning integration capabilities of ActiveAnno as well as the experiments. Finally,
for the intersection of machine learning and annotation tools, previous work on the
e↵ects of pre-annotations is described.

2.1 Annotation Tools

Neves and Ševa [15] conducted an extensive review of document annotation tools
in 2019, collecting 78 tools in total and comparing 15 which met their minimum
criteria. Their five basic criteria for considering a tool were the availability of the
tool, it being a web application, it being installable in under two hours, it working
without errors while using it, and it allowing for the configuration of a schema.
The 15 selected tools were then evaluated on 26 criteria from four categories:
Publication criteria, technical criteria, data criteria and functional criteria. The
technical criteria included the date of the last version, the availability of the source
code, the ease of installation, the quality of the documentation, the type of licence
and whether or not the tool is free of charge. The data criteria were comprised
of the format of the schema (e.g. configured through a GUI or configuration file),
the format for importing documents and the format for exporting annotations,
e.g. JSON or XML. Some functional criteria not related to span-level annotations
included the ability to support multiple users or teams, analyzing inter-annotator
agreement, the ability to display pre-annotations in the context of active learning
and the support for document-level annotations.

Their original goal for the paper was to evaluate tools capable of annotating
on a document level, but they expanded their review to those tools that only
support span-level annotations, because only five of the selected tools supported
document-level annotations. Those tools are MAT, MyMiner, tagtog, prodigy and
LightTag.

MAT [1] is designed for what they call the “tag-a-little, learn-a-little (TALLAL)
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2.1. Annotation Tools

loop” to incrementally build up an annotation corpus through manually annotating
some documents, training a new machine learning model, automatically annotating
the documents, correcting those automatic annotations and repeating the process.
It has an extensive documentation, but was not intuitive to use according to Neves
and Ševa. According to the online documentation, it is a research prototype and
not ready to be used in production. In the evaluation of Neves and Ševa, MAT
scored a 0.6 of a maximum of 1, being slightly below the average of 0.62.

MyMiner [17] is an online-only tool without a login or user system. Its main
purpose is to classify scientific documents in a biomedical context. The document-
level annotation process is based on uploading text files, defining the possible
labels and annotating every file with one of the possible labels. The results can be
downloaded as a text file containing the chosen label and the uploaded file content.
The configuration aspect is limited to defining the possible label strings. As the
tool is intended for scientific documents, the user interface is designed to display
a paper title and content. Neves and Ševa scored MyMiner with a 0.52.

The tool tagtog [2] is a commercial annotation tool with the free plan allowing
online use only. Using the free plan, private datasets and the machine learning
functionality are not available. The online documentation1 shows a feature-rich
application. Projects can be created with annotation guidelines, document labels,
webhooks and project members. Metrics include inter-annotator agreement and
document-level annotation distribution statistics. It also supports an API secured
through HTTP Basic authentication. The paid version of tagtog supports annota-
tion automation through machine learning models that will be trained from manual
annotations automatically, if enabled. It scored a 0.6 in the evaluation of Neves
and Ševa.

The fourth tool supporting document-level annotations is prodigy2, which is
fully commercial and does not have a free version. The functionality can be evalu-
ated through the available live demo and documentation3. The setup of the tool as
well as the configuration of an annotation schema is done through a command line
interface and the knowledge of Python is assumed to do the setup4. It supports
di↵erent types of documents, including texts, images, audio and video. The anno-
tation user interface shows the progress and history of annotated documents, and
every document has up to four available basic actions in addition to the specifically
defined annotation: Accept the annotation, reject the annotation, ignore the doc-
ument and go back to the previous document. Which actions are available to the
annotator is configurable. Support for active learning exists and the application is
extensible through custom Python code, allowing for customized machine learning.
Neves and Ševa report a positive user experience, though the tool scored a below
average 0.56 in their evaluation.

LightTag5 is the last evaluated tool which supports document-level annota-

1https://docs.tagtog.net
2https://prodi.gy/
3https://prodi.gy/docs
4https://prodi.gy/docs/faq
5https://www.lighttag.io/
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2.1. Annotation Tools

tions. It is also commercial and lists a number of useful features on their website6:
Document classification and tagging, which are part of the free plan, and more
advanced features like teams, multiple annotators per document, statistics about
annotator performance, user roles and inter-annotator agreement analysis, which
are part of the paid plans.

The best-performing tool in the comparison of [15] is WebAnno [25] with a
score of 0.81. While is does not support document-level annotations directly, there
exists a workaround using zero width annotations7.

The features of WebAnno include user management and a role system with
administrators, project managers, annotators and curators [4], where certain user
interfaces are only accessible to for certain roles. Project managers can define
projects and monitor progress and inter-annotator agreement. Annotators have
access to the annotation interfaces, where pre-annotated and un-annotated docu-
ments can be annotated. Curators can choose the correct annotation between the
alternatives created by annotators, or freely annotate the document themselves,
giving them authority over the final annotations. Regarding the project setup,
project managers can define an arbitrary number of annotation layers, for exam-
ple for part-of-speech tagging or named entity recognition. Created annotations
are immediately persisted to prevent any unintended loss of progress. It also pro-
vides an inbuilt generic machine learning component [26] for automatic annotation
suggestions for the annotation layers lemma, NER, POS and co-ref 8. It does not
require the connection of an external machine learning component to function.
WebAnno can be deployed in a variety of ways, including Docker.

Combined with the fact that WebAnno is still under active development, that
it is open-source and that it has a great online documentation9, makes it a useful,
feature-rich general-purpose annotation tool. While it does not directly support
document-level annotations, most of the features not directly related to span an-
notations are still very important to consider for the development of any annotation
tool.

Another annotation tool with limited support for document-level annotations is
Doccano [13], though it is not mentioned in the evaluation of Neves and Ševa. The
open-source tool currently supports three distinct annotation tasks: text classifi-
cation, sequence labelling and sequence to sequence tasks. The text classification
task allows users to annotate text documents with pre-defined classes, while the
sequence to sequence task allows to create any text as a document-level anno-
tation. There is no support for other types of annotations such as numbers or
user-extensible tags. There is no support for automation, though the REST API
could be used to integrate the tool in an automation process. Doccano can also be
deployed with Docker.

6https://www.lighttag.io/features
7https://github.com/webanno/webanno/issues/923
8https://webanno.github.io/webanno/releases/3.6.4/docs/user-guide.html#sect_

automation
9https://webanno.github.io/webanno/
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2.2. Text Classification

2.1.1 Discussion

As seen from the described tools, most of the commercial tools are usually general-
purpose and feature rich, because of the commercial incentive to sell as many li-
censes as possible. But in a research context, having open-source applications free
of charge is valuable, especially if the researchers want to promote an open source
and open science mindset. On the other hand, most non-commercial tools have
less features and are often limited in scope, as they are developed for a specific
research purpose. In general, the number of tools with focus on span-level annota-
tions greatly outnumbers the tools with first-class support for document-level an-
notations. WebAnno is the notable example of a tool which is open-source, widely
used, feature rich and has at least a workaround for document-level annotations.
Still, Neves and Ševa write: “Therefore, there is much room for improvement of
tools with such features, or even the development of a tool specifically for this pur-
pose.” (Neves and Ševa, 2019, p. 13) with regards to document-level annotations.
As most tools are developed either for a commercial industry setting or for a more
narrow research setting, having a collaboration of industry and research as with
ActiveAnno can be very valuable to get a feature-rich general-purpose annotation
tool which exists in an open-source setting and in a research context.

So instead of starting with span annotations and then creating document-level
annotations as an afterthought, ActiveAnno is intended to be document-level first.
Meanwhile, it is still designed to be extensible for span-level annotations and hybrid
annotations later. All the criteria and features which make a good annotation tool,
like the criteria defined in [15] or the notable features of the mentioned tools, but
are not specific to span-level annotations, can still be used as inspiration to create
a useful general-purpose document-level annotation tool.

2.2 Text Classification

Mirończuk and Protasiewicz [12] provide an extensive review over the field of text
classification. In essence, text classification is the automatic assignment of pre-
defined labels (also called classes) to a text.

Most commonly, this is done in a supervised way based on already labeled
training samples. As this work focuses on text documents in particular, text clas-
sification is what will be used to automate parts of the annotation process.

While Mirończuk and Protasiewicz list an array of training methods like deci-
sion trees, support vector machines (SVM), or neural network classifiers, the imple-
mentation details of such classification methods are not the focus of this work. To
anticipate Section 3.5, ActiveAnno supports machine learning integration through
an HTTP API where any classification method can be integrated. Still, for the
experiments described in Chapter 4, the choice for a text classification approach is
required. As such a choice should be able to be arbitrary in ActiveAnno, so was the
choice for the method used for the experiments: fastText[9], a library that supports
text classification through the command line as well as a Python library. Is uses
word embedding techniques which generally performs better for Active Learning
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2.3. Active Learning

(Section 2.3) tasks as compared to simpler methods like TF-IDF [11].
In [21], the authors Sokolova and Lapalme describe four types of classification

tasks: Binary, where the choice is between two classes; multi-class, where the choice
is between one of many non-overlapping classes; multi-labelled, where the choice
is between several of many non-overlapping classes; and hierarchical classification,
where one class is chosen from many classes which are structured in a hierarchical
manner. They then analyze the various type of performance measures for these
tasks. A basis for most measures are the concepts of true positives, false positives,
true negatives and false negatives. Defined on a binary classification task with a
positive and negative case, true positives are those samples correctly classified as
positive, false positives those falsely classified as positive, true negatives those cor-
rectly classified as negative and false negatives those falsely classified as negative.
Precision is calculated by dividing the true positive cases by the sum all positive
classifications, expressing the proportion of positive classifications which are cor-
rect. In contrast, Recall is calculated by dividing the true positives by all actually
positive samples, expressing the ability of classifiers to identify positive classes.
Precision and Recall are often combined through their harmonic mean as the F-
score to use as a general indicator of a classifiers performance. Another measure
is accuracy, which describes the e↵ectiveness of a classifier, expressed through the
proportion of correct classifications over all classifications. These measures are de-
fined on binary classification tasks, but can be transferred to the multi-class task by
building averages over the multiple classes. For multi-labelled classification tasks,
some measures include the Exact Match Ratio, which is the proportion of exact
classifications for all classes on a document; and the Labelling F-Score, which also
considers partial matches.

To evaluate a classifiers predictions, a source of what is actually the correct
classification is required. This is called the gold standard. As described in [8],
often there is no perfect gold standard. Instead, the performance of a classifier is
compared to classifications done by humans. To increase the confidence in the gold
standards quality or reliability, often multiple humans (annotators in the context
of annotation tools) are used to create the gold standard by using their majority
opinion. The degree to which multiple annotators agree in their annotations (or
classifications) is called inter-annotator agreement (IAA). One way to measure it
is by using simple agreement, meaning the proportion of documents where the
annotators agree [8].

2.3 Active Learning

Active learning is a strategy for training a machine learning model where the
model is integrated into the choice of which training samples to label next [3].
This is useful if the amount of potential training data is large and there does not
yet exist any of it. By actively selecting which documents to annotate first, the goal
is to train the model using less manually labelled samples overall as compared to
selecting samples at random. This is based on the assumption that some documents

9



2.4. E↵ects of Pre-Annotations

are more informative for the model than others. For example, a text classifier for
sentiment which already has seen the text “Awesome!” multiple times, every time
labelled with the value positive, will gain less information from that exact same
text again as compared to a new text like “This was very nice.” which it has never
seen before.

One di↵erence in active learning approaches is the query strategy, the way to
choose which documents to sample next for labelling. In [18], di↵erent query strate-
gies are described. One approach is to use uncertainty sampling, which queries those
documents first where the model is most uncertain about the appropriate label.
For models that support assigning a probability to a prediction, this probability
can be used as the uncertainty value. For example, a binary classification task
with two labels might return a probability of 0.7 for label A and 0.3 for label B
for one document, and 0.45 for label A and 0.55 for label B for another document.
In this case, the model is more uncertain about the second document, because
the highest probability value for the second document (0.55) is smaller than for
the first document (0.7). Another query strategy is called query-by-committee [20],
where multiple models predict labels and the documents with the highest disagree-
ment among the committee of models are queried first. Zhu et al. [27] use active
learning in conjunction with semi-supervised learning, where the initial documents
for a semi-supervised approach are sampled with active learning. The addition of
semi-supervised learning includes the unlabeled data into the decision about which
documents to label next, which can prevent sampling only the outliers, as discussed
in [18].

In addition to the query strategy, another decision to make is how often to
query the model for which documents to label next. In the best case scenario, this
can be done after every labelled document. In practice, the model might take too
much time to update after every new training sample, which makes querying and
labelling in batches of documents an alternative to ensure a faster labelling process.
As described by Settles, this might not work well because of overlap between the
documents inside a batch, which reduces the actual information gain per labelled
document [19].

That active learning is actually e↵ective was for example demonstrated by Tong
and Koller [23], who showed how actively selecting which texts to label next for
training data reduces the need for the total number of training instances while
using support vector machines for classification. Though Varghese et al. [24] show
through simulations that while active learning can decrease the training e↵ort, it
can also introduce sampling bias which can result in worse model performance
after all, reducing the benefits of using active learning.

2.4 E↵ects of Pre-Annotations

When combining machine learning with annotation tools, one application is to use
the automatically generated annotations as pre-annotations, meaning preselecting
the inputs of the annotation interface from the machine learning generated anno-
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2.4. E↵ects of Pre-Annotations

tations. Therefore, instead of coming up with the annotations themselves, the an-
notators are only required to correct the pre-annotations if they are incorrect. Else,
they can just accept the pre-annotations as correct, which decreases the number of
required interactions with the user interface for the annotation process. Multiple
studies analyzed the e↵ect of span-level pre-annotations on the annotation process
and annotation results.

Rehbein et al. [16] used pre-annotation in the context of word sense disambigua-
tion. They compared the F-Score for annotators between a condition with pre-
annotation and one without. Overall, the annotators achieved a statistically signif-
icant better F1-Score with pre-annotations, even when those were noisy. Though
they did not find a statistically significant impact on annotation time. Because
they did not control for the order of conditions, they did not prevent the learn-
ing e↵ect from having an impact on the results. F1-Scores on the pre-annotated
condition were lower for those subjects which received that condition first. This
learning e↵ect could also have impacted the missing reduction in annotation time.

Another study was done on the e↵ect of pre-annotations for part-of-speech
tagging [5]. They showed an increase of accuracy and inter-annotator agreement
when using pre-annotations. They also mention that annotators do show biases in
annotating, which they should be notified about to improve annotation quality.
Even a POS tagger with a small number of training data was able to significantly
decrease the annotation time.

In the context of annotating named entities in clinical data, Lingren et al. [10]
compared results for dictionary-based pre-annotations with no pre-annotations and
found time saving ranging from 13.85% to 21.5%. They did not find any statistically
significant di↵erence for inter-annotator agreement or accuracy. Also in the medical
domain, South et al. [22] evaluated the e↵ect of pre-annotations with regard to a de-
identification task on clinical texts. Compared to the previous examples, they found
neither an improvement in annotation quality nor annotation speed compared to
fully manual annotation.

Finally, Gobbel et al. [6] combined pre-annotations with an active learning ap-
proach for speeding up the annotation of clinical texts. They used batches of 19 to
21 documents for the active learning task. The first batch had no pre-annotations.
Every subsequent batch used pre-annotations based on the previous batches of
generated training data. Their tool, RapTAT, achieved up to 50% total time sav-
ings for the annotation task, with increased speed for each iteration of the active
learning process, which did not occur with the manual annotator control group.
They also report significantly higher inter-annotator agreement and did not report
any bias in the resulting annotations.

2.4.1 Discussion

All the mentioned work on the e↵ect of pre-annotations were done for various span-
level annotation tasks. In general, pre-annotations appear to be able to decrease
annotation time as well as improve accuracy and inter-annotator agreement, even
though not every study came to the same conclusions. For example, the task in
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[10] might have been to complex for pre-annotation to have any e↵ect. Therefore,
it is of interest how pre-annotations influence annotation speed and quality for
document-level annotations, which will be examined in Section 4.3.

12



Chapter 3

Tool Design

The criteria defined by Neves and Ševa as described in Section 2.1 give a baseline
for design decisions regarding annotation tools: They should be open-source, easy
to install, configurable and support standard formats. Furthermore, features like
user or role management, statistics such as inter-annotator agreement and some
form of machine learning integration can be important for some use cases. As
a general-purpose annotation tool, the aim should be to support as much use
cases as possible in a reasonable scope. As the focus of ActiveAnno is currently
only on document-level annotations, this changes the requirements compared to
tools supporting span-level annotations in important aspects. For example, texts
that require only document-level annotations are probably shorter, compared to
tasks on longer texts such as POS tagging. Texts that could require document-
level annotations are single sentences, tweets or internet comments. User generated
content like tweets might also be produced regularly, so annotation projects might
be based on a stream of data instead of a one-time upload of documents more often.
To support this, a good API becomes more important. At the same time, features
like the ability to curate annotations (WebAnno), deployment via Docker (e.g.
WebAnno, Doccano) and the continuous retraining of machine learning models
(MAT) are equally useful for document-level annotation tasks as they are for spans.
To guide the design of ActiveAnno, the specific features were abstracted into five
design goals.

Annotation Quality and E�ciency To be a general-purpose tool that can
be used in place of specialized annotation tools, which often would have to be
programmed first, a main requirements is the provide control mechanisms to ensure
high-quality annotations and an e�cient annotation process. Depending on the use
case, one might be more important than the other. For example, when working
with a limited amount of documents that need to be annotated thoroughly, the
responsible person might want to set up an annotation process where annotations
need to be built from the agreement of multiple annotators. In another case, where
the goal is to train a classifier with an accuracy of 85% on a very large dataset,
it might be enough to use one well-trained annotator and make use of an active
learning process to e�ciently train that classifier. Users of ActiveAnno should be

13
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able to tune their annotation project in a way to optimize for both aspects as
required by their specific situation.

Flexibility and Configurability An annotation tool should be flexible and
configurable to be useful in a wide range of application scenarios. Often, researchers
will program their own prototype of an annotation tool for their task. Instead, it
should be easier to deploy and configure ActiveAnno, without the need to modify
the code of ActiveAnno in any way.

Functionality and Usability For ActiveAnno to be worthwhile to use, it needs
to have production quality to elevate itself from specialized prototypes. It should
provide a high baseline for an e�cient annotation process that makes creating
high-quality annotations easy, for example through a good user experience with a
modern, responsive user interface. Annotators should be prevented from creating
accidental errors, for example through validating inputs based on defined limita-
tions on allowed values. Annotations made should not be lost when refreshing the
page or closing the browser.

Extensibility and Open Source As new use cases for ActiveAnno arise, it
should be as easy as possible to extend the software to allow for new use cases to
be supported without complicating the software for existing users and without the
code itself becoming worse over time. This is done through use of the right archi-
tecture and software design patterns, but also through an open-source development
approach, allowing for contributions and a transparent development process.

Interoperability and Installability Based on the principle of low coupling,
high cohesion, ActiveAnno should do one thing: Be a tool for annotating docu-
ments. Other functionality like specific machine learning implementations or au-
thentication providers should be added by integrating ActiveAnno through inter-
faces, namely REST APIs and webhooks. This allows ActiveAnno to be integrated
into existing software stacks or to build independent services around ActiveAnno.
To support this, ActiveAnno should be easy to install or deploy.

The remaining chapter documents the decisions made on design, architecture,
implementation and features to give an understanding about the concepts and
capabilities of ActiveAnno.

3.1 Software Architecture and Technologies

ActiveAnno uses a client-server architecture. The client is a web application writ-
ten in Javascript using the user interface library React1. It makes use of modern

1https://reactjs.org/
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and popular libraries like redux2 for application state management, flow3 for type
checking in Javascript and uses Material UI components4 based on the Material
design system5 for a familiar and modern design.

The backend is built with the lightweight Ktor6 framework, using the Kotlin
programming language7 running on the JVM. Client and server communicate over
HTTP through a JSON API. Additionally, the backend provides a JSON API for
external services to communicate with, e.g. for importing documents. MongoDB8

is used as the data storage, e.g. for documents, annotations and project configura-
tions. The backend is written as a stateless service, meaning there is no server-side
session management or global state inside the application used for communicating
with clients. This way, multiple instances of the same service could be deployed
into a service cluster. For this, ActiveAnno uses JSON web token (JWT)9 as a
stateless authentication mechanism.

3.2 Web Application

The ActiveAnno web application is a responsive, modern single page application. It
is fully internationalized, currently supporting the languages English and German.
By using a persistent web database, the application state and therefore the created
annotations are automatically persisted. Authentication can be disabled when run-
ning locally, while still supporting a multi-user login. In that case, anybody can
log in with any name and will be treated as a super user. When authentication is
activated, an external service needs to be provided for JWT verification. A config-
urable role system allows for the proper authorization of endpoints: The two main
roles are user and manager. A user can be annotator or curator, a manager has
the ability to edit projects as well as analyze the results. There are also the roles
producer and consumer to allow the protection of the API of ActiveAnno. Produc-
ers are allowed to push data into ActiveAnno while consumers are allowed to read
the annotation results through the export API. Lastly, the admin role allows ac-
cess to internal APIs and to an admin panel for user management and application
configuration, which is planned for the future. Though slightly modified, the user
roles were inspired by WebAnnos user management10.

The application can be deployed using Docker and can be configured through
the use of environment variables to allow to connect the database, configure the
JWT security and set the port and host. For the frontend, the theme colors are also

2https://redux.js.org/
3https://flow.org/
4https://material-ui.com/
5https://material.io/
6https://ktor.io/servers/index.html
7https://kotlinlang.org/
8https://www.mongodb.com/
9https://jwt.io/

10https://webanno.github.io/webanno/releases/3.6.5/docs/user-guide.html#sect_
users
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configurable through environment variables, allowing them to be adapted to exist-
ing designs. By default, ActiveAnno generates an example project, which was also
used for any screenshots in this chapter. This can be disabled through environment
variables as well.

Figure 3.1: The home page of ActiveAnno for a user with complete access to all
subareas.

Figure 3.1 displays the home page of ActiveAnno with the three main subareas:
Annotate, curate and manage. The manage area allows users with the manager role
to edit annotation definitions, projects, upload documents and analyze annotation
results for projects.

Figure 3.2 shows the UI for editing the basic properties of an example project,
like name, description and the users with access to the project. In addition to these
basic properties, it is also required to configure the filter condition to query docu-
ments from the database, defining which documents are relevant for the project, as
well as the field and order of how to sort documents when querying the database.
Both the filter and sort inputs translate to MongoDB queries internally. Addi-
tionally, the manager of the project can configure the annotation schema (see
Subsection 3.4.1). From this and the document mapping step, where the manager
defines which part (meaning JSON keys) of the imported documents are relevant
for the project, the layout for the annotation task gets generated. It is future work
to make the layout fully customizable as well. The default generated layout shows
all the metadata, the document text and all the annotation definitions with their
default input type. Figure 3.3 shows an example layout for the annotation view.
The layout could also be customized by directly calling the JSON API used by the
frontend, if necessary. Lastly, the manager can configure how annotation results
are able to be exported: Either through the REST API, webhooks, or both. See
Subsection 3.3.2 for more details on the API.

After a manager created a project and documents were imported into Ac-
tiveAnno, the annotators can then annotate the documents according to the project
setup in the annotate subarea, as shown in Figure 3.3. Depending on how the
project is set up, the annotated documents might be checked and possibly over-
written by a curator in the curate subarea. An example screenshot for the curate
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Figure 3.2: A screenshot of the edit project UI in the manage subarea of Ac-
tiveAnno. Specifically, this screenshot shows the Basic properties step of editing a
project.

subarea is shown in Figure 3.4. In addition to the normal annotate UI, curators
can see all previously created annotation results. Curators have the authority to
decide if an annotation created by an annotator is correct, and annotations created
by curators are therefore also treated as correct. This means, ActiveAnno supports
a two-step annotation process: First the documents get annotated and then either
automatically merged into a final annotation result through an agreement logic,
or they will be checked and finalized through a curator. All this is configurable on
a per-project basis and is described further in Subsection 3.3.1.

17
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Figure 3.3: A screenshot of the annotate UI for an example project.

After annotation results were created, they can be analyzed by managers in the
analyze project UI. Figure 3.5 show an example chart of the accuracy statistics for
an example project. In addition to accuracy, the inter-annotator agreement (simple
agreement with exact matching), as well as the annotation duration is available
as charts in the UI. There is also a table with each individual document, showing
the correctness of every annotator and if the annotators agree for the document.
The UI has filter inputs to restrict analyzed annotation results by annotator, date
range as well as more fine grained filters.

3.3 Documents and Annotations

Figure 3.6 shows an UML diagram of the data models central to ActiveAnno as
well as their relationships. The document (Document in Figure 3.6) is the model
holding the imported document data. A document is independent from any project
or other documents. Every document can be associated with any project through
the data stored inside the ProjectAnnotationData model, which maps annota-
tions for a project to the document. All annotations from a single source are
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Figure 3.4: A screenshot of the curate UI for an example project.

grouped together as an annotation result where the ID of the annotation defini-
tion is mapped onto the annotation with its associated values. The type of the
values depend on the kind of annotation definition: The boolean annotation defini-
tion produces a single boolean value, the tag set annotation definition produces a
list of strings representing the IDs of the selected tag options. Every value associ-
ated with an annotation can optionally have a probability (ValueToProbability
in Figure 3.6). This is mainly used to support generated annotations through
machine learning. Using the annotation generation capabilities of ActiveAnno,
the GeneratedAnnotationData model groups generated annotations for a single
project. Those generated annotations will then be transformed into annotation
results by ActiveAnno. The di↵erent types of sources for annotation results are
represented through the AnnotationResultCreator class hierarchy which allows
to store annotations created by annotators, curators, annotation generators as
well as imported annotations and annotation results created by the consensus of
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Figure 3.5: A screenshot of the analyze annotation results UI. Specifically, the
accuracy chart, comparing the di↵erent annotation creators with each other for all
annotations combined and each annotation individually.

multiple annotation results from di↵erent creators. Additionally, if created by a
human, an annotation result will have an associated interaction log which is used
to track the duration of the annotation process for the document. Finally, once
conditions for finalizing an the annotation results for a document are met, the
FinalizedAnnotationResult model stores which annotation results are part of
what is considered the final or correct result. Depending on how the project is
set up, this can be one or multiple annotation results. The reason for finalization
is either because of a curator who created or selected the annotation result, or
because the agreement policy of the project created the final annotation result
automatically.

3.3.1 Annotation Result Finalization

ActiveAnno has a two-step annotation process. In the first step, annotation re-
sults are created. They can be created either by annotators, annotation generators
(see Section 3.5) or they can be imported through the import annotation API
(see Subsection 3.3.2). After every new annotation result, the finalization policy
logic is applied to the document and its annotation results. This logic decides if
the annotation process is finished for the document and a final annotation result
exists. This is dependent on the project configuration. As seen in Figure 3.2, the
manager of a project can set the number of annotators per document. This is the
minimum number of di↵erent annotators required for each document until any ad-
ditional logic is applied. For example, if the number of annotators is set to three,
every document will be shown to the annotators until three have annotated the
document. One annotator can only annotate every document once. After three

20



3.3. Documents and Annotations

Figure 3.6: UML showing the core data models of ActiveAnno including the Doc-
ument, Annotation and AnnotationResult and their relations to each other.

annotation results were created, the finalization policy is applied. This can be any
of the following: Export each annotation result individually, resulting in multiple
final annotation results; majority agreement per annotation, meaning there has
to be at least a 51% majority of the same value for every annotation among the
annotation results; majority agreement for the whole document, meaning at least
a 51% majority has to exist for all annotations together; or always require a cu-
rator, where every single document has to be checked by a curator, no matter
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the agreement. For the cases with agreement logic, in case of no agreement, the
project can be configured to either ask an additional annotator until a majority
is reached, or to ask the curator to decide. This gives project creators the ability
to customize the annotation process to their needs. Using agreement on an an-
notation basis in combination with using more annotators as necessary might be
useful in a crowd-sourcing context, while using a curator is useful if highly trained
people exist in the context that can fulfill that role. In the simple case, setting the
number of annotators required to one and not requiring a curator will result in
every annotation result by an annotator to be instantly finalized.

3.3.2 Import and Export API

The import and export APIs are directly related to documents, annotations and
annotation results. Table 3.1 shows the two endpoints of the import API of Ac-
tiveAnno. Through these, it is possible to import any JSON as a document into
ActiveAnno. During the HTTP call, each document sent will get assiged a unique
ID, which will be returned to the caller, and can be stored for future reference, e.g.
to import annotations for the document. This is done through the second import
endpoint. For it, the annotations need to conform to a map of annotation IDs
(Strings) to a subclass of Annotation from Figure 3.6. Listing 3.1 shows an ex-
ample request body for importing annotations. These annotations will be wrapped
into an annotation result with the creator type Import (see Figure 3.6). These
annotation results are then treated like annotation results from annotation gener-
ators for any further processing, meaning they can be used for pre-annotations in
the UI or in the agreement logic.

Method Route URL parameter Request body

POST /document Any JSON object
or array of JSON
objects.

POST /annotation/project/
{projectID}/document/
{documentID}

projectID: The ID
of a project.
documentID: The
ID of a document.

See Listing 3.1.

Table 3.1: Import API endpoints. Every route needs to be prepended by
/api/v1/import.

Listing 3.1: Example JSON for the annotation import API. Contains two anno-
tations, a boolean annotation for the annotation definition SPAM and tag set an-
notations with associated probabilities (which are optional) for the annotation
definition TOPICS.

1 {"annotations": {
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2 "SPAM": {
3 "target": "document",
4 "values": [
5 { "value": false }
6 ]
7 },
8 "TOPICS": {
9 "target": "document",

10 "values": [
11 { "value": "SPORTS", "probability": 0.912 },
12 { "value": "TECH", "probability": 0.722 }
13 ]
14 }
15 }}

Table 3.2 lists the one endpoint of the export API. Through this endpoint,
annotation results can be exported into other applications for further processing.
Through the GET parameters, it can be defined which annotation results will be
exported. Usually, the endpoint would be called with the since parameter set
to only get new annotation results since the last time the endpoint was called.
Alternatively, if the calling application kept track of the document IDs during
import, it can also set the documentIDs parameter to specifically get annotation
results for these documents. It is also possible to configure the response structure by
setting one of the Boolean flags. For example, if includeAllAnnotationResults
is set to true, not only the finalized annotation result will be returned, but every
other annotation result created during the annotation process as well.

As an alternative to the export API, every project can define a list of web hook
URLs, which will be called once a document is finalized.

3.4 Annotation Definitions

Table 3.3 displays all supported types of annotation definitions in ActiveAnno,
which are currently seven di↵erent types. Every annotation definition has a unique
ID used for automatic handling of the annotations, e.g. as a key for exported anno-
tations. It also has a name and short version or abbreviation of the name displayed
to users in the web application. Functionally, every annotation definition defines
a validation method to ensure all stored annotations adhere to the configured re-
strictions. Any validation errors will be propagated to the user interface to allow
annotators to correct their inputs.

The first annotation definition listed in Table 3.3 is the boolean annotation
definition which can be used to query a truth value from annotators. An example
would be: Is this document spam?. As with all annotation definitions, the boolean
annotation definition has the capability to express the optionality of the annotation

23



3.4. Annotation Definitions

Method Route URL parameter GET parameter

GET /project/
{projectID}

projectID: The
ID of a project.

includeUnfinished: Boolean

includeUsedProject: Boolean

includeDocumentData: Boolean

includeExportStatistics: Boolean

includeAllAnnotationResults: Boolean

since: Long (UTC timestamp;

default null)

documentIDs: String (Comma-separated

document IDs; default null)

Table 3.2: Export API endpoint. The route needs to be prepended by
/api/v1/export. The authentication is configurable per project (No authentica-
tion, HTTP Basic Auth, JWT). All Boolean GET parameters are false by default.

by configuring if it is optional or not. If it is, the annotator can skip creating an
annotation for this annotation definition.

Figure 3.7: Screenshot of the editing user interface for an example restricted number
annotation definition.

Three di↵erent annotation definitions exist to store number annotations. The
open number annotation definition requests the annotation of any real number,
which can also be optional and can be restricted to a given step size, such that
values need to be expressed in steps of for example 0.1 or 1. The restricted number
annotation definition additionally requires to configure a minimum and maximum
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Annotation Def. Data type Configurablility

Boolean Boolean optional (true / false)

Open Number Double
optional (true / false)

step size (Double or null)

Restricted Number Double

optional (true / false)

step size (Double)

minimum value (Double)

maximum value (Double)

Number Range List<Double>

optional (true / false)

step size (Double)

minimum value (Double)

maximum value (Double)

Tag Set List<TagSetOption>

options (List of TagSetOption)

min number of tags (Int)

max number of tags (Int or null)

Open Tag List<String>

min number of tags (Int)

max number of tags (Int or null)

trim whitespace (true / false)

predefinedTags (List<String>)

use existing values as

predefined tags (true / false)

Open Text String

optional (true / false)

minimum length (Int)

maximum length (Int or null)

document data default (String)

Table 3.3: All available annotation definition types, what data type they produce
and how they can be configured.

value. The annotation value then has to be chosen between those limits. The main
reason for di↵erentiating between both cases is that numbers limited by a lower
and upper bound can be annotated by using a slider, while unrestricted numbers
need to be queried by providing a number input field. Using a slider might be
more convenient and appropriate for some use cases, which is the reason why
it is supported in ActiveAnno. An example for a restricted number annotation
definition is shown in Figure 3.7, where the editing UI for annotation definitions is
displayed for a restricted number. The third number-based annotation definition
is the number range, which is similar to the restricted number only that is stores
two number values between the lower and upper bound. This annotation can also
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be produced through a slider input element by the annotator. In a context where
the documents are historical texts, an example for a number range annotation
definition could be From what time in history could this document be? with a
range from the year 1500 to the year 2020 in steps of 50 years, in which case the
annotator would try to narrow the range down as close as possible by providing
the upper and lower bound for their estimate.

The tag set annotation definition can be used to present the annotator with a
selection choice between any number of predefined tag set options, which are rep-
resented by an ID and a display name. Based on the configuration of the minimum
and maximum number of required tags, the annotation definition can require a
single answer (minimum and maximum set to 1), the annotation can be optional
(minimum set to 0) or the annotation can be multi-select (maximum not defined
or higher than 1). An example for a tag set annotation definition is What is the
sentiment of the document? with the options positive and negative.

If the annotator is allowed to add their own tag values, the open tag annotation
definition can be used. Here, the annotation definition can be configured to provide
a list of predefined tags to select from, but the annotator may produce their own
tags. For this annotation definition, tags are just a list of string values. It is also
possible to aggregate all previously created tags for an annotation definition and
add them to the list of predefined tags for the annotator to choose from. Similar to
the tag set annotation definition, minimum and maximum number of required tags
can be configured. An example for this annotation definition is What are the most
important topics mentioned in this news item?. It would be possible to provide the
options sports, politics and technology as predefined tags which would appear in
the dropdown input for the annotator.

The last annotation definition supported by ActiveAnno is the open text anno-
tation definition, where the annotator can insert a single text into a text input. For
purposes of editing an existing piece of text from the original document, the anno-
tation definition can be configured to copy the value of a field from the document
data into the text input by default, allowing the user to edit that text value. An
example for this would be to have an open text annotation definition for spelling
error correction where the document text is copied into the input and the resulting
corrected text is stored as an annotation for the original document.

The Figure 3.3 shows the annotation UI for an example project. In the anno-
tate document panel, six annotation definitions are presented to the user: Is spam,
a Boolean annotation definition; Sentiment, a tag set annotation definition, How
useful is this review for software engineers?, a restricted number annotation defini-
tion with a scale from 1 to 5; Mentioned features, an optional open tag annotation
definition with a maximum of 10 answers; This review contains a, an optional tag
set annotation definition; and Other things this review contains, an optional open
text annotation definition.
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3.4.1 Annotation Schema and Enable Conditions

Annotation definitions are created independently from a project. They are included
in a project through the annotation schema. The annotation schema puts annota-
tion definitions in an order and associates them with project-specific configuration.
They can be associated with an appropriate annotation generator (Section 3.5),
and with an enable condition.

Enable conditions are a feature of ActiveAnno which allows annotation defini-
tions to only be enabled when a certain condition is met. If no enable condition is
defined, the annotation definition will be enabled by default. The first possibility
of enable conditions is to make annotation definitions only enabled for a subset of
documents of the project. For example, the documents for a project might have a
metadata field type which can be one of two values. For the second type of docu-
ment, it is required to annotate one additional information about the document.
In this case, the project can be configured to have the annotation definition only
enabled for type two and be automatically disabled for the other type.

The second possibility is to have conditions between annotation definitions. In
Figure 3.8, the annotation panel is shown in two states. In the first screenshot,
no annotation value is set, showing all annotation definitions except the Is spam
annotation definition as disabled. Only when the document is annotated as not
spam in the second screenshot, the other annotation definitions become enabled.

This feature has multiple benefits. First, for small di↵erences in required anno-
tation definitions between documents, there is no need to create multiple projects
to map this behavior. Secondly, fully disabling annotation inputs prevents anno-
tators from creating annotations where they are not required, speeding up the
annotation process and more clearly communicating what is required from the
annotators. And thirdly, this conditional logic is also applied when automatically
creating annotations through annotation generators (Section 3.5). This means au-
tomatically generated annotations and human created annotations follow the exact
same behavior, enabling a better integration of generated annotations into the re-
maining system.

3.5 Annotation Generator

As discussed, the integration of machine learning and the ability to automate parts
of the annotation process are important to increase the e�ciency of the annotation
process. The basis for automation is the ability to automatically generate anno-
tations without a human annotator. Usually, this is done through some form of
machine learning. To generalize the concept and to allow for other ways to au-
tomatically create annotations, ActiveAnno defines the concept of annotation

generators. An annotation generator is anything capable of creating an annota-
tion for a specific annotation definition given a document and potentially other
previously generated annotations for other annotation definitions. In Figure 3.9,
the abstract AnnotationGenerator class models this through an abstract method
generateAnnotation that needs to be implemented by every subclass. Every anno-
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(a) Is spam not annotated

(b) Is spam annotated as false

Figure 3.8: Two screenshots of the annotation panel showing how inputs only get
enabled once an annotation is set to trigger the enable condition.

tation generator also has to define what is the input to use for the actual annotation
generation: It can be any field from the original document, or it can be any value
from another created annotation that is part of the same annotation schema. This
is modeled through the AnnotationStepKey as seen in Figure 3.9.

Currently, ActiveAnno has three inbuilt annotation generator implementations.
One to automatically detect the language of the generator input using the language
detection library Lingua11. This is an example of a statistical and rule-based an-
notation generator as compared to a machine learning based generator.

The second annotation generator allows to call an external machine learning
service through a URL for tag set annotation definitions, which will take the re-
sponse and map it into the tag set options from the annotation definition. This
can be used when an already trained machine learning model exists. That model
would have to be wrapped by an HTTP API to comply with the API definition
of ActiveAnno for this annotation generator, which can be seen in Figure 3.10.
The POST request will have the PredictionRequest class serialized as JSON,

11https://github.com/pemistahl/lingua
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Figure 3.9: UML showing the classes related to the annotation generator features
of ActiveAnno.

and the response should be a JSON array which will be deserizalized into a List
of PredictionResponse objects, which contain the original information from the
request and the associated values with their probabilities, which are optional. As
seen in the UML diagram, the API is structured to allow for multiple documents
to be predicted at once.

The third annotation generator is similar to the second one, but also supports
automatically updating the external machine learning model by sending an HTTP
request with the training data in the body. The POST request will be a JSON body
serializing the class structure from Figure 3.11. To support this functionality, the
concept of an updatable annotation generator exists. This kind of generator ex-
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Figure 3.10: UML diagram of the API of the inbuilt tag set annotation generators
to allow an external machine learning model to provide predictions.

tends the base annotation generator, but also requires its subclasses to implement
an update method (as seen in Figure 3.9), where the training data will be aggre-
gated and used to train or update the annotation generator. For this, updatable
annotation generators also need to define a threshold when to start the training
and when to update an existing model. For example, the first model should be
trained after 100 training samples exist, and then it should be updated for every
25 new training samples. An updatable annotation generator is versioned, where
every version has a version number and an update state, to ensure the version is ac-
tually usable for generating annotations. This can also be seen in Figure 3.9 where
the versioning is modeled through the UpdatableAnnotationGeneratorVersion
class.

Figure 3.11: UML diagram of the API of the inbuilt updatable tag set annotation
generator to train or update an external machine learning model.

3.5.1 Generator API

Table 3.4 lists the endpoints of the generator-related API. The first endpoint al-
lows to trigger the generation of annotations for all annotation generators of every
project. Annotations will be generated either because there are no generated an-
notations for the project and generator yet, or because the generator is updatable
and a new version of the generator exists. This behavior can be configured in the
project setup. The second endpoint has the same behavior as the first one, but for
one specific project.
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Method Route URL parameter GET parameter

GET /generateAnnotations limit: Int (default null)
chunkSize: Int (default
100)

GET /generateAnnotations/
project/{projectID}

projectID: The
ID of a project.

limit: Int (default null)
chunkSize: Int (default
100)

GET /update

GET /update/{generatorID} generatorID:
The ID of an
annotation
generator.

Table 3.4: Generator API description. Every route listed needs to be prepended
by /api/v1/generators/.

The third endpoint can be called to update all updatable annotation generators.
Every generator checks itself, if it can be updated already, based on the defined
thresholds for new samples. The fourth endpoint provides the same behavior, but
for a specific generator.

To make sure annotations are generated and updatable annotation generators
are updated regularly, these endpoints should be called periodically, for example
through a job scheduler like cron. The reason that this behavior is wrapped behind
an API instead of just running it periodically inside the application itself is to give
the users of ActiveAnno full control of when these tasks should be executed.

3.5.2 Project Machine Learning Integration

After creating the annotation definitions and annotation generators and after pro-
viding an external machine learning service in compliance with the API of Ac-
tiveAnno, the last step to integrate machine learning into ActiveAnno is to define
how the generated annotations should be treated. For this, a project has multiple
configuration possibilities.

The first one is the handling policy of generated annotation results. This policy
can be set to ignore the results. Then, they will only be displayed to curators
but not actively integrated into any further application logic. It can be set to
use the generated annotations as pre-annotations for the annotators. In this case,
the annotations will fill out or select the inputs in the annotation panel, giving
the annotators the option to just accept the automatically generated annotations,
which can reduce the annotation e↵ort. Lastly, it is possible to set the generator
results to be treated equal to an annotator. In this case, the results will be included
in the finalization logic. The FinalizeCondition from Figure 3.9 is used in this
case to decide if a generated annotation is good enough to be used in the finalization
logic. Usually, this means setting a confidence threshold as the finalize condition,
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for example a required confidence of 80% or more.
The other important configuration is the sorting policy. With regards to gen-

erated annotations, it is possible to overwrite the normal sorting order of the
project. This can be set to prefer documents with existing generated annotation
results first. In this case, if only a subset of documents have received their gener-
ated annotations at a point in time, they will be preferred in sending them to the
annotators. This means that if pre-annotations are available, they will always be
shown before documents without pre-annotations. The second option is to set the
sorting to active learning with uncertainty sampling. This is used for supporting
active learning, where the documents with the lowest confidence values associated
with the generated annotations get presented to the annotators first. The active
learning process with ActiveAnno will be examined in more detail in Subsection
3.5.3.

There is a completely alternative approach for machine learning integration
available: Through the import annotation API (see Subsection 3.3.2), imported
annotations can be used instead of internally generated annotations for all the
same purposes. For updating a machine learning model, the REST API or webhook
support can be used to get the final annotation results. In this case, all the logic
regarding how to extract the data and when to update the model need to be
implemented externally. This approach might be more useful if the required logic
or process is vastly di↵erent from the inbuilt annotation generator concept.

3.5.3 Active Learning Process

When there is no existing training data for an annotation definition, ActiveAnno
can be used to build up a training dataset based on active learning with uncertainty
sampling. Starting with a setup of the annotation definition with an associated up-
datable annotation generator created inside ActiveAnno, both should be integrated
into a project. The training data can either be imported once at the start of the
active learning process, or continuously, for example if the data comes from a news
crawler or the Twitter API. The active learning process would work as follows:
First, when there is no training data, documents get manually labeled by an an-
notator. If the start threshold of the annotation generator is reached, calling the
update generator API (Subsection 3.5.1) will trigger the training data to be aggre-
gated and sent to the external service. After that, calling the generate annotations
API will result in the newly trained generator model to create predictions for all
remaining documents for the project. These will be stored and when the projects
sorting policy is set to active learning, the confidence values from the newly gen-
erated annotations will be used to sort the documents to annotate with the lowest
confidence documents being annotated first.

After some amount of those documents were annotated by an annotator, the
update generator API and generate annotation API can be called again to update
the model and all the predictions with the now larger dataset with training samples
selected by least confidence. This process can then be repeated until the machine
learning model is performing well enough to be partly or fully automated. This
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is similar to the “tag-a-little, learn-a-little loop” from MAT [1]. If combined with
enabling annotations, it is also very similar to the annotation process of RapTAT
[6].

To partly automate the process, the project has to be configured to treat the
generator as an annotator and to require one annotator per document. Addition-
ally, the finalize condition has to be set to some confidence threshold, for example
80%. Then, only the documents with a confidence value below 80% will be required
to be annotated by hand. To fully automate the task, set the finalize condition to
always. Then there is no condition and annotations will be accepted automatically.
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Chapter 4

Experiments

To test ActiveAnno in an industry setting while gaining relevant research insights
by investigating the two research questions in Section 1.2, two experiments were
conducted in partnership with a local company. Basis for the experiments are real-
world use cases and a dataset from the company. The experiments are designed
in a way to give both quantitative and qualitative results for using ActiveAnno in
a specific industry context. For the experiments, ActiveAnno was deployed to the
existing service cluster and configured using environment variables.

4.1 Machine Learning Integration

For the machine learning integration, a closed-source service was deployed, which
wraps the fastText [9] Python library1 with a thin HTTP API. It supports the
text classification through supervised learning as provided by fastText. The service
conforms to the API specified by ActiveAnno as described in Section 3.5.

The fastText API allows for some hyperparameters to be set2, for example the
learning rate, the number of dimensions, the number of epochs or the size of word
n-grams. Those hyperparameters were never changed during the experiments as
to not introduce any unwanted variability and were set to a learning rate of 0.1,
dimensions of 200, epochs of 50 and word n-grams of 3.

4.2 Data Preparation

Basis for all experiments are textual comments3 given by real humans through
a software provided by the industry partner of this thesis over the last several
years. There is variability in the language, the context of the comment and the
question asked to which the comment is the answer over the initial set of about
400,000 comments. To reduce unnecessary complexity and streamline the dataset,
the comments used for the experiments were restricted to comments of German

1https://github.com/facebookresearch/fastText/tree/master/python
2https://fasttext.cc/docs/en/options.html
3In this chapter, comment and document are used interchangeably, as a comment is a specific

type of document in this context.
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language given in a retail shop context to a question about general, open-ended
feedback. This limited the number of comments to 250,914. The comments have
an average length of 34.1 characters and a median length of 20 characters with the
minimum length being 1 character and the maximum length being 2607 characters.
These short comments make document-level annotations generally more applicable
as compared to longer text documents, as the benefit of specifying annotations on
a span level compared to the additional e↵ort is lower. Most comments express a
single thought with a single topic and a single sentiment, though there are enough
outliers that make the annotation process more complex than that. The most
common 100 comments make up 13.62% of the total of 230,421 comments while
67.7% of those comments occur only once and are therefore unique. Table 4.1
shows the ten most common comments in the dataset while Table 4.2 shows some
example comments with lower frequency to give an impression of what the dataset
looks like.

Original Comment Translated Comment Count

Nein No 3137

Gut Good 1539

Danke Thanks 1150

Super Great 1120

Hallo Hello 1063

:-) :-) 1016

Weiter so Keep it up 961

Hi Hi 943

Alles super Everything great 880

Cool Cool 818

Table 4.1: The ten most common comments, their English translation and their
number of occurrences in the dataset.

First, the documents were split between the two experiments. The first experi-
ment needs a lot more data that is used to train machine learning models upfront.
Therefore, the documents were randomly split 90% to Experiment 1 and 10% to
Experiment 2. Table 4.3 shows the distribution of documents between the experi-
ments. For Experiment 1, 20,493 comments were discarded because they were too
recent and might have been seen already by the annotators of the experiment. All
data preparation was done externally in a script with a connection to the preex-
isting database. The comments were then imported through the document import
API (Subsection 3.3.2) of ActiveAnno. For Experiment 1, 144,648 comments with
existing annotations in the preexisting database were randomly chosen as training
data for the annotation generator in form of fastText models. The annotations
were converted into the appropriate format for ActiveAnno and imported through
the annotation result import API. During the import, the project of Experiment
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Original comment Translated comment

Gute Beratung, freundliches personal Good advice, friendly sta↵

Weiter so.!!!!! Keep it up.!!!!!

Hgjhihtz hgjgijb Hgjhihtz hgjgijb

Unerträglich die Temperatur und die
Luft. Einfach zum umfallen

The temperature and the air were un-
bearable. Just to fall over

Waren alle sehr nett They were all very nice

Uhhhjkkhghkl Uhhhjkkhghkl

Perfekter Einkauf Beratung Fre-
undlichkeit Kasse super !!!!

Perfect shopping advice friendliness
checkout great !!!!

shrsjtehrs shrsjtehrs

Ihre Musik geht gar nicht :-( Your music is a no-go :-(

Mehr Auswahl für Kinder More selection for children

Table 4.2: Ten uncommon example comments that occur less than ten times each
and their translation into English.

1 was set to require one annotator per document and finalize annotation results
without a curator, resulting in the imported results and the associated documents
to be finalized immediately and therefore being available as training data for the
annotation generators.

Total For annotators For generator Discarded

Experiment 1 225,874 60,733 144,648 20,493

Experiment 2 25,040 25,040 0 0

Table 4.3: Distribution of documents between experiments.

4.3 Experiment 1: Influence of Pre-Annotations

on Quality and E�ciency

The first experiment is a controlled field experiment making use of preexisting
training data in the industry setting to answer Research Question 1 about the
e↵ect of pre-annotations in the form of generated document-level annotations by
a machine learning model on the quality of annotations and the e�ciency with
which the annotations were created by the annotators.

By comparing two conditions, one with pre-annotations and one without, the
goal is to find out how much faster the annotators are when presented pre-annotations,
and if pre-annotation has an influence on the inter-annotator agreement or espe-
cially the accuracy of the annotators in a statistically significant way. Secondary

36



4.3. Experiment 1: Influence of Pre-Annotations on Quality and E�ciency

goals are to demonstrate how ActiveAnno can be used to conduct a controlled
experiment and how ActiveAnno is able to implement a typical annotation setup
in an industry context.

4.3.1 Project Setup

To conduct the experiment, a new annotation project was created inside the de-
ployed ActiveAnno instance. The number of annotators required for each document
was set to two, such that average accuracy and time statistics can be calculated
over both annotators to get more meaningful results. The finalization policy of the
project was set to always require a curator for each document, regardless of anno-
tator agreement. Through this, a gold standard is created by the curator, which
can be used to evaluate the annotator and generator accuracy.

The layout of the annotation view was minimal, showing only the document
text, the associated question asked to which the text is the answer, and an number
used for communicating the annotators progress. While there is more metadata
available which could be used to help the annotators make their decisions, it was
not included for the experiment, because this metadata is also not available to
the machine learning models. Adding more metadata would make comparisons
between the annotators and models less appropriate.4

Figure 4.1: Screenshot of an example document of the experiment displayed in
ActiveAnno. The question translates to “Do you have any comments for us? We
appreciate your feedback!” and the comment translates to “Large selection friendly
sta↵”.

Annotation Definitions

The annotation definitions for this experiment are based on existing annotation
definitions already used in the industry setting. They were also used for the experi-
ment in order to utilize the existing annotations as training data and because using
a real-world annotation setup can give more insights into typical requirements for
the annotation process compared to an artificially manufactured setup.

4It is future work to allow the integration of metadata into the annotation generator process.
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The first annotation definition is the approval of a comment, a binary classifica-
tion task. It is defined as a tag set annotation definition with two options, approve
or not approve. The goal of this annotation is to filter spam as those comments are
not relevant for any further analysis of their content.

The second annotation definition is the sentiment of a comment. It is also
defined as a tag set annotation definition and has three options: positive, ambivalent
and negative. As the annotation is targeted on the document level, the option
ambivalent is necessary to describe comments with multiple sentiments. As a multi-
class classification task, exactly one of the three options is required to be selected
by the annotators.

The third annotation definition are the topics or categories of a comment. There
exist eight context-specific categories which describe distinct, common topics of a
comment. While the actual categories had to be disguised, an analogous example
would be news items categorized by their general topic, such as sports, politics
or tech. Categories are a tag set annotation definition in form of a multi-labelled
classification task. This increases the complexity of the annotation and getting the
whole annotation correct means deciding for each option if it should be selected
for a comment. A minimum of one category has to be selected.

The project makes use of the enable condition feature (see Subsection 3.4.1).
The sentiment and category annotation definitions are only required if the approval
annotation equals approve, because spam comments have no sentiment or category
anyway. As described in Subsection 3.4.1, this means the sentiment and category
inputs are disabled in the UI as long as the approval annotation definition was
not set to approve. This can be seen in Figure 4.2. Equally, the annotation gener-
ators will only generate values for the sentiment and categories if the annotation
generator predicts the value approve for the approval annotation definition.

For the experiment, the enable conditions between the annotation definitions
and the multi-labelled annotation definition categories add some complexity to
the task, because not every annotation result will need the same number of button
clicks to be finished and not every annotation result will have the same number of
annotations. Some results will have only one annotation, not approved, and others
will have values for all three.

Annotation Generators

Each annotation definition has an associated annotation generator, which allow
the training of a machine learning model and prediction by that model though
calling an external service over HTTP. As described in Section 4.1, the external
service uses fastText to make text classification.

For the experiment, all three models were trained only once before the exper-
iment, by calling the ActiveAnno update generator API (Subsection 3.5.1). All
models have a size of about 1.7GB and the training time took between 79 and 98
seconds on a virtual machine with 3GB RAM and 1.25 CPU cores (2.6GHz).

The annotation generator model for the approval annotation definition was
trained with 144,648 samples of which 25% were used for testing, leaving 108,486
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(a) Before annotating

(b) After annotating

Figure 4.2: Screenshot of the annotation panel before and after doing the annota-
tions (category names are disguised).

samples for training and 36,162 for testing. The model has a test accuracy of 0.9.
Because of the conditional nature of the sentiment and categories annotation

definition as described in 4.3.1, only a subset of all 144,648 comments actually
have a sentiment and categories annotated. For the sentiment model, this resulted
in 79,799 train samples and 26,600 test samples with a test accuracy of 0.9. For
the multi-labelled categories classification task, fastText was configured to use
the one vs. all loss. Because of some inconsistencies in the dataset, there were
more samples for the categories model than for the sentiment model: 89,096 train
samples and 29,699 test samples. With a precision of 0.72 and a recall of 0.63, the
F1 score for the categories model is 0.67. This is a considerably worse performance
as compared to the other two annotation definitions, which correlates with a lower
inter-annotator agreement for this annotation definition as well, as will be shown
later.
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4.3.2 Experimental Design

The annotation process for the experiment has two subjects, the annotators. As
described, both annotate the same randomly sampled documents. The indepen-
dent variable for this experiment is whether the buttons in the user interface are
preselected through machine learning generated annotations or not, which results
in two di↵erent conditions. The dependent variables are measured directly by Ac-
tiveAnno: The duration from when the document is first shown the annotator until
the finish button was successfully clicked and all required annotations were made;
the duration from the first button click to the last button click, called the inter-
action duration; the correctness of the annotation results which is calculated by
comparing them to the gold standard created by the curator; and the agreement
between the annotators.

The assignment of conditions was done in a within-subjects design. Each subject
or annotator was assigned each condition, which reduces the possible negative
impact of inter-subject di↵erences on the results. The risk of learning e↵ects was
mitigated through two measures: Both annotators were made familiar with the
tool and experiment setup through an instruction and test meeting previous to the
actual experiment. Also, condition order was switched between the two days of the
experiment.

4.3.3 Execution

After setting up the annotation project and the machine learning models for the
experiment, the models predicted the annotations for all documents of the exper-
iment which were not already part of the training data. Due to this, generated
annotations exist for both conditions to compare them to the annotators as well
as the gold standard, even though they are only visible as pre-annotations in one
of the conditions.

Prior to the first day of the experiment, an instruction meeting between the
author of this thesis and the two annotators was conducted over video chat. It was
used to explain the process of the experiment, to make sure the web application
works for both annotators and to do a test run of about 50 documents such that the
result analysis could be tested and checked for any possible bugs. The experiment
itself was done over two days, taking 45 minutes on the first day and 1 hour on the
second day. It was done over video chat with both annotators at the same time,
trying to get as close to a usual o�ce situation. Both annotators used the same
laptop model, with annotator 1 (A1) using a mouse and annotator 2 (A2) using a
trackpad throughout the whole experiment. After communicating the start of the
experiment, all participants in the video chat were muted during the annotation
process to prevent unwanted influences. The number of annotated documents were
tracked in order to get close to equal number of documents per condition. After
about half of the time on each day, the annotators were informed about the switch
to the other condition. This was done by changing the project configuration from
ignoring generated annotation results to using them as pre-annotations. On the first
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day, the no pre-annotations condition was first and the pre-annotations condition
second. This was swapped on the second day.

On both days, after the annotation process was done, a curator controlled every
single document and the annotation results of A1, A2 and the generator to decide
on the correct annotations. This created the gold standard used in the further
analysis.

4.3.4 Results

In total, 944 documents were annotated by both annotators and the curator to
create the gold standard. Of those, four documents were removed upfront as they
were outliers with very high duration statistics. This left 940 documents with 465
for Condition 1 without pre-annotations (C1) and 475 for Condition 2 with pre-
annotations (C2).

There was another unfortunate source of outliers, created by the categories an-
notation generator. The fastText model was trained with the one vs. all loss, which
results in a binary decision if the category is selected for every category indepen-
dently. One resulting edge case is the possibility of the model not predicting any
category, when every single one vs. all probability is below 0.5. Having no category
was not defined as an option beforehand, as the minimum number of categories for
annotators was set to 1. This occurred 53 times in total, 30 times for Condition 1
and 23 times for Condition 2. The comments with missing predictions resulted in
no pre-annotations for the category annotation definition. Therefore, they could
not be included for the pre-annotation condition. They were also removed from the
other condition, because by their nature of being hard to predict for the model,
they were also hard to correctly annotate for annotators. One side e↵ect of the re-
moval is that the generator accuracy was inflated: In the original 940 documents,
the average accuracy for the categories generator is 74.21%, in the smaller dataset
of 887 documents it is 81.39%. For every other further metric, the dataset with
887 documents is used.

Annotation Duration

A1 A2 Avg.

C1 and C2 (n=887) 2.71 3.31 3.01

C1 (n=435) 3.27 3.74 3.51

C2 (n=452) 2.17 2.88 2.53

Di↵erence C1-C2 1.10 0.86 0.98

Table 4.4: Full annotation duration in seconds for annotator 1 (A1), annotator
2 (A2), Condition 1 with no pre-annotation (C1) and Condition 2 with pre-
annotation (C2).

Table 4.4 show the full annotation duration from the moment the document is
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displayed to the annotator to the moment the Finish button is pressed successfully.
Overall, A1 is faster than A2 across the board, with a 0.6s faster average for all
887 documents. This might be just because A1 is faster in general, but could also
be explained by the fact that A1 used a mouse while A2 used the trackpad of the
laptop for the experiment.

Comparing both conditions, the expected result of a shorter annotation dura-
tion for the condition with pre-annotation occurred with an average of 0.98s faster
annotation time for the pre-annotation condition. This is 27.92% faster for C2
compared to C1.

A potential source of noise in Table 4.4 is that not every document has the same
number of annotations due to the conditional dependencies between the approval
annotation definition and the other two annotation definitions. When normalizing
over the number of annotations, C2 is still 26.45% faster with 1.55s per annotation
for C1 compared to 1.14s per annotation for C2.

A1 A2 Avg.

C1 (n=435) 1.83 2.17 2.00

C2 (n=452) 0.27 0.33 0.30

Di↵. C1-C2 1.55 1.84 1.70

Table 4.5: Interaction duration in seconds for annotator 1 (A1), annotator 2 (A2),
Condition 1 with no pre-annotation (C1) and Condition 2 with pre-annotation
(C2).

The second duration statistic tracked by ActiveAnno is the interaction dura-
tion from the first to the last click or keystroke per document. Table 4.5 shows
the interaction duration between both conditions. For C1, the average interaction
duration is 2s, meaning that of the average full duration of 3.51s as displayed in
Table 4.4, 1.51s on average are spent reading the comment before creating the first
annotation through a button click, and 2s are spent making the annotations and
pressing the Finish button. In comparison, C2 has an average interaction duration
of 0.3s, because most documents only receive a single press of the Finish button,
resulting in an interaction duration of 0.

Inter-Annotator Agreement

The initial hypothesis is that pre-annotation would increase inter-annotator agree-
ment, because the annotators are presented the same pre-annotation values and
might be enticed to trust the generated annotations in cases where they are unsure
themselves. Table 4.6 shows the inter-annotator agreement for both conditions.
While there is a slight increase in agreement across the board, it is not statistically
significant. When calculating the p-value for the one-tailed hypothesis that agree-
ment increases, the result for p is 0.11 for all annotations, 0.16 for the approval
annotation definition, 0.49 for the sentiment annotation definition and 0.12 for the
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All annotations Approval Sentiment Categories*

n # % n # % n # % n # %

C1 435 390 89.66 435 415 95.40 273 255 93.41 273 233 85.35

C2 452 416 92.04 452 437 96.68 275 257 93.45 275 244 88.73

Di↵. -2.38 -1.28 -0.05 -3.38

Table 4.6: Inter-annotator agreement between Condition 1 without pre-annotation
(C1) and Condition 2 with pre-annotation (C2) for all annotations and each an-
notation individually. For each, the table shows the total number of documents
(n), the number of agreements (#), and the percent agreement (%). *Note that
as described before, 53 documents were excluded from the analysis because of no
generated annotation for the categories annotation definition. When not removed,
the inter-annotator agreement for categories is 65.85% for C1 and 67.12% for C2.

categories annotation definition. When defining the significance level at 0.05, none
of these results are statistically significant.

Accuracy

All ann. n # A1 % A1 # A2 % A2 % Avg. # Gen. % Gen.

C1 435 408 93.79 402 92.41 93.10 370 85.06

C2 452 430 95.13 424 93.81 94.47 390 86.28

Di↵ C1-C2 -1.34 -1.39 -1.37 -1.23

Table 4.7: Number of correct annotations (#) and percent accuracy (%) for Con-
dition 1 without pre-annotation (C1), Condition 2 with pre-annotation (C2) and
annotator 1 (A1), annotator 2 (A2), annotator average (Avg.) as well as the gen-
erated annotations (Gen.) over all annotations.

Approval n #A1 %A1 #A2 %A2 %Avg. #Gen. %Gen.

C1 435 425 97.70 419 96.32 97.01 416 95.63

C2 452 447 98.89 438 96.90 97.90 434 96.02

Di↵ C1-C2 -1.19 -0.58 -0.89 -0.39

Table 4.8: Number of correct annotations (#) and percent accuracy (%) for the
approval annotation definition.

Tables 4.7 - 4.10 show the number of correct annotations and accuracy results
for all annotations and each annotation. There was no statistically significant im-
pact of pre-annotation on the accuracy of the annotators. When calculating the
p-value for the two-tailed hypothesis that accuracy could increase or decrease with
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Sentiment n #A1 %A1 #A2 %A2 % Avg. #Gen. %Gen.

C1 273 264 96.70 256 93.77 95.24 256 93.77

C2 275 265 96.36 260 94.55 95.45 254 92.36

Di↵ C1-C2 0.34 -0.77 -0.22 1.41

Table 4.9: Number of correct annotations (#) and percent accuracy (%) for the
sentiment annotation definition.

Categories n #A1 %A1 #A2 %A2 %Avg. #Gen. %Gen.*

C1 273 251 91.94 240 87.91 89.93 221 80.95

C2 275 257 93.45 248 90.18 91.82 225 81.82

Di↵ C1-C2 -1.51 -2.27 -1.89 -0.87

Table 4.10: Number of correct annotations (#) and percent accuracy (%) for the
categories annotation definition. *Without removing the 53 outliers, the generator
accuracies are 72.94% for C1 and 75.50% for C2.

pre-annotation, the smallest p-value from all annotations is 0.34 for the approval
annotation and the average of both annotators.

Unstructured Interview with Annotators

In addition to the quantitative results, there was also qualitative feedback gathered
through an unstructured interview after the experiment. It was a short interview
asking for general feedback about the tool and their feelings about both conditions.

A1 stated that they finished a document too fast two or three times in Condition
2 with pre-annotation. Specifically, they wanted to add another category for the
categories annotation definition, but clicked too fast and wanted to correct their
decision afterwards. A1 stated that in that case, a back button would have been
useful.

A1 also stated that they felt less concentrated at the end of the second day of
the experiment, after annotating documents for approximately 1 hour. They felt
like having to read a comment more than once to understand it.

A2, who was using a trackpad during the experiment, stated that after a while
it felt exhausting to use the trackpad to click the buttons in the condition without
pre-annotation.

In general, both annotators gave positive feedback about the annotation process
using ActiveAnno compared to the previously existing internal annotation tool.
They stated that it was easy, fast and satisfying to use.

4.3.5 Discussion

The experiment could not find any statistically significant impact of pre-annotation
on neither inter-annotator agreement nor annotator accuracy. At the same time,
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the annotation duration decreased by 28% when having pre-annotations for the
annotators. Having pre-annotations reduces the physical e↵ort of clicking the input
buttons: the user can hover the Finish button and only needs to click the actual
annotation input buttons if the pre-annotation is incorrect. The pre-annotation
might also reduce the mental e↵ort by changing the task for the annotator of
coming up with annotations to the task of reviewing the generated annotations
and only correcting when necessary.

Even with no statistically significant di↵erences in accuracy, as stated by A1,
there is still the possibility of misclicks or clicking the Finish button too fast.
Adding a revert or back action functionality, which is currently not supported by
ActiveAnno, can be used to prevent those cases.

While clicking too fast might be a potential source of wrong annotations, so is
a lack of concentration. Both A1 and A2 communicated forms of exhaustion or low
concentration after a longer period of annotating. Pre-annotation can noticeably
decrease overall annotation time and therefore might prevent errors made due to
low concentration. It also appears to be useful to split longer annotation tasks over
multiple sessions to prevent loss of concentration.

Regarding the ability of ActiveAnno to be used for a real-world annotation
setting, Subsection 4.3.1 documented how such a setting could be expressed in Ac-
tiveAnno. The positive feedback from the annotators about the annotation process
in ActiveAnno is an indication that ActiveAnno provides a good user experience,
though another experiment setup would be required to gain quantitative informa-
tion about its usability. This chapter also documented how ActiveAnno was used
to conduct the experiment, showing its capabilities for conducting controlled ex-
periments. There was an explicit e↵ort made by the author that all analysis was
directly programmed into ActiveAnno in a configurable way, and that a data ex-
port for the results is available directly in the user interface as well for any further
calculations.

Threats to Internal Validity

The goal of the experiment was to accurately measure annotation time while con-
ducting a field experiment with as close to normal work conditions as possible.
The trade-o↵ made was to be present as the conductor of the experiment during
the annotation process, making sure no other work tasks or private messages etc.
interfered with the annotation process. This might have inflated the concentration
and e↵ort and therefore the accuracy of the annotators, which could have had an
disproportionate on Condition 2. To minimize the negative e↵ects, everyone in the
video call was muted during the actual annotation task. Also, as the annotators
are generally well-trained, it is likely they would make an e↵ort to produce correct
annotations anyway. This is likely to increase the focus and e↵ort of the anno-
tators which might inflate their accuracy. To minimize this e↵ect, the amount of
communication during the experiment was minimized.
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Threats to External Validity

Even though a considerable e↵ort has been placed to make sure the internal validity
is high, the scope of the experiment was limited in nature. The experiment was
done with well-trained annotators and the task was very similar to their usual job.
The pre-annotations were generated by a well-performing machine learning model
with a large training set. The complexity of the annotation task itself could have
also been higher, with di↵erent types of annotation definitions, like numbers, open
tags or texts. As was shown, the most complex annotation definition, categories,
performed worse in accuracy for annotations and machine learning model alike,
compared to approval and sentiment. Therefore, the results might not generalize
for tasks where well-performing machine learning models are not easily achievable.
Also, using less qualified annotators with potentially bad incentives like pay per
finished annotation might abuse pre-annotations. This is a problem in general, not
specific to pre-annotation cases. Detecting bad annotators is a requirements for
such situations.

4.4 Experiment 2: Comparing Active Learning

Approaches

While the first experiment used the machine learning integration of ActiveAnno
to analyze the benefits of pre-annotations on annotation e�ciency, the second
experiment investigates the e↵ects of active learning as another approach to opti-
mize e�ciency. This is done by answering Research Question 2 about how active
learning with uncertainty sampling compares to incremental learning with random
sampling with regards to the generated annotation quality given a new machine
learning model without preexisting training data (Section 1.2). This question shall
be answered in the context of using ActiveAnno with its active learning integration
to gain additional insights about how such a setup would be done in practice.

4.4.1 Project Setup

For this experiment, another project was created in ActiveAnno. It requires one
annotator per document for the annotation result to be considered finished. That
annotation result is also accepted as the final result without a curator. The author
of this thesis is the annotator for this project.

As described, the documents for this experiment were chosen randomly from
the whole set of documents and are randomly sampled for each condition. The
layout for displaying the document is the same as in Experiment 1, which can be
seen in Figure 4.1.

Annotation Definition

The annotation definition for this task was created based on an industry require-
ment to get more information about how useful a comment is to read for the target
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audience. When filtering out spam, there still are lots of comments with low in-
formation value, which are not spam but also might not be important enough to
be shown in specific contexts. Therefore, a new tag set annotation definition is
defined about the value of a comment. There are four tag set options: A comment
can be very useful to read, meaning it provides deep insights showing a complex
thought by the comment author; it can be useful to read, meaning it provides
value that cannot be expressed through just using the sentiment and category of
the comment; it can be just okay in which case it might be just displayed in a
chart of sentiment and category; or it can be spam, in which case it would be
completely ignored for further analysis. Table 4.11 shows one example comment
for each option and Figure 4.3 the interaction UI for the annotation definition.

Option Original comment Translated comment

Very useful Sehr gute neue Gestal-
tung der Innenräume,
gute Übersicht durch
neue Ständer, und nicht
zu überladen. Bravo, wir
kommen wieder.

Very good new interior
design, good overview
with new stands, and not
too overloaded. Bravo,
we’ll be back.

Useful Bücher bitte besser
anordnen. Danke

Please arrange books
better. Thank you

Okay Alles super gut Everything was super
good

Spam Ihjhjikj Ihjhjikj

Table 4.11: One example comment with an English translation for each tag set
option for the value annotation definition.

Figure 4.3: Screenshot of the annotation panel for Experiment 2 with the four
options (from left to right): very useful, useful, okay and spam. The useful option
is selected.

Annotation Generator

The value annotation definition has an associated annotation generator like the
three annotation definitions from Experiment 1. Though compared to the first ex-
periment, there is no initial training data available, so the model will be trained
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from the very beginning using the active learning integration of ActiveAnno. For
the uncertainty sampling, the predictions with the least amount of associated con-
fidence or probability will be sampled.

4.4.2 Experimental Design

The initial plan was to compare two conditions, the first one using randomly sam-
pled training data to train multiple model versions through incremental learning
and the second one using active learning with uncertainty sampling to train mul-
tiple model versions. During the experiment, surprising results for the first two
conditions meant that three additional conditions were investigated to gain more
insights into these results.

Condition 1: Random Sampling with Four Tag Set Options

The first condition used randomly sampled documents in an incremental way. For
every 50 to 100 annotated documents, a new version of the model was trained. The
first three versions used 50 documents per version, the last three versions used 100,
resulting in six versions of the model. It uses the four described tag set options. In
total, 450 documents were annotated and used for training.

Condition 2: Active Learning with Uncertainty Sampling and Four Tag

Set Options

The second condition starts with 50 random samples, but then switches to sampling
documents to annotate by least confidence based on the predictions of the first
model trained on those first random samples. The model gets updated every 50
annotated documents and the updated model is used to re-predict all the remaining
documents. This updates the predictions and their associated probabilities for
those documents. The updated probabilities are then used for the uncertainty
sampling by least confidence again. The goal here is to always annotate those
documents where the model is most uncertain to give the model the maximum
amount of new information to predict the next documents. It also uses the four
tag set options and annotated 450 documents for training.

Condition 3: Active Learning with Uncertainty Sampling, Three Tag

Set Options and Smaller Increments

As the results of the second condition were counterintuitive, it was tweaked and
repeated to make sure the results were not due to some of the parameter choices.
Therefore, the initial random samples were reduced to 15 and a new model was
trained every 10 newly annotated documents for 20 iterations, resulting in 205
training samples. As the number of documents annotated for the very useful tag
set option was very low, it was combined together with the useful option to reduce
the complexity of the task.

48



4.4. Experiment 2: Comparing Active Learning Approaches

Condition 4: Random Sampling with Three Tag Set Options and Pre-

Trained Vectors

Condition 3 yielded the same results as Condition 2, so an additional change was
made. While Condition 1 - 3 used only the supervised classifier of fastText, Con-
dition 4 combines it with pre-trained word embeddings or pre-trained vectors. For
this, all documents used for Experiment 1 were combined into a single text file and
fed into the skipgram feature of fastText5. This creates a .vec file where every
word from the input file has an associated vector. This file can be passed to a
supervised model with the pretrainedVectors parameter6. By using the existing
documents from Experiment 1, 11,288 context-specific word representations were
learned upfront. The hypothesis is that by combining unsupervised and supervised
learning, the model does not need to learn the word representations and the correct
labels but instead will have low confidence values specifically because of unknown
labels, not unknown words.

To create this model, the identical 450 annotated documents from Condition 1
were used. Similar to Condition 3, the very useful and useful tag set options were
merged because the amount of documents for very useful were too low. Because
the annotations from Condition 1 were reused to train this model, only one (final)
model version exists for this condition.

Condition 5: Active Learning with Uncertainty Sampling, Three Tag

Set Options and Pre-Trained Vectors

Condition 5 uses the identical pre-trained vectors as Condition 4 and also uses
the reduced number of tag set options. The sampling approach is the same as
Condition 2, with 50 initial random samples and 50 samples per iteration sorted
by least confidence based on the current model until 450 annotated documents are
reached. For this condition, 450 new documents were annotated, as the uncertainty
sampling will be influenced by the pre-trained vectors.

4.4.3 Execution

The conditions were done in the order as defined by their number. In general, every
iteration of a condition started with annotating n (10 - 100) documents, depending
on the condition. After that, the ActiveAnno API (see Subsection 3.5.1) was used
to trigger an update of the annotation generator, which trained a new version of
a supervised fastText model in the external machine learning service. After that,
the annotation value was (re-)generated for every document which was not already
annotated by the annotator, also using the ActiveAnno API. Then, the annotate
UI was refreshed using the refresh button, which updated the documents in the
UI based on the newest sampling. For the active learning conditions, this ensured
that always the lowest confidence samples for the newest version of the model were
annotated.

5https://fasttext.cc/docs/en/unsupervised-tutorial.html#training-word-vectors
6https://fasttext.cc/docs/en/options.html

49

https://fasttext.cc/docs/en/unsupervised-tutorial.html%23%23training-word-vectors
https://fasttext.cc/docs/en/options.html


4.4. Experiment 2: Comparing Active Learning Approaches

The time to update the model and to (re-)predict the documents took between
2 and 6 minutes, depending on the condition and version. This included querying
the documents for training, the HTTP communication between the two services,
the time to load the new fastText model into memory, the actual training, the
prediction of 2,500 documents for each condition, and the storing of the results
in the database of ActiveAnno. Usually, this could be done in the background
without the annotator noticing, with newer generated annotation values being
available once the process finished. But due to the structure of the experiment,
the annotation process has to wait for the training and prediction to finish. It was
not a goal to minimize training and prediction time beyond a certain point for this
experiment, so other machine learning implementations and hardware resources
for ActiveAnno and the machine learning component might decrease this duration
significantly.

For evaluating all the conditions, an additional 600 randomly sampled docu-
ments were annotated. These documents were sent to a test API of the external
machine learning service, which uses fastTexts existing testing capabilities, the
scikit-learn functionality classification report7 as well as manual calculation
of average, median, minimum and maximum confidence values. Finally, the predic-
tions were grouped together based on their confidence values into buckets, similar
to a histogram, in steps of 0.1. Through this, it can be analyzed how high the
accuracy of the model would be when setting a confidence threshold (e.g. 0.8) for
fully automatic annotation.

4.4.4 Results

The initial two conditions C1 and C2 had counterintuitive results: As seen in Figure
4.4, the active learning approach yields dramatically worse results than the random
sampling approach with only 59% accuracy compared to 71.33% accuracy for the
random sampling model. C3 confirmed the same with 54.5% accuracy. Looking
deeper into the data, Figure 4.5 shows the F1 scores per label option for the four
models with 450 training samples, revealing that C2 has an F1 score of 0.16 for
the spam (SPAM) option. Therefore, the misclassification of spam documents is the
major factor in the low accuracy of C2.

At this point, it was required to treat the machine learning component no
longer as a blackbox to find out the reasoning for this. As fastText uses vector
representations of words internally in the supervised model, it is possible to count
the number of known words for each version. A known word is one which fastText
has seen during training, and has therefore created a vector representation for.
Figure 4.6 shows the new number of known or learned words for each version of
the models for C1 / C4, C2 and C5. The number of learned words are normalized
over the number of new documents annotated per version, as C1 had some versions
with 50 and some with 100 new documents. The figure shows that the uncertainty
sampling of C2 is heavily biased towards documents with the most number of

7https://scikit-learn.org/stable/modules/model_evaluation.html#
classification-report
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Figure 4.4: Accuracy per model for 600 test samples and the final version of each
model.

Figure 4.5: F1 score per label option and final version of models C1, C2, C4 and
C5. VALUE HIGH was excluded for C1 and C2, because only 2 test samples have
that value.

unknown words, as C2 learns a lot more new words for the first three iterations.
Comparing that to C1 / C4, there is no such trend as sampling is randomized.

Almost all annotated documents used as training data with a lot of words sepa-
rated by whitespace characters were annotated as useful (VALUE GOOD), while spam
documents often contain only a single character or a single long token of random
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characters. The example comments from Table 4.11 are a good representation for
this. Therefore, it appears that low confidence values from fastText predictions can
express uncertainty about the label of a document, but also the lack of “under-
standing” the words of a document.

To reduce this e↵ect, the pre-trained vectors feature of fastText was introduced
for C4 and C5. This was successful, as Figure 4.6 shows no priority for learning
new words for C5, as the baseline of 11,288 context-specific words is significantly
higher than the number of newly learned words for C2, which is 2194.

As seen in Figure 4.5, C5 does not have the same bad F1 score for the SPAM
label option as C2, but the accuracy score as shown in 4.4 is also only marginally
better than for C4. While active learning is no longer worse than the random
sampling when using pre-trained vectors, it still did not increase in a significant
way. Additionally, Figure 4.7 shows that the initial accuracy for only 50 training
samples for version 1 of C5 is already at 74.83%, showing that the pre-trained
vectors combined with only 50 random samples are already as powerful as 450
random samples or even 50 random samples combined with 400 active learning
samples. When analyzing the average and median confidence per version, the same
trend holds true: C5 already has a high average confidence of 0.86 for the first
version with 0.91 for the last version, while the first version of C1 has an average
confidence of 0.31, the last version 0.763.

4.4.5 Discussion

The initial goal of this thesis was to treat the machine learning part as a blackbox,
which worked well for Experiment 1. In the case of Experiment 2, it shows that this
is not be possible and that the specifics of fastText need to be taken into account
to understand the results. The results show that a supervised fastText model with
no preexisting word vectors needs to learn those vectors before it can learn the
actual classification task properly. When no pre-trained vectors were available, the
sampling was biased towards documents with large numbers of unknown words.
This coincides with the analysis of Varghese et al. [24], which concluded that active
learning can introduce sampling bias and therefore perform worse.

The results of C5 show that including the unsupervised approach of pre-trained
vectors removed that sampling bias. This supports the results of Zhu et al. [27],
which combined a semi-supervised approach with active learning. Adding unsuper-
vised learning means that the whole dataset is included in the sampling process, not
only the few initial samples queried by the active learning process itself. Therefore,
the influence of those few samples is lower, reducing bias.

The results also show that using the pre-trained vectors is very powerful, achiev-
ing high accuracy values of 74.83% with only 50 random samples. This power might
be the reason that C5 cannot achieve significantly better results than C4 for a scope
of 450 training samples, as it appeared that low confidence documents were mostly
outliers, which does not significantly help increase the accuracy for a randomly
sampled test set. Therefore, other querying strategies for active learning should
be investigated in the future in the context of ActiveAnno, to try to prevent a
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sampling bias as well as sampling outliers.

Threats to Internal Validity

The fact that even the best performing active learning model of C5 was not sig-
nificantly better compared to the random sampling approach of C4 might be due
to the setup of the experiment. It is possible that the benefits of active learning
would have been more significant with a higher number of training samples than
450. The influence of the size of documents per iteration was already compared
between C2 and C3 with 50 and 10 documents respectively, which did not show a
significant di↵erence. It is also possible that the annotation definition used on the
dataset was a bad choice and that for other annotation definitions, for example the
sentiment, di↵erences would have been more significant, though it is not obvious
why that would be the case. Future work could test this hypothesis by changing
the used annotation definition between conditions.

Threats to External Validity

As seen in the initially surprising results of comparing C1 and C2, it is not always
possible to treat the machine learning component as a blackbox. Especially since
ActiveAnno does not provide inbuilt machine learning, but instead allows anyone
to connect ActiveAnno to their own machine learning implementation, every im-
plementation needs to be tested on how it behaves in an active learning setup. This
means that the specific results of this experiment do not necessarily generalize to
other machine learning approaches. Still, the experiment demonstrates how it is
possible to test a machine learning implementation connected to ActiveAnno for
active learning and shows the general process of active learning in practice.

Future work for active learning in ActiveAnno can provide support for di↵erent
active learning querying strategies, for example to sample the most representative
documents first, which might work better for certain machine learning implemen-
tations. Future experiments could compare di↵erent open-source machine learning
solutions to analyze which work best for common active learning use cases in Ac-
tiveAnno, such that users can have more insights about how their approach might
perform in practice.

4.4.6 Threshold-based Automation

The benefit of integrating machine learning in the process of annotation is the
capability to use the machine learning models for automation. While very good
models might be used to fully automate a task and replace human annotators,
active learning can be combined with automating the annotation for a subset of
the documents to have a more e�cient process while keeping control over the an-
notation quality requirements. This subset of documents would be those for which
the machine learning model is very confident in its prediction. To analyze this,
predictions for the conditions were grouped into buckets in intervals of 0.1 accord-
ing to their associated probability or confidence values. For example, a prediction
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with a probability of 0.94 is placed on the bucket of probabilities from 0.9 to
1.0. Figure 4.8 shows how the confidence values progress for each version of C2
and C5. While C2 achieves to have 23% of its predictions with a confidence value
above 0.9, C5 with pre-trained vectors already has 59% of its predictions in that
bucket with only 50 random training samples. Figure 4.9 displays the accuracy for
the final version of each model for the three buckets with the highest confidence.
For all four models, the accuracy for predictions with a confidence above 0.9 is
at least 84.1% for C4, up to 88.97% for C2. Therefore, it is possible to use the
generator as annotator functionality of ActiveAnno and define a finalize condition
for the generated annotation of having a confidence value above 0.9. In that case,
23% of documents for C2 with an accuracy of 88.97% would be annotated auto-
matically, or 70% of documents with an accuracy of 85.37% for C5. Every other
document would be annotated by a human, but continuously updating the model
and predictions would elevate more documents to have a confidence above the de-
fined threshold over time, reducing the actual amount of manual annotations even
further. In this scenario, using uncertainty sampling would be the most e↵ective,
as documents with an already higher confidence while being below the threshold
would eventually reach that threshold and be annotated automatically.
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(a) C1 / C4

(b) C2

(c) C5

Figure 4.6: Number of newly learned words per new document for each version of
the model.
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(a) C1

(b) C2

(c) C5

Figure 4.7: Accuracy for every version of the respective model for 600 test samples.
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(a) C2

(b) C5

Figure 4.8: Distribution of confidence values for predictions on 600 test samples
into buckets from 0.9 to 1.0, 0.8 to 0.9, 0.7 to 0.8 and so on.
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Figure 4.9: Accuracy of the final version of models C1, C2, C4 and C5 on 600 test
samples for high confidence buckets above a confidence value of 0.7.
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Chapter 5

Conclusion and Future Work

To conclude this thesis, the answers to the two research questions are summa-
rized and ActiveAnno is evaluated on the goals defined in Chapter 3. In addition,
potential future work for both research and the developed tool are discussed.

5.1 Research

The two research questions from Section 1.2 were investigated by two experiments
in an industry setting, using real-world use cases and data.

5.1.1 Research Question 1

Research Question 1 was answered by Experiment 1: Pre-annotations for document-
level annotations increased the e�ciency by about 28% while not having a signif-
icant e↵ect on annotator accuracy or inter-annotator agreement. Comparing this
to the previous work on the e↵ects of pre-annotations (Section 2.4), which were
all done on span-level annotations, the increase in e�ciency generally coincides
with their results. The impact of pre-annotations on the quality of annotations
and inter-annotator agreement appears to depend on the actual task and method
used to generate the pre-annotations. For potentially complex tasks like named en-
tity recognition in long documents, pre-annotations can help to increase agreement
and quality of annotations. But for this comparably simple task with a fixed set of
required document-level annotations as well as well-trained annotators, those pre-
annotations did not have an impact. Future work could transfer the experiment
setup into a setting in which pre-annotations would be more likely to decrease an-
notation quality, for example by using a worse machine learning model to generate
the pre-annotations and/or by using less qualified annotators.

5.1.2 Research Question 2

The results of Experiment 2 show that active learning using uncertainty sampling
can introduce a sampling bias which decreases the model performance. The bias
was specific to the fastText approach used for this experiment, but this shows that
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the choice of the machine learning approach can have a significant impact. As Ac-
tiveAnno supports active learning through connecting an external machine learning
component to it, users need to analyze the performance of their specific machine
learning solution. In this experiment, the negative e↵ects of the initial setup could
be removed through the combination with unsupervised learning, which improved
the model performance significantly. Future research should investigate di↵erent
kinds of machine learning approaches as well as query strategies for active learn-
ing, such that a reliable general-purpose text classification component could be
developed for ActiveAnno in the future.

5.2 Tool

In Chapter 3, five goals were stated for ActiveAnno to be a useful general-purpose
document annotation tool.

Annotation Quality and E�ciency ActiveAnno supports multiple mecha-
nisms to control for high-quality annotations and an e�cient annotation process.
Project managers can define the number of required annotators per document and
how agreement is calculated among multiple annotators. The two-step annota-
tion process allows for curators to accept or overwrite annotations created by the
annotators. The machine learning integration enables pre-annotations for a more
e�cient annotation process, as shown in Experiment 1 (Section 4.3). Annotation
generators can also be treated as annotators. This enables agreement logic between
machine learning models and human annotators as an alternative approach to in-
tegrate machine learning into the annotation process. This way, it is also possible
to partly or fully automate an annotation task (Section 3.5). The ability to update
annotation generators and to sort documents by the least confident predictions
enables an active learning process that gradually improves the machine learning
models, which can then be used as described above.

Future work for better annotation quality is in-app communication between
annotators and between annotators and curators. Similar to a machine learning
model improving over time by learning new information, the annotators should
receive continuous education by informing them about wrong annotations. Anno-
tators should also be able to directly ask curators if they don’t know the correct
annotation, to prevent wrong annotations from being created. For onboarding of
new annotators, a set of example documents with annotations and explanations
would be another useful feature.

The machine learning capabilities of ActiveAnno can also be further improved.
Currently, only tag set annotation definitions have an associated annotation gen-
erator. Other types of annotation, such as numbers and texts, should be able to
use the machine learning capabilities as well. The active learning process should
also support more query strategies which might result in better performance, as
discussed in Subsection 5.1.2.
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Flexibility and Configurability The project configuration of ActiveAnno fea-
tures a wide range of configuration options. Most importantly, the annotation
schema with its annotation definitions is highly configurable. Seven di↵erent types
of annotation definitions, for example tag sets, numbers and open texts, are sup-
ported and can be combined at will. A flexible user management allows to control
which user is assigned which role for a project. This makes ActiveAnno a flexible
tool, adaptable to di↵erent kinds of annotation processes.

Currently, some project configuration options are missing from the user in-
terface. Future work shall make all those accessible from the UI. Especially the
layout of the annotation view should be fully customizable with di↵erent layouts
for di↵erent screen sizes. To support even more use cases, span annotations should
also be supported in the future. While many tools with span-level annotations
already exist, adding support for them in ActiveAnno allows it to be used in sce-
narios where both document-level and span-level annotations are required. This
also enables hybrid annotations, where the annotator can decide to annotate for
the whole document or a specific span. To support span-level annotations, the
annotation layout needs to be more flexible to better support the display of long
documents.

Functionality and Usability ActiveAnno provides a modern, responsive user
interface and the annotators from Experiment 1 report a positive user experience
(Subsection 4.3.4). The web application supports annotation, curation, manage-
ment of annotation definitions and projects, as well as the analysis of results with
statistics about annotation duration, accuracy and inter-annotator agreement.

In the future, a search function can allow easier access to specific documents and
an administration panel can give access to central user management and the ability
to configure application-wide settings directly from the UI. Additional usability
improvements include a back button for annotators to get to the previous document
and revise an annotation, a progress bar for annotators and highlighting di↵erences
between annotation results in the curation view.

Interoperability and Installability To integrate with existing software, Ac-
tiveAnno provides multiple interfaces. A JSON API enables importing documents
and annotations, exporting annotation results and controlling the annotation gen-
erators (Subsections 3.3.2 and 3.5.1). Additionally, webhooks can be configured to
push finished annotation results to external services. Finally, the machine learning
integration as described in Section 3.5 allows for external machine learning com-
ponents to be integrated through HTTP communication as well. Through Docker,
ActiveAnno can be deployed easily to interact with those external services.

While interoperability is helpful for use cases where existing software will be
connected, future work for ActiveAnno should also support a standalone mode,
where user authentication and machine learning are directly built into the tool.
This would make it easier to use all the features of ActiveAnno in cases where a
software integration is not wanted.
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Extensibility and Open Source While some future extensions of ActiveAnno
can already be anticipated, many won’t be. Therefore, ActiveAnno was designed
with extensibility in mind. Through broad usage of polymorphism in the backend,
new types of annotation definitions, layout elements, or annotation generators are
easily achievable without changing existing code. To get feedback and input about
the tool, ActiveAnno is open-source and open for contributions of any kind under
https://github.com/MaxMello/ActiveAnno. In conclusion, ActiveAnno and this
thesis show how research and industry can collaborate in an open-source context
to create shared insights and a useful general-purpose tool for all participants.
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