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Abstract

In primary school, children’s books, as well as in modern language learning apps, multi-
modal learning strategies like illustrations of terms and phrases are used to support reading
comprehension. Also, several studies in educational psychology suggest that integrating
cross-modal information will improve human reading.
In artificial intelligence, methods or models are called multi-modal or cross-modal if they

jointly process and relate data of different modalities simultaneously. This thesis focuses
on current self-supervised multi-modal methods for text-image retrieval to improve human
reading within a language learner scenario. Specifically, state-of-the-art visio-linguistic
transformers, which recently gained a lot of interest and outperformed traditional multi-
modal text-image retrieval methods, are considered.
In our language learner scenario, the aim is to support a user’s reading comprehension

by providing context-specific visual cues for arbitrary text on demand. This work answers
initial research questions and proposes solutions to engineering challenges to realize the
scenario in a practical use case – to be exact, towards employing state-of-the-art multi-
modal text-image retrieval models to improve human reading.
First, a new Wikipedia-based multi-modal dataset (WISMIR) is collected to assess the

performance of current text-image retrieval models on complex textual data. Despite the
computationally determined low performance on the WISMIR test set, two user studies
where human raters assessed the quality of the top-ranked retrieved images suggest that
the evaluated models are generally suitable for the language learner scenario. In the last
part of the thesis, preceding results and findings are incorporated to develop a “real-time”
capable text-image retrieval system powered by current visio-linguistic transformers. The
user interface, which is realized through a browser plugin, represents a proof-of-concept
solution for the practical use-case of the language learner scenario that meets the essential
requirements and implements the basic functionality.
However, effectively improving human reading within a real-world language learner sce-

nario is a comprehensive and challenging task that requires much future research, experi-
ments, and engineering.
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1 Introduction

As human beings, we navigate through the world in a manifold cross-modal manner. Most
of the time, this is so natural that we do not notice how intertwined our brain processes
sensory inputs of different modalities. Especially when we make use of one of the most
outstanding skills of humans, the natural language, we almost always experience it in a
multi-modal fashion. Since we were babies, we learned our native language by combining
our parents’ words and visual hints. For example, think of parents showing a round object
to their child while repeatedly uttering the word “ball”. Sooner or later, the baby will
have an abstract image of a ball in her mind whenever she hears or reads the word. In
primary school, children’s books, as well as in modern language learning apps, like Babble1

or Duolingo2, this multi-modal learning strategy continues as illustrations of terms and
phrases are used to support reading comprehension. Even in higher education, e.g., during
a Master’s degree in any STEM field, we learn complex phenomena or algorithms with
the help of visualizations, e.g., by sketching functions or drawing graphs that abstract the
problem.
In artificial intelligence, methods or models are called multi-modal if they jointly process

and relate data of different modalities at the same time. This work focuses on visio-
linguistic models, which simultaneously process textual and visual data, that is, written
language and images.
During the past few years, there were significant breakthroughs in computer vision as

models are constantly improving in pixel-level object detection, classification of thousands
of object or attribute categories, or estimating 3D human poses (Kirillov et al. 2020; Güler
et al. 2018; Anderson et al. 2018). Also, in natural language processing, especially with
the dawn of transformers, models are increasingly capable of understanding semantics and
dependencies even in long contexts (Vaswani et al. 2017; Devlin et al. 2019; Brown et
al. 2020), which is essential downstream tasks. This progress in uni-modal methods also
led to a great leap forward in multi-modal visio-linguistic models, which are starting to
leverage the power of transformers to operate on textual and visual data (Qi et al. 2020;
Chen et al. 2020; Li et al. 2020).
Besides their competitive performance, another significant advantage of both uni-modal

and multi-modal transformers is that they can be trained in a self-supervised fashion.
This means that, unlike traditional models, transformers do not require manually labeled
training data but can be trained on a vast amount of unlabeled “in the wild” data crawled
from the internet.
One of several tasks where these models pushed the boundaries is multi-modal text-

image retrieval. The goal of this task is to find the best matching images according to a
textual query, usually from a large pool of images. To do so, models compute a similarity
score between each image and the query and finally return the resulting list in descending
order so that the best matching image with the highest similarity score is ranked first.
Computing these similarities obviously requires that the models understand the textual
input as well as the visual input and, further, that they can compare or relate the two
modalities.
This thesis presents initial research towards leveraging state-of-the-art visio-linguistic

transformers for text-image retrieval to improve human reading within a language learner
scenario described in the following.

1. https://babbel.com/
2. https://duolingo.com/
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1 Introduction

1.1 Language Learner Scenario

Multiple studies in educational psychology suggest that integrating cross-modal informa-
tion will improve learning to read (Ecalle et al. 2009; Dalton and Grisham 2011; Hahn
et al. 2014; Gerbier et al. 2018; Kabooha and Elyas 2018; H. Xie et al. 2019; Albahiri and
Alhaj 2020). Hence, in our language learner scenario, the aim is to support a user’s reading
comprehension by providing context-specific visual cues for a text on demand. This text,
referred to as context, can consist of a sentence or a paragraph as it appears on any website.
Moreover, the user chooses a word, referred to as focus, with which she has particular dif-
ficulties understanding it. The visual cues that should support her reading comprehension
are images that best match the context as well as the focus. A visio-linguistic text-image
retrieval transformer is employed to discover these images from a large image pool.

1.1.1 Practical Use Case

A practical use case of the scenario could be realized by a browser plugin, where a user
inputs the focus word and the context and is presented with images that support her
understanding of the focus within the context. This browser plugin should ideally fulfill
the following requirements:

• installing without dependencies
• easy to use
• “real-time” capable, i.e., only short latency to receive the best matching images for a

query
• highlighting of the region that represents the focus word within an image

1.2 Research Questions

Realizing the language learner scenario in a practical use case, which in the case of this
work should be an easy-to-use browser plugin, involves multiple steps of research and
engineering, which are the central topic of this thesis. Hence, this works seeks to answer
the following research questions, which subsume the overall aim of employing state-of-the-
art multi-modal text-image retrieval models to improve human reading.

1.2.1 Research Question 1 (RQ1)

The most popular training and evaluation datasets for current models applied on text-
image retrieval are MS COCO (Lin et al. 2014) and Flickr30k (Young et al. 2014; Plummer
et al. 2015). To the best of my knowledge, every state-of-the-art model utilized for this
task was trained (at least partially) on one or both of these datasets. Both COCO and
Flickr30k were created by crowdsourcing workers with the task to find short, simple, and
descriptive captions for images carefully selected from Flickr3.
In the previously introduced language learner scenario, however, there are no constraints

on the textual input. Hence, the sentences or paragraphs are presumably more complex
than the captions from COCO or Flickr30k, which is why it is expected that state-of-the-art
text-image retrieval models will perform poorly on more complex textual data.
This results in the first research question of this thesis, which is formulated as:

How do state-of-the-art multi-modal transformers perform in text-image re-
trieval with complex and lengthy textual queries?

3. https://flickr.com/
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1.2 Research Questions

1.2.2 Research Question 2 (RQ2)

Typically, current models are evaluated on text-image retrieval with the popular Recall@K
– short R@K – metric withK = 1, 5, 10. This metric ranges from 0% to 100% and measures
the fraction of text-image pairs or samples of the test set, for which the model retrieved the
ground-truth image for the corresponding textual query in the top-K ranks. One problem
with this method of measuring the performance of text-image retrieval models for real-
world systems is that the R@K metric is binary. For example, if a model retrieved the
ground-truth image for a particular text-image pair in the 6th rank, the R@1 and R@5
metric for this sample would be 0%, and only R@10 would be 100%.

However, this is often a misleading result, as the probability that the first few ranked
images are similar, and therefore all relevant, is very high in a large pool of images. Espe-
cially in the language learning scenario, this metric is not satisfactory for evaluating the
suitability of models since it might even be beneficial for the user’s learning process to see
different images of the same thing.
Therefore, alternative ways have to be found to answer the second research question

stated as:

Are state-of-the-art multi-modal transformers applied on text-image retrieval
suitable for our language learner scenario?

1.2.3 Research Question 3 (RQ3)

The input to traditional text-image retrieval methods or state-of-the-art models utilized for
this task is a single sentence, usually referred to as the query. However, for our language
learner scenario, it is required that the textual query is not only a sentence but a pair
consisting of a sentence or paragraph (the context) and a word (the focus) contained in
that context. Moreover, the images retrieved by the multi-modal text-image retrieval
method, which should be developed within the scope of this thesis, have to match the
context and the focus at the same time. To the best of my knowledge, no current model
or system employed for text-image retrieval supports queries consisting of a context and a
focus.
Hence, the third research question evaluated in this work is as follows:

How can textual queries consisting of a context and a focus contained therein
be supported in multi-modal text-image retrieval methods so that the retrieved
images correspond to both the context and the focus?

1.2.4 Research Question 4 (RQ4)

To find the best matching images for a given textual query from a pool of images, a
similarity function between the query and every image in the pool must be computed.
Multi-modal text-image retrieval models represent such a similarity function by a complex
neural network. The problem with this is that evaluating a single similarity score for a
text-image pair requires a large amount of computation. Hence, finding the best matching
image from a large pool of images becomes infeasible for “real-time” applications – even on
a modern GPU-powered system.
This problem gives rise to the fourth research question to be answered by this thesis,

which is stated as follows:

How to leverage state-of-the-art multi-modal transformers in a practical applica-
tion, i.e., a “real-time” text-image retrieval system with a large pool of images?

3



1 Introduction

1.3 Thesis Overview

In this chapter, an introduction to the general topic and the research questions of this thesis
was given. The remaining thesis is structured as follows: In Chapter 2, the fundamentals of
uni-modal natural language processing and computer vision models are concisely explained.
These uni-modal models are the basis for the multi-modal models, which are focussed and
utilized throughout this thesis. The principles and different architectures of these multi-
modal models are described and compared in Chapter 3. In Chapter 4, a brief overview of
existing multi-modal datasets is given. Next, in Chapter 5, WISMIR, a dataset collected
within the scope of this work and based on Wikipedia data, gets introduced and compared
to popular existing datasets. This dataset is required to evaluate the first research question
(RQ1). Further, several experiments conducted to evaluate RQ1 are described in Chapter 6.
Chapter 7 presents a new tool developed to conveniently conduct user studies that seek to
evaluate text-image retrieval performance by human raters. In Chapter 8, two user studies
to evaluate RQ2 are introduced, and their results are reported. A multi-modal text-image
retrieval system (MMIRS) was developed to evaluate RQ3 and RQ4 and is introduced in
Chapter 9. Moreover, MMIRS aims to realize the practical use-case of the language learner
scenario introduced earlier. Finally, the research questions are answered in summary with
their solution approach, and the thesis is concluded in Chapter 10. Additionally, this
chapter provides ideas for future work.
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2 Related Work

This work considers multi-modal models, i.e., models learning from textual and visual data
simultaneously. Since those models are based on current models from Natural Language
Processing (NLP) and Computer Vision (CV), this section briefly introduces these uni-
modal model architectures essential for this thesis. State-of-the-art multi-modal models
utilized in this work are introduced separately with more details in Chapter 3.

2.1 Language Models

As this work’s title suggests, the primary model architecture considered throughout this
thesis, is the popular and successful transformer architecture introduced by Vaswani et
al. 2017. This type of model emerged from a long path of research, which is briefly described
in the following.
Since language or textual data is sequential, i.e., the words (and the characters that make

up the words) in a text make sense only if they are read sequentially from left to right
or from right to left. Hence, earlier successful models utilized to solve natural language
tasks, i.e., recurrent neural networks or RNNs (Rumelhart et al. 1985), processed textual
data also sequentially. An RNN is very similar to classical feed-forward neural networks
with the extension that the output of the last hidden layer – also known as the “hidden
state” – is fed as additional input to the current step. This “hidden state” vector serves
as a “memory” of what was processed previously. However, these models have difficulties
with long-term dependencies in a text and “forget” contextual information if it is too far
away from the currently processed token.This is due to the model’s architecture, which
only allows processing the current token in the input sequence and the last “hidden state”
vector, which contains aggregated information from all previous steps. For long input
sequences, it is infeasible to compress all essential information from all previous tokens in
a single vector.
More sophisticated sequential models designed to overcome this long-term dependency

problem – technically also known as “vanishing gradient problem” – are LSTMs (Hochreiter
and Schmidhuber 1997) or GRUs (Cho et al. 2014). These models can memorize context
much longer than vanilla RNNs via multiple internal neural networks, called gates, that
learn which information to forget or keep in the hidden state vector. Despite the models’
enhanced context memorization capabilities, they still have problems solving tasks with
too long sequences, where contextual information is essential. For example, in machine
translation, where an input sequence in the source language has to be mapped to an
output sequence in the target language, the models’ performance decreases with the input
length.
Models to solve sequence-to-sequence tasks usually follow an encoder-decoder architec-

ture (Sutskever et al. 2014). In this architecture, the encoder model, e.g., an LSTM,
processes the input token sequence to produce a continuous intermediate representation
in which essential information from the input sequence is encoded. The decoder model –
usually also an LSTM or GRU – then processes this intermediate representation to produce
the first token in the output sequence. In the next step of the decoder, the hidden state
from the last step and the previously generated token are the used to predict the next
output token. This continues until the decoder predicts an [END] token, indicating that
the output sequence is generated completely.
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However, since the building blocks of in these encoder-decoder architectures are usu-
ally RNNs, the performance of these models still decreases with the length of the input
sequence. A breakthrough in sequence-to-sequence tasks was the attention mechanism in-
troduced by Bahdanau et al. 2015 and Luong et al. 2015. In this extension to traditional
encoder-decoder architectures, supplementary context vectors are stored for each step of
the encoding process. These context vectors, which are basically the “hidden state” vectors
of the encoder steps, are used to provide the decoder with information directly from the
input sequence and tell it which parts of the input are essential for the current decoding
step – which is why this mechanism is called attention. Besides several methods to realize
the attention mechanism, self-attention implemented in transformer models described in
the following is the most successful.

2.1.1 Transformer Models

In the following, the fundamental concepts of the transformer architecture introduced
by Vaswani et al. 2017 are described in more detail since it covers the primary constituents
of state-of-the-art uni-modal as well as multi-modal transformer models. Note that the fol-
lowing explanations of the self-attention mechanism and the transformer model, in general,
are inspired by blog posts from Peter Bloem1 and Jay Alammar2.

Self-Attention

One of the key differences of self-attention to the attention mechanism and encoder-decoder
architectures involving RNNs is that the transformer model processes all tokens in the
input sequence at once and not sequentially token after token. This solves the long-
term dependency issues and allows a much more efficient computation during training and
inference time via parallelization.
Basically, self-attention is a learned function that transforms every input vector xi ∈ Rd

to an output vector yi ∈ Rd. The fundamental concept of the self-attention function is
that each of the input vectors is transformed by three learned linear functions, namely
the key, the value, and the query function. With these three functions, the self-attention
mechanism, which can be understood as a soft-dictionary function, can control how much
and which information of each input vector is contained in each of the resulting output
vectors. Or in other words, every output vector yi is computed from a weighted sum over
every input token, where the learned key-, value-, and query-transformation matrices Wk,
Wv, and Wq, define these weights as shown by Equation 2.1

yi =
∑
j

softmax

(
qTi kj√
k

)
vj (2.1)

where ki = Wkxi; vi = Wvxi; qi = Wqxi; and j ∈ [0, N ] with N being the lengths of
the input sequence. Note that all the matrices are of size d × d. The softmax function is
applied for numerical stability so that the weights of the input vectors contributing to the
output vector sum up to one. Further, the dot-product between the query and key vectors
are normalized to counteract eventual vanishing gradient issues introduced by the softmax
function.
Instead of iterating over the input sequence, all operations are applied at once via large

matrix multiplication to achieve maximum computational efficiency through paralleliza-
tion, resulting in the well-known Equation 2.2 and visualization shown in the left part of
Figure 2.1.

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V (2.2)

1. http://peterbloem.nl/blog/transformers
2. https://jalammar.github.io/illustrated-transformer/
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where Q, K, and V are matrices containing all stacked query, key, and value vectors
computed from the input vectors.

Figure 2.1: Left: The computation graph of the self-attention mechanism; Right:
Schematic overview of the high-level computation graph of multi-headed at-
tention. The image is taken from Vaswani et al. 2017.

Transformer Encoder Model

The complete transformer model introduced by Vaswani et al. 2017 and shown in Figure 2.2
is also an encoder-decoder model. However, the models considered throughout this thesis
are only built from the encoder part, so the decoder part is not covered here. Further, the
training of the model and task which it was designed to solve, i.e., machine translation is
also not of interest for this work and therefore skipped in this explanation.
The transformer encoder shown in the left part of Figure 2.2 is made up of several

different layers, described briefly in the following.
First, continuous representations of the input tokens are computed by the embedding

layer. Since the input tokens are not processed sequentially but all at once, and the
output of the dot-product and any other subsequent operation is invariant to the order
of the elements, the token embeddings are combined by what is referred to as positional
encodings. As the name suggests, these encodings contain information on the positions
of the tokens in the input sequence. Next, the token embeddings are forwarded through
a Multi-Head Attention layer shown on the right in Figure 2.1. This basically combines
multiple self-attention layers with separate key, query, and value transformation matrices.
Each of the self-attention layers is referred to as an attention head and is responsible for
discovering different semantic dependencies between the input tokens. The outputs of the
multi-head attention layer are combined with their corresponding inputs via a residual
connection and normalized afterward. Layer normalization and residual connections are
common strategies to improve the training of the large models via gradient-descent methods
by preventing too small or large gradients. Finally, the normalized outputs are forwarded
separately through the same fully connected feed-forward layer with ReLU activation to
project them back to the input dimension d and normalized again afterward.

To sum up, a transformer encoder is a sophisticated transformation producing rich a
representation per input token, containing information about dependencies between every
token of the input sequence.
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Figure 2.2: Schematic architecture of the transformer model introduced by Vaswani et
al. 2017. The image is taken from the paper.

Bi-directional Encoder Representations from Transformers (BERT)

This transformer-based model revolutionized the field of natural language processing as it
outperformed previous models in a total of eleven tasks – often by a large margin – which
is why basically every succeeding language model is based on the ideas introduced in the
BERT paper by Devlin et al. 2019.
Since the model is made up of stacked transformer encoders discussed in the previous

section, the authors’ main contribution and key to the success of BERT is not of architec-
tural nature. Further, it was not the first (transformer-based) language model pre-trained
to produce representations on large corpora. However, one major drawback of standard
conditional language models, i.e., models trained to predict the current token given all
previous tokens in a sequence, is that they can only be trained in one direction. This is
because predicting a token in the sequence would be trivial if the models were fed the
complete input sequence bi-directionally.
With BERT, which employs bi-directional self-attention and processes all tokens of a

sequence simultaneously, the authors introduced a simple yet effective technique to train
the model on massive datasets by two unsupervised tasks. The first task is called Masked
Language Modelling (MLM), where 15% of the tokens in the input sequences are masked
out, and the model has to predict the original tokens. The second task is Next Sentence
Prediction (NSP), where BERT is trained to understand the relationship between sen-
tences. This is achieved by feeding the model two concatenated sentences, which are two
actually consecutive sentences in 50% of the time or two random sentences in the other
50% of the cases. During pre-training, BERT is trained on both of the tasks simultaneously
by minimizing the combined loss function.
The model’s strong performance is based on the contextualized token representations

learned via unsupervised pre-training on a huge unlabeled corpus containing about 3B
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words. When the BERT is applied on a downstream task, a new model instance is ini-
tialized with the pre-trained weights and then fine-tuned on the specific task. During
fine-tuning, the weights are updated by training BERT on task-specific labeled data in a
supervised fashion. Depending on the downstream task, the token embeddings computed
by the model are employed differently or fed through an additional layer also trained during
fine-tuning.
Pre-training a model’s parameters on massive datasets and then re-using these parame-

ters to fine-tune a different model instance on a different task is often referred to as transfer
learning, a common technique also applied in Computer Vision.

2.2 Computer Vision Models

The most common type of models employed in Computer Vision – regardless of the task
– are Convolutional Neural Networks or CNNs (LeCun et al. 1998). However, CNN only
describes a type of neural network, the exact architecture of the employed model depends
on the task so that there exists a large variety of model architectures.
In this work, CNNs for object detection and classification are of interest since they ex-

tract the visual features necessary for multi-modal models described in Chapter 3. Further,
their outputs are used in the multi-modal information retrieval system MMIRS developed
in this work and described in Chapter 9. To be specific, the object detection and clas-
sification network considered and utilized throughout this work is a Faster R-CNN with
ResNet-101 model (Ren et al. 2016; He et al. 2016; Anderson et al. 2018), briefly described
in Section 2.2.2.
To understand this complex and sophisticated models, it is essential to know the funda-

mentals of CNNs described in the next section.

2.2.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks try to mimic the human visual system (HVS) by model-
ing the receptive fields in our eyes and throughout the visual cortex with mathematical
functions called filters. Note that CNNs can be used for various tasks like and even solve
NLP tasks or generate images. Since this is irrelevant for this work, it is ignored, and only
CNNs for object detection and classification are considered in the following. Usually, the
input is an image, and the output is a list of labels of the detected objects in the image.
Like HVS, the structure of CNNs is hierarchical. On the lower levels, general visual

features like contrasts and edges are recognized, which are summarized in the higher levels
to more specific features like patterns or simple objects. The final layers of the CNNs
classify these features, e.g., to recognize complex objects, characters, or structures in X-Ray
images. The number of layers or depth of the CNN depends on the design of the researches.
Usually, the performance of a CNN increases with the number of layers. However, so does
the number of parameters and, therefore, the training time.
A CNN for object detection or classification consists of three different layer types stacked

alternately, namely convolution layers, pooling layers, and fully connected layers. Since
fully connected layers are very common in neural networks generally, they are not intro-
duced here. However, convolution layers and pooling layers are fundamental for every CNN
and briefly described in the following.

Convolution Layers

These layers are where the name of the CNN comes from and the main operation of these
networks. As mentioned earlier, in CNNs, the receptive fields of the HVS are modeled
by filter functions to detect useful visual features, e.g., for object detection. Typical filter
functions like Gaussian or Gabor filters are generally continuous functions in Rn. In CNNs,
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however, the inputs are rasterized and discrete images with fixed and finite dimensions.
Hence, also the filters are rasterized and discrete functions with typical dimensions of
k×k× c, where usually is k = {3, 5, 7} and c is the number of channels or the depth of the
kernel. The number of channels c in a kernel is always equal to the number of channels of
the image the kernel is applied on. For example, an RGB image has c = 3 channels, and
filters applied on the image are also of shape k× k× 3. The filter functions are applied on
an input image via 2D convolution as described by Equation 2.3.

O[i, j] =

C∑
c=0

k∑
u=0

k∑
v=0

H[u, v, c] I[i− u, j − v, c] (2.3)

where H is a discrete k×k× c filter kernel; I is a discrete m×n× c image or input volume;
and c denotes the depth or the channels of the kernel or image.
Note that there are several essential things – like the padding of the image or the stride

of the filter – to consider during convolution, which are not discussed here for brevity. In
the following discussions, it is assumed that the inputs I are padded so that the resulting
output O is of the same dimension – also known as “same” padding.

Since a single filter can only detect a single feature, many different kernels are applied
per layer, each producing its own output or feature map, usually stacked into one matrix.
So, for example, if 16 different filters are applied on an input image of size 28 × 28, the
resulting feature map is of size 28× 28× 16. Note that filters applied on this feature map
would be of size k×k×16. An example of this convolution process with the corresponding
input and output sizes is shown in Figure 2.3 – the max-pooling operation can be ignored
for now and is described next.

Figure 2.3: Example of a concrete CNN to classify handwritten digits. The input and
output sizes, as well as the parameters of the convolution, pooling, and FC
layers, are described. The parameter k describes the filter or pooling window
size, s the stride, and F the number of kernels applied on the input volume.
Source: https://www.easy-tensorflow.com/images/cnntext.png

The fundamental part responsible for the widespread success of CNNs is that these filter
functions are not pre-defined and fixed but are learned by the model from the training
process. In other words, the parameters of a CNN are the weights of the discrete filter
kernels employed in the convolution layers of the network. Similar to other types of neural
networks, these weights are trained via gradient-based optimization and backpropagation.
Training details, however, are not relevant here and are therefore not covered here.

Pooling Layers

This layer is used to decrease the complexity of CNNs by reducing the dimensions – not the
channels – of the feature maps. Further, pooling layers summarize a feature map, which
can be thought of as creating more complex features from simple features.
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Same as a filter kernel, a pooling kernel or window also is of fixed size k×k×c. However,
instead of applying a convolution, the pooling window is slid over the input volume and
summarizes the underlying values. Further, the window is slid over the input with a stride
of s ≥ 2. That is, the window coordinates are incremented by s, which has the wanted
effect that the output dimensions are smaller than the input dimensions (see Figure 2.3).
There are multiple methods to pool a feature map, but the most common is “max-pooling”.
Note that pooling layers do not have any learnable parameters, i.e., they are not trained

but constant.

2.2.2 Object Detection And Classification Models

The Faster R-CNN (Ren et al. 2016) model is a deep CNN to efficiently and accurately
detect and classify objects in an image. In this work, a version with ResNet-101 (He
et al. 2016) as the backbone model is used to extract visual features from images. To
understand Faster R-CNN with ResNet-101 (Anderson et al. 2018), its predecessors Fast
R-CNN Girshick 2015 and R-CNN (Girshick et al. 2014), and the general concept of object
detection and classification networks are briefly introduced first.

General Object Classification Concept

To classify objects in an image, first, the regions the objects are contained in an image
have to be located or detected. Second, features that adequately describe these regions
of interest (ROIs) have to be extracted. In the third and final step, the ROI features are
processed by a classifier to predict the corresponding class label.

R-CNN

The R-CNN model consists of three components, each responsible for one of the steps
mentioned previously. Hence, the model is not trainable end-to-end, which is one of several
significant limitations. Further, R-CNN is memory and computational very expensive
compared to state-of-the-art models or Faster R-CNN and takes almost 50s to detect and
classify objects in an image on average. This has two reasons: First, the ROI detection
component, based on a traditional CV algorithm, extracts about 2000 region proposals
and is relatively slow. Second and mainly, the feature extraction component has to be
applied individually to every region. In the third component of R-CNN, the extracted ROI
features are used to predict the respective class labels with an SVM classifier. Further, a
regressor model predicts improved bounding boxes for the ROIs.

Fast R-CNN

As the name suggests, the successor of R-CNN improves the processing speed (and also the
accuracy) of the model. In Fast R-CNN, an end-to-end trainable CNN, its predecessor’s
expensive feature extraction component is substituted and improved. Further, the SVM
classifier of R-CNN is replaced by fully connected (FC) layers, and the object labels are
predicted via softmax over the class vocabulary. Instead of extracting the features of each
ROI individually, Fast R-CNN computes a global feature map of the image from which the
features of the individual regions are cropped. Since the FC layers to predict the object
classes and improved bounding boxes require fixed-size input vectors, a technique called
ROI-pooling produces these vectors from the differently sized ROI feature maps. The
difference between ROI-pooling and max-pooling is that the output size is constant and
independent of the input size. These fixed-sized ROI feature vectors are fed through two
separated paths of FC layers to predict the object labels and to regress improved bounding
boxes.
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Compared to R-CNN, the Fast R-CNN model is much faster and reduced test time
for one image by a significant factor to about 2.3 seconds on average while being more
accurate, too.

Faster R-CNN

From the 2.3 seconds needed by Fast R-CNN to process one image, about 2 seconds are
taken to find ROIs in the image. In Faster R-CNN, its predecessors’ traditional and
expensive approach is replaced by a so-called Region Proposal Network (RPN). The exact
details are not essential for this work, but conceptually the RPN, which is also a CNN,
finds ROIs not on the original image but in the feature maps computed by the feature
extraction CNN. Like in Fast R-CNN, an ROI-pooling layer produces ROI feature vectors
of fixed size, which are forwarded through the FC layers to predict class labels and to
regress bounding boxes for the detected objects.
The RPN is very efficient compared to the traditional approach and takes only about

100ms, which reduces the overall time to process an image to 0.3s. However, the accuracy
of Faster R-CNN does not improve compared to Fast R-CNN.

Faster R-CNN with ResNet-101

To extract the global feature map from the raw input image, any CNN can be employed.
In Faster R-CNN, the authors tested the two object detection networks ZF (Zeiler and
Fergus 2014) and VGG-16 (Simonyan and Zisserman 2015), which differ in depth, speed,
and accuracy. Both of these models were pre-trained on ImageNet (Deng et al. 2009) for
object classification. As suggested by its name, the Faster R-CNN with ResNet-101 (He et
al. 2016) model employs a ResNet-101 model instead, which is much deeper has 101 layers.
Hence, it achieves better evaluation scores on different object detection benchmarks – at
the cost of longer training and inference time.
The authors of Anderson et al. 2018 additionally pre-train the complete model on the

Visual Genome dataset (see Section 4.1.3) for Object Detection and extended it so that
it predicts object labels with additional attribute labels. Some attribute labels are, for
example, “green”, “long”, or “smiling” and are combined with the corresponding object
classes.
The resulting ROI features are considered information-rich and are therefore used in

several downstream tasks or as input to other (multi-modal) models.
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There exists a large variety of multi-modal models for visio-linguistic tasks. From an ar-
chitectural perspective, these models can be subdivided into two groups: non-transformer-
based models and transformer-based models.

3.1 Non-transformer Models

Non-transformer-based models first process each modality separately by using Recurrent
Neural Networks (RNNs) like LSTMs (Hochreiter and Schmidhuber 1997) or GRUs (Cho
et al. 2014) for the text modality, and Convolutional Neural Networks (CNNs) like Faster-
R-CNN with ResNet-101 (Ren et al. 2016; He et al. 2016; Anderson et al. 2018) or VGG (Si-
monyan and Zisserman 2015) for the imaging modality. After that, the representations or
embeddings for textual tokens and image regions are in the same n-dimensional vector
space. In this common vector space, it is possible to fuse the modalities and compute, for
example, similarities between tokens and image regions, word-region-alignments (WRA),
or loss functions utilizing information from both modalities.
Typical tasks of these models are visual question answering (VQA), image captioning, or

text-image or image-text retrieval. The models indeed reach reasonable evaluation scores
but can seldom catch up with transformer-based models, described in Section 3.2. State-of-
the-art models of this type are, for instance, CAAN (Zhang et al. 2020), PFAN (Y. Wang
et al. 2019), SCAN (Lee et al. 2018), SCG-Net (Shi et al. 2019), or DenseCap (Johnson et
al. 2016). It should be noted that this type of model is commonly thought to be overtaken
by transformer models, which represent the large majority of models published in or after
2020.
Nevertheless, it is worth mentioning that the general architecture of multi-modal non-

transformer models is much more efficient while still producing fairly comparable. CAAN,
for instance, reaches Recall@10 scores on Flickr30k image-retrieval of 87.9 while Unicoder-
VL (G. Li et al. 2020), a state-of-the-art multi-modal transformer, reaches 94.9 R@10 on
the same dataset. However, CAAN is the clear winner when it comes to performance or
efficiency: to compute the similarity of a text-image pair, CAAN needs about 45µs, where
Unicoder-VL needs 0.5s – a difference in 5 orders of magnitude.

3.2 Multi-Modal Transformers

During the last few years, there were significant breakthroughs in various computer vision
(CV) tasks and models (Kirillov et al. 2020; Güler et al. 2018) as well as in the field
of natural language processing (NLP). Especially with the recent dawn of the so-called
transformer language models, the models are increasingly capable of understanding text’s
semantics (Brown et al. 2020; Devlin et al. 2019; Yang et al. 2019). This progress in
uni-modal models also led to a great leap forward in multi-modal visio-linguistic models
(VLMs), as scientists are starting to leverage the power of transformer models to work with
text and images simultaneously (Chen et al. 2020; Li et al. 2020; Qi et al. 2020; L. H. Li
et al. 2019; Su et al. 2020).
The input to multi-model transformers are textual tokens of a sentence and visual tokens

of an image or their dense vector embeddings. The textual token embeddings are usually
contextualized word-embeddings computed by pre-trained transformer language models
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such as BERT (Devlin et al. 2019). Since sentences or text, in general, is sequential
data, the textual tokens get additively combined with positional embeddings that reflect
the ordering of words. The visual token embeddings are typically region-of-interest (ROI)
features from the output of one of the last layers before the classification head in pre-trained
bottom-up object detection and classification networks such as Faster-R-CNN with ResNet-
101 (Ren et al. 2016; He et al. 2016; Anderson et al. 2018; Z. Yu et al. 2020). Because it is
beneficial for the model to know the spatial relationships of the visual tokens, the location
and the size of the bounding box the token originates from are also encoded into the visual
token.

3.2.1 Early-Fusion Models

In early-fusion models such as UNITER (Chen et al. 2020), OSCAR (Li et al. 2020),
ImageBERT (Qi et al. 2020), VisualBert (L. H. Li et al. 2019), or VL-BERT (Su et al. 2020),
tokens of both modalities and special tokens indicating the modality form the input to the
network. Multiple self-attention heads in the transformer encoder layers introduced by
Vaswani et al. 2017 and described in Section 2.1.1, then produce a joint-representation of
both modalities. That is, fine-grained word-region-alignments (WRA) of the tokens of the
input text and the visual tokens of the input image, crucial for achieving state-of-the-art
results.
Despite their remarkable evaluation scores across all visio-linguistic tasks, early-fusion

models are not applicable in real-world information retrieval systems with large image
pools. This is because computing the global similarity of a query sentence and an im-
age requires forwarding the query tokens with the visual tokens through the complete
transformer stack. In order to retrieve the best matching image from a large pool, this
process has to be repeated for every image in the pool, and we cannot pre-compute any
of the outputs. This would require tremendous computational power and therefore makes
early-fusion models infeasible in “real-time” information-retrieval systems.

3.2.2 Late-Fusion Models

As opposed to early-fusion models, where both modalities get fused already in the first self-
attention head, in late-fusion models, the textual and visual modalities first get forwarded
through separate transformers. Later, the output of the textual transformer and the output
of the visual transformer get fused depending on the model’s specific implementation. For
example, LXMERT (Tan and Bansal 2019) and VilBERT (Lu et al. 2019) compute the
fused cross-modality output with a third cross-modal Transformer that takes the separate
and uni-modal transformers’ outputs as inputs. Other late-fusion models specially designed
to solve multi-modal retrieval tasks like TERN (Messina et al. 2021) and TERAN (Nicola
et al. 2020) use a more straightforward and computationally efficient way. In TERN, the
two CLS token embeddings of the output of the separate transformers are representing the
complete image and sentence, respectively. These tokens are then used to compute the
cosine similarity that expresses the global similarity of a sentence and an image. On the
other hand, TERAN uses all token embeddings in the output of the uni-modal transformers
to produce a fine-grained word-region-alignment matrix, where each cell is the cosine-
similarity of the respective textual and visual token. The resulting fine-grained word-region
similarity matrix gets pooled to compute a global similarity score of the input sentence
and image.
The significant advantage of late-fusion models over early-fusion models in information-

retrieval systems is that the output embeddings of the uni-modal transformers can be
pre-computed and indexed. In multi-modal text-image retrieval systems, with a large
pool of images, this saves enormous amounts of time and computational power. The
pre-computed image embeddings can be reused, and only the query sentence embedding
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has to be computed to measure the similarity between the query sentence and all images
in the pool. Especially in TERN and TERAN, where the multi-modal fusion is not a
complex transformer, this attempt leads to short latency and makes real-world multi-modal
information-retrieval systems possible.

3.3 TERAN

In this section, the TERAN model gets introduced. This multi-modal transformer is a
late-fusion model, meaning that it has two separate transformer-encoder stacks (see Sec-
tion 2.1.1) – one for the textual and one for the visual data. It is specially designed for
text-image or image-text retrieval, i.e., to compute global similarity scores of sentences
and images. The code of the model, written with PyTorch1, and pre-trained weights are
available on GitHub2.

The inputs to the text transformer-encoder stack are the token embeddings of a pre-
trained BERT tokenizer model. To be specific, the “bert-base-uncased” from the popular
huggingface3 library is used.
The inputs to the vision transformer encoder stack are region-of-interest (ROI) features

extracted with the bottom-up object detection and classification network Faster R-CNN. To
encode the region’s position, the region feature vector gets combined with a 5-dimensional
vector encoding position and area of the region through a simple fully-connected layer.
A schematic overview of the model is shown in Figure 3.1

Figure 3.1: An overview of the TERAN model architecture taken from the paper.

3.3.1 Fusion of the modalities

To combine or fuse the textual and visual modalities, i.e., to compute joint-representations,
linear layers in the separate transformer stacks project the embeddings into a common 1024-
dimensional vector space. After that, the embeddings get forwarded further through the
respective transformer stacks, which output an embedding for each input token. In these
embeddings, the spatial relations and the semantic structure of the visual and the textual
input are encoded, respectively. Fine-grained word-region-alignments are computed via

1. https://pytorch.org/
2. https://github.com/mesnico/TERAN
3. https://huggingface.co/
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cosine similarity of the textual and visual embedding vectors and are used to construct an
alignment matrix. Each cell of this matrix represents the similarity of a textual and visual
token. To compute the global similarity of the original image and sentence, the alignment
matrix gets pooled. The paper’s authors evaluated multiple pooling strategies and came
up with “max-over-regions sum-over-words (MrSw)” pooling to achieve the best results.

To express this formally, we define the word-region-alignment matrix as

A ∈ R|I|×|S| (3.1)

where |I| is the number of region features in the input image I and |S| is the number of
token features in the input sentence S.

The cells of A, i.e., the cosine-similarities of the visual regions and textual tokens are
defined as

Ai,j =
vT
i tj

|vi||tj |
(3.2)

where vi ∈ I and tj ∈ S.
The global similarity of an image and a sentence through MrSw pooling of A is defined

as
Φ(S, I) =

∑
j∈|S|

max
i∈|I|

Aij (3.3)

3.3.2 Training of the model

The model is trained in an end-to-end fashion entirely via hinge-based triplet loss. This
loss is a contrastive or ranking loss function, which gets explained in the following. As
opposed to typical loss functions for classification tasks like (binary) cross-entropy loss or
softmax loss, ranking loss functions are used to train networks with the objective to predict
or compute a distance between two input samples.

Triplet-Loss Function

To compute the triplet-loss in general, we first need a notion of a distance function Φ(a, b).
Additionally, we require three samples, which we refer to as “anchor”, “positive”, and “neg-
ative” samples, or sa, sp, and sn. These samples can be randomly drawn or selected
according to specific constraints from the dataset. Finally, we need to define a margin m
that guarantees a certain minimum distance between sa and sn. Now, the objective of the
network is to compute pairwise distances so that Φ(sa, sn) >= Φ(sa, sp)
Visually, this principle can be easily understood from Figure 3.2, where an example

anchor, positive and negative sample are shown in a 2D space with Euclidean distance.

Figure 3.2: A schematic overview of the
triplet-loss function. The ob-
jective of this loss function is
that the model decreases the
distance of the anchor sample
A and the positive sample P
and increases the distance of
the anchor sample A and the
negative sample N .

Formally, the triplet-loss function, that networks seeks to minimize, is defined as

L(sa, sp, sn) = max(0,m+ Φ(sa, sp)− Φ(sa, sn)) (3.4)
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In other words, the objective is that the distance between the anchor and the negative
sample is larger than the distance between the anchor and the positive sample plus the
margin.
By analyzing the loss function, it can be noted that three different situations can hap-

pen depending on the three samples: Firstly, so-called “easy-triplets”, where Φ(sa, sn) >
Φ(sa, sp) + m, i.e., the negative sample already has a sufficient distance to the anchor
sample concerning the distance of the anchor and the positive samples. For “easy-triplets”,
the loss is zero, and the model’s weights do not need to be updated.
Further, there are “hard-triplets”, where Φ(sa, sn) < Φ(sa, sp), i.e., the negative sample

is closer to the anchor than the positive sample. For “hard-triplets”, the loss is positive and
greater than the margin, which requires the model to update the parameters significantly.
Finally, there are the “semi-hard-triplets”, where Φ(sa, sp) < Φ(sa, sn) < Φ(sa, sp) +m,

i.e., the negative sample is more distant to the anchor than the positive sample but the
minimum-margin distance is not met. For “semi-hard-triplets”, the loss is also positive but
smaller than for “hard-triplets”. The essential point to understand is that the model learns
most from “hard-triplets”.
This principle is visualized in Figure 3.3, where the anchor and positive samples are

fixed, while the negative sample can lay in three different regions, creating either “hard”,
“semi-hard”, or “easy” triplets.

Figure 3.3: A schematic overview of the
three different types of neg-
ative samples that can orig-
inate from the definition of
the triple-loss function de-
fined in Equation 3.4. Note
that the anchor sample sa
and the positive sample sp
are fixed and depicted as
a and p in the image.
Source: https://omoindrot.
github.io/triplet-loss

Triplet-loss in TERAN

In the case of TERAN, the required distance function is the global text-image-similarity
Φ(S, I) defined in Equation 3.3 Since TERAN deals with samples of two modalities, the
notion of the triplet-loss function needs to be slightly extended.

L(I, S) = max(0,m+ Φ(I, S)− Φ(I, S′)) +max(0,m+ Φ(I, S)− Φ(I ′, S)) (3.5)

where S′ is a hard-negative textual sample for the image I, I ′ is a hard-negative visual
sample for the sentence S, and (I, S) is a positive pair.
These hard-negative samples are drawn per training batch B and not from the full

training set for performance reasons as follows:

I ′ = argmax
I′′ 6=I∈B

Φ(I ′′, S) (3.6)

S′ = argmax
S′′ 6=S∈B

Φ(I, S′′) (3.7)

The triplet-loss function employed in TERAN consists of two basic triplet-loss functions
added together. In the first function, the anchor sample is an image, while the positive
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and negative samples are sentences. In the second function, it is the other way round: the
anchor sample is a sentence, and the positive and negative samples are images. By adding
the two segments in the final loss function, the model is forced to learn joint representations
for the textual and visual modalities.

Training Data

The authors of TERAN provide two models, with “MrSw” pooling (see Equation 3.3)
employed as global text-image similarity function. The models are solely trained on either
COCO 2014 (see Section 4.1.2) or Flickr30k (see Section 4.1.1) training sets, respectively.

3.3.3 Precomputation of Embeddings

One significant advantage of late-fusion models and especially in TERAN is the possibility
to precompute the outputs or embeddings of the separate transformer-encoder stacks. This
is particularly profitable in a “real-time” information retrieval system like MMIRS, powered
by TERAN (see Chapter 9). For MMIRS, a “real-time” text-image retrieval system, the
embeddings of every image in the image pool of the system got computed before runtime by
forwarding it through TERAN’s visual transformer-encoder stack. After precomputing, the
embeddings are persisted on disk. At runtime or inference time, only the query embeddings
have to be computed by forwarding the textual input through the respective transformer.
The best matching images are retrieved by computing the alignment matrices of the query
embeddings and all precomputed image embeddings, followed by pooling the matrices to
obtain the similarity scores of the images and the query, and finally, sorting the scores in
descendant order. To make this precomputation of embeddings possible, the codebase of
TERAN had to be modified since the authors did not provide this functionality out-of-
the-box. To be precise, the TERAN model code had to be disentangled in order to bypass
the visual transformer and to persist the outputs of the visual transformer, i.e., the visual
embeddings for later use. Further, a new PyTorch Dataset primitive was implemented
to load the persisted embeddings from disk and directly serve them, together with the
query embedding to the similarity function. More implementation details can be read in
Chapter 9.

3.4 UNITER

In the following, UNITER (Chen et al. 2020), an early-fusion transformer model, gets
described. As the model’s written-out name, ”UNiversal Image-TExt Representation
Learning”, suggests, it is designed to create universal multi-modal embeddings, usable for
different language- and vision-tasks. UNITER is based on the popular textual transformer
model BERT’s (Devlin et al. 2019) ideas and architecture. It employs self-attention-heads
to compute word-region-alignments between tokens in sentences and regions in an image.
Before the model can process the visual and textual input tokens, they are transformed by
an Image Embedder and a Text Embedder, respectively. The Image Embedder’s inputs
are 2048-dimensional feature vectors computed by a Faster R-CNN (Ren et al. 2016) and
a 7-dimensional vector that encodes the image-region position in the source image. The
two vectors are then combined through a fully connected layer. The Text Embedder takes
token embeddings from a pre-trained BERT tokenizer of the input sentence and sums
them with their respective positional embedding. Note that the output embeddings of
the Text Embedder and the Image Embedder are normalized via Layer Normalization (Ba
et al. 2016) to reduce the training time of UNITER.
Sophisticated pre-training on a combination of popular multi-modal text-image datasets

and the model’s architecture are the reasons for the outstanding performances in current
visio-linguistic tasks. UNITER beats all its competitors in Visual Question Answering
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Figure 3.4: A visual overview of the UNITER architecture. taken from the official GitHub
repository https://github.com/ChenRocks/UNITER

(VQA) (Antol et al. 2015), Visual Commonsense Reasoning (VCR) (Zellers et al. 2019),
Natural Language for Visual Reasoning (NLVR) (Suhr et al. 2017; Suhr et al. 2018), Visual
Entailment (SNLI-VE) (N. Xie et al. 2019), Text-Image and Image-Text retrieval on COCO
and Flickr30k, Referring Expression Comprehension (L. Yu et al. 2016; Kazemzadeh et
al. 2014).

3.5 Summary

In this chapter, different types of visio-linguistic multi-modal models were introduced.
Their general architecture can be subdivided into two groups: traditional models and
transformer models, subdivided further into early-fusion and late-fusion transformers. In
visio-linguistic benchmarks, the state-of-the-art transformers outperform traditional mod-
els in terms of evaluation metrics of the respective tasks. However, a significant drawback,
especially of late-fusion multi-modal transformers, is their computational complexity, which
leads to slow inference times and makes them unsuitable for “real-time” multi-modal infor-
mation retrieval systems. Nevertheless, early-fusion transformers allow pre-computation
of textual or visual embeddings, which saves an enormous amount of computation at in-
ference time, when, e.g., the similarities between a textual query to all images in a large
pool have to be computed. Therefore, TERAN, a multi-modal early-fusion transformer,
is focussed and utilized throughout experiments conducted and the text-image retrieval
system developed for this thesis.
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4 Existing Multi-Modal Datasets

Training multi-modal models designed to solve visio-linguistic tasks requires datasets con-
taining textual and visual data. Multiple datasets are available with different sizes and
content, all of them containing text-image pairs. Typically, one sample consists of a descrip-
tion or caption together with the corresponding image. There are also datasets including
additional data such as fine-grained labeled regions or questions about the image’s content
and answers. Further, there are multi-modal datasets designed for specific visio-linguistic
tasks like VQA (Antol et al. 2015), GQA (Hudson and Manning 2019), NLVR2 (Suhr
et al. 2018), SNLI-VE (N. Xie et al. 2019) or VCR (Zellers et al. 2019), which are usually
released together. Since this thesis is concerned primarily with the text-image retrieval
task, which requires only text-image pairs, other task-specific datasets are not covered in
this work.
Section 4.1 and Section 4.2 give an overview of existing multi-modal datasets for text-

image retrieval.

4.1 Popular Datasets

Within this thesis, datasets utilized for pre-training or fine-tune visio-linguistic transform-
ers on text-image retrieval are focussed. These datasets have in common that they are
designed by researchers and handcrafted typically by crowdsourcing workers with particu-
lar tasks.
In the following, a brief overview of suitable and commonly-used datasets is given.

4.1.1 Flickr30k

First, it is worth mentioning that there are two datasets referred to as Flickr30k and
are often used interchangeably within the context of multi-modal text-image retrieval.The
original Flickr30k (Young et al. 2014) is the basis for the Flickr30k Entities dataset (Plum-
mer et al. 2015) and holds approx. 32K photographs of everyday activities, events, and
scenes taken from Flickr 1. The captions are created via crowdsourcing, where each image
is described by five different annotators, resulting in about 160K text-image pairs. The
captions, therefore, vary in length and specificity.
Flicker30k Entities builds upon Flickr30k and extends it with approx. 244K co-reference

chains that identify and link entities among the same image’s captions and a total of about
275K bounding boxes to locate the image regions in which the entities are depicted.
More details and statistics about the Flickr30k dataset can be found in Section 5.3.

4.1.2 COCO 2014

MS COCO 2014 or simply COCO (Microsoft Common Objects in COntext) (Lin et
al. 2014) is a well-known dataset originally thought for object detection and segmenta-
tion of everyday-objects in natural, non-iconic images. The dataset contains about 123K
carefully selected mostly non-iconic images from Flickr with five descriptive captions each,
resulting in approx. 616K text-image pairs. Additionally, a total of approx. 2.5M ob-
ject instances of 91 common object categories are annotated with masks and bounding

1. https://www.flickr.com
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boxes within the images. Within the scope of multi-modal image-text retrieval methods,
typically, only the text-caption pairs are of interest.
The dataset was collected in multiple stages, utilizing over 70K working hours of human

workers from Amazon’s Mechanical Turk.
More details and statistics about the COCO dataset can be found in Section 5.3.

4.1.3 Visual Genome

Visual Genome (Krishna et al. 2017) is a complex and large dataset built for general
visual understanding and grounding of visual concept to language. The dataset consists
of multiple components rather than simple text-image pairs: region descriptions, objects,
attributes, relationships, region graphs, scene graphs, and question-answer pairs. The
dataset was collected and verified entirely by human workers from Amazon Mechanical
Turk2 and contains3 about 108K images, 5.4M region descriptions, 1.7M visual question
answers pairs, 3.8M object instances, 2.8M attributes, and 2.3M relationships between
objects. The images are collected from an intersection of MS-COCO (Lin et al. 2014) and
YFCC-100M (Thomee et al. 2016).
Global scene descriptions, i.e., complete sentences that describe the whole image, are

generated from multiple image region descriptions using predefined templates.

4.1.4 SBU Captions

The SBU Captions (Stony Brook University) dataset comes in two versions: the origi-
nal (Ordonez et al. 2011), which is the basis for the later generalized version (Kuznetsova
et al. 2013). To create the original dataset, a huge number of Flickr photos were gathered
along with their captions. The collection was then filtered to remove captions that do not
refer to or describe the image’s content, do not have a sufficient length, or do not indicate a
visible spatial relationship between the entities in the image. This filtering process resulted
in a dataset containing 1M photos with high-qualitative descriptive captions.
In the generalized version of SBU Captions, the images’ captions are programmatically

processed to reduce the information gap between the image’s visual content and their
description. For example, the captions should not contain entities that are not visible in
the image or contain information that only the photographer could know. The authors
propose several methods to generalize the captions, which result in different outcomes, all
contained in the generalized SBU Caption dataset.

4.1.5 Conceptual Captions

The Conceptual Captions dataset (Sharma et al. 2018) is a very large-scale and large-
variety dataset. It contains approx. 3.3M image-caption pairs from billions of websites,
processed by a very sophisticated filtering and transformation pipeline that makes heavy
use of state-of-the-art machine learning powered tools to purge the vast amount of input
data. The captions originate from alt-text HTML attributes of image-tags from the web-
sites. They are programmatically transformed, and named-entities are substituted by their
respective hypernym nodes from a very-large Knowledge Graph to achieve clean, fluent,
and informative descriptions of the images.

4.1.6 Focused Datasets

In this thesis, the Flickr30k and COCO datasets are focused for the following reasons:
These two datasets are the most commonly used datasets for pre-training and fine-tuning

2. https://www.mturk.com/
3. https://visualgenome.org/

22

https://www.mturk.com/
https://visualgenome.org/


4.2 Wikipedia-based Datasets

multi-modal models on the text-image retrieval task. To the best of my knowledge, every
recently published model is trained and evaluated on one or both datasets or on data that
includes Flickr30k and COCO. Further, this work focuses on the TERAN model due to its
suitability for “real-time” information retrieval systems. The TERAN models introduced
and published by Nicola et al. 2020 are trained solely on either Flickr30k or COCO and
evaluated on both.

4.2 Wikipedia-based Datasets

Unlike the popular datasets mentioned in the previous section, the datasets described in
the following contain “in the wild” data from Wikipedia. That is, they consist of non-
constrained and heterogeneous samples. They are non-constrained because the captions
and the images are not the outcomes of a particular (crowdsourcing) task, i.e., there are
no constraints besides the terms of use of Wikipedia. They are heterogeneous since the
data was randomly crawled from Wikipedia and does not follow any pattern, as opposed
to, e.g., COCO or Flickr30k images and captions, which got carefully collected according
to several sophisticated rules. Hence, these datasets of interest for our language learner
scenario (see Section 1.1), where a user should be able to visualize arbitrary sentences, e.g.,
from blogs, news websites, or Wikipedia.
Another difference between Wikipedia-based datasets and the datasets from Section 4.1

is that the images of the former are used to support the corresponding text. In the
other datasets, however, it is the other way round: The texts are created for the images,
which is similar to image-captioning tasks. The Wikipedia-based data is more similar to
the language learner scenario because the goal there is to support language learners by
providing visual cues for a given text.

4.2.1 WikiCaps

The WikiCaps (Schamoni et al. 2018) dataset is designed to improve the multi-modal
translation of image captions from Wikipedia. The dataset contains about 3.8M images
of Wikipedia and Wikimedia articles with their respective English captions created by
Wikimedia Commons users. It also contains additional 1000 multi-lingual and parallel
image-caption pairs in German-English, French-English, and Russian-English, which are
not of particular interest for this work.
As shown in Figure 4.1, WikiCaps is – due to its size – made up of a much more diverse

vocabulary and contains many more tokens compared to COCO and Multi30k (Elliott et
al. 2016) (a multi-lingual Flickr30k alternative).
Therefore, WikiCaps was chosen as the basis for the new WISMIR dataset collected

within the scope of this thesis and described in Chapter 5.

4.2.2 ImageCLEF

This dataset (Tsikrika et al. 2011) is the primary resource for the ImageCLEF Wikipedia
Image Retrieval task from 2010 and 2011. It consists of 237, 434 images from Wikipedia,
with their user-generated captions in English, French, or German, the articles the images
appear in, and some low-level visual features. All data originates from Wikipedia dumps
from 2009. The number of English-only captions and their respective images is 70, 127.

Due to its rather small size compared to WikiCaps and the same source of data, i.e.,
Wikipedia, ImageCLEF is not further analyzed and considered in this thesis.
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Figure 4.1: Lower-cased word frequency against word rank in the MS COCO, Multi30k
and WikiCaps dataset. Source: Schamoni et al. 2018
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This thesis aims to answer the research question of how good current text-image retrieval
models perform on data containing more complex textual data than the training dataset
commonly utilized to train these models (see Section 1.2). Hence, a dataset that fulfills
those constraints and suitable for text-image retrieval had to be found. As described in Sec-
tion 4.2.1, the WikiCaps dataset is a promising candidate since it contains non-constrained
caption-image pairs from Wikipedia. However, only samples containing captions of a cer-
tain length and divergence from the captions of popular datasets described in Section 4.1
are of interest. To ensure that the new dataset consists only these samples, an ETL pipeline
tool to filter WikiCaps was developed. The obtained subset, utilizable for our experiments,
is referred to as WISMIR (WikiCaps Subset for Multi-Modal Image Retrieval).
In Section 5.1, the tool gets introduced, and in Section 5.2, the data collection process

gets elucidated.

5.1 ETL Pipeline Tool

The authors of WikiCaps only provide a tab-separated file containing the Wikimedia file
IDs of the image and the respective captions together with a Perl script to download the
images serially. To make the data more accessible, an efficient Python application that
realizes an ETL pipeline was developed. The tool is designed to be flexible, i.e., the single
steps can be customized by specifying the behavior in a configuration file. The default

Figure 5.1: Default steps of the ETL pipeline tool to collect the WISMIR dataset.

steps are shown in Figure5.1 and described in the following.
In the extraction step of the pipeline, first, the provided WikiCaps TSV file gets loaded

into a pandas 1 DataFrame. Next, different corpus statistics, e.g., the average number of
tokens or the ratio of noun tokens, for each caption or row in the DataFrame are generated
in parallel and appended to the DataFrame.
Three different frameworks are available to collect the statistics: spaCy2, NLTK3, and

1. https://pandas.pydata.org/
2. https://spacy.io/
3. https://www.nltk.org/
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Polyglot4. This is because each framework uses different models for tokenization, segmen-
tation, part-of-speech tagging, and named-entity-recognition and will therefore produce
(slightly) different outputs.
After the statistics generation, the tool parses the configuration file to extract the user-

defined filter specifications. These filter specifications consist of a column name and an
interval described by a minimum and maximum value. The DataFrame containing the
caption-based statistics is then filtered by checking if the number contained in the respective
columns is in the specified range. If the input is within the range of min-max interval, it
is kept, otherwise discarded. After filtering, the DataFrame gets shortened to a specified
maximum number of samples. Finally, the corresponding images of the remaining rows get
downloaded in parallel.
In the next pipeline step, the transformation step, the tool parses the configuration file

to extract image transformation specifications. Afterward, the tool applies each transfor-
mation to each downloaded image in parallel.
In the final pipeline step, the load step, the final DataFrame containing all the statistics

and links to the transformed images gets persisted on disk. Note that the DataFrame,
log files, and images already get persisted between the substeps to be safe in the case of
unexpected failures.
Thanks to the clearly defined interfaces between each (sub)step of the pipeline, it is also

possible to execute the (sub)steps isolated from each other. Therefore, the tool can be
used to collect statistics for any DataFrame containing a captions column or to transform
any set of images according to specified image transformations.

5.2 Dataset Collection

Using the developed ETL tool described in the previous section, two initial versions of
WISMIR were collected.
The second version was collected after observing the poor performance of a TERAN

model trained and evaluated on WISMIR v1 (see Section 6.2) to assess if more data would
improve the model’s evaluation results.

5.2.1 WISMIR v3 Collection

During an error analysis experiment to find systematic errors (see Section 6.3) in TERAN
models trained and evaluated on the WISMIR v1 (W1) and WISMIR v2 (W2), it was
found that a significant number of samples share the same caption for different images.
While it is common in multi-modal datasets that an image has multiple different captions,
in WISMIR, it is the other way round. In Flickr30k and COCO, for example, each image
is described by five different captions. In W1 and W2, however, the same caption can
describe multiple different images. To be precise, 37.2% and 42.4% of the samples of W1
and W2 train-sets, respectively, share the same caption with at least one other sample. In
the test set of WISMIR, which is equal for all versions, 15% of the captions describe at
least two different images. In Figure 5.2, the composition of samples of different versions of
the dataset that have the same caption as n other samples is shown. Figure 5.3 show how
many different images share the same caption with how many other images in WISMIR.
Because the number of different images described by the same caption varies from 1 to
over 1000 in the W2 train-set (see Figure 5.3c), it could be problematic for a model’s
generalization ability to unseen data.
Hence, two additional versions of the dataset were created: WISMIR v3 does not contain

duplicated captions at all, and WISMIR v3.1, where one caption describes a maximum of

4. https://polyglot.readthedocs.io/
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five different images.

Table 5.1 lists the sizes and splits of the different dataset versions. All versions of the
datasets share the same test split of WISMIR v1. A detailed statistical analysis of WISMIR
and a comparison with the popular COCO and Flickr30k datasets can be found in the next
Section 5.3.

(a) WISMIR test-set (b) WISMIR v1 train-set

(c) WISMIR v2 train-set (d) WISMIR v3.1 train-set

Figure 5.2: The composition of samples that share the same caption with n other samples
for different versions of the WISMIR dataset.

Version Size Train Split Test Split
v1 187, 598 178, 218 9380 (5%)
v2 395, 874 386, 494 9380 (2.4 %)
v3 232, 530 223, 150 9380 (4.2 %)
v3.1 284, 110 274, 730 9380 (3.3 %)

Table 5.1: Number of text-image pairs in WISMIR v1, v2 and v3 datasets and train-test
splits. Note that the all the versions share the exact same test set.

5.3 Data Analysis and Comparison

In order to verify the disparity between WISMIR and the popular datasets COCO and
Flickr30k, which is a prerequisite to assess how current text-image retrieval models perform
on datasets containing more complex textual data, a detailed data analysis and comparison
was undertaken.
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(a) WISMIR test-set

(b) WISMIR v1 train-set

(c) WISMIR v2 train-set

(d) WISMIR v3.1 train-set

Figure 5.3: Distribution of the number of images that are described by the same caption
as n other images for different versions of the WISMIR dataset. Note that the
axes in (a), (b), and (c) is logarithmic to highlight the long-tailed distribution
characteristics. The diagrams can be read similar to horizontal bar charts.

5.3.1 Typical Samples from COCO, Flickr30k and WISMIR

For a first impression on the differences of the three datasets, typical samples are shown
in Figure 5.4, Figure 5.5, and Figure 5.4. For a first impression on the differences of the
three datasets, typical samples are shown in Figure 5.4, Figure 5.5, and Figure 5.6. From
the provided samples, it can be observed that the caption texts of COCO and Flickr30k
are short, simple, and directly describe the prominent content of the images in one sen-
tence. The captions of WISMIR, however, are much longer, do not follow a systematic
pattern, contain multiple sentences, and do not necessarily describe the content of the
image but also contain information like, e.g., the name of the photographer or the histor-
ical context. Another essential thing to notice is that the images from the three datasets
do not differ from each other substantially, i.e., while the captions from Flickr30k and
COCO show apparent dissimilarity to the captions from WISMIR, the images could be
used interchangeably.
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(a) Two teenagers at a white
sanded beach with surf-
boards.

(b) A very old and large plant
vase next to others.

(c) Three teddy bears sit on a
fake sled in fake snow.

Figure 5.4: Three typical images with their corresponding captions from COCO dataset.

(a) Two men in green shirts are
standing in a yard .

(b) Three men on a large rig . (c) A little girl climbing into a
wooden playhouse

Figure 5.5: Three typical images with their corresponding captions from Flickr30k dataset.

5.3.2 Statistical Analysis

First, the tool described in Section 5.1 was utilized to generate corpus statistics based on
the COCO, Flickr30k, and WISMIR captions to examine patterns analytically. Note that
the differences between the first and second versions of WISMIR are neglectable, which is
why only WISMIR v2 and WISMIR v3 statistics are mentioned and discussed.
In the Figures 5.7, 5.8, 5.9, and 5.10, multiple box plots summarize statistics about

various characteristics of the three datasets’ captions. In all figures, it can be observed
the resemblance of COCO and Flickr30k captions and the disparity to WISMIR captions,
which verifies our first impression from the typical samples provided previously.

Number of tokens per caption One of the primary differences between captions in
Flickr30k or COCO and WISMIR is the average number of tokens per caption. As shown
in Figure 5.7, WISMIR captions are almost four times as long as captions from Flickr30k or
COCO. This is an essential insight because having lots of tokens will most probably result
in a looser coupling between the regions of an image and the words or tokens, making it
more challenging for a multi-modal model to learn joint-representations or word-region-
alignments.
It can be further observed from the interquartile ranges that the number of tokens
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(a) View of the Kornmarkt
in Trier, Rhineland-
Palatinate, Germany. In
the middle of the image is
Stadtlesen, a mobile open
air library; at left is the
open air portion of the
Bitburger Wirtshaus; the
glass fronted building in
the background at left is a
bookshop.

(b) The “Capon Lake Whip-
ple Truss Bridge” ( en
p en), formerly known as
“South Branch Bridge"
or “Romney Bridge”, is
a historic Whipple truss
bridge in Capon Lake,
West Virginia. It is located
off Carpers Pike (West
Virginia Route 259) and
crosses the Cacapon River.
The bridge formerly carried
Capon Springs Road (West
Virginia Secondary Route
16) over the Cacapon
River, thus connecting the
unincorporated communi-
ties of Capon Springs with
Capon Lake. Photographed
by Justin A. Wilcox of
Washington, D.C. on
October 25, 2015.

(c) Plaque above the entrance
of the chapel of Notre-
Dame de Vassivière (Puy-
de-Dôme, France). The text
in French is “Done the 6th
day of june in the year
1555”

Figure 5.6: Three typical images with their corresponding captions from WISMIR dataset.

per caption often varies a lot from sample to sample in WISMIR, whereas in COCO or
Flickr30k, the number remains very similar for the majority of samples. This varying
number of tokens per caption can also influence a model’s performance since it needs to
learn handling both short and extended captions.

Number of sentences per caption Figure 5.8 depicts the number of sentences contained
in the datasets’ captions. We can observe that WISMIR captions contain more than twice
as many sentences on average than Flickr30k and COCO captions. More sentences per
caption have the same effect on learning joint-representations as more tokens per caption:
The model needs to learn which parts of a caption are represented in the image, and
therefore need to be focused.
The box plots in Figure 5.8 for WISMIR show noticeably different numbers for maximum

sentences depending on the framework used. An investigation of the samples containing
these maximum number of sentences revealed that this is because some captions do not only
contain English but also words or characters, e.g., from the Arabic or Cyrillic alphabets.
This makes it much harder for the models employed in the frameworks and primarily
trained on English data to tokenize and segment the captions. For the investigated samples,
the non-English texts are translations of the English part of the captions. One explanation
of why spaCy predicts a smaller number of tokens and sentences could be the size of
the employed models: the spaCy models have an accumulated size of 829 MB, whereas
NLTK and Polyglot models have accumulated sizes of 165 MB and 25 MB, respectively.
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Figure 5.7: Box plot diagrams for the number of tokens per caption in COCO,
Flickr30k, and WISMIR, generated by different tokenization models. The me-
dian and mean are depicted in red and green font, while their whiskers indicate
the minima and maxima.

Figure 5.8: Box plot diagrams for the number of sentences per caption in COCO,
Flickr30k, and WISMIR, generated by different tokenization models. The me-
dian and mean are depicted in red and green font, while their whiskers indicate
the minima and maxima.

Further, the spaCy model, “en_core_web_lg”5, used to generate the statistics, was trained
with OntoNotes 5.0 (Weischedel et al. 2013), which contains texts in English, Mandarin
Chinese, Arabic, and Chinese. Because language model sizes are generally proportional to
their performance, and because the training data of the spaCy model contains non-English
language, we argue that spaCy can handle non-English text better and is, therefore, more
reliable than the other frameworks.

Ratio of noun tokens per caption In Figure 5.9, the ratio of tokens classified as NOUN
or PROPN POS tags to all tokens of the datasets’ captions is depicted.
POS tags or part-of-speech tags are labels of a word or token typically created in an

automated fashion by a POS tagger model and describe the word’s grammatical properties.
Most European languages like English, German, or Italian and many other languages share
the same or very similar set of parts of speech like nouns, verbs, adjectives, prepositions,
articles, or conjunctions (Note that this is not a complete list). There exist different sets of
POS tags used by POS tagger models called (POS-)tag-sets. The most popular are part of
the Penn Tree Bank (Marcus et al. 1993), Universal Dependencies v2 (Nivre et al. 2020),
or the Brown Corpus (Francis and Kucera 1979). The NOUN and PROPN POS tags are

5. https://spacy.io/models/en#en_core_web_md
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5 WISMIR Dataset

Figure 5.9: Box plot diagrams for the ratio of tokens tagged with NOUN and
PROPN POS tags and all tokens of a caption in COCO, Flickr30k, and
WISMIR, generated by different tokenization models. The median and mean
are depicted in red and green font, while their whiskers indicate the minima
and maxima.

reserved for nouns and proper nouns, respectively. Proper nouns are nouns that are names
for specific places, objects, or persons, e.g., Hamburg, Bialetti, or Maria.
The difference between the ratio of nouns and proper nouns per caption is not as signif-

icant as the other discussed statistics, but is still 15% higher in WISMIR than in COCO
or Flickr30k. This difference is worth mentioning because nouns are generally better de-
pictable than other types of words such as prepositions, verbs, or conjunctions.

Ratio of named entities per caption The most significant difference between the captions
of WISMIR and COCO or Flickr30k is the ratio of tokens part of named entities to all
tokens of a caption. As it can be observed from Figure 5.10, COCO and Flickr30k captions

Figure 5.10: Box plot diagrams for the ratio of tokens tagged with NOUN and
PROPN POS tags and all tokens of a caption in COCO, Flickr30k,
and WISMIR, generated by different tokenization models. The median and
mean are depicted in red and green font, while their whiskers indicate the
minima and maxima.

have zero named entities at the median and close to zero on average. In WISMIR, however,
between 18% and 36% of a caption’s tokens are part of named entities.
We argue that this can greatly impact multi-modal models’ performances because a

model needs to recognize the entity type of the named entity to learn reliable joint rep-
resentations for the respective tokens and corresponding image regions. To make this
more clear, think of images of celebrities and captions containing the celebrities’ names.
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Although the token embeddings correlated with the celebrities’ names might contain the
information that it is a person’s name, the multi-modal model would still need to learn to
extract this information – if it is even contained – to align the textual with the correspond-
ing visual embeddings. If the information about the entity type, in our example, a person’s
name, is not contained in the token embeddings, the multi-modal model additionally needs
to learn it.
More information and discussion on this can be found in Section 10.6.1.

5.3.3 Readability Tests

To further underline the differences between COCO, Flickr30k, and WISMIR and to
show the suitability of WISMIR in our language learner scenario, Flesch-Kincaid (Farr
et al. 1951) (FK) and Dale-Chall (Chall and Dale 1995) (DC) readability scores were
computed. The results shown in Figure 5.11 are calculated from random samples of the

Figure 5.11: Comparison of Flesch-Kincaid (FK) and Dale-Chall (DC) readability scores
of randomly sampled subsets of COCO, Flickr30k, and WISMIR captions
containing 106±0.1% characters computed by two different frameworks (spaCy
and py-readability-metrics).

datasets’ captions, with each sample containing 106 ± 1000 characters. Because these
readability scores depend on the number of sentences, words, and syllables in the text,
counted by imperfect models, two different implementations, namely spaCy-readability6

and py-readability-metrics7, were used to obtain more reliable results. Whereas the re-
ported Flesch-Kincaid scores correspond already roughly to a US grade level, the Dale-
Chall scores need to be interpreted according to Table 5.2.

Score Notes
4.9 or lower easily understood by an average 4th-grade student or lower
5.0–5.9 easily understood by an average 5th or 6th-grade student
6.0–6.9 easily understood by an average 7th or 8th-grade student
7.0–7.9 easily understood by an average 9th or 10th-grade student
8.0–8.9 easily understood by an average 11th or 12th-grade student
9.0–9.9 easily understood by an average 13th to 15th-grade (college) student

Table 5.2: Mapping of raw Dale-Chall readability scores to US grade levels. Source: https:
//en.wikipedia.org/wiki/Dale\T1\textendashChall_readability_formula

In Figure 5.11, it can be observed that the captions of COCO and Flickr30k should
be easily understood by an average 4th to 6th-grade US student according to the Flesch-
Kincaid readability test. According to the Dale-Chall scores, COCO and Flickr30k captions
can be easily understood by a 5th or 6th-grade student. In contrast, WISMIR captions are
understandable by college students or higher, according to Flesch-Kincaid and Dale-Chall
scores.

6. https://github.com/mholtzscher/spacy_readability
7. https://github.com/cdimascio/py-readability-metrics
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5.4 Challenges and Limitations

Unfortunately, most of the discoveries from this section were made towards the end of the
thesis, when most of the experiments and studies already took place. Hence, not all of
them were addressed in this work. Section 10.6.1 describes how they can be approached
in future work.

5.4.1 Named Entities

The issue with named entities in WISMIR, as already alluded to in Section 5.3, is their high
frequency in the dataset’s captions. Aligning named entities in image regions is challenging
because a model first needs to learn the type of the named entity to find regions in the
images that represents it.

5.4.2 Loose Coupling Between Modalities

From the interquartile ranges in Figure 5.7, it can be observed that in WISMIR, 50% of
the captions contain between approx. 20 and over 70 tokens depending on the tokenization
model. Especially in TERAN, where a fixed number of 36 region features per image is used,
this results in a loose coupling of the two modalities. Even in models like UNITER or VL-
BERT, where between 10 up to 100 region features are used depending on the confidence
thresholds, the extended captions in WISMIR will result in an unbalanced number of
textual tokens versus image regions.

5.4.3 Language of the Captions

From visual inspections of the data, another issue with the captions of WISMIR was discov-
ered. Some captions do not solely contain English text but also text from other languages,
and even more critical, text written with characters from non-Latin alphabets like Arabic,
Cyrillic, Mandarine, or other Asian alphabets. Transformer-based visio-linguistic models
thematized in this thesis typically utilize pre-trained and frozen BERT-based models to
tokenize the textual input forwarded through their encoder stacks. Although pre-trained
multi-lingual and non-Latin BERT tokenizers models exist8, popular models are pre-trained
and evaluated with English tokenization models. Even though BERT tokenizers work on
a sub-word level, non-English words and especially words of non-Latin characters will re-
sult in OOV (out-of-vocabulary) tokens, for which it is not possible to find consistent
word-region-alignments. This, in turn, has a negative effect on every downstream task of
visio-linguistic models, including text-image retrieval.

5.4.4 Unbalanced Data

Another issue with WISMIR data discovered by random inspections of several samples
is that the data is unbalanced. Unbalanced, in this case, means that the data is not
thoroughly heterogeneous but contains an unconstrained number of images described by the
exact same caption, a varying number of identical images described by different captions,
or many similar samples created by a single user.
Number of duplicated captions Since it is computationally easy and efficient to

check the equality for textual data, the actual numbers of duplicated captions for different
images in WISMIR were counted and shown in Figure 5.2 and Figure 5.3.
Number of duplicated images For the visual data, i.e., the images, finding duplicates

in a large pool of images is computationally expensive due to their larger size compared to
textual data. Because no servers where 300K+ images would fit into main memory were
available, MD5 hashes for every image were computed and duplicated hashes were counted.

8. https://huggingface.co/bert-base-multilingual-cased
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The problem with this approach is that cryptographic hash functions, like MD5, follow the
avalanche criterion, which states that if a single bit in the input changes, each of the output
bits changes with a 50% probability. So if only a single bit in an image is changed, the
resulting hash will be very different from the hash of the original image. However, the
changed image will still look the same to humans and carry the same semantic information
(for typically sized images). Thus, counting duplicates of MD5 hashes of the images only
reveals duplicates of exactly equal images. Note that this would also be the case if the
original images were checked, i.e., their bytes without hashing, for equality.
A better approach than checking for equality would be using popular image similar-

ity metrics like SSIM (Z. Wang et al. 2004) or mean-squared-error (MSE). Interpreting
these scores and finding optimal thresholds to filter out similar images, however, is not
straightforward and out of the scope of this thesis.
Table 5.3 shows the number of exactly equal images with described by different captions

found via MD5 hashing. As it can be observed, the number of duplicated images in the

WISMIR Set Number of n-times duplicated images
n = 1 n = 2

test-set 2 0
v1 train-set 83 0
v2 train-set 331 1
v3 train-set 189 0
v3.1 train-set 266 1

Table 5.3: Number of duplicated images in different versions of the WISMIR dataset. Note
that for n = 1 and n = 2, the same image exists two or three times, respectively.

WISMIR datasets is rather low compared to the number of all samples (see Table 5.1).
Many similar samples Visual data inspection of multiple random samples also revealed

that many images and their labels had a very similar structure. The caption of the referred
samples consists of elements of a set of names of places or objects from the Philippines, and
the images show either arbitrary sections of highways, roads, or shops beside the roads.
With internet research to trace the origin of the named samples, it was found that there
is one user, Judgefloro9, who uploaded and captioned a staggering amount of 1, 311, 757
photos showing “18 Philippine provinces including their 280+ Towns, Cities, Churches,
Landmarks, Attractions, Monuments, Cultural heritage, Schools, Flora and Fauna, inter
alia” to Wikimedia. In Figure 5.12, a random selection of the text-image pairs created by
Judgefloro and included in the WISMIR v2 train-set is shown.
By computing the token type frequencies of the captions of WISMIR, terms like “Barangay”,

“Bulacan”, or “Tarlac” were discovered in the first 30 places of the word-frequency lists.
Usually, these places in word-frequency lists are occupied by stopwords and not by rare
words mentioned above. Therefore, captions of different WISMIR versions containing at
least one of the following terms were counted, of which all are frequent in the captions of
the user Judgefloro but very rare or even non-existing terms English: “Barangay”, “Tarlac”,
“Pampanga”, “Bulacan”, “Nueva Ecija”, “Poblacion”, “Pangasinan”. As it can be observed
in Table 5.4, the relative number of captions containing one of the terms mentioned above
is similar in the WISMIR test-set, v1 train-set, and v2 train-set. As alluded to in previous
sections and figures, those WISMIR versions contain a high number of duplicated captions.
In WISMIR versions, where samples with duplicated captions were removed or limited, the
number of captions containing one of Judgefloro frequent terms drops significantly. From
this, it can be concluded that most of the captions containing these terms are duplicated
a lot in the samples of the respective dataset versions. The last row of Table 5.4 shows

9. https://commons.wikimedia.org/wiki/User:Judgefloro
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Dataset Absolute Relative
WISMIR test-set 1613 17.20%
WISMIR v1 train-set 31720 17.80%
WISMIR v2 train-set 68764 17.80%
WISMIR v3 train-set 2284 1.02%
WISMIR v3.1 train-set 10091 3.67%
WikiCaps 430972 11.26%

Table 5.4: Absolute and relative numbers of caption of different Wikipedia-based text-
image datasets containing the following terms of which all are frequently used
in captions of the Wikimedia user Judgefloro but very rare or even non-existing
terms English: “Barangay”, “Tarlac”, “Bulacan”, “Nueva Ecija”, “Poblacion”,
“Pangasinan”.

that also 10% of the captions in the unfiltered WikiCaps dataset contain these rare En-
glish terms. While some of the terms are most likely also taken from captions of other
Wikimedia users, the high number of text-image pairs uploaded by Judgefloro gives strong
confidence that he has created the majority of these samples.
The issue that results from having large fractions of similar samples in the training and

test datasets is that models will not be able to generalize well to different data.

5.4.5 Incomplete Sentences

From visual inspections of random WISMIR samples, it was found that some of the cap-
tions are not proper English sentences but consist of listings of keywords that describe the
image and its metadata or incomplete sentences. In the language learner scenario (see Sec-
tion 1.1), where the aim is to support a user’s reading comprehension of natural sentences
by visual cues obtained by an image retrieval model, training the model on data containing
too many incomplete sentences could be problematic.

5.5 Summary

In our language learner scenario, the aim is to support human reading by providing visual
cues for arbitrary texts, which is why we claim that models trained on the datasets of the
first group will not perform well. Hence, a new dataset (WISMIR) for text-image retrieval
tasks based on Wikipedia data to train text-image retrieval models was collected. WISMIR
is a subset of WikiCaps, a dataset from the second group defined above. Different versions
of WISMIR were collected with an ETL pipeline tool developed for this purpose. Further,
an in-depth data analysis was conducted to compare WISMIR to popular image-retrieval
datasets from the first group. Finally, the challenges and limitations of WISMIR were
reported.
In the following chapter, several experiments of models trained and evaluated on the

WISMIR dataset are reported.
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(a) Alat San Jose del Monte City, Bulacan
Bridge in Barangay Tungkong Mangga,
City of San Jose del Monte (Colinas
Verdes Residential Estates and Country
Club, of Sta. Lucia Realty & Devel-
opment, Inc., Araneta Properties, Inc.
and OPMC, North East 17 beside SM
City San Jose Del Monte, connected by
the Alat San Jose del Monte City, Bula-
can Bridge K00 28+ 892 Load Limit 15
Tons load limit and River to Creek, con-
necting the Barangay Tungkong Mangga
and San Jose del Monte City, Bula-
can Welcome Road Signs in Barangays
of Caloocan Barangay 185 16, Tala
(Malaria), Caloocan City, along Quirino
Highway formerly called the Manila-del
Monte Garay Road or Ipo Road).

(b) Barangay Balingcanaway, Tarlac City
along La Paz-Tarlac Road (Santa Rosa
Junction-Tarlac Road from La Paz,
Tarlac to Tarlac City where the new
Tarlac-Pangasinan-La Union Express-
way (TPLEx) NLEx Extension Phase 2
North Luzon West Expressway (NLWE)
Phase 2 R-8 Extension 2).

(c) Timog and Panay Avenues, Barangay
South Triangle, Quezon City, District 4
(Barangays of Quezon City South Trian-
gle beside Paligsahan or Roces District
1, Laging Handa District 4 or Boy Scout
Area, in Mother Ignacia Avenue, Sgt.
Esguerra Avenue, by the Pedestrian foot-
bridge (Circle, West Avenue corner Que-
zon Avenue, Quezon City) Ninoy Aquino
monument in Quezon City; Timog Av-
enue, Timog Avenue, and Panay Av-
enue, Torre Venezia Hotel-Suites, Saint
Paul the Apostle Parish Church, Blessed
on January 26,1991, Camelot Hotel,
Quezon City).

(d) Barangay Landing, Limay, Bataan,
Bataan Province beside Barangays
Poblacion, Wawa, Townsite, Duale,
and Kitang-I, Barangays Bo. Luz &
Kitang-II, Limay, Bataan, Bataan
Province (along Limay, Bataan Na-
tional Road, interconnecting with the
Orion-Pilar-Bagac-Morong Bataan
National Road gateway to the Bataan
Provincial Expressway (Mariveles-
Limay, Bataan section) beside the
Bataan Provincial Expressway (Orion-
Pilar, Bataan section) of the Bataan
Provincial Expressway also known as
the Roman Expressway or the Roman
Superhighway, interconnecting with and
into Olongapo-Gapan Road).

Figure 5.12: Randomly chosen samples of WISMIR v2 train-set created by the Wikimedia
user Judgefloro.
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6 Experiments

In this chapter, experiments conducted within the scope of this thesis considering TERAN
models are reported and discussed.

6.1 TERAN Training

This section covers details about the training processes of TERAN models trained on
different versions of the WISMIR dataset. The following sections are structured similarly
and report graphs of the training loss, Recall@K scores on the WISMIR test set, and a
discussion of the training process results. The models’ final evaluation scores on several
datasets are compared and discussed in Section 6.2.
Each version of the WISMIR training sets has a different number of text-image pairs (see

Table 5.1) and a varying number of duplicated captions (see Figure 5.2 and Figure 5.3).
The test set of WISMIR is the same for every version and contains 9830 text-image pairs.
More details on the WISMIR dataset are described in Chapter 5 and are not repeated here.
Following previous work (Messina et al. 2021; Nicola et al. 2020), visual features of

images in the datasets were extracted using a Faster R-CNN with ResNet-101 (Ren et
al. 2016; Anderson et al. 2018; Z. Yu et al. 2020) model with the number of extracted
regions and features per image fixed to 36. The textual features are the token embeddings
from the same BERT tokenizer model (Devlin et al. 2019; Wolf et al. 2020) used by the
TERAN authors.
Again, following the TERAN authors, only the batch-wise loss got computed every

iteration of the training loop. To check if the models were overfitting, they get evaluated
on the test set via Recall@K metrics. Since the complexity of the evaluation is O(N2)
(with N = 9380 for the WISMIR test set), this was only done after every epoch. Likewise,
after every epoch, the models got persisted on disk, and the model with the best evaluation
score so far was saved explicitly. This ensures that the best model is saved and serves as
a replacement strategy for the missing early-stopping.
If not stated explicitly otherwise, the same set of hyperparameters was used in all the

following training processes and is the same as the TERAN authors introduced:
• The learning rate was set to 10−5 with a learning rate scheduler, which decreases the

learning rate to 10−6 after 20 epochs.
• The margin m used for the hinge-based triplet-loss function (see Section 3.3.2) was

set to 0.2.
• The batch size is set to 40 by the TERAN authors initially. However, since the

available GPU memory is too small, it was reduced to 20.
• The maximum number of epochs was set to 30

Note that having the same batch size across the different training processes makes a
comparison of the models’ performance or loss curves on a step level possible. When
talking about the training of (deep) neural networks, one step refers to one gradient update
where batch-size-many samples are involved. An epoch refers to one complete iteration of
the training dataset, with a varying number of steps depending on the batch size and the
number of samples in the training set.
All models were trained on either a GeForce GTX 1080 Ti with 11GB memory or a

GeForce GTX 2080 Ti with 12GB memory.
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6.1.1 WISMIR v1

In this first training of a TERAN model on WISMIR data, the maximum number of epochs
was limited to 10 since it was thought of as a first test. As shown in Figure 6.1, the model
did not overfit at all and would most probably have reached better evaluation scores in
successive epochs. This training experiment concluded that the WISMIR data is generally
learnable by TERAN and that further training processes with more epochs and data are
expected to reach better evaluation scores.

(a) Loss (b) R@1

(c) R@5 (d) R@10

Figure 6.1: The loss, R@1, R@5, and R@10 curves generated during the training of TERAN
on the WISMIR v1 dataset. The graphs show the number of steps on the x-axis
and the corresponding value of the loss or the evaluation metrics on the y-axis.

6.1.2 WISMIR v2

The training process on the largest version of WISMIR took 4 days and about 12 hours
until the maximum number of 30 epochs was reached. As observable from the loss-graph
and R@k-graphs shown in Figure 6.2, the model is still not overfitted but seems to have
reached its limit concerning the evaluation metrics asymptotically. Nevertheless, this also
seemed to be the case around step number 300K. Shortly thereafter, however, the model’s
performance on the test set increased dramatically in a relatively small number of steps
until the metrics flattened out again.

The finally achieved R@k evaluation scores of the trained TERAN model are rela-
tively low compared to the achieved scores of TERAN trained and evaluated on COCO
or Flickr30k (see Table6.1), and indicate that the data is challenging to learn. Further
discussion on eventual reasons for the low evaluation results can be found in Section 6.2.
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(a) Loss (b) R@1

(c) R@5 (d) R@10

Figure 6.2: The loss, R@1, R@5, and R@10 curves generated during the training of TERAN
on the WISMIR v2 dataset. The graphs show the number of steps on the x-axis
and the corresponding value of the loss or the evaluation metrics on the y-axis.

6.1.3 WISMIR v3

After the large number of equal captions describing a varying number of different images
(see Section 5.2.1) was discovered in the second version of WISMIR, a TERAN model was
trained on WISMIR v3 to investigate the issue’s influence on the model’s performance.
As a reminder: In WISMIR v3, all text-image pairs, where the same caption was used in
another pair for a different image, were filtered out (see Section 5.2.1). In other words, in
WISMIR v3, each caption is unique, whereas in WISMIR v2, a caption may be contained
in up to 1000 of other text-image pairs with different images. For more information about
this issue, see Section 5.2.1.

As it can be noticed by comparing the evaluation score progress of WISMIR v2 in
Figure 6.2 and of WISMIR v3 shown in Figure 6.3, the filtered out samples in WISMIR
v3 had a relatively large influence. After about 140K steps, the evaluation metrics of
the TERAN model trained on WISMIR v3 flattened out. After about 160K steps (or 18
epochs), when the experiment was aborted, the model reached only 8.8 R@1, 25.4 R@5,
and 35.6 R@10 scores. These scores were beaten by the TERAN model trained on WISMIR
v2 after already after only about 60K (or 4 epochs) steps.

From the discussed results of this experiment, it can be concluded that the duplicated
captions of WISMIR v2 seem to be beneficial for the model’s training process. However,
the size of WISMIR v3, which is only 57.74% of the second version’s size, will most likely
also have a non-marginal influence on the achieved performance. For more information
and a comparison of the sizes of the different versions of WISMIR, see Table 5.1.
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(a) Loss (b) R@1

(c) R@5 (d) R@10

Figure 6.3: The loss, R@1, R@5, and R@10 curves generated during the training of TERAN
on the WISMIR v3 dataset. The graphs show the number of steps on the x-axis
and the corresponding value of the loss or the evaluation metrics on the y-axis.

6.1.4 WISMIR v3.1

In this experiment, a TERAN model was trained on the WISMIR v3.1 dataset, a subset of
WISMIR v2 similarly filtered to WISMIR v3. Instead of filtering every duplicated caption
like in WISMIR v3, captions are kept so that a maximum of five duplicates remained in
WISMIR v3.1 (see Section 5.2.1). In other words, in WISMIR v3.1, a caption may describe
a maximum of five different images. Like the third version of the dataset, this version was
created to investigate how duplicated captions affect the model’s performance.
The experiment results were unexpected and chaotic, as can be seen especially in the loss

curve shown in Figure 6.4. While the loss is slightly decreasing, it oscillates with a large
amplitude, which increases with the number of steps. Usually, an oscillating loss curve
indicates a too high learning rate, which is why the experiment was not aborted earlier
since the learning rate scheduler decreases the learning rate by one order of magnitude
after 20 epochs or in this case after about 220K steps. However, it can be observed from
the loss curve shown in Figure 6.4a that this decrease did not have the expected effect,
i.e., that the loss curve stabilizes.
Further, the graphs showing the R@K progress during the model’s training process

indicate that this version is especially tough to learn for TERAN. Even the final R@10
score did not surpass 12.9, whereas, in the other training experiments, the models achieved
a minimum R@10 of 35.6.
From the significant differences in the resulting graphs of this training process compared

to the graphs generated during the training with WISMIR v3 shown in Figure 6.3, I claim
that it is very likely, that the different number of duplicated captions are not the sole
cause of the observed phenomena. To examine why and what of this WISMIR version
exactly caused the oscillating loss and the meager evaluation performance on the test set,
successive experiments are necessary but out of the scope of this thesis.
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(a) Loss (b) R@1

(c) R@5 (d) R@10

Figure 6.4: The loss, R@1, R@5, and R@10 curves generated during the training of TERAN
on the WISMIR v3.1 dataset. The graphs show the number of steps on the
x-axis and the corresponding value of the loss or the evaluation metrics on the
y-axis.

6.2 Model Evaluations

In this experiment, the TERAN models trained on the different versions of WISMIR,
COCO, or Flickr30k are evaluated on the test splits of the named datasets. Further, the
performance of TERAN is compared to the performance of the UNITER base model (see
Section 3.4), which was not The experiment aimed to compare the performance of the
models considering the training data and investigate if the models can generalize from
their training data to different test datasets. How the TERAN models were trained on
WISMIR is described in Section 6.1, and the COCO and Flickr30k trained models are
provided by the TERAN authors.
The evaluation results measured with the Recall@K metric are reported in Table 6.1. In

the following sections, these results are discussed and interpreted.

6.2.1 Result Discussions

The nomenclature introduced with Table 6.2 is used in the following discussions to refer
to the TERAN models trained on the different datasets to decrease the wordiness.

Evaluation Of TWX On WISMIR

From the upper part of Table 6.1 showing the evaluation results of the models on the
WISMIR test set, it can be observed that TW2 performed best by a large margin. This is
probably due to the large size of this version and that the training process was not aborted,
although the evaluation metrics seemed to flatten out as discussed in the previous section
and shown in Figure 6.2. However, by looking at the loss and performance curves of TW1,
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Training Set Test Set R@1 R@5 R@10
WISMIR v1 WISMIR 8.9 26.9 38.2
WISMIR v2 WISMIR 17.8 45.7 59.4
WISMIR v3 WISMIR 8.8 25.4 35.6
WISMIR v3.1 WISMIR 2.1 7.9 12.9
Flickr30k WISMIR 1.1 3.7 5.6
COCO WISMIR 0.9 2.7 4.4
WISMIR v1 COCO 5k 2.0 6.9 11.5
WISMIR v2 COCO 5k 3.1 10.9 17.6
WISMIR v3 COCO 5k 3.2 11.3 18.0
WISMIR v3.1 COCO 5k 1.3 5.7 10.0
Flickr30k COCO 5k 19.9 41.9 53.4
COCO COCO 5k 42.6 72.5 82.9
WISMIR v1 Flickr30k 1k 4.6 14.5 22.6
WISMIR v2 Flickr30k 1k 8.1 22.9 33.1
WISMIR v3 Flickr30k 1k 8.8 25.8 36.1
WISMIR v3.1 Flickr30k 1k 3.7 12.9 20.4
Flickr30k Flickr30k 1k 59.4 84.8 90.5
COCO Flickr30k 1k 50.3 76.9 84.6

Table 6.1: Text-image retrieval results on several datasets evaluated via Recall@K metric
for multiple TERAN models trained on different datasets.

Abbreviation Model Training Set
TW1 TERAN WISMIR v1
TW2 TERAN WISMIR v2
TW3 TERAN WISMIR v3
TW3.1 TERAN WISMIR v3.1
TWX TW1, TW2, TW3, TW3.1 Any version of WISMIR
TC TERAN COCO
TF TERAN Flickr30k

Table 6.2: Abbreviations to refer to TERAN models trained on different datasets to de-
crease wordiness. Note that TWX refers to all of TW1, TW2, TW3, and TW3.1
models.

TW3, and TW3.1 shown in Figures 6.1, 6.3, and 6.4, respectively, it can be concluded that
they most likely would never have exceeded the performance of TW2.
Although TW2’s performance on WISMIR is best by a large margin, it is poor compared

to what TC and TF achieved on COCO and Flickr30k test sets, respectively. From this, it
can be concluded that it is hard for TERAN models to learn tight word-region-alignments
and, consequently, also global text-image similarities from WISMIR data. To ensure that
this comparably poor performance of TW2 on WISMIR does not originate from an eventual
imbalance between the training set and test set, differences in the principal characteristics
of the splits are investigated. As shown in Table 6.3, these differences between the WISMIR
v2 training set and the test set are neglectable. The same is true for the differences between
samples correctly ranked and incorrectly ranked by TW2 according to R@1, R@5, and
R@10. Further, it was found that the model has seen that 84% of the token types, 72% of
the noun token types, and 80% of the named entity types of the test set during training.
From these findings, it can be concluded that the model’s difficulties with WISMIR do
not originate from surface forms of the dataset’s captions, but from a deeper semantic or
discourse level.
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Sample Set Avg. number
of tokens

Ratio of
noun tokens

Ratio of named
entity tokens

test 51.00 0.4618 0.3542
train 51.35 0.4637 0.3598
R@1 51.05 0.4617 0.3559
not R@1 50.99 0.4618 0.3538
R@5 50.85 0.4600 0.3533
not R@5 51.13 0.4632 0.3549
R@10 50.76 0.4607 0.3536
not R@10 51.35 0.4633 0.3549

Table 6.3: A comparison of average properties per caption from different subsets of WIS-
MIR v2 samples. In the samples column, “R@k” refers to the set of samples
where the TW2 (see Table 6.2 correctly ranked the respective image in the first
k positions. Samples, referred to as “not R@k”, are samples, where the model
did not retrieve the correct image in the first k ranks.

Additional problems could be introduced by the large number of tokens per caption on
average. Most of the words in a lengthy caption are probably not grounded in an image
region and can therefore be regarded as noise for word-region-alignments. When too many
words are not depictable or are not grounded in the image regions, it leads to loose coupling
between the caption and the image, which is not beneficial for the models’ training and
final performance in text-image retrieval tasks.
Further, for extended captions with many words and a limited number of 36 visual

tokens per image, it could be challenging to sample good (anchor, positive, negative)
triplets required by TERAN’s loss function (see Section 3.3.2) and finally cause problems
while training the model. Although it most probably plays a minor role, the smaller batch
size used to train TW2, which is 20 compared to 40 in TC and TF training, also influences
the quality of the triplets since they are sampled batch-wise.

Evaluation Of TWX On COCO And Flickr30k

By comparing the evaluation scores of TWX with the scores of TC or TF on COCO or
Flickr30k (in the middle and bottom part of Table 6.1), it can be noticed that the training
on WISMIR did not contribute much to the performance of TWX on COCO and Flickr30k.
The same is also true the other way round, i.e., TC and TF performed very poorly on the
WISMIR dataset. While TC performs better than TF on COCO and TF performs better
than TC on Flickr30k, this difference is comparably small concerning the immense gaps of
TWX on COCO and Flickr30k or TF and TC on WISMIR. These findings highlight the
resemblance of COCO and Flickr30k and the disparity of the two datasets compared to
WISMIR data.
However, it is worth pointing out that TW3 performed better on COCO and Flickr30k

than TW2, although TW3 performed much worse on WISMIR than TW2. Moreover, both,
TW3 and TW3.1 performed better on Flickr30k than on WISMIR. Also, the evaluation
scores of TW3.1 on COCO – although they are deficient – are comparable to those of TW3.1
on WISMIR. These observations were unexpected since TW3.1 performed the worst on
WISMIR by a large margin compared to TW1, TW2, and TW3. Similarly, the performance
of TW3 on COCO is very similar or better compared to TW2 or TW1 on COCO, although
TW3 performed worse on WISMIR. From this, it can be concluded that the removal
or restriction of duplicated captions in WISMIR v3 and WISMIR v3.1 is beneficial for
the performance of TWX on COCO and Flickr30k. Further, it indicates that the test
set of WISMIR might be too similar to the WISMIR v2 train split and requires further
investigation.
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6.2.2 UNITER VS. TERAN Performance

In this experiment, the text-image retrieval performance of the UNITERbase model, an
early fusion model, is compared to the performance of different TERAN models, which are
late fusion models.

Model Test Set R@1 R@5 R@10
TC WISMIR 1.1 3.7 5.6
TF WISMIR 0.9 2.7 4.4
UNITERbase WISMIR 5.31 13.28 18.75

TC COCO 5k 42.6 72.5 82.9
UNITERbase COCO 5k 50.33 78.52 87.16

TF Flickr30k 1k 59.4 84.8 90.5
UNITERbase Flickr30k 1k 72.52 92.36 96.08

Table 6.4: Recall@K evaluation results of UNITERbase and TERAN models (see Table 6.2)
on text-image retrieval on multiple test sets.

As is can be observed from Table 6.4, which shows the evaluation results, UNITERbase

outperforms TC on COCO and TF on Flickr30k by a large margin. Nevertheless, the
performance of UNITERbase on WISMIR is deficient compared to the model’s performance
on COCO or Flickr30k. However, the difference between UNITER’s performance and TC
and TF on WISMIR is significant. As can be observed from Table 6.1, UNITERbase

even outperforms the TW3.1 on WISMIR despite having seen any WISMIR data during
training.
From these results, the advantages of UNITER to TERAN models, i.e., the elaborate

training process and the early-fusion architecture, can be clearly observed. The UNITER
model was pre-trained on a much larger and diverse training set, which is a combination
of 5.6M samples from COCO, Flickr30k, Visual Genome, SBU Captions, and Conceptual
Captions (see Section 4.1). Further, the model was trained by several sophisticated self-
supervised training tasks (see Section A.1) as opposed to contrastive loss training (see
Section 3.3.2) of TERAN models.
The reason why TERAN models are still preferred over UNITER models despite their

inferior performance is the computational efficiency of TERAN.

6.3 Word-Region-Alignment Matrix Analysis

Throughout this section, the same abbreviations of TERAN models trained on different
datasets introduced in Table 6.2 are used to decrease wordiness. In this experiment, the
word-region-alignment (WRA) matrices generated by different TERAN models are exam-
ined and compared to get an idea of what the models and their separate visual and textual
transformer stacks learned from the respective datasets. For this, MMIRS (see Chapter 9)
was utilized to retrieve images from COCO for two queries of different lengths shown in
Table 6.5 and plot the corresponding WRA matrices. For a more formal definition or
detailed explanation of WRA matrices see Equation 3.2 or Section 3.3.1, respectively.
From Figure 6.5, which shows the WRA matrices computed by TC, TF, and TW2 for

query Q1 and the same image, it can be observed that the WRA matrices computed by
TW2 (see Figure 6.5c) is very different from the other matrices. Remember that a cell of the
WRA matrices represents the similarity between a textual token and a visual region of the
corresponding query and image, respectively. So, the mth row represents the similarities
between every textual token with the mth region, and the nth column represents the
similarities between every region and the nth textual token. Hence, the vertical-stripe-like
pattern in Figure 6.5c is unexpected because it suggests that all regions in the image are
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Query ID Number Of Tokens Query Text
Q1 191 I decided I really wanted to bake a cake so I

hopped into the car and drove to the grocery
store. I bought flour, sugar, eggs, and some cocoa.
All the other ingredients I had at home already.
Once I got home I got out my big mixing bowl and
measuring cups and spoons. I pre-heated the oven
to 400 degrees and started pouring ingredients
into the mixing bowl. After all the ingredients
were mixed, I greased a cake pan and poured in
the batter. I put the pan in the oven and started
mixing the ingredients for the frosting in a new
bowl. After baking for a while, I took the cake
out and stuck in a toothpick to make sure the
center was done. I let the cake cool for a bit and
then put the frosting on it. After frosting went
on, I cut it into pieces and put one on a plate for
myself and another for my friend

Q2 14 My friend lives on a farm with his family and some
sheep and goose

Q3 16 One problem with motorboats is that they’re very
harmful for animals living underwater

Table 6.5: Different queries used in the WRA analysis experiment described in Section 6.3.

almost identically similar to the textual tokens – at least from the first glance. Or in other
words, a textual token is almost identically similar to every region in the image. From
closer visual inspection, however, minor differences can be noticed. Further, it was tested
numerically with particular attention to common floating-point equality issues to ensure
that the cells per column are indeed not equal.
However, it was expected that the WRA matrices computed by all TERAN models

would look similar to each other – as do the matrices computed by TC and TF. Note
that vertical-stripe-pattern in the WRA matrix of TW2 shown in Figure 6.5c is not a
coincidence, but is prominent in almost all generated WRA matrices inspected so far.
Nevertheless, it is essential to note that the rank of the image corresponding to the

WRA matrices shown in Figure 6.5 only differs by three places in the ranks predicted by
the different TERAN models. TC and TF ranked the image first, while TW2 ranked the
image fourth. From this, it can be followed that the information contained in the WRA
matrix computed by TW2 is de facto meaningful for the model, despite the only slightly
different similarities between a token and the regions of the image.
In the following discussions and figure captions, this image is referred to as I.
To see if the vertical-stripe pattern also reoccurs for shorter queries, Q2 and Q3 were

used to compute additional WRA matrices with TW2. As shown by the WRA matrix
plots in Figure 6.6, the pattern does reoccur, although it is less prominent for the first and
second-ranked images of Q2 shown in Figure 6.6a and Figure 6.6b, respectively. From this,
it can be followed that the length of the query does not influence the vertical-stripe-patterns
in the WRA matrices computed by TW2 – at least at inference time.

6.3.1 Deeper Investigations

In this section, further investigation of the origins of the stripe-like pattern in the WRA
matrices computed by TW2 is reported and discussed. Therefore it is essential to under-
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(a) Computed by TC. Ranked 1st.

(b) Computed by TF. Ranked 1st.

(c) Computed by TW2. Ranked 4th.

Figure 6.5: Three word-region-alignment (WRA) matrices computed by different TERAN
models for query Q1 and the retrieved image I. Note that the focus is on the
general patterns and not the details of the WRA matrices.

stand the architecture of TERAN and how the model computes the WRA matrices, which
is described in detail in Section 3.3 and Section 3.3.1. As a reminder: The cells of the WRA
matrices are the cosine-similarities of the embedding vectors of the textual features of a
query and the visual features of an image computed by forwarding these vectors through
the transformer stack of the respective modality.
The textual and visual features are computed from the same pretrained models for all

considered TERAN models, i.e., from a pretrained BERT tokenizer model and a pertained
Faster R-CNN, respectively. Since the striped pattern only appears in TW2 and not in
TF or TC, it cannot originate from the feature vectors. Hence, the only possible origins
are the embeddings computed from the feature vectors by either one or both of TERAN’s
uni-modal transformer encoder stacks.
To examine these 1024 dimensional embedding vectors, they are visualized as one-

dimensional horizontal heatmaps in the following figures. Note that the single values of
the vectors are not of importance here. Instead, high-level patterns emerging by vertically
stacking the visualizations of the vectors are essential for the following visual inspections.
With the first visual inspection, the textual and visual token embeddings used by TW2

to compute the WRA matrix shown in Figure 6.5c and Figure 6.7a are examined.
From Figure 6.7b showing visualizations of the 191 textual token embeddings from Q1

computed by the textual transformer stack of TW2, a horizontally orientated striped pat-
tern can be observed. This indicates that the values of the single dimensions of the in-
dividual query token embeddings do not vary much for most of the vectors. That is, for
some embedding vectors, all the values are generally smaller than for other embedding
vectors. Or, more formally put, all of the vectors have a small standard deviation across
the dimensions, but some have higher, and some have lower means than others. However,
from closer observation, it can be noticed that some embedding vectors do not follow this
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(a) 1st rank (Q2) (b) 2nd rank (Q2) (c) 3rd rank (Q2) (d) 4th rank (Q2) (e) 5th rank (Q2)

(f) 1st rank (Q3) (g) 2nd rank (Q3) (h) 3rd rank (Q3) (i) 4th rank (Q3) (j) 5th rank (Q3)

Figure 6.6: Word-region-alignment (WRA) matrices of the top-5 ranked images computed
by TW2 for query Q2 and Q3. Note that the focus is on the general patterns
and not the details of the WRA matrices.

pattern, i.e., the values of the single dimensions differ much more. Another interesting
structure that emerges is the prominent vertical line that visually goes through the middle
of all embeddings. In this line, the values of the corresponding dimensions in the embed-
ding vectors are either very low or very high compared to the rest of the vectors. There
is a similar but not as prominent vertical line noticeable left to the other, more dominant
line. While it is evident that the transformer encoded certain information in these lines
and the emerging patterns generally, they can currently not be explained thoroughly and
need further investigation.
By visually inspecting the 36 visual embeddings shown in Figure 6.7c and computed by

the respective transformer stack of TW2, another emerging pattern is prominent. Here it
looks as if all the 36 embedding vectors are identical. However, closer visual and exact
numerical inspection showed that this is not the case. That is, the values of the single
dimensions across the vectors differ, albeit only marginally.
From these reported findings in the textual and visual embeddings, the prominent verti-

cal stripe-like pattern in the resulting WRA matrix shown in Figure 6.5c and Figure 6.7a
becomes explainable: Since the visual token embeddings are almost identical to each other,
the similarities to the textual token embeddings are also similar, which is reflected by the
vertical stripes in the WRA matrix.
To ensure that the patterns found in the textual and visual embeddings computed by

TW2 are not characteristically for all TERAN models, the embeddings computed by TC
and TF were also visualized in Figure 6.8 and Figure 6.9, respectively.
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None of the previously emerged and discussed patterns show up in any of the figures –
neither in the visualizations of the textual or visual embeddings nor in the resulting WRA
matrices. This underlines the untypical behavior of TW2, which could be a reason for
the comparably poor performance compared to TC and TF as reported in Section 6.2,
Section 8.2, and Section 8.3.
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(a) WRA Matrix for Q1 and I computed by TW2.

(b) Visualization of the embeddings of every tex-
tual token in Q1 computed by TW2.

(c) Visualization of the embeddings of every vi-
sual token in I computed by TW2.

Figure 6.7: Visualizations of the query embeddings and the image embeddings used to cal-
culate the WRA matrix of query Q1 and image I computed by TW2. Each
row in the embedding visualizations shows visualization of a single 1024 dimen-
sional embedding vector computed by either the textual or visual transformer
stack of TW2. Note that the focus is on the high-level patterns and not the
details of the plots.
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(a) WRA matrix for Q1 and I computed by TC.

(b) Visualization of the embeddings of every tex-
tual token in Q1 computed by TC.

(c) Visualization of the embeddings of every vi-
sual token in I computed by TC.

Figure 6.8: Visualizations of the query embeddings and the image embeddings used to
calculate the WRA matrix of query Q1 and image I computed by TC. Each row
in the embedding visualizations shows visualization of a single 1024 dimensional
embedding vector computed by either the textual or visual transformer stack
of TC. Note that the focus is on the high-level patterns and not the details of
the plots.
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(a) WRA Matrix for Q1 and I computed by TF.

(b) Visualization of the embeddings of every tex-
tual token in Q1 computed by TF.

(c) Visualization of the embeddings of every vi-
sual token in I computed by TF.

Figure 6.9: Visualizations of the query embeddings and the image embeddings used to
calculate the WRA matrix of query Q1 and image I computed by TF. Each row
in the embedding visualizations shows visualization of a single 1024 dimensional
embedding vector computed by either the textual or visual transformer stack
of TF. Note that the focus is on the high-level patterns and not the details of
the plots.
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7 IRST: Image Ranking Study Tool

To conduct the user studies described in Chapter 8, conveniently without the need to write
new code for each (pilot) study, a multi-purpose tool was developed. As the name of the
tool, Image Ranking Study Tool or IRST, suggests, its main objective is to conduct user
studies to evaluate image rankings. A ranking is the output of a text-image retrieval model
and consists of a text or query and a sorted list of k images. The first element of the list
is the most similar and the last element is the least similar image to the text according to
the model.
The tool currently offers three different ways, referred to as study types, to assess the

quality of such rankings by human raters. Those are “image ranking”, “image rating”, and
“Likert”, and are described in the following section.
Moreover, IRST can be used as a standalone application or, in combination with Ama-

zon’s crowdsourcing platform, MTurk1. An introduction to MTurk is given in Section 8.1.
More information about the tool’s features is provided in Section 7.2. Details about the

tool design and software architecture are explained in Section A.3.

7.1 Study Types

In the following, the three study types or methods supported by IRST are introduced from
a non-technical perspective.

7.1.1 Ranking Study

One of the three ways an image-retrieval result can be evaluated with IRST is through a
Ranking Study. In this kind of study, the rater’s objective is to rank her best-matching
images according to a caption text from a pool of images. An example screenshot of a task
from a Ranking Study is shown in Figure 7.1.

Figure 7.1: The user interface of a task from a Ranking Study in the IRST application.
Here, a user has to rank her best matching images according to a text from the
pool of provided images. This is done by dragging an image from the center into
the ranking area on the bottom of the application. Note that the screenshot
was cropped and slightly edited to better fit this document.

To rank the images, users have to drag and drop the images from the center into the rank-
ing area at the bottom part of the application. An image is ranked if a green checkmark-
overlay appears on the respective image in the application center. The image’s rank is

1. https://www.mturk.com/
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indicated by the number in the blue badge in the top-right corner of the respective image
in the ranking area. A ranked image can also be reordered per drag and drop if a rater
decides to change its rank. A user can click on any image to enlarge it, which opens a
modal window containing a larger version with the caption beneath. If users need help or
further instructions, they can click on the quotation mark in the top-left, and a detailed
instructions page shows up.
This study method aims to examine how much the users and the model agree on the

ranking of images.

7.1.2 Rating Study

In a Rating Study, the tasks’ objective is to rate how well images are related to a caption
text on a star scale. By default, the scale ranges from 0 to 5 stars with 0.5 steps. An
example screenshot of a task from a Rating Study is shown in Figure 7.2.

Figure 7.2: User interface of the IRST application when working on a Rating Study. Here
a user has to rate images on a 5 star scale according to the relatedness to
a caption text. Note that the screenshot was cropped and slightly edited to
better fit this document.

To select a rating for an image, the users have to click on the desired number of stars
beneath the respective image. If an image is entirely unrelated to the caption, the users
can select the intended checkbox below the star scale.

7.1.3 Likert Study

In a Likert Study task, users have to answer questions concerning the image ranking on a
Likert Scale. An example of a Likert Study task is depicted in Figure 7.3.

Figure 7.3: User interface of the IRST application when working on a LikertSample. In
this task, the users have to answer the question in the bottom part of the
application by selecting one of the provided answers. Note that the screenshot
was cropped and slightly edited to better fit this document.

A user selects her preferred answer on the Likert Scale at the bottom of the application
to answer the question. By default, the scale contains the answers “strongly agree”, “agree”,
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“neutral”, “disagree”, and “strongly disagree” with respective weights 2, 1, 0, −1, and 2. A
typical question could be “The shown images are relevant to the provided caption.” for
example.

7.2 Features

Convenient Data Input

IRST imports the image rankings that are the subject of a study from a pandas2 DataFrame.
The DataFrame requires three mandatory columns and can contain any number of ad-
ditional columns (see Figure 7.4). Column “sample_id” contains the ID of the sam-

Figure 7.4: Example DataFrame containing an image ranking result of a text-image re-
trieval model in each row. In the three mandatory columns “sample_id”, “cap-
tion”, and “top_k_matches”, the ID of the sample from the original dataset,
the query of the text-image retrieval task, and the list of the top-k images are
contained, respectively.

ple in the original dataset, “caption” is the text, for which the top-k images in column
“top_k_matches” are retrieved. In Figure 7.4, “image_dataset” and “model” columns are
optional columns that can, in this case, provide information, from which dataset the images
originate and which model produced the rankings, respectively. This can be useful, e.g.,
when evaluating the submitted results.

User Feedback

A user or worker can provide or is asked to provide feedback when working on a specific
task. Users or workers can decide to anonymize the feedback so that only the message and
no information about the user get logged and persisted.

Standalone Mode

As opposed to MTurk mode (see Section 7.2), in standalone mode, the researcher has to
find the raters to conduct the study on her own. Once the raters are found, they have to
register and log in at IRST to access the tasks and submit their results. See Section 7.2
for more information about the multi-user support). The tool keeps track of the tasks and
submissions and ensures coordinated task distribution and results collection.

2. https://pandas.pydata.org/
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MTurk Mode

Understanding MTurk mode requires knowing the basic principles of Amazon Mechanical
or MTurk, explained briefly in the following. More detailed information about MTurk is
described in Section 8.1.
In MTurk mode, the raters who conduct the study are workers from MTurk marketplace,

a web application that runs in any standard web browser. In this marketplace, workers
can browse through and work on tasks referred to as HITs (Human Intelligence Task).
In MTurk mode, IRST offers an easy-to-use function to publish user studies described

in 7.1 in the MTurk Marketplace. When a worker submits her result, it gets persisted
in IRST, and MTurk gets notified to register the assignment necessary for the worker
to get paid. Additionally, the tool provides several other functions to manage HITs, ap-
prove assignments, and manage qualification requirements. With qualifications, requesters
can control which Workers can accept and work on published HITs. There are custom
and pre-defined qualifications, both of which IRST can manage. Further, the tool offers
functionality to communicate with Workers who participated in previous studies. MTurk
provides a sandbox version where HITs can be tested and published without payment, and
a live version, to conduct the actual study. IRST supports both sandbox and live version.
Note that every administrative MTurk functionality is only available for “admin” users.

Multi-User Support

There are two types of users, namely “admin” and “basic” users. Admin users have to be
defined in the configuration file and cannot register at IRST as opposed to basic users.
Note that basic users can only register and login in standalone mode; in MTurk mode, this
functionality is not available. In standalone mode, a user must be logged in to participate
in a study and submit results. This is mandatory to compute inter-rater agreements of the
results, which in turn is essential to evaluate study results.

Secure Authentication and Authorization

For authentication and authorization, IRST works with a combination of PBKDF23 and
JSON Web Tokens (JWT)4. This layer of security is required to protect administrative
functions against unauthorized requests, especially when the tool has to be accessible from
the public internet in MTurk mode. Details about the processes of authentication and
authorization are described in Section A.3.6.

SwaggerUI

Thanks to the usage of the FastAPI framework, IRST’s REST API automatically follows
the OpenAPI5 specification, formerly known as Swagger. Additionally, the framework
generates SwaggerUI6, a web application to visualize and consume the API endpoints. In
the current version of IRST, all administrative functions are available via SwaggerUI.

Configuration System

To keep IRST as flexible as possible, almost all of the tool’s functionality is configurable
in the respective section of a YAML configuration file.
The configuration system is build with OmegaConf7, to support specification via envi-

ronment variables, which is helpful for the deployment of the application.

3. https://www.ietf.org/rfc/rfc2898.txt
4. https://jwt.io/
5. https://www.openapis.org/
6. https://swagger.io/tools/swagger-ui/
7. https://omegaconf.readthedocs.io
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7.3 Summary

7.3 Summary

This chapter introduced the Image Ranking Study Tool (IRST) which was developed to
conduct the user studies planned in this work. With the help of IRST, user studies to
evaluate the rankings of a text-image retrieval model can be conducted conveniently using
three different methods without the need to write new code for each study. While the tool
can be run in a standalone mode where raters have to be found by the researcher manually,
it also offers out-of-the-box support for Amazon’s crowdsourcing platform Mechanical Turk
(MTurk).
Details about the software architecture and employed technologies are elucidated in

Section A.3 In the next chapter, the user studies conducted on MTurk using IRST are
reported.
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Two user studies were planned and conducted to answer the research questions of this
thesis described in Section 1.2.
The objective of the first study is to let humans evaluate the results of a TERAN model

trained on the WISMIR dataset (see Section 8.2). With the second study, we assess and
compare how TERAN models trained on different datasets perform on L2 language learner
data (see Section 8.3). Both studies were conducted on Amazon’s crowdsourcing platform
MTurk with the IRST application.

8.1 Amazon Mechanical Turk

Amazon’s Mechanical Turk, or short MTurk is a digital crowdsourcing platform. On
MTurk, researchers or companies can have crowdsourcing tasks like conducting studies
or collecting datasets done by over 250K (Robinson et al. 2019) diverse workers from all
over the world.
There are two roles on MTurk: requesters and workers. Requesters create and publish

their research projects, chunked into multiple small tasks referred to as HITs (Human
Intelligence Tasks) on the MTurk marketplace. Workers browse through the marketplace
and accept HITs they find interesting and attractive to earn money.
Further, it is possible to constrain the HITs with qualification requirements so that only

workers, which meet the requirements, can work on the HIT. This comes in especially
handy when pilot studies need to be conducted to ensure only genuine workers can accept
HITs of the main study.
When a worker completes a HIT and submits her results, requesters can review and

decide to either approve or reject the work. If a result gets rejected, the respective worker
does not receive any money.
There are several HIT templates with predefined layouts and controls available, but it is

also possible to use custom applications hosted by the requester. To conduct the studies
for this thesis, a tool was developed and used to create and manage custom HITs (see
Chapter 7).

8.2 Model Evaluation Study

Evaluating multi-modal models on text-image retrieval is usually done with the standard
information retrieval metric Recall@k. This is an exact and binary metric and measures the
proportion of retrieved relevant documents, i.e., images in the case of text-image retrieval,
in the top-k ranked images. Recall@k is defined as:

R@k =
|RI ∩ TKI|
|RI|

(8.1)

where RI is the set of relevant images for a query q and TKI is the set of top-k retrieved
images by the model for q.
The metric is called exact or binary because an image can only be regarded as relevant or

irrelevant – nothing in between. So in the case of text-image retrieval, Recall@k measures
how often the relevant image was retrieved in the top-k results for the whole test set. In
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other words: It measures the percentage of queries of the test set where the model could
retrieve the relevant image in the top-k results.
For each textual query in a typical evaluation or test set, e.g., in COCO, Flickr30k, or

WISMIR, only a single image is defined relevant. That is, |RI| = 1 and contains the image
of the respective sample. The problem with the metric in an information retrieval system
is that other images from the pool of images might also be relevant. For example, consider
the query “A dog playing in the grass” and the top-5 retrieved images shown in Figure 8.1,
where only the last image with the green frame is the correct image from the test set.
The Recall@k metric will be zero for all k <= 4 and only be 1 for k >= 5, resulting in
misleading evaluation scores.

Figure 8.1: Possible ranking of images of a text-image retrieval model for the query “A dog
playing in the grass”. All images are taken from https://unsplash.com/.

However, all of the shown images are relevant to the query. This problem is usually
solved using non-binary metrics like Discounted Cumulative Gain (DCG) or Normalized
Discounted Cumulative Gain (NDCG) (Järvelin and Kekäläinen 2002) to evaluate informa-
tion retrieval systems. These metrics can consider continuous or binary relevance scores for
the documents or images, as well as their position in the retrieved list of top-k documents
for a query. The DCG@k is defined as:

DCG@k =
k∑

i=1

reli
ld(i+ 1)

(8.2)

where reli is the relevance score of the i-th ranked image for the query. The discounting
factor ld(i + 1) = log2(i + 1) accounts for the position of the retrieved image, i.e., lower-
ranked images have a higher penalty on their relevance score. The NDCG@k is defined as:

NDCG@k =
DCG@k

IDCG@k
(8.3)

where IDCG@k is the DCG@k of the ideal ranking.
When evaluating text-image retrieval models on the WISMIR test set, the issue is that

neither the relevance scores of the images for the queries nor the ideal rankings are known.
In Nicola et al. 2020 and Messina et al. 2021, where text-image retrieval models are evalu-
ated on COCO and Flickr30k test sets, the authors introduced a way to compute NDCG
by computing relevance scores based on the captions of an image. However, this approach
is only possible because, in COCO and Flickr30k, each image has five associated captions.
In WISMIR, this is not the case, as one image only has one associated caption.
The aim of the user study described in the following is to let humans assess the per-

formance of a TERAN model trained on our WISMIR dataset in addition to the exact
evaluation as described in Section 6.2. Further, the study seeks to assess the suitability of
the evaluated TERAN model in a multi-modal text-image retrieval system as described,
e.g., in our language learner use case in Section 1.1.

8.2.1 Pilot Tasks

Since the main study is planned to be conducted on MTurk, a pilot study was done to
find genuine workers that understand the tool and the task well. This is a necessary and
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common step for MTurk-based studies to obtain qualitative results.

Control Questions

A worker’s task in the main study is to rank her top images according to a provided caption
text. Therefore, three control questions were designed.
In the first control question, 12 images from which 5 depict dogs, and 7 depict trains,

with the caption “The dog has been selectively bred over millennia for various behaviors,
sensory capabilities and physical attributes. Dogs are subclassified into breeds, which vary
widely in shape, size and color.” are shown to a worker (see Figure 8.2). The task then
is to rank the top-5 images related to the caption. The perfect expected result is that a
worker only ranks the 5 images depicting dogs.

Figure 8.2: Screenshot of the IRST application showing the “dog” control question of the
model evaluation pilot study. Here, a worker is expected to rank only the 5
images depicting dogs in an arbitrary order.

The second control question, shown in Figure 8.3, has the same task but is the other
way round. From the 12 provided images, 5 images depict trains, and 7 depict dogs. The
caption is: “A train is a form of rail transport consisting of a series of connected vehicles
that generally run along a railroad (or railway) track to transport passengers or cargo (also
known as f̈reightör “goods”). The word “train” comes from the Old French trahiner, derived
from the Latin trahere meaning “to pull” or “to draw”.” The perfect expected result is that
a worker only ranks the 5 images depicting trains.
The task of the third control question (see Figure 8.4) is the same as in the others, but

the 12 images depict dogs or random objects excluding trees or things related to trees. The
corresponding caption is: “In botany, a tree is a perennial plant with an elongated stem,
or trunk, supporting branches and leaves in most species. In some usages, the definition
of a tree may be narrower, including only woody plants with secondary growth, plants that
are usable as lumber or plants above a specified height.”. Here, I expected the workers to
use the “No Images Are Relevant!” button to submit an empty ranking, indicating that
none of the images is relevant to the provided caption. Unfortunately, this third control
question was not published and used in the pilot study.
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Figure 8.3: Screenshot of the IRST application showing the “train” control question of the
model evaluation pilot study. Here, a worker is expected to rank only the 5
images depicting trains in an arbitrary order.

MTurk HIT Configuration

Using IRST, the “dog” and “train” control questions were published as HITs on MTurk
with 100 Assignments each, resulting in a total of 200 HITs. To accept and work on one
of the HITs, a user needs to have at least 500 approved Assignments with an approval rate
of 80% With the reward per HIT set to 0.15$ and the MTurk fee of 20%, the total cost of
the pilot study was 36.00$.

8.2.2 Pilot Results

To identify suitable workers for the main study, four classes of results described in Table 8.1
were defined.

Class Description
A The ranking contains only the five 5 images depicting dogs or trains, depending

on the control question.
B The ranking contains all 12 images, but the top-5 images depict the dog or

trains, depending on the control question.
C The ranking contains less than 12 images, but the top-5 images depict the dog

or trains, depending on the control question.
D The ranking does not contain the 5 images depicting the dogs or trains, depend-

ing on the control question.

Table 8.1: Four defined classes for results of the model evaluation pilot study to identify
genuine workers for the main study.

From 114 unique workers, who submitted results, 86 worked on both of the tasks. Fig-
ure 8.5 shows how those 86 workers performed on the two control questions.

The large majority of workers, that is 60 workers, submitted class A results, and 4
submitted class A or B results for both of the control questions. Hence, one pilot study
run was enough, and the 64 workers were chosen for the main study.

64



8.2 Model Evaluation Study

Figure 8.4: Screenshot of the IRST application showing the “tree” control question of the
model evaluation pilot study. Here, since not a single image is related to trees,
a worker is expected to use the gray “No Images Are Relevant!” button.

Figure 8.5: Bar chart showing how many workers achieved which result classes on the two
control questions of the model evaluation pilot study. On the x-axis, the first
letter beneath each bar is the result class of the “dog” control question, and the
second letter indicates the result class of the “train” control question.

8.2.3 Main Tasks

The workers in the main study had the same task as in the pilot study, i.e., they had
to choose and rank their top-5 matching images regarding the provided caption from a
pool of 12 images. From those 12 images, 5 images are the top-5 ranked images from a
TERAN model trained on WISMIR v2 regarding the caption of the respective sample from
the test-set. The remaining 7 images are randomly selected images from the WISMIR v2
test-set. For the study, 50 samples were chosen at random and published as HITs on the
MTurk marketplace utilizing IRST in MTurk mode with the ranking study method (see
Chapter 7). For each HIT, three assignments were requested, resulting in a total number
of 150 HITs. With the reward set to 0.15$ and the MTurk fee of 20%, the study cost
27$. The 64 selected workers from the pilot study were informed that they were elected to
participate and that the HITs got published. A custom MTurk qualification requirement
was created and assigned to each of the workers so that only those, instead of all workers,
could accept and work on the HITs.
To get an impression of the tasks, 10% of the tasks are shown in Figure 8.6.

65



8 User Studies

(a)

(b)

(c)

(d)

(e)

Figure 8.6: 5 of the 50 tasks of the model evaluation main study. Note that only the images
and the captions instead of the full IRST user interface (see e.g. Figure 8.2)
are depicted. Best viewed in color and digital form with a zoom of 200% or
more.

8.2.4 Main Results

The purpose of this study was to assess the quality of text-image retrieval results of a
TERAN model trained and evaluated on WISMIR v2 by humans. Therefore, the study
results were evaluated according to different metrics.Note that in this section, only the
results are presented without further discussion. An interpretation of the results and the
outcomes of the study are elucidated in the summary Section 8.2.5.
In the following, a single ranking predicted by the model, consisting of the top-5 ranked

images and the corresponding caption text, is referred to as a sample. For each sample,
there are three assignments from three different workers.

Percentage Agreements

Since there are several ways to compute and interpret an agreement, first, it must be
defined what “agreement” means specifically. Two different meanings for the percentage
agreement between workers and the model were defined and reported below.
In the succeeding equations that formally define the different agreement measures, W is

the set of workers (|W| = 3); δ is the Kronecker-Delta; I
(w)
i,k is the k-th ranked image by

worker w in sample i; and Mi,k is the k-th ranked image by the model in sample i.
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Agreement Definition 1: First, the agreement of the top-5 ranked images of the model
and the unordered set of the top-5 ranked images of the workers is considered. This agree-
ment is defined as the proportion of workers that ranked the k-th image of the model
as any of their top-5 images. Or, in other words, the proportion of workers who agreed
that the k-th ranked image by the model is among the top-5 images according to their
corresponding captions. This concept of agreement is visualized in Figure 8.7. In Equa-

Figure 8.7: Visualization of the concept of agreement between three workers and the
TERAN for a sample i, where the ordering of the top-5 rankings of the workers
is ignored. Each image of the model’s top-5 rankings can be contained in one,
two, three, or none of the workers’ top-5 images. Hence, in total there are 3+1
levels of agreement per rank of a sample (see Equation 8.4), resulting in a total
of 15 + 1 levels of agreement per sample across all ranks (see Equation 8.5).
The additional +1 level comes from including 0.

tion 8.4, the measure is defined formally for the k-th image of sample i ranked by the
model. Equation 8.5 specifies the average of the agreement for all top-5 ranks of sample i.

agr
(1)
i (k) =

1

3

∑
w∈W

5∑
j=1

δ
(

I
(w)
i,j ,Mi,k

)
(8.4)

agr
(2)
i =

1

5

5∑
j=1

agr
(1)
i (8.5)

The resulting average agreement per rank across all samples between the TERAN model
and the workers according to Equation 8.4 is shown in Figure 8.8.

Figure 8.8: The average across all samples of the proportion of workers who agreed that
the k-th image in the model’s ranking is among the top-5 relevant images
according to their corresponding captions. This agreement is calculated based
on the definition in Equation 8.4 and illustrated by Figure 8.7.

Figure 8.9 depicts the average agreement between the model and the workers per sample
for all ranks according to Equation 8.5.
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Figure 8.9: The average agreement per sample between the TERAN model and the workers
according to Equation 8.5 and illustrated by Figure 8.7.

Agreement Definition 2: The second agreement is defined analog to the first definition,
but instead of ignoring the ordering of the workers’ top-5 images, their ordering is consid-
ered. That is, the model’s and workers’ exact rankings are compared. Hence, the agreement
on the k-th image in the model’s ranking for sample i is defined as the proportion of work-
ers that ranked the same image on place k. This concept of agreement is visualized in
Figure 8.10. This agreement is formally described by Equation 8.6. Equation 8.7 specifies

Figure 8.10: Visualization of the concept of agreement between three workers and the
TERAN for a sample i, where the ordering of the top-5 rankings of the work-
ers is taken into account. Each k-th ranked image of the model can be equal
to the k-th ranked image of one, two, three, or none of the workers. Hence,
in total there are 3 + 1 levels of agreement per rank of a sample (see Equa-
tion 8.6), resulting in a total of 15 + 1 levels of agreement per sample across
all ranks (see Equation 8.7). The additional +1 level comes from including 0.

the average of the agreement for all top-5 ranks of a sample i.

agr
(3)
i (k) =

1

3

∑
w∈W

δ
(

I
(w)
i,k ,Mi,k

)
(8.6)

agr
(4)
i =

1

5

5∑
j=1

agr
(3)
i (8.7)

Figure 8.8 shows the average agreement per rank for all samples between the TERAN
model trained on WISMIR v2 and the workers according to Equation 8.4.
The average agreement per sample for all ranks between the model and the workers

according to Equation 8.7 is depicted Figure 8.12.

Normalized Discounted Cummulative Gain Metric

To determine the NDCG (see Equation 8.3), which evaluates the model’s performance on
a single sample, the necessary relevance scores of the images are calculated based on the
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Figure 8.11: The average across all samples of the proportion of workers who agreed with
the model on the k-th ranked image. The agreement is calculated based on
the definition in Equation 8.6

and illustrated by Figure 8.10

Figure 8.12: The average agreement per sample between the TERAN model and the work-
ers according to Equation 8.7 and illustrated by Figure 8.10.

rankings of the workers. The overall performance of the TERAN model is determined by
the average NDCG across all samples of the study.
Similar to the agreement definitions between the workers and the TERAN model, mul-

tiple ways to calculate the relevance scores for an image j of sample i are by the following
formulas and get explained in Table 8.2.

rel
(1)
i,j =

{
1 if j ∈

⋂
k∈W T5k

0 otherwise
(8.8)

rel
(2)
i,j =

{
1 if j ∈

⋃
{T5k ∩ T5l | k, l ∈W ∧ k 6= l}

0 otherwise
(8.9)

rel
(3)
i,j =

{
1 if j ∈

⋃
k∈W T5k

0 otherwise
(8.10)

rel
(4)
i,j =

1

3

∑
k∈W

∑
l∈T5k

δj,l (8.11)

rel
(5)
i,j =

5 + 1−
∑

k∈W rank(i,T5k)

3

5
=

1

15

(
18−

∑
k∈W

rank(i,T5k)

)
(8.12)

where i and j are images from the model’s top-5; W is the set of workers per sample
(|W| = 3); T5k is the ordered set of the top-5 rankings of a worker k; δ is the Kronecker
Delta; and rank(i,T5k) denotes the rank or position of an image i in the top-5 rankings of
a worker k.
The binary relevance scores for an image j or sample j defined by Equation 8.10, Equa-

tion 8.9, and Equation 8.8, are illustrated in Figure 8.13.
To better understand the non-binary relevance scores for an image j of sample j defined

by Equation 8.11 and Equation 8.12, Figure 8.7 and Figure 8.10 are supportive, when only
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Abbreviation Formula Description

BinAgr3W 8.8 Binary relevance score for image j in sample i. rel(1)i,j = 1
if all three workers ranked i in their top-5.

BinAgr2W 8.9 Binary relevance score for image j in sample i. rel(2)i,j = 1
if two of the three workers ranked i in their top-5.

BinAgr1W 8.10 Binary relevance score for image j in sample i. rel(3)i,j = 1
if at least one of the three workers ranked i in their top-5.

NonBinIO 8.11 Non-binary relevance score for image j in sample i.
rel

(4)
i,j ∈ [0, 1] is the fraction of workers which ranked i

in their top-5 ignoring the ordering.
NonBinCO 8.12 Non-binary relevance score for image j in sample i.

rel
(5)
i,j ∈ [0, 1] is the normalized average rank of i in the

top-5 rankings of the workers (considering the order!).

Table 8.2: Description of different methods to compute the relevance score reli on an image
i utilized for the NDCG metrics to evaluate the text-image retrieval performance
of the TERAN model trained and evaluated on WISMIR v2.

Figure 8.13: Venn-diagram showing the set of the top-
5 rankings of the three different workers
per sample j, and where the binary rel-
evance scores for an image i (defined in
Equation 8.10, Equation 8.9, and Equa-
tion 8.8) are equal to 1.

a single rank of the model is focussed.
In addition to the relevance scores, computing the NDCG requires knowing the IDCG

or ideal DCG, which is usually the DCG of the descending sorted images according to
their respective relevance. Besides the standard definition of the IDCG, the MIDCG or
maximum IDCG is introduced in this work and defined in the following. Since the relevance
scores per image described in Table 8.2 are normalized or binary so that ∀(i, j) reli,j ∈ [0, 1],
the maximum possible IDCG is:

MIDCG@k =

k∑
i=1

max∀j relj
ld(i+ 1)

=
k∑

i=1

1

ld(i+ 1)
(8.13)

The MIDCG is the IDCG that would result if the model predicted the perfect ranking for
every sample, i.e., if all workers would always agree on every rank of every sample.
Figure 8.14 shows the mean NDCG@5 of all samples computed with different relevance

scores and standard IDCG@5 or maximum IDCG@5.

Agreement Among The Workers

There exist multiple metrics to measure the agreement among the workers, also known as
inter-rater agreement metrics. The Fleiss-Kappa metric measures the agreement between
multiple raters, where agreement due to chance is factored out. To measure the workers’
agreement with the Fleiss-Kappa metric, the study is interpreted so that the workers
judge or classify each of the top-5 ranks with an image. Table 8.15 shows the inter-rater
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Figure 8.14: The mean NDCG@5 of all samples computed with different relevance scores
(see Table 8.2) and standard IDCG@5 or maximum IDCG@5 (see Equa-
tion 8.13)

agreement of each of the top-5 ranks and additionally all ranks together according to the
Fleiss-Kappa.

Figure 8.15: Inter-rater agreement according to Fleiss-Kappa among the workers between
the top-5 ranks of each sample in the model evaluation Study.

In addition to the Fleiss-Kappa to measure the agreement among the raters per rank, the
intraclass correlation coefficient (ICC) was computed to measure the workers’ agreement
per sample. From the ten different definitions of the ICC as reported in Koo and Li 2016,
the ICC2k is of interest. This is because the raters are randomly selected, each sample is
rated by three different raters also chosen randomly, and I am interested in the absolute
agreement based on the mean of the three workers. To compute the ICC2k, a score per
sample per worker that serves as the rating of the worker for the sample was calculated as
follows:

score(i, w) = |T5m ∩ T5w| (8.14)

where i is the i-th sample, w is a worker, T5x is the set of top-5 ranked images by either
a worker w or the TERAN model m, and score(i, w) ∈ {0, 1, 2, 3, 4, 5}.

The resulting ICC2k, computed with pingouin1, is 0.43, the p-value is 0.009, and the
95% confidence interval is C95 = [0.09, 0.66]. The p-value indicates the statistical relevance
of the computed inter-rater agreement. The wide confidence interval, which indicates the
opposite, i.e., that the statistical significance is relatively low, can be explained by the
small sample size. According to Koo and Li 2016, the ICC2k of 0.43 indicate poor study
reliability and agreement among the workers. However, according to Cicchetti 1994, values
below 0.4 and values between 0.4 and 0.5 indicate fair agreement among the raters.

8.2.5 Summary

Results Discussion

Percentage Agreement By looking at Figure 8.8 and Figure 8.11, which show the average

1. https://pingouin-stats.org
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percentage agreement per rank across all samples between the workers and TERAN, it
can be observed that the average agreement drops significantly from 72.5%, when the
ordering of the model’s top-5 ranked images is ignored, to 15.3%, when the ordering is
considered. This severe decrease in the percentage agreement is also shown by Figure 8.9
and Figure 8.12, which depict the average agreement across all ranks per sample.
In Figure 8.16, Sample S39 and the workers’ results are illustrated to highlight the

resulting difference in the percentage agreement. Sample S39, serves as a good example to

Figure 8.16: Visualization of Sample S39 of the model evaluation main study and corre-
sponding ranking results from the TERAN model and the workers. At the
top, the model’s top-5 ranked images are shown, the 7 random images of the
sample are shown at the bottom. The image with the star at the top-right is
the gold label from the WISMIR test set. In the middle, the caption for which
the model retrieved the top 5 images is shown. The green border around the
top 5 images indicated that all the workers agreed on the image in any of their
top-5 ranked images. The colored plates at the bottom of the images show
how the workers ranked the respective image. If the plate has a green border,
the worker and the model chose the respective image on the same rank. If the
border is red, the worker and the model disagree on the rank of the respective
image.

show the impact of ignoring or considering the exact ordering of the model’s top-5 ranked
images when measuring the percentage agreement. When ignoring the exact ordering, the
percentage agreement score associated with this sample is 100% but drops to 6.67% when
the workers have to agree on the images’ exact ranks with the model (see Figure 8.9 and
Figure 8.12).
What can be observed from Figure 8.8 is that there is only a slight decline in the average

agreement across all samples from the rank 1 to rank 5. This finding is expected and further
indicates that the model’s top-ranked images are only marginally different.
NDCG Scores. The influence of considering or ignoring the ordering of the model’s top-

5 ranked images to evaluate the model’s performance is also reflected in the NDCG@5 scores
computed with the non-binary relevance scores from Equation 8.12 and Equation 8.11.
While the differences in the corresponding NDCG@5 based on standard IDCG@5 are not
as significant as in the percentage agreement measures, still, the consideration of ordering
causes an absolute drop by 6.3%. In the NDCG@5 scores based on the MIDCG@5 (see
Equation 8.13), however, the caused decrease of 30.9% in the scores is more significant.
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This difference can be explained by the definition of the MIDCG, which would result if the
model predicted the perfect ranks for all images of all samples according to every worker.
The NDCG@5 shown in Figure 8.14 and computed with the binary relevance scores from

Equation 8.10, Equation 8.9, or Equation 8.8 indicate a certain disagreement on the top-5
ranked images among the workers. When the binary relevance of an image is 1 if only at
least one worker has to vote for it, the NDCG@5 is close to perfect with 98.5%, and 95.9%
for standard IDCG or MIDCG utilized, respectively. If, however, all three workers’ vote
is required for the binary relevance of an image becoming 1, the respective scores drop to
64.0% and 42.8%. The inter-rater agreement is measured and explicitly reported in the
following.
Inter-Rater Agreement. One observation reflected in the reported percentage agree-

ment measures and NDCG scores is that there is only little consistency between the work-
ers’ rankings, especially when contemplating the images on the single ranks. The low
Fleiss-Kappa scores shown in Figure 8.15 as well as the reported ICC2k underline this
finding. From the inter-rater agreement scores for the single ranks, it can further be ob-
served that the highest agreement among the workers is for the third rank and not for the
first rank. This finding, again, demonstrates that the model’s top-5 images do not differ
significantly from each other.
The reported low inter-rater agreements for the single ranks and across ranks per sample

calculated with the Fleiss-Kappa and the ICC2k respectively indicate the difficulty and
the subjectiveness of finding and ranking the best matching images for a given caption.

Limitations

Assignments Per Worker From the 64 workers, 13 participated in the main study, each
of whom submitted a different number of results.

Figure 8.17: The number of workers participated in
the study and the number of results they
submitted.

As shown in Figure 8.17, the number of submitted results per worker varies a lot. This
has the (unwanted) effect that the results are biased towards the opinions of the worker who
submitted most of the results. In future studies, this should be fixed so that all workers
submit the same number of results. If a study is conducted via MTurk, guaranteeing the
same number of results per worker can only be accomplished by limiting the maximum
submissions per worker.
Challenging Task From looking at the example shown in Figure 8.16 or the task in

Figure 8.6 and the reported inter-rater agreement scores, it can be observed that finding
and ranking the best matching images according to the respective caption is challenging
even for humans. This is probably due to the averagely long and complex caption texts,
which include many named entities and information unrelated to the image’s content and
require expert knowledge to grasp their meaning entirely. Another issue is that workers
define and quantify the relatedness of an image individually, especially when comparing
the relatedness of multiple images to a caption and ranking them accordingly. For some
tasks like those shown in Figure 8.6a or Figure 8.6c, however, the top-5 matching images
ranked by the model can be relatively clearly identified due to their coherent similarity,
even though the caption text is hard to understand as a whole.
Study Design When the results of this study were collected, it was found that the

study was not optimally designed for the following reasons: First, since the model’s top-5
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ranked images for a given query are usually very alike, it is easy for the workers to identify
those between the other 7 random images only based on their inherent similarity. Second,
the workers have to rank either five or more or zero images, i.e., they could not only choose,
e.g., three images if only those were appropriate for the caption. Both reasons, especially
combined, have the effect that the workers’ top-5 are more likely to overlap with the top-5
of TERAN’s ranked images, which results in a higher agreement per sample as if it might
probably be. Further, to compare the results with the evaluation with the model computed
as the R@k scores for all the 9380 samples of the WISMIR v2 test set, the sample size of
this study is too small. It might likely be that the 50 selected samples do not represent
the test set adequately.

Conclusion

Despite the limitations of this study, it can be concluded that the model does retrieve
relevant top-5 images for a given caption text for the majority of the evaluated samples.
This conclusion, however, is only valid if the unordered set of the top-5 ranked images
by the model is considered, i.e., their exact ordering is not taken into account. Since the
model’s designated area of application is in our language learner scenario (see Section 1.1)
and in an information retrieval system in general, where the exact ordering of the top-
ranked images does not matter much, I conclude that the evaluated TERAN model is
suitable for the use case.
Further, the average percentage agreement on the top-5 ranked images across all ranks

and samples of 72.5 between the workers and the TERANmodel and the reported NDCG@5
scores are more optimistic than the Recall@K evaluation metrics reported in Section 6.2.

8.3 L2 Language Learner Data Study

The purpose of this study is to evaluate the text-image retrieval performance of state-of-
the-art multi-modal transformers on an unseen text-only language learner dataset. Further,
the study seeks to gauge how the training data of the employed TERAN models and the
image pool from which the images are retrieved affect the quality of the retrieved im-
ages concerning the relatedness to the corresponding textual samples. Since the employed
dataset is purely textual, i.e., uni-modal, only human raters can assess the quality of the
model’s predicted top-ranked images.

8.3.1 L2 Language Learner Dataset

The uni-modal textual language learner (LL) dataset was collected manually by a stu-
dent assistant and is based on InScript (Modi et al. 2016), which is a dataset containing
scripts or stories around different topics and is originally thought to “study [...] the role
of script knowledge in natural language processing”. The student assistant hand-selected
the samples according to their general depictability. That is, samples consisting of too
many abstract and, therefore hardly depictable entities or concepts, are filtered out. In
the following, two example texts are provided and statistics are reported in Figure 8.18 to
get an impression on the employed dataset:
First Example:

I decided to borrow some books from the library. I went to the library and
started looking on the shelves. There were so many good books that it was
difficult to pick out just a few, so I used the library ’s computer book search
program. Eventually I chose several modern plays, a biography, and a book
on ancient Rome. I took these books up to the librarian ’s desk and asked if
I could check them out. She said yes, I could borrow the books, but I needed

74



8.3 L2 Language Learner Data Study

to sign up for a library card. I filled out the form, and she took it. Then she
made my library card and gave it to me. With this accomplished, I was able
to check out my books. She put a card in each one with a date stamped on
it. This was the date the books were due to be returned. I promised to return
them on time and took the books home to read.

Second Example:

I travel to the local nursery to select a tree for planting, today I have decided
to purchase a flowering maple tree. I ensure the one I pick is high quality with
no rotting and looks healthy. Once in my yard I determine the best location
based on the expected height it will grow and other plants in the yard. With
my garden shovel I dig a hole at least twice the size of the roots of the tree. I
ensure rocks and are removed from the hole. I put plenty of organic matter in
the hole to ensure good growth. I gently place the tree in the hole and refill
with the shoveled dirt. I place my garden hose at the base of the tree and turn
the water to a very slow stream so it will absorb into the soil properly. I allow
the water to run for about and hour ensuring it does n’t get soggy. I step back
and admire my new tree and envision what it will look like a year from now.

Figure 8.18: Box-plot diagrams for the number of tokens and the ratio of tokens tagged
as nouns or named entities, and readability scores of the caption texts con-
tained in our language learner dataset. The data represented by the box-plots
were computed with spaCy. For the readability scores, FK stands for Flesch-
Kincaid grade level, and DC stands for Dale-Chall and were computed by two
different libraries, namely spaCy and py-readability-metrics.

From the statistics2 shown in Figure 8.18, it can be observed that the LL dataset is more
like COCO and Flickr30k. Although the average number of tokens per caption is much
higher and even exceeds WISMIR v2 (see Section 5.3), there are almost no named entities
in the LL dataset. Also, the average ratio of noun tokens in the LL dataset of 0.19 is closer
to COCO (0.33) and Flickr30k (0.31) than to WISMIR v2 (0.46) (see Section 5.3.2).
Further, the overlap of the top-1000 frequent tokens shown in Table 8.3 between the

datasets underlines the disparity of the LL dataset to WISMIR v2 and the similarity to
COCO and Flickr30k.
The resemblance of the LL dataset to COCO and Flickr30k can be considered a bias in

the data, so it is expected that the TERAN model trained on WISMIR v2 will perform
worse than the TERAN models trained on COCO and Flickr30k.

2. The reported readability scores are popular metrics to measure the difficulty of a text in terms of the
minimum U.S. grade level required to understand the text.
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WISMIR v2 Flickr30k COCO LL
WISMIR v2 100.0% 22.29% 18.93% 19.97%
Flickr30k 100.0% 64.95% 33.05%
COCO 100.0% 34.83%
LL 100.0%

Table 8.3: Overlap of the top-1000 frequent tokens of WISMIR v2, Flickr30k, COCO, and
the language learner dataset (LL) used in this study.

If this expectation is reflected in the results of this study, it indicates that the textual part
of the training data does affect the performance of the multi-modal text-image retrieval
results.

8.3.2 Pilot Study

Similar to the model evaluation user study, a pilot study was conducted to find workers
who correctly understood the task.

MTurk HIT Configuration

Using IRST, the three control questions were published as HITs on MTurk with 100 as-
signments each, resulting in a total of 300 HITs. To accept and work on one of the HITs,
a user needs to have at least 1000 approved assignments with an approval rate of 90%.
With the reward per HIT set to 0.10$ and the MTurk fee of 20%, the total cost of the pilot
study was 36.00$.

Control Questions

The data of the three control questions from the previous pilot study described in Sec-
tion 8.2.1 was re-used. Instead of using the ranking method of IRST, the control questions
were generated using the rating method. The three control questions, referred to “train-
all”, “tree-none”, and “dog-mixed” are shown in Figure 8.19, Figure 8.20, and Figure 8.21,
respectively. The “train-all” control question consists of 5 images of a train and a caption
about trains, and the workers are expected to rate all of the images high. The “tree-none”
control question consists of 5 random images unrelated to trees and a caption about trees,
and the workers are expected to rate all of the images low. The “dog-mixed” control ques-
tion consists of 3 images of dogs, 2 images of trains, and a caption only about dogs. The
workers are expected to rate the dog images high and the train images low.

Figure 8.19: Cropped screenshot of the IRST application showing the “train-all” control
question of the language learner data pilot study. Here, the workers are ex-
pected to rate all the images high.
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Figure 8.20: Cropped screenshot of the IRST application showing the “tree-none” control
question of the language learner data pilot study. Here, the workers are ex-
pected to rate all the images low.

Figure 8.21: Cropped screenshot of the IRST application showing the “dog-mixed” control
question of the model evaluation pilot study. Here, the workers are expected
to rate the dog images high and the train images low.

Pilot Study Results

To identify suitable workers for the main study, three classes of results described in Ta-
ble 8.4 were defined for each of the three control questions. For the main study, only

CQ Class Description
“train-all” A all images rated as 5
“train-all” B all images rated 4 or 4.5
“train-all” C all images rated lower than 4
“tree-none” A all images rated as 0
“tree-none” B all images rated 1 or 1.5
“tree-none” C all images rated higher than 1.5
“dog-mixed” A all dog images rated as 5 AND all train images rated as 0
“dog-mixed” B all dog images rated 4 or 4.5 AND all train images rated 1 or 0.5
“dog-mixed” C any dog image rated lower than 4 OR any train image rated 1.5

or higher

Table 8.4: Three classes of results for each of the three control questions (CQ) of the
language learner pilot study.

workers who did not submit a class ’C’ result for any of the control questions are accepted.
From 116 unique workers, who submitted results, 89 worked on both of the tasks. Fig-

ure 8.22 shows how those 89 workers performed on the three control questions. As is can be
observed, the majority of workers, i.e., 76.4%, submitted a class ’C’ result.The remaining
23.6% of the workers, who achieved exclusively class ’A’ or ’B’ results, were selected and
notified to participate in the main study.
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Figure 8.22: Bar chart showing how many workers achieved which result classes on the three
control questions described in Table 8.4. On the x-axis, the first, second, and
third letter beneath each bar represent the result classes of the “tree-none”,
“dog-mixed”, and “train-all” control-questions, respectively.

8.3.3 Main Tasks

In the main study, the workers had the same task as in the pilot study. That is, they
were shown the top-5 images retrieved by a particular TERAN model from a particular
dataset and had to rate each of the images on a zero to five-star scale. The images were
retrieved utilizing MMIRS and for texts from the language learner dataset described in
Section 8.3.1, interpreted as queries.

Sample Subsets

To measure how the training data of the employed TERAN models and the image pools,
i.e., datasets from which the models retrieve the top-k images, affect the quality of the
retrieved images, several subsets of samples were evaluated. Each subset contains 100
samples consisting of a query or caption text, and the top 5 retrieved images by a TERAN
model trained on WISMIR v2 (see Chapter 5), COCO (see Section 4.1.2), or Flickr30k
(see Section 4.1.1) training set from the pool of unique images from either WISMIR v2,
COCO, or Flickr30k.
The following naming convention applies to refer to one of the nine resulting subsets:

“TERAN <TRAIN DATASET> from <IMAGE DATASET>”. For example, “TERAN
WISMIR2 from COCO” refers to the subset of samples containing the top 5 images re-
trieved by a TERAN model trained on the WISMIR v2 training set from the pool of
unique images in the COCO dataset. To decrease the wordiness, when referring to one of
the subsets or averages across subsets, the names are abbreviated, as shown in Table 8.5.

IDS
TDS Flickr30k COCO WISMIR Any

Flickr30k TFF TCF TWF TAF
COCO TFC TCC TWC TAC
WISMIR v2 TFW TCW TWW TAW
Any TFA TCA TWA TAA

Table 8.5: Abbreviations of sample subsets and averages across sample subsets from the
language learner user study (see Section 8.3.3). The column and row specifiers
“TDS” and “IDS” refer to the training datset of the TERAN model and the
image dataset from which the considered TERAN model retrieved the images,
respectively. The columns and rows showing “Any” are averages across the
sample subsets of all the columns beside or rows beneath.
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Utilizing IRST (see Chapter 7), the study tasks were published with three assignments
per HIT, resulting in 3 ∗ 900 = 2700 HITs. With the reward per HIT set to 0.15$ and
the MTurk fee of 20%, the total cost of the study was 486$. The HITs were published in
batches, and the 21 elected workers from the pilot study were notified before every batch.
To restrict access to the HITs, a custom MTurk qualification requirement was associated
with these workers using IRST.

8.3.4 Main Task Results

In this section, the results of the main study tasks are reported. The discussion of the
results and conclusion of the study are reported in the following Section 8.3.5.
For each of the nine sample subsets introduced in Section 8.3.3, the distribution of the

rating stars and the average ratings per rank were collected. The collected data is also av-
eraged across models or datasets to assess the quality of the retrieved images, independent
of the retrieval models or datasets from which the images are retrieved.
Note, that the following figures Figure 8.23, Figure 8.24, and Figure 8.25 all are based

on the same underlying data but provide different views.

Distribution Of Rating Stars

The black-bordered subplots depicted in Figure 8.23 show the rating star distributions
across all ranks for each sample subset. Each bar chart of the black-bordered subplots
shows data collected from the 300 results of the 100 samples contained in the respective
subset indicated by the subplot title. The subplots outlined in red show the average across
models or datasets from 900 results, with the upper left subplot depicting the overall
average across all models and all datasets from all of the 2700 results.

Average Ratings Per Rank

Similarly to the plots from Figure 8.23, in Figure 8.24, the subplots outlined in black depict
the average rating of the model’s top-5 ranked images across all samples of the respective
subset indicated by the subplot title. Each of these bar charts shows data averaged from
the 300 ratings of the subset’s samples. The subplots outlined in red show the averages
across models or datasets from 900 results, with the upper left subplot containing the
overall average from all of the 2700 results.
For a direct comparison of all averages shown in the subplots of Figure 8.24, the mean

values have been plotted on a number line and are shown in Figure 8.25.

Inter-Rater Agreement

The agreement among the raters per rank and for all ranks was measured via the intraclass
correlation coefficient (ICC) across all the 2700 rating results. As with the model evaluation
study (see Section 8.2.4) and according to Koo and Li 2016, the ICC2k is of interest because:

1. the star rating data is ordinal

2. the raters are randomly selected

3. each sample is rated by three different raters also chosen randomly

4. the absolute agreement, based on the mean of the three workers, is considered

The resulting ICC2k agreement scores, together with their corresponding p-Value and 95%
confidence intervals, are reported in Table 8.6.
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Figure 8.23: Relative frequency of stars rated across all image ranks for samples of different
subsets. The sample subsets are indicated by the titles of the subplots and
are described in Table 8.5. Plots with a red frame show the average across of
the columns besides or rows below, respectively.

8.3.5 Summary

Results Discussion

Influence Of The Training Dataset And Image Dataset In the following, the pre-
viously reported results shown are discussed to evaluate how the training data of the
employed TERAN models and image pool affect the quality of the retrieved images.
Therefore, different views of the data from the sample subsets (see Table 8.5) shown in

the subplots of Figure 8.23, Figure 8.24, and Figure 8.25 are compared to each other.
From all of the mentioned figures, it can be observed that the training data and the image

pool indeed affect the quality of the retrieved top-5 ranked images. The most significant

80



8.3 L2 Language Learner Data Study

Figure 8.24: Median and mean of stars rated per image rank across all samples of different
subsets. The sample subsets are indicated by the titles of the subplots and
are described in Table 8.5. Plots with a red frame show the average across of
the columns besides or rows below, respectively.

Figure 8.25: Mean values of stars rated across all samples of different subsets and averages
of subsets. The sample subsets are indicated in the legend of this figure are
described in Table 8.5. For a more detailed view on this data, see Figure 8.24
or Figure 8.23

.

difference in average ratings across all image ranks among the evaluated subsets is between
TWW and TFC and with 0.97 almost one full rating star (see Figure 8.23). In other words,
the top-5 ranked images of the TERAN model trained on WISMIR v2 and retrieved from
the pool of WISMIR v2 images (TWW) are rated at average about one star worse than
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ICC2k p-value CI 95%
Rank 1 0.429569 1.066214e− 23 [0.36, 0.49]
Rank 2 0.405765 1.370899e− 20 [0.34, 0.47]
Rank 3 0.425319 4.180247e− 23 [0.36, 0.49]
Rank 4 0.383614 5.242521e− 18 [0.31, 0.45]
Rank 5 0.483691 2.462311e− 32 [0.42, 0.54]
Overall 0.432027 3.304165e− 112 [0.4, 0.46]

Table 8.6: Inter-rater agreement according to ICC2k with p-value and 95% confidence in-
terval reported for the overall average off all 2700 results of the study. The
agreement is reported for each of the top-5 ranked images and all for all ranks.

the top-5 images from TFC, which received an average of 3.32 stars. This finding is also
supported in Figure 8.23, where it can be noticed that the great majority of 38.21% of the
images from TWW received 0 stars. Whereas only 9.08% of the images from TFC received
0 stars, and 43.78% of the images received 4 or more stars.
From Figure 8.24 and Figure 8.25, it can be noticed that the TERAN model trained on

WISMIR v2 performed worst with an average of 2.61 and a median of 3.0 stars across all
ranks and datasets (TWA). Compared to TERAN trained on Flickr30k, which performed
best with an average of 3.13 and a median of 3.5 stars across all ranks and datasets (TFA),
this is almost 0.5 stars difference in mean and median. However, the difference between
TFA and TCA is marginal, with only 0.04 stars at average across all ranks and datasets.
The observation that the TERAN model trained on Flickr30k (TF) outperformed the
TERAN model trained on COCO (TC) is surprising because of the difference in the size
of the training sets. With approximately 160K text-image pairs in Flickr30k, the dataset
is 3.85 times smaller than the COCO with roughly 616K text-image pairs. Moreover, TC
outperforms TF by a large margin concerning R@K scores on the COCO evaluation set,
whereas TF only slightly outperforms TC on the Flickr30k evaluation (see Section 6.2).
The most suitable images for the language learner dataset come from Flickr30k and

receive an average of 3.03 stars across all models (see Figure AVG TAF). Images from
COCO (TAC) are similarly relevant, with a slight difference of 0.08 average stars compared
to TAF. These observations make sense because the stories from the language learner
dataset handle situations of everyday life. Further, as shown earlier in Figure 8.18, the
data is more akin to the captions from COCO and F30k. Therefore, it also makes sense
that WISMIR v2 images (TAW) represent the language learner dataset worst. However,
with an average of 2.82 stars received by the images, the 3.03 gap with Flickr30k images
is not too large. When looking at the median number of 3.5 stars received by the images
from the different datasets, there is no difference between the datasets.
The discussed findings are also supported by the relative frequencies of stars assigned

to the images from the different subsets shown in Figure 8.23. For all subsets, where the
TERAN model trained on WISMIR v2 retrieved images, i.e., TWF, TWC, TWW, and
TWA, most images received zero stars. For all other subsets – despite TCC – and averages
across subsets, the majority of images received 5 stars. Also interesting in Figure 8.23
is that a large proportion of images received between 3.0 and 4.0 stars, which is against
common patterns occurring in product ratings.
Inter-Rater Agreement The small p-values and the relatively narrow confidence inter-

vals underline the statistical significance of the ICC2k inter-rater agreement scores reported
in Table 8.6. According to Cicchetti 1994, values below 0.4 and values between 0.4 and
0.5 indicate fair agreement among the raters. According to Koo and Li 2016, though,
values below 0.5 are interpreted as a poor agreement among the raters. However, both
sources investigated the ICC concerning clinical studies, where, e.g., the effectiveness of
new drugs or therapies on participants is evaluated, which is essential for approval on the
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market. Hence, the inter-rater agreement is of much more importance, so the ICC values
are judged more harshly. The ICC2k scores reported in Table 8.6 are therefore consid-
ered acceptable but shine a light on the difficulties and limitations of the study, which are
discussed in the following section.

Limitations

In the following, issues and limitations about the user study are discussed.
Assignments Per Worker 66.66% of the elected workers from the pilot study par-

ticipated in the main study. As shown in Figure 8.26, the number of submitted results

Figure 8.26: The number of workers participated in the
study and the number of results they submit-
ted.

per worker varies a lot. This has the effect that the collected data is biased towards the
opinions of the three workers who submitted more than 600 results. In total, the three
workers submitted 75.67% of the results.
Long Caption Texts The average length of a caption in the LL dataset is about 200

tokens (see Figure 8.18), which is problematic for two reasons: First, the users might not
read the complete caption and could not adequately rate the images because they could
miss a part of the text visualized in the images. Second, longer texts hold more concepts
that could be visualized, which makes it hard to judge how well an image is representing
the text. This could also explain the low inter-rater agreement reported in Table 8.6.
Missing Focus Support In our language learner scenario described in Section 1.1, a

user’s reading comprehension should be supported by providing visual cues for a word or
an n-gram (focus term) she selects in a sentence or paragraph (context). However, the
data utilized in this study or the study, in general, is missing these focus terms. Hence, the
performance of the evaluated TERAN models concerning the suitability for the language
learner use case is only partially assessed with this user study.
Missing Correlation Coefficients To precisely evaluate how much the training data

of the employed TERAN models affects the quality of the top-5 retrieved images, it would
be necessary to compute a correlation coefficients, e.g., the Pearson Correlation Coefficient,
between the similarity of the textual training data to the utilized language learner data.
This, however, would require additional experiments with different subsets of the lan-

guage learner data with varying similarities to the training datasets and is therefore out of
the scope of this thesis.

Conclusion

This study showed that the training data of the evaluated TERAN models and the image
pools, from which the models retrieved images, affect the quality of the models’ top-5
ranked images considering the relatedness to texts from the utilized language learner (LL)
dataset. However, due to the lack of a correlation coefficient between the similarities of
the training datasets to the LL dataset and the average performance of the respective
models, the effect cannot be measured precisely. There are also several other factors that
influence the evaluated performance of the models by the users, which makes a quantitative
estimation of the effect of the training data hard. Nevertheless, from the study results, it
can be observed that the TERAN models trained on COCO or Flickr30k performed better
on the task than the TERAN model trained on WISMIR v2, while the performance of the
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two former models is only marginally different. This finding supports the expectation that
models trained on data more akin to the utilized language learner dataset perform better.
Moreover, it was found that the image pool from which the models retrieve the top-k

results influences the quality of the rankings. Although the Flickr30k dataset consists of
relatively few unique images (about 30K) compared to COCO (about 123K) or WISMIR
v2 (395K), the users rated the top-5 images from Flickr30k with the most stars at average
independent of the TERAN models that retrieved the images. However, the mean number
of stars is only marginally different, and the median number of stars is the same for all
datasets.
With an average of 2.94 and a median of 3.5 stars received by the top-5 images across all

employed models and datasets, the models’ performances are considered acceptable. That
is, the models and datasets are considered suitable for our language learner scenario.
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System

One goal of this master thesis is to create a system in which state-of-the-art multi-modal
transformers can be leveraged for text-image retrieval in a language learner scenario (see
Section 1.1). Therefore, MMIRS (Multi-Modal Text-Image-Retrieval System) was devel-
oped. As the name of the system suggests, the primary objective of MMIRS is to retrieve
the best matching images according to a user-provided textual query. To provide simple
access to MMIRS text-image retrieval functionality, a browser plugin that serves as the
user-interface was build (see Section 9.8). This browser plugin implements the practical
use case of our language learner scenario as described in Section 1.1.1.
The uniqueness of MMIRS, as opposed to popular text-image retrieval systems such

as Google Image Search1, is that the textual query is not only a sentence or a sequence
of words but a pair consisting of a context sequence and a focus sequence. This feature
requirement comes from the language learner scenario, where a user can select a word or
n-gram in an arbitrary text, e.g., from Wikipedia2. The n-gram the user selects is the
focus sequence of the query, and the surrounding sentence or paragraph of the focus is the
context of the query. MMIRS’s main objective is to find contextualized images that match
the focus and its context so that the images can serve as visual cues to support the users
reading comprehension (see Section 9.3).
To reach this goal, two primary obstacles need to be overcome. One of these challenges

is the performance and functionality of current multi-modal text-image retrieval models,
lies outside MMIRS’ direct responsibility. Current models are trained and evaluated on
the retrieval of images for relatively short and simple queries, and above all without incor-
porating a focus term (see Chapter 3). The second obstacle MMIRS is designed to solve is
the language learner scenario’s “real-time” constraint, which is elucidated in the following
section.

9.1 Problem Statement

In order to conceive the problem that MMIRS tries to solve, first, the general task of
text-image retrieval is explained in the following.
Formally, in MMIRS, we define a query as

Q = (c, f) (9.1)

where c is the context sentence and f ⊂ c is the focus n-gram in the context. From a very
abstract perspective, MMIRS implements a function MMIRS : Q→ I that maps Q to a
totally ordered set of images I ⊆ P from a (large) pool of images P . The set of images I
is sorted in descending order according to a similarity or distance function Φ(Q, Ik) that

1. https://images.google.com/
2. https://wikipedia.org
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measures how similar an image Ik is to a query Q, so that

I = {Ii | i ∈ [0, . . . , |P |] ∧ Φ(Q, Ii) ≥ Φ(Q, Ii+1)} (9.2)
I0 = argmax

Ik∈P
Φ(Q, Ik) (9.3)

In = argmin
Ik∈P

Φ(Q, Ik) (9.4)

In state-of-the-art multi-modal text-image retrieval models, Φ is a complex neural network
(see Chapter 3), with high computational costs to compute a single similarity score for
a text-image pair – even at inference time on a modern GPU-powered system. Hence,
finding the best matching image from a large pool of images becomes infeasible for “real-
time” applications on systems with limited hardware infrastructure.

9.2 Solution Approach

MMIRS is specially designed to overcome the obstacle defined in Section 9.1 by employing a
two-stage retrieval process. In the first stage, the Preselection Stage (PSS) (see Section 9.5),
the image pool P gets drastically reduced to a subset, referred to as Image Search Space
(ISS), so that |P | � |ISS|. The ISS contains image candidates that either match the
context c, the focus f , or both to some degree and is computed by efficient uni-modal
retrieval strategies. In the second stage, the Fine Selection Stage (FSS) (see Section 9.6),
a three-step process involving a state-of-the-art multi-modal text-image retrieval model,
sorts the images of the ISS according to the context and the focus of a query to obtain
the ordered set of images I (see Equation 9.2).
A schematic overview of this process is shown in Figure 9.1.

Figure 9.1: Schematic overview of the two-staged retrieval process of MMIRS. Note that
the image pool P is much larger than the Image Search Space (ISS), i.e, |P | �
|ISS|.

9.3 Features

In this section, the main features of MMIRS are summarized. For details, how these
features are implemented, see Section 9.4.

Focus Term Support

The input to traditional text-image retrieval methods or state-of-the-art models used for
this task is a sequence of words, e.g., a complete sentence often referred to as the query.
As mentioned in the introduction of this chapter, one unique feature of the system is the
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support of a focus n-gram as an extension to the query. In MMIRS, a query is a pair
consisting of a context and a focus (see Equation 9.1). The system retrieves the best
matching images according to the context, but paying particular attention to the focus.
To exemplify this, think of a query consisting of the context “Stingrays exhibit a wide
range of colors and patterns on their dorsal surface to help them camouflage with the sandy
bottom.” with a focus on the word “Stingrays”. MMIRS’ goal is to find images that do not
only match the context sentence but also, and essentially, the focus term. A visual example
is illustrated in Figure 9.2. In this illustration, the context of the query is shown on the

Figure 9.2: An illustration of the idea behind the support for focus terms in the query of
MMIRS.

left with the focus term “Stringrays” highlighted in red. On the right, two example results
containing three images are presented. The upper result is correct since it shows images
that match both the context and the focus term by displaying images of stingrays that
camouflage with the bottom of the sea. The bottom result is inaccurate because it contains
images that only match the context, i.e., a flounder, a snake, and a soldier camouflaging
with the background, but not the focus term “Stingrays”.

Word-Region-Alignment Matrix Generation

MMIRS can visualize the word-region-alignment matrices generated by the text-image
retrieval models and dynamically provide the generated figures via URL. The cells of a
word-region-alignment matrix express the similarity of textual tokens of the query to the
regions in the images, typically measured with cosine-similarity.
This feature is especially useful from a scientific perspective since it provides insights

into the models’ reasoning on the image retrieval process. For more information on this
component, see Section 9.7.2

Focus Region Highlighting

Based on the information in the word-region-alignment matrices generated by the multi-
modal models, MMIRS can highlight the region in an image that is most similar to the
focus of the query. With this feature, MMIRS can provide specific visual cues to support
the language learners’ reading comprehension. For more information on this component,
see Section 9.7.3

Different Retrieval Models and Datasets

There are several factors with varying degrees of influence on the resulting set of retrieved
images by MMIRS. One might think that the text-image retrieval model has the most
impact on finding the best matching images from a pool of images according to a user’s
query. Although the model plays a very prominent role in the system, the pool or dataset of
images is at least as crucial for the system’s response. MMIRS could theoretically employ
the perfect text-image retrieval model but will not find any query-relevant images if the
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pool does not contain these. Since the perfect text-image model does not exist, this logic
also applies vice versa. If a model trained on a specific dataset is used to retrieve the best
matching images from a pool with very different, it will not perform well. Therefore, in
MMIRS, different retrieval models and datasets are available. The currently supported
models and datasets are listed in Table 9.1 and Table 9.2, respectively. In the current
version, a user chooses the model and datasets but in future work, it is planned that
MMIRS automatically determines the best retrieval model and dataset from the users’
queries.

Name Type Training Datasets
TERANW2 TERAN WISMIR V2
TERANF TERAN Flickr30k
TERANC TERAN COCO

Table 9.1: Text-Image retrieval models available in the current MMIRS version. More
information about the models and datasets can be found in Chapter 3 and
Chapter 4, respectively.

Name Number of images
WISMIR V2 395872
Flickr30k 31784
COCO 123287

Table 9.2: Available image datasets in MMIRS and their number of images. More details
on the respective datasets can be found in Chapter 4.

System Configuration

In order to keep the system as flexible as possible, the system administrator can define
most of the system’s behavior in a configuration file. Also, the models and datasets are
registered via the configuration file, so that adding new models or datasets requires no
additional code (if the resources are of the default supported types).

9.4 System Overview

As mentioned in the introduction of this chapter, the multi-modal text-image retrieval
system, MMIRS, is designed to function as a “real-time” application. The system’s back-
end is entirely written in Python and builds on multiple popular frameworks, which are
mentioned in the following corresponding sections.
To provide access to the system’s functionality to other applications, REST API end-

points (see Section 9.7.4) are made available. In the current version of MMIRS, a browser
plugin for Google Chrome3 that consumes the API serves as the user interface (see Fig-
ure 9.3).
The retrieved images are provided via URL to a static image server (see Section 9.7.1),

which is also part of MMIRS.

9.4.1 Backend System

Since existing text-image retrieval models have a high computational cost to retrieve the
best matching images according to a query, MMIRS employs a two-stage retrieval process.

3. https://www.google.com/chrome/
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Figure 9.3: A simplified schematic overview of the browser plugin frontend that commu-
nicates with the backend of MMIRS via the REST API. Further the principal
data flow is indicated with arrows between the components and artifacts.

A brief overview of the backend system and the data flow between its components is
provided in the following. Architectural and algorithmic details on the single components
and their constituents are described in later sections.
As distinct from Figure 9.1, in Figure 9.4, a schematic overview of MMIRS with focus

on the PSS and FSS stages is illustrated.

Figure 9.4: More detailed schematic overview of the two-staged retrieval process of MMIRS.
Note that the image pool P is much larger than the Image Search Space (ISS),
i.e, |P | � |ISS|.

The Preselection Stage (PSS) is responsible for significantly reducing the number of
images for the multi-modal transformer model applied in the second stage. The input to
the PSS is the user’s query consisting of the context and the focus term. In addition to
the query, the dataset, referred to as Text-Image Pool (P) which the PSS filters, needs
to be specified by the user. The word “text” in Text-Image Pool might be confusing but
is actually accurate since the PSS also operates on the captions and the images of the
datasets with uni-modal and multi-modal methods.
The Preselection Stage consists of two submodules. One is responsible for finding images

related to the focus term (see Section 9.5.1), and the other is responsible for finding images
related to the context (see Section 9.5.2). The output of the PSS is an unordered set of
images called Image Search Space (ISS), which is the result of merging the set of focus-
related images and context-related images. The merging operation applied on the two sets
can either be intersection or union.
The second stage, or Fine Selection Stage (FSS), is responsible for retrieving the best

matching images from the ISS according to the user query. This is accomplished by
forwarding every image in the ISS through the text-image retrieval model selected by the
user. The result of this process is a sorted list of the images in the ISS referred to as I in
Equation 9.2.
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9.5 Preselection Stage

To create the ISS, only the most relevant images according to the focus and the context of
a user’s query are selected from P . The Focus Preselector (FPS) described in Section 9.5.1
component finds focus-relevant images, and the Context Preselector (CPS) described in
Section 9.5.2 finds context-relevant images. The resulting sets of images from the FPS
and CPS components get merged to obtain the final ISS. The two sets get merged by
intersection by default, but the union is used as a fallback if too few images are in the
intersection set.

9.5.1 Focus-based Preselection

A schematic overview of the data flow and the process to create this subset of images
relevant to the focus term of a user’s query is shown in Figure 9.5.

Figure 9.5: Schematic overview of the data flow and process of the Focus Preselector com-
ponent. This component is part of MMIRS Preselection Stage and is respon-
sible for finding a small subset of images relevant to the focus term of a user’s
query from a large pool of images.

To better understand the single steps, an example focus term is defined: “the small birds”.
The input to the component is the surface form of the focus term. In the first step, the
focus term gets preprocessed. By default, this preprocessing consists of tokenization, stop-
word filtering, POS tag filtering, and finally, lemmatization. For this, the spaCy (Honnibal
et al. 2020) framework is used with the language model “en_core_web_lg”. After prepro-
cessing the example focus, the output would be the list of lemmata “small” and “bird”. To
understand the following steps, the concept of “visually-weighted tf-idf” (VW-TF-IDF),
which was developed within this master thesis, needs to be introduced.

Visually-Weighted TF-IDF (VW-TF-IDF)

The core of this idea is the well-known “tf-idf” score, a term weighting scheme that mea-
sures the importance of a term in a corpus of documents. Traditionally these documents
are sentences, paragraphs, articles, or any other text. In this novel approach, referred to
as VW-TF-IDF, this concept is applied to images, i.e., the images are interpreted as doc-
uments. The content of the image documents are the detected object labels, or, in other
words, the output of an object detection and classification network. For this, a pre-trained
Faster-R-CNN with ResNet-101 model (Anderson et al. 2018; Z. Yu et al. 2020) is utilized.
The convolutional neural network is effective and very efficient in detecting prominent re-
gions in an image in a bottom-up fashion. Additionally, the network classifies the detected
regions by assigning object and attribute labels from a fixed-sized vocabulary, which is
referred to as “visual vocabulary” in the following. The visual vocabulary used in this work
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contains 1200 object labels and 400 attribute labels, which slightly overlap, resulting in
about 1400 unique terms.
As an example, two different images where regions and their labels generated by the

Faster-R-CNN are highlighted are depicted in Figure 9.6 and Figure 9.7.

Figure 9.6: Detected and classified regions in an image showing buildings of a city from
above, generated by the object detection and classification model Faster-R-
CNN. The detected region of interests are surrounded by red borders with
their respective classification labels shown in blue boxes in the top-left corner.
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Figure 9.7: Detected and classified regions in an image showing basketball players, gen-
erated by the object detection and classification model Faster-R-CNN. The
detected region of interests are surrounded by red borders with their respective
classification labels shown in blue boxes in the top-left corner.

To compute the VW-TF-IDF score of a term and a document, i.e., of an object or
attribute label and an image, the classical formula of tf-idf is extended by an additional
weighting scheme. The motivation for this is that the score should be higher if the region
with the respective label is prominent in the image, and the classification network was
confident. Hence, the confidence scores of the classifications and the areas of the detected
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regions are incorporated in addition to the counts of the terms from the traditional tf-idf
formula.
Formally, the VW-TF-IDF of a term t and an image document d is defined as

vw_tf_idf(t, d) = vw_tf(t, d) · log

(
numdocs

df(t) + 1

)
(9.5)

where the logarithmic term is standard inverse document frequency (IDF) with simple
additive Laplace-Smoothing for numerical stability.
The visually weighted term frequency (VW-TF) is defined as

vw_tf(t, d) =
cnt(t, d) · weight(t, d)

num_terms(d)
(9.6)

where cnt(t, d) is the number of times term t appears in document d and num_terms(d)
is the total number of terms in the document.
The weight of the term t in d is defined as

weight(t, d) = α conf(t, d) + (1− α) area(t, d) (9.7)

conf(t, d) =
1

cnt(t, d)

∑
t(i)∈t

t
(i)
conf (9.8)

area(t, d) =
1

darea

∑
t(i)∈t

t(i)area (9.9)

where t(i)conf is the confidence score and t
(i)
area is the area of the region of term t(i) ∈ d,

and darea is the area of the image document d. The parameter α is used to control the
importance of the confidence or area of a term in the final weight of t.
Note that a term t with label l can occur multiple times in different regions with different

confidence scores in a document d. Hence, a term t is the set of all terms with label l and
is also identified by l.
There are two additional hyper-parameters, which are not reflected in the preceding

formulas but are essential for computing meaningful scores. Both are threshold parameters
that decide if a detected object or attribute in the image should be accounted for in the
score or not. Objects or attributes classified with a confidence score below the respective
threshold are ignored when computing the score defined in Equation 9.8 and Equation 9.9.

Now that VW-TF-IDF was introduced, the successive steps of the Focus Preselector com-
ponent follow.
Since there are no constraints on the text, a query, and therefore also the focus, the

set of possible focus terms is infinite. The set of different labels, i.e., the size of the
visual vocabulary, is finite, with about 1400 distinctive terms. Hence, the probability for
a focus terms to be out-of-visual-vocabulary is high. To overcome this issue, the top-
k similar in-visual-vocabulary (IVV) tokens for each out-of-visual-vocabulary (OOVV)
token in the output of the preprocessing step are computed. Cosine similarities between
the OOVV token embeddings and all IVV token embeddings are computed to find these
similar tokens. Since this would usually require a lot of computational power, the high-
performance universal vector embedding library Magnitude (Patel et al. 2018) is utilized.
Magnitude enables extremely fast and efficient similarity computation with dense vectors
by using a sophisticated combination between the data format of precomputed embeddings
and caching strategy. The framework supports several popular vector embeddings out-of-
the-box, from which fastText (Bojanowski et al. 2017) embeddings were chosen. The reason
for this decision is that fastText embeddings are subword embeddings, i.e., word or token
embeddings are represented by the sum of multiple character n-gram embeddings. This
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strategy makes fastText embeddings very stable against out-of-vocabulary issues since rare
words, that the language model did not see during training are broken up into common
character n-grams.
To retrieve the top-k related images for a given focus term, the VW-TF-IDF scores are

computed and summed for each similar focus term and each image in the image pool. The
resulting list of scores is sorted in descending order so that the top-k focus-relevant image
documents are the first k elements of the list.

In order to meet the “real-time” requirements of the application, a precomputation and
indexing step is mandatory. Before MMIRS runtime, the VW-TF-IDF scores for each term
in each image document of a pool of images are precomputed and persisted in an efficient
and accessible data format. For this, pandas4 DataFrames are used since they support
high-performance (multi-level-)indexing and aggregation functionality as well as efficient
persistence formats.

9.5.2 Context-based Preselection

The input to this component is the context of a query, and a ranked list of context-related
images is the output. A schematic overview of the component is depicted in Figure 9.8.

Figure 9.8: Schematic overview of the data flow and process of the Context Preselector
component. This component is part of MMIRS Preselection Stage and is re-
sponsible for finding a small subset of images relevant to the context part of a
user’s query from a large pool of images.

Briefly summarized, the ranked list of context-related images is found by computing the
best matching captions for the query via cosine similarity from a large pool of text-image
pairs. In the first step, a sentence embedding of the context’s surface form gets computed.
Before continuing with the next steps, the concept of sentence embeddings is explained
briefly in the following subsection.

Sentence Embeddings

In MMIRS, sentence embeddings are computed with pretrained SentenceTransformer mod-
els from the SentenceTransformers (Reimers and Gurevych 2019) framework, which are spe-
cially designed for computational efficiency and information retrieval tasks. These kinds
of models compute fixed-sized embeddings for sentences with various lengths, which are
suitable for tasks like semantic textual similarity (STS), automatic text summarization
(ATS), or question-answering (QA). Several strategies and architectures exist to compute
these fixed-sized sentence embeddings.

4. https://pandas.pydata.org/
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The pretrained models of the SentenceTransformers framework use a similar approach
like TERAN (see Section 3.3) and employ two separated stacks of traditional textual
transformers like BERT (Devlin et al. 2019) or RoBERTa (Liu et al. 2019). Two input
sentences are forwarded through the separate transformers to calculate the corresponding
token embeddings. After that, a pooling strategy on the output tokens is applied to project
the output embeddings in the same n-dimensional vector space. SentenceTransformer
models use mean-pooling per default, where the average of the output token embeddings is
derived. Depending on the task, different objective functions are used to train the model in
an end-to-end fashion. To compute a single sentence embedding from the context of a user’s
query, the context gets forwarded through one of the two stacks of the SentenceTransformer
model. The framework has published multiple models, which perform differently depending
on the specific task. What has a significant impact on the models’ performance, is the
lengths of the two sentences used during training. For example, in the question-answering
task, the two input sentences consist of a question and a paragraph containing the answer.
Or, in automatic text summarization, the input consists of a summary sentence and the
text to be summarized. In both example tasks, the similarity between the two inputs needs
to be computed and compared, but the two sentence lengths usually are very different. This
scenario is called asymmetric, and the scenario where the two input sentences have about
the same length, e.g., in STS, is called symmetric. The Context Preselector component
finds the most similar captions of the context of a user’s query. Because MMIRS is designed
to support multiple datasets like Flickr30k or WISMIR (see Chapter 4), where the average
caption length is different, and the query context length can also be very different, one
symmetric and one asymmetric model is employed. In the current version of MMIRS, the
symmetric embeddings are chosen per default. In later versions, MMIRS should decide
this dynamically, depending on the dataset chosen by the user.
Symmetric and asymmetric embeddings of all supported datasets are precomputed and

persisted before MMIRS runtime. When MMIRS is booting, all embeddings are loaded
into memory to meet the ”real-time” requirements.

Now that the concept of sentence embeddings and models to produce these embeddings has
been explained, the steps of the Context Preselector component are described in the follow-
ing. If the input context length is different from the average caption length of the chosen
dataset (see Section 9.4.1), asymmetric models and asymmetric embeddings are chosen,
and symmetric models and symmetric embeddings otherwise. Per default, “paraphrase-
distilroberta-base-v1”5 as the symmetric and “msmarco-distilbert-base-v2”5 as the asym-
metric model are chosen. In the following (and also Figure 9.8), this decision is not eluci-
dated or highlighted anymore but thought to be implicit.
The first step of the Context Preselector component is to compute the embedding of

the context of a user’s query. After that, the resulting context embedding is compared
against the embeddings of the captions of the chosen dataset to find the most similar
captions. Because MMIRS is designed to support different datasets with a different number
of elements (see Section 9.3), retrieving the top similar captions can be computationally
intensive. Therefore, in the system two strategies, namely, exact retrieval or approximate
retrieval, are implemented to compute the best matching captions. In the current version
of MMIRS, approximate retrieval is the default, but a user can also select the strategy she
wants to use for a request.
With the exact retrieval strategy, the best matching captions are found by computing the

cosine similarity between the context embedding and all embeddings of the captions of the
dataset. This is done with optimized methods from the SentenceTransformers framework,
but finding the best matching captions can take long for large datasets even with these
methods.

5. https://www.sbert.net/docs/pretrained_models.html
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For the approximate retrieval strategy, FAISS (Johnson et al. 2019), a popular library for
high-performance similarity search and dense vector clustering is utilized. Despite several
sophisticated methods to perform approximate similarity search on clusters of embedding
vectors, an Approximate Nearest Neighbor (ANN) strategy on Voronoi Cell (VC) clusters
of all sentence embeddings was chosen. Instead of naively searching through the clusters,
an inverted file index is created by FAISS to drastically increase the similarity search
efficiency6. FAISS also provides convenient methods to create and persist these indices for
the sentence embeddings created with the SentenceTransformer models, which is done for
every supported dataset before MMIRS runtime.
The approximate approach with FAISS is much faster than the exact retrieval strategy

with SentenceTransformers at the cost of an eventual accuracy loss. That is, the list of
retrieved context-relevant captions can be (slightly) different. Since the Context Preselector
is only a preprocessing step in the overall retrieval process of MMIRS, this trade-off between
accuracy and computational efficiency is deliberately accepted.
In the final step of the component, the ranked list of context-relevant captions gets

mapped back to their corresponding images to obtain the ranked list of context-related
images, i.e., the output of the Context Preselector.

9.6 Fine Selection Stage

In the Fineselection Stage (FSS), the primary multi-modal image retrieval happens. To the
best of my knowledge, no current model or system used for text-image retrieval supports
queries consisting of a context and a focus term. To support such two-fold queries in
MMIRS anyway, the FSS retrieves the top-k images for a given query in three steps,
described in the following.

9.6.1 Step 1 – Context-based Ranking

In the first step, the preselected set of images from the Preselection Stage together with
the context of the query are forwarded through a state-of-the-art multi-modal transformer
model to obtain context-based text-image similarity scores. The TERAN models employed
in MMIRS compute this global text-image similarity score by aggregating a generated word-
region-alignment matrix, in which cells are representing the similarity of a textual token
to a visual region (see Section 3.3.1). The global similarities of each image to the context
are computed, so that every image i ∈ ISS has an associated “context-score”, referred to
as s(c)i . Further, the models were modified so that the raw WRA matrices of the images
and the captions are returned in addition to the global similarity scores. For the following
steps, the information contained in the WRA matrices, i.e., the fine-grained word-region
similarities and the position of the focus in the context, is necessary.

9.6.2 Step 2 – Focus-based Ranking

In the second step, a “focus-score”, s(f)i is computed for every image i ∈ ISS by pooling the
WRA matrices of the images and the context generated by the multi-modal model in the
first step. There are two pooling strategies, defined by Equation 9.10 and Equation 9.11,
to determine the “focus-score”.

score(f ;A) =
1

N ∗ (fe − fs + 1)

N∑
i=0

fe∑
j=fs

Aij (9.10)

6. https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
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score(f ;A) = max
0≤i<N

1

fe − fs + 1

fe∑
j=fs

Aij (9.11)

where N is the number of regions per image (following previous work of Anderson et
al. 2018; Nicola et al. 2020, this is fixed to 36); fs and fe are the starting and ending
indices of the focus in the context, respectively; and A ∈ RN × R|c| is the word-region-
alignment matrix of an image i ∈ ISS and the context c of the query (see Section 3.3.1).
Equation 9.10 and Equation 9.11 are referred to as “average-pooling” and “max-average-
pooling”, respectively.

9.6.3 Step 3 – Re-ranking

In the third and final step, first, to combine the “context-score”, s(c)i , and the “focus-score”,
s
(f)
i , the scores need to be normalized so that they are in the same range and on the same
scale. To scale the scores, sklearn’s MinMaxScaler7 feature transformation is utilized,
which distributes the scores so that the minimum score is mapped to 0 and the maximum
score is mapped to 1. After scaling, the “context-scores” and the “focus-scores” of every
image i ∈ ISS are combined with a simple weighted average as defined in Equation 9.12.

s
(q)
i = α · s(c)i + (1− α) · s(f)i (9.12)

where α ∈ [0, 1] is the weight for the weighted average; s(c)i and s(f)i is the scaled “context-
score” and the “focus-score”, respectively; and s(q)i is the final score of image i with respect
to the query q. To obtain the final ranks, the ISS is sorted in descending order according
to the final scores of the images. The top-k matching images according to a user’s query
q are the first k elements of the sorted ISS.

9.7 MMIRS – Auxiliary Components

In this section auxiliary components, that are not involved with the text-image retrieval
process itself but are required to leverage MMIRS in an actual application like the browser
plugin (see Section 9.8) are described.

9.7.1 Static Image Server

This component is responsible for serving retrieved and generated images via URL. There-
fore, Python’s built-in “http.server” module8 is utilized.
Serving images from multiple datasets and dynamically generated images like WRA

matrix plots (see Section 9.7.2) or images, with the maximum focus region highlighted (see
Section 9.7.3), requires a different strategy than the default, i.e., statically storing all image
files in or under the same root directory. Thus, the image server component dynamically
creates hard links of the respective image files in the HTTP server’s root directory when
they need to be served to a user via the API. This has the advantage that the images of the
available datasets, as well as the dynamically generated images, can be stored in different
directories and that no additional space – besides the size of the Inodes – is occupied on the
disk as opposed to copying the files. Further, creating hard links is faster than copying files,
and the root directory of the image server can be cleared in regular intervals to prevent
a cluttered directory. Note that symbolic links cannot be used since HTTP servers, in
general, cannot traverse outside the specified root directory due to security reasons.

7. https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
8. https://docs.python.org/3.7/library/http.server.html
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9.7.2 WRA Matrix Plotter

The objective of this component is to dynamically generate plots of word-region-alignment
matrices for an image and the context of a query. The necessary information, i.e., the WRA
matrices themselves, the mapping from the textual token embeddings to their readable
form, and the span of the focus in the context, is generated and collected from a multi-
modal model employed in the Fineselection Stage. The Python library matplotlib9 is
utilized to generate a WRA matrix plot and persist the resulting figure on disk. After
that, the component registers it at the static image server component to make it available
via URL.
To meet the “real-time” constraints of MMIRS, the component generates and registers

requested WRA plots for multiple images in parallel.
An example of a WRA plot is shown in Figure 9.9.

Figure 9.9: An example word-region-alignment (WRA) plot generated by the WRA Ma-
trix Plotter auxiliary component of MMIRS. The highlighted cell indicates the
region with the highest signal to the focus, which was “sheep” in this example
query. The context of the query was “My friend lives on a farm with his family
and some sheep and goose”. Note that the figure is rotated by 90 degrees.

9.7.3 Focus Region Highlighter

As the name suggests, this component highlights the region with the highest similarity to
the focus in an image. Similar to the WRA Matrix Plotter component, the WRA matrix
of an image and a context, the span of the focus in the context, and the mapping from the
textual token embeddings to their readable form are required and obtained from a multi-
modal model employed in the FSS. Additionally, the original image and the bounding boxes
corresponding to the visual region embeddings are necessary and loaded into memory from
specified locations on the disk.
The component combines all this information to annotate the target regions in the images

with a red border and the readable form of the textual tokens. The annotated images are
persisted on disk and registered at the image server component to make them available via
URL. For multiple images, this is done in parallel to meet the “real-time” requirements of
MMIRS.

9. https://matplotlib.org/
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An example of a resulting image with the maximum focus region highlighted is shown
in Figure 9.10.

Figure 9.10: An example image with the maximum focus region highlighted, which was
generated by the Focus Region Highlighter auxiliary component of MMIRS.
The context of this example query was “An octopus can adapt to a large variety
of colors and patterns to camouflage on the sandy bottom.”, and the focus was
“octopus”.

9.7.4 REST API

The REST API realized with the Python libraries FastAPI10 and pydantic11 provides
access to MMIRS text-image retrieval functionalities via different endpoints, described in
the following tables.

9.8 User Interface

A simple browser plugin for Google Chrome called “Golden Retriever” was developed to pro-
vide access for users to MMIRS text-image retrieval functionalities. Basically, the “Golden
Retriever” serves as a user-friendly client to consume MMIRS’ API (see Section 9.7.4),
and implements the practical use-case of the language learner scenario as described in
Section 1.1.1. Once installed, the plugin can be opened by clicking on the respective icon
(showing a golden dog) in the browser’s extensions bar. With the right-most button on the
bottom area of the user interface shown in the following figures, the plugin can be opened
in a new tab for convenience.
When the plugin is opened, it provides a straightforward interface shown in Figure 9.11a

to retrieve the most similar images for a context and a focus, i.e., a query, for non-technical

10. https://fastapi.tiangolo.com/
11. https://pydantic-docs.helpmanual.io/
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Method Endpoint Parameters Description
POST /top_k_images see Table 9.4 Fully multi-modal text-image re-

trieval based on context and focus
via PSS and FSS (see Section 9.2).

POST /pss/top_k_context see Table 9.5 Context-only image retrieval via PSS
(see Section 9.5.2)

POST /pss/top_k_focus see Table 9.6 Focus-only image retrieval via PSS
(see Section 9.5.1)

GET /available_datasets none Returns the available datasets
GET /available_retrievers none Returns the available retrieval mod-

els for the FSS

Table 9.3: Overview of the REST API endpoints to access MMIRS text-image retrieval
functionalities.

(a) Simple UI of the Golden Retriever browser
plugin.

(b) Advanced UI of the Golden Retriever
browser plugin.

(c) Advanced UI of the Golden Retriever
browser plugin to trigger a context-based
text-image retrieval (see Section 9.5.2).

(d) Advanced UI of the Golden Retriever
browser plugin to trigger a focus-based text-
image retrieval (see Section 9.5.1).

Figure 9.11: Different views of the Golden Retriever browser plugin, that serves as the user
interface of MMIRS.

users like language learners. With the right-most button on the bottom area of the user
interface, the plugin can be opened in a new tab for convenience.
For research purpose or advanced users, the plugin also offers an interface shown in Fig-

ure 9.11b with advanced options which can be shown or hidden via the respective button.
The available options and parameters of this advanced UI are described in Table 9.4.
To retrieve images solely by a context text via the Preselection Stage (PSS) of MMIRS,

the user choose it via the dropdown described as “Retrieval Method”. The interface then
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Name Type Description
context string Context part of a query
focus string Focus part of the query, which has to be a

substring of the context
top_k int Number of images returned by MMIRS. This

parameter is optional with 10 as default
value.

retriever string Name of the multi-modal model that will be
used to retrieve the top-k images

dataset string Name of the dataset in which MMIRS will
search for the top-k images

focus_weight float The weight of the focus when computing the
combined ranks. The context is not taken
into account if the value is 1.0, and the fo-
cus is not taken into account if the value is
0.0 (see Section 9.6.3). This parameter is op-
tional with 0.5 as default value.

annotate_max_focus_region boolean If true, MMIRS annotates the regions in the
top-k images, with the highest similarity to
the focus (see Section 9.7.3). This parameter
is optional with “False” as default value.

return_wra_matrices boolean If true, MMIRS returns the WRA matri-
ces for each of the top-k images (see Sec-
tion 9.7.2). This parameter is optional with
“False” as default value.

return_scores boolean If true, MMIRS returns the similarity scores
for each of the top-k images. This parameter
is optional with “False” as default value.

Table 9.4: Parameters of the REST API endpoint for full multi-modal text-image retrieval
with MMIRS utilizing the PSS and the FSS (see Section 9.2).

updates to the one depicted in Figure 9.11c, and the now available parameters are described
in Table 9.5.
Similarly, if a user wants to retrieve images only by focus term(s) via the PSS of MMIRS,

she can choose to do so via the respective dropdown. The interface updates as shown in
Figure 9.11d and the available parameters are described in Table 9.6.
Once the images are retrieved, they are presented to the user in an interactive slide show

component, as shown in Figure 9.12.
By clicking on an image, the image in full resolution is opened in a new tab. This is

especially useful for large WRA matrix plots, as they appear small due to their large width
for long context sentences (see Figure 9.12b).
Returned results are stored until the user clicks the “Fetch again” button on the bottom

area, shown in Figure 9.12.

9.9 System Analysis

Since a comprehensive system evaluation, e.g., via a user study similar to the ones described
in Chapter 8, is out of the scope of this thesis, the following analysis is only done by myself.
Following interpretations and assessments of results are therefore subjective and do not
claim completeness or objectivity.
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Name Type Description
context string The context for which the PSS searches the top-k similar images
top_k int Number of images returned by MMIRS. This parameter is optional

with 10 as default value.
dataset string Name of the dataset in which the PSS will search for the images
exact boolean If true, the top-k similar captions are to the context are computed

exactly as opposed to an approximate search (see Section 9.5.2).
This parameter is optional with “False” as default value.

Table 9.5: Parameters of the REST API endpoint for context-based text-image retrieval
with MMIRS’s Preselection Stage (PSS). For more information see Section 9.5.2

.

9.9.1 “Real-Time” Capability

In the following, timings of MMIRS and its sub-components are reported to assess the
system’s suitability in a “real-time” application. Note that “real-time” in the context of
MMIRS is always in parentheses because it must not be confused with “true” real-time
systems as defined in the context of robotics or real-time operating systems like RTOS12.
Unlike these real-time systems, which must guarantee a system response in a precisely
defined time, MMIRS “real-time” requirements are not exactly specified but are merely
subjective constraints by the means that users should not have to wait too long for a
response of the system.
Multiple factors have varying influence MMIRS multi-modal text-image retrieval re-

sponse time. To find how much these factors weigh, the “real-time” assessment test of
MMIRS reported in this section was conducted as follows: The system’s multi-modal
text-image query API endpoint (see Table 9.7.4) was consumed with different parameter
combinations. Each of three queries (see Table 9.7) parameters was combined with four
different modes (see Table 9.8) for the COCO, Flickr30k, and WISMIR v2 datasets and
TERAN models. This results in a set of 3 ∗ 4 ∗ 3 = 36 different parameter combinations,
for which the average system response time over 10 consecutive was measured. For the
measurements, an MMIRS internal fine-grained timing component was utilized so that the
latency depending on the users’ bandwidth is not taken into account. As it can be ob-
served from the results presented in Figure 9.13 and Figure 9.14, the length of the context
part of the query and the generation of WRA matrix plots affect the system’s response time
the most. This is an expected result since the similarity of an image is based on pooling
the WRA matrix, representing the fine-grained similarity of each textual and visual token.
Hence, the longer the context, the larger the WRA matrix and the more time the retrieval
model takes to generate and pool the matrix. This logic also applies to the generation of
the WRA matrix plots by the respective component (see Section 9.7.2), which is also part
of the FSS. Highlighting the maximum focus region (see Section 9.7.3), however, only has
a marginal impact on the system’s overall response time.
Further, the effect of the PSS can be noticed: The larger the dataset is, from which

MMIRS retrieves the top-k images, the longer the PSS takes, whereas the average response
time of the FSS remains almost across different datasets. Flickr30k has about 31K, COCO
about 123K, and WISMIR v2 about 395K images, and the corresponding average PSS
response times are 0.09s, 0.27s, and 0.52s, respectively. This increase of time of the PSS
is almost linearly proportional to the number of unique images in datasets. These results
also highlight the effectiveness of the two-stage retrieval approach of MMIRS as introduced
in Section 9.2.
As mentioned in the introduction of this section, the interpretation of the resulting

12. https://www.freertos.org
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Name Type Description
focus string The focus term(s) for which the PSS searches the

top-k similar images
top_k int Number of images returned by MMIRS. This param-

eter is optional with 10 as default value.
dataset string Name of the dataset in which the PSS will search for

the images
top_k_similar_terms int Number of similar terms searched and taken into ac-

count for each term in the focus (see Section 9.5.1).
This parameter is optional with 10 as default value.

max_similar_terms int Maximum number of similar taken into account for
all terms in the focus (see Section 9.5.1). This pa-
rameter is optional with 25 as default value.

weight_by_sim boolean If true, the retrieved images per similar term are re-
ranked based on the similarity to the respective focus
term (see Section 9.5.1). This parameter is optional
with “false” as default value.

return_similar_terms boolean If true, MMIRS returns the list of similar terms
found and taken into account for the retrieval. This
parameter is optional with “false” as default value.

Table 9.6: Parameters of the REST API endpoint for focus-based text-image retrieval with
MMIRS’s Preselection Stage (PSS). For more information see Section 9.5.1

.

system response times is subjective due to the lack of an objective evaluation like a user
study and the lack of a widely accepted definition of acceptable response times. However,
there exists a loose definition of “near-real-time” systems, according to which there must
not be “significant delays”13. As stated in the corresponding Wikipedia article, this “delay
in near real-time is typically in a range of 1-10 seconds”14. As depicted in Figure 9.14, the
overall average system response time across all datasets, queries, and modes evaluated in
this “real-time” suitability test of MMIRS is 2.10s. Hence, in conclusion, it is considered
as an acceptable result.

13. https://www.its.bldrdoc.gov/fs-1037/dir-024/_3492.htm – visited on 06.07.2021
14. https://en.wikipedia.org/wiki/Real-time_computing#Near_real-time – visited on 06.07.2021
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(a) View of the Golden Retriever UI showing an
example of a retrieved image via multi-modal
text-image retrieval with MMIRS. The focus
part (“goose”) of the query highlighted in the
image.

(b) View of the Golden Retriever UI showing an
example WRA matrix of a retrieved image
and a long context, generated by MMIRS
during a multi-modal text-image retrieval.

(c) View of the Golden Retriever UI showing an
example of a retrieved image via context-
based text-image retrieval with the PSS of
MMIRS (see Section 9.5.2). By clicking on
the generated image, a high-resolution ver-
sion opens in a new tab.

(d) View of the Golden Retriever UI showing an
example of a retrieved image via focus-based
text-image retrieval with the PSS of MMIRS
(see Section 9.5.1). The similar terms to the
focus “sheep”, found by the PSS, are shown
beneath the image.

Figure 9.12: Different views of example text-image retrieval results in the Golden Retriever
browser plugin, the user interface of MMIRS.
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Query Chars Focus Context
Q1 827 spoons I decided I really wanted to bake a cake so I hopped

into the car and drove to the grocery store. I bought
flour, sugar, eggs, and some cocoa. All the other ingre-
dients I had at home already. Once I got home I got out
my big mixing bowl and measuring cups and spoons. I
pre-heated the oven to 400 degrees and started pouring
ingredients into the mixing bowl. After all the ingredi-
ents were mixed, I greased a cake pan and poured in the
batter. I put the pan in the oven and started mixing the
ingredients for the frosting in a new bowl. After baking
for a while, I took the cake out and stuck in a toothpick
to make sure the center was done. I let the cake cool for
a bit and then put the frosting on it. After frosting went
on, I cut it into pieces and put one on a plate for myself
and another for my friend.

Q2 124 Stingrays Stingrays exhibit a wide range of colors and patterns on
their dorsal surface to help them camouflage with the
sandy bottom.

Q3 67 goose My friend lives on a farm with his family and some sheep
and goose.

Table 9.7: Different queries used during the “real-time” assessment tests of MMIRS de-
scribed in Section 9.9.1.

Mode Generate WRA Matrix Plots Annotate Max. Focus Regions
W0F0 False False
W0F1 False True
W1F0 True False
W1F1 True True

Table 9.8: Different text-image retrieval modes used during the “real-time” assessment tests
of MMIRS described in Section 9.9.1. For more information about the genera-
tion of WRA matrix plots or the annotation of the maximum focus region, see
Section 9.7.2 and Section 9.7.3, respectively.
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(a) Averaged timing measurements of MMIRS’ system response time on the COCO dataset.

(b) Averaged timing measurements of MMIRS’ system response time on the Flickr30k dataset.

(c) Averaged timing measurements of MMIRS’ system response time on the WISMIR v2 dataset.

Figure 9.13: Averaged timing measurements of MMIRS’ system response time for multiple
queries (Q1, Q2, Q3) and modes (W0F0, W0F1, W1F0, W1F1) on differ-
ent datasets utilizing TERAN models. The queries and modes are described
in Table 9.7 and Table 9.8, respectively. Each bar represents the total sys-
tem response time, which comprises the response times of the Preselection
Stage (PSS) in green, the Fineselection Stage (FSS) in orange, and additional
overhead from subcomponents like the static image server in blue.

Figure 9.14: Averaged timing measurements of MMIRS’ system response time for multiple
queries Q1, Q2, and Q3 (see Table 9.7) on different datasets. Each bar rep-
resents the total system response time, which comprises the response times
of the Preselection Stage (PSS) in green, the Fineselection Stage (FSS) in
orange, and additive overhead in blue.
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In this thesis, the four research questions regarding the general applicability of current
multi-modal methods for text-image retrieval within the scope of a language learner sce-
nario to improve human reading were examined. In the following, first comes the general
conclusion and afterwards the research questions of this thesis are answered with their
solution approaches summarized.

10.1 General Conclusion

This thesis investigated multiple important steps towards leveraging state-of-the-art multi-
modal text-image retrieval methods to improve human reading within a language learner
scenario.
A new dataset based on “in the wild” Wikipedia data was collected to evaluate the

performance of current text-image retrieval models with long and complex textual queries.
Multiple experiments showed that the models perform poorly on this dataset compared to
how they perform in the task when using only short and simple queries.
Nevertheless, two user studies found that the investigated models are still generally ca-

pable of retrieving relevant images for textual queries as it is required in the scenario.
However, there is still much space for improvement considering the performance and com-
putational efficiency of these models.
Further, a technique was devised to incorporate textual queries, which comprise a context

sentence and a focus term contained therein, for text-image retrieval methods, as required
by the language learner scenario. For the final usage in the scenario, the algorithm’s
parameters yet are to be optimized and thoroughly tested.
Finally, a “real-time” capable multi-modal text-image retrieval system powered by the

investigated state-of-the-art multi-modal transformer model was developed. This system
can handle arbitrary textual queries comprised of a context and a focus term. With the
system’s user interface, which is realized through a browser plugin, a first proof-of-concept
solution for the practical use-case of the language learner scenario is presented. However,
the system still has to be evaluated to assess the suitability for a real-world language
learner scenario, especially whether it can be leveraged to effectively improve the language
learners’ reading comprehension.
To conclude, this work answered and solved initial research questions and engineering

challenges towards leveraging current multi-modal text-image retrieval methods for the
practical use-case of our language learner scenario. However, effectively improving human
reading within a real-world language learner scenario is a comprehensive and challenging
task, which requires much future work as suggested in Section 10.6.

10.2 Research Question 1 (RQ1)

To answer the first research question (RQ1), “How do state-of-the-art multi-modal trans-
formers perform in text-image retrieval with complex and lengthy textual queries?” mul-
tiple steps were required.
First, available multi-modal transformers employed for text-image retrieval were inves-

tigated and compared with respect to the suitability for our language learner scenario.
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Here, the performance in terms of evaluation metrics on the task, the computational ef-
ficiency – crucial for a practical use-case – and the availability of pre-trained models was
important. Finally, TERAN, a state-of-the-art multi-modal model designed explicitly for
efficient text-image retrieval, was chosen because it represents the best trade-off between
computational efficiency and performance on the task.
Second, a new dataset called WISMIR was created. This was required since existing

pretrained models utilized for the text-image retrieval task are trained and evaluated on
datasets that comprise short, simple, and descriptive captions for the corresponding images.
WISMIR is a subset of the WikiCaps, a large-scale multi-modal dataset containing “in the
wild” text-image pairs crawled randomly from Wikipedia and Wikimedia. To ensure longer
and more complex captions, an ETL pipeline tool was developed to filter the WikiCaps
dataset accordingly and create the WISMIR dataset. Further, an in-depth analysis was
conducted to prove the textual disparity of WISMIR to COCO and Flickr30k, the two
most popular datasets for text-image retrieval.
In the third and final step, several TERAN models trained on different versions of

WISMIR, COCO, or Flickr30k were evaluated on the datasets’ test splits. Moreover,
their performances in terms of the binary evaluation metric Recall@K were compared and
discussed. This comparison showed that the TERAN models trained and evaluated on
WISMIR performed much worse than TERAN models trained on COCO or Flickr30k –
independent of the test set used for evaluation. Further, it was observed that training on
COCO or Flickr30k resulted in inferior performance when evaluating on WISMIR. Very
similar but not so severely deficient results can be observed vice versa.

To conclude and answer the first research question: it was found that current text-image re-
trieval models perform poorly in retrieving images for lengthy and complex textual queries,
although they perform much better on short and simple queries.
However, the performance was assessed via binary evaluation metrics, which ignore rele-

vant but not exact matches. For example, if the top-5 retrieved images are very similar and
all are relevant for the textual query, but the ground truth image from the dataset is not
in these top-5, binary evaluation metrics will assess 0% performance for this sample. This
means that the evaluated models are not necessarily unsuitable for the language learner
scenario, where not only the exact best image is relevant, but all retrieved images, which
are similar to the exact match. This issue is addressed with the second research question
as described in the following.

10.3 Research Question 2 (RQ2)

Two user studies were conducted to find an answer to the second research question (RQ2),
“Are state-of-the-art multi-modal transformers applied on text-image retrieval suitable for
our language learner scenario?”. Both user studies, including their pilot studies to find
genuine, were conducted on MTurk utilizing the tool developed for this purpose within the
scope of this thesis.
In the first (smaller) user study, the text-image retrieval performance of a TERAN model

trained and evaluated on WISMIR was assessed with the help of human raters. The raters’
task was to rank their top-5 images according to a given caption text from a pool of 12
images comprising the top-5 images ranked by the model and 7 random images. The
submitted results were analyzed, and the agreement between the raters and the model
was examined. From these results, it can be said that the model’s top-5 ranked images
are relevant to the corresponding captions for the large majority of 72.5% of the evaluated
samples. Further, based on the human assessments, the model’s performance was measured
by the non-binary NDCG metric common to evaluate information retrieval systems where
not only the first ranked result is a relevant result. According to this metric, the model’s
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performance is very strong and much more optimistic than the results according to the
binary evaluation metrics used to answer the first research question. However, the sample
size of the study was too small for a solid estimate of the model’s performance.
For the second user study, three different text-image retrieval models ranked their top-5

images from three different image pools for captions from a text-only language learner
dataset on a 5-star scale. The task of the human raters was to assess how related these
images are to the respective caption on a five-star scale. The employed text-image re-
trieval models were three TERAN models trained on WISMIR, COCO, and Flickr30k,
respectively. These models retrieved images from three image pools comprising all unique
images from the training and test sets of COCO, Flickr30k, and WISMIR, respectively.
The text-only language learner dataset from which the captions – i.e., the queries for which
the models retrieved the top-5 images – originated was manually collected from a student
assistant and contains multiple short stories about different topics. From analyzing the
submitted results, it was found that there were differences in the average quality of the top-
5 images from up to one star, depending on the employed model as well as the image pool
from which the model retrieved the top-5. This finding supported the initial expectation
that models trained on data more akin to the utilized language learner dataset perform
better. However, the human rates gave about 3 or 3.5 stars on average or median across
all models, image pools, and image ranks. While these results show that there is still much
space for improvement, the models’ performance can be considered acceptable.

To conclude and answer the second research question: the results of the two user studies
suggest that the employed models are generally suitable for our language learner scenario.
Nevertheless, as described in the future work section, more comprehensive research must
be done to find a more precise answer.

10.4 Research Question 3 (RQ3)

The solution found and realized in this work to the third research question (RQ3), “How
can textual queries consisting of a context and a focus contained therein be supported in
multi-modal text-image retrieval methods so that the retrieved images correspond to both
the context and the focus?” is as follows: Multi-modal text-image retrieval transformers
usually generate a word-region-alignment (WRA) matrix to compute the global cross-
modal similarity between a text (the context) and an image. The cells of a WRA matrix
represent the fine-grained similarity or alignment between a textual token and a visual
region. The TERAN model, primarily utilized throughout this thesis, pools this WRA
matrix to compute the global similarity between a text and an image. Ideally, the best
matching images already correspond to every token in the textual input (including the
focus token), but that must not be the case, especially for extended contexts. Moreover,
in our language learner scenario, the focus is more important than the context. To ensure
that the top-ranked images show the focus token while also representing the context to the
best extent, a ranking algorithm based on WRA matrices was developed. This algorithm
first pools the WRA matrices to compute a score for the focus token and a score for the full
context. Then it ranks all images based on a combined score which is a weighted average
of the focus score and context score.

To solve the problem stated by the third research question, a ranking algorithm considering
the focus as well as the context was developed on top of current text-image retrieval models.
However, the algorithm has several hyperparameters for which the optimal set has yet to
be found for a practical use case. Another promising approach to this research question is
described in the future work section.
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10.5 Research Question 4 (RQ4)

The fourth research question (RQ4), “How to leverage state-of-the-art multi-modal trans-
formers in a practical application, i.e., a “real-time” text-image retrieval system with a
large pool of images?”, was solved through an engineering solution approach. More specifi-
cally, the multi-modal text-image retrieval system (MMIRS) powered by efficient state-of-
the-art visio-linguistic transformers (TERAN models) was developed. MMIRS solves the
“real-time” requirement on the practical use-case of the language learner scenario with a
two-stage process. In the first stage of the system, the large image pool from which the
best images are retrieved gets drastically reduced by efficient uni-modal filtering meth-
ods. On systems with modern hardware, this process usually takes only a few hundred
milliseconds. The resulting unordered set comprises several hundred to a few thousand
images that roughly match the context or the focus part of the query. In the second
stage, a TERAN model ranks the images in the reduced set by computing the cross-modal
similarity between the query and each image. However, even computing the similarities
for the reduced set of images would be impracticable for a “real-time” critical application
with the standard approach. To solve this issue, the late-fusion architecture of TERAN
is exploited. Since TERAN internally consists of two separate uni-modal transformers, it
is possible to pre-compute the embeddings for all images in the large image pool. Fur-
ther, the embedding for the query only has to be computed once per retrieval operation
and can be re-used to compute the cross-modal similarity between an image. This saves
an enormous amount of computation when computing similarity scores between a single
query and lots of images. Using this approach, the average system response time is about
2 seconds, which is considered acceptable for a “real-time” application.

To solve the issue stated by the fourth research question, a multi-modal text-image retrieval
system was developed, which first reduces the large image pool and finally utilizes an ef-
ficient multi-modal transformer to compute text-image similarities. The system retrieves
the best matching images for a textual query within about 2 seconds on average, which
fulfills the “real-time” requirement of the practical use-case for the language learner sce-
nario. Nevertheless, there is still much space for optimizing the system, which is sketched
next in the future work section.

10.6 Future Work

Since several broad topics were investigated in this work, and also the primary subject of the
thesis is comprehensive, covering multiple different issues, lots of future work is possible and
necessary to effectively apply current multi-modal text-image retrieval methods to improve
human reading. In the following, ideas and suggestions for future work are separately
described per topic.

10.6.1 WISMIR Dataset

The WISMIR is still a work-in-progress dataset with limitations and room for improve-
ments, as described below:

Data Cleaning The dataset has to be cleaned further to remove samples with the
following characteristics:

• Too small images
• Images that show abstract things like icons or plots of mathematical functions
• Captions containing incomplete or grammatically incorrect sentences
• Captions that are not entirely English
• Captions containing too many named entities
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• Captions with too loose coupling with the image, i.e., captions where too many tokens
are not represented in the image

Named Entity Augmentation Since the text-image pairs contained in WISMIR are
crawled from Wikipedia, the captions contain many named entities. This might be prob-
lematic for multi-modal models when learning joint representations or word-region align-
ments, especially for named entities with only a few occurrences, because the model needs
to learn what the named entity represents to find the corresponding region in an image.
For example, humans are all depicted similarly independent of their names, and the same
is valid for all other kinds of entities. One idea to solve this issue is to augment named
entities by replacing them in the captions with the entities they represent. This could be
done with the help of Knowledge Graphs like DBPedia1 or other ontologies.

Dataset Size The samples removed by the cleaning process described above should be
replaced with other samples so that the size of the dataset does not decrease. Or even
better: since more data is always beneficial to train deep neural networks, more samples
should be collected in general to increase the size of WISMIR.
Further, the test set of WISMIR has to be analyzed and revised so that it is not too

similar to the training set and is well distributed.

10.6.2 TERAN Performance

To increase the TERAN’s text-image retrieval performance, multiple approaches described
below are promising and should be investigated.

Training Data The performance of TERAN, which is the primary focussed model of
this work, can most probably be improved. First, the investigated pre-trained TERAN
models could be trained on much more and diverse data. That is, instead of training
it separately on COCO, Flickr30k, or WISMIR, the dataset can be combined to create a
much larger and more heterogeneous training set. Also other popular multi-modal datasets
like Visual Genome (Krishna et al. 2017), Conceptual Captions (Sharma et al. 2018), or
SBU Captions (Kuznetsova et al. 2013) can be used additionally to increase the training
set size further.
Another promising and very recent – and therefore unconsidered – dataset is WIT (Srini-

vasan et al. 2021). This very large-scale dataset created by Google researchers is based on
Wikipedia data but might be “cleaner” than WikiCaps (Schamoni et al. 2018) or WISMIR.
Increasing the heterogeneity of the training data could be especially beneficial when uti-
lizing the dataset for the language learner scenario since there, the model has to perform
well for arbitrary texts.

Hyperparameter Optimization In this work, the standard hyperparameter set from
the TERAN authors is used to train the model. However, the authors did not mention
any justification for these parameters, so tuning the hyperparameters, e.g., via grid search,
will most probably increase the model’s performance.

Features The features employed by the authors of TERAN and in this work might
not be suitable when utilizing the model for multi-modal text-image retrieval, especially
for Wikipedia-based data, for the following reasons: The textual features, which are the
output of a pre-trained BERT-based tokenizer model (Devlin et al. 2019), are Byte Pair
or sub-word embeddings. That is, words are broken up into smaller pieces if they are

1. https://www.dbpedia.org/
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uncommon or to separate the stem and common morphological structures. When learning
word-region alignments, the single sub-word embeddings are aligned with the regions, which
is problematic. For example, the word “Stingrays” is split by the tokenizer model into three
tokens: “Sting##”, “##ray”, and “##s”. The multi-modal model now tries to align those
tokens individually to regions, which is obviously problematic when retrieving images for
queries including the word “Stingrays”. Hence, other textual feature embeddings should be
investigated and evaluated.
Also, the visual features might impose an issue for text-image retrieval with Wikipedia-

based data. The employed Faster R-CNN with ResNet-101 (Anderson et al. 2018) model
to extract the visual regions and features is pre-trained on ImageNet (Deng et al. 2009) and
Visual Genome. However, the datasets comprise images of common objects or everyday life,
which are probably different from images for Wikipedia articles, often showing particular
objects. Therefore, when extracting features from Wikipedia images, the employed model
might produce different low-quality features and regions. This issue should be investigated,
and alternative models for visual feature extraction should be examined.
Another possible issue induced by the visual features employed to train TERAN models

might be that the number of regions and features extracted per image is limited to 36.
However, the previously mentioned visual feature extraction model can extract up to 100
regions and features per image. Having more features per image might be especially bene-
ficial when training the model on extended captions so that a tighter coupling between the
textual tokens and visual regions is possible. Hence, it should be investigated if TERAN’s
performance increases when utilizing more visual features per image.

10.6.3 MMIRS

Currently, the multi-modal text-image retrieval system, MMIRS, is a proof-of-concept ap-
plication. To deploy it for a real-world language learner scenario effectively, the system
requires much more elaborate testing and evaluation, as suggested below.

Parameter Tuning MMIRS is a complex system that comprises several components,
each configurable by many parameters. In the current version, those parameters were found
manually via trial-and-error so that the system’s basic functionality operates acceptably.
However, they are most probably by far not set optimally and further likely depend on the
final use-case of MMIRS. So, to finally deploy MMIRS for the language learner scenario,
the optimal set of parameters has yet to be found. Since the performance of MMIRS in
such a scenario cannot be measured via evaluation metrics, the set of optimal parameters
cannot be optimized computationally but has to be assessed by users of the application.
This could either be accomplished via user studies or by A/B testing strategies.

Sub-Component Analysis As already mentioned, MMIRS is made up of several sub-
components. Especially the components in the first stage of MMIRS that drastically reduce
the large pool of images should be further investigated to assess their effectiveness and per-
formance. Those components employ several pre-trained publicly available neural networks
or other parametrized models to solve different tasks. However, there exists a large vari-
ety of possible models that solve the same or very similar tasks of which the optimal for
the final use-case of MMIRS yet has to be determined. Support For Other Multi-Modal
Text-Image Retrieval Models The system follows a modular and easily extensible software
architecture to support different text-image retrieval models. However, in the current ver-
sion of MMIRS, only TERAN models are fully supported. TERAN was chosen because it
is computationally efficient while still performing well in text-image retrieval tasks. Nev-
ertheless, it would be interesting to evaluate the performance of MMIRS powered by other
models that are either mode performant or computationally efficient like, e.g., UNITER
or non-transformer models like CAAN or SCAN.
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10.6 Future Work

Larger Image Pools One of the user studies showed that not only the employed model
but also the pool of images affects the quality of the retrieved images in text-image re-
trieval. So employing a larger and therefore more diversified pool of images would most
certainly improve the overall performance of MMRIS. In the current version of MMIRS,
images from COCO, Flickr30k, and WISMIR are supported only separately. That is, the
system retrieves images from one of the datasets but not from the combined pool of im-
ages. While it sounds trivial to combine the image pools to create a larger and more
heterogeneous pool, it actually requires some effort due to the first stage of MMIRS, which
filters those image pools via uni-modal methods that depend on pre-computed clusters and
indices. Additionally, other popular multi-modal text-image datasets like those introduced
in Section 4.1 should be considered to increase the image pool further.
However, employing a larger pool of images also increases the execution time of the first

stage of the system that preselects promising image candidates. So increasing the image
pool size might be an issue to the “real-time” constraint of MMIRS.
Hence, the optimal or maximum size of the employed image pool has to be assessed.

Assessing the Effectiveness in a Real-World Scenario While MMIRS is designed
to suit the language learner scenario generally, the system’s effectiveness in a real-world
scenario and how it can be improved still has to be evaluated. That is, it has to be assessed
if language learners can actually improve their reading comprehension with the aid of the
system. This has to be assessed via user studies with actual language learners. For example,
one could imagine a user study where the participants are divided into two groups: One
group can utilize MMIRS while the other group can not. Then the participants are asked
to solve reading comprehension tasks, and the final average performance of both groups is
compared.
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A.1 UNITER Pre-Training

A.1 UNITER Pre-Training

The training dataset of UNITER is a combination of four popular text-image datasets,
namely COCO, Visual Genome, Conceptual Captions, and SBU Captions. For information
about these datasets, see Section 4.1.
One of the main contributions of UNITER and its advantages to other multi-modal

transformers are the sophisticated self-supervised pre-training tasks and the examination
of their most profitable combination. These tasks are briefly summarized in the following.

• Masked-Language Modeling (MLM)

• Masked-Region Modeling (MRM)

– Masked-Region Classification (MRC)

– Masked-Region Modeling (MRM)

– Masked-Region Classification with Kullback-Leibler Divergence (MRC-KL)

• Masked-Region Feature Regression (MRFR)

• Image-Text-Matching (ITM)

• Word-Region-Alignment (WRA) with Optimal-Transport (OT)

The ablation study showed that the best combination of pre-training tasks is: MLM +
ITM + MRC-KL + MRFR + WRA

Masked-Language Modeling (MLM)

The idea of Masked Language Modeling was initially proposed in (Vaswani et al. 2017)
and (Devlin et al. 2019). In this task, a random proportion (15%) of tokens are replaced
by a so-called MASK token, and the model’s goal is to predict the original token that
was masked-out. Since this goal can be interpreted as a classification problem, where the
possible classes are the tokens in the vocabulary, negative Log-Likelihood is used as the
loss function.

Image-Text-Matching (ITM)

For this task, a special CLS token is introduced to tell the model about fused multi-modal
input. In addition to the CLS token, a pair of textual tokens and visual regions (w, v) are
input to the transformer. During training, positive pairs and negative pairs get sampled.
Pairs are called positive if the textual and visual tokens come from the same sample and
negative otherwise. The task is the binary classification problem of predicting whether w
and v is a positive pair or not. Therefore the transformer output of the CLS token is fed
through a FC-Layer with sigmoid activation function to produce values between [0, 1], and
binary cross-entropy is used as the loss function.

Word-Region-Alignment (WRA) with Optimal-Transport (OT)

This task aims to align textual tokens with visual regions, so that feature vectors of tokens
are close to region feature vectors according to a distance metric if they share some semantic
meaning. The authors of UNITER use Optimal Transport technique by interpreting the
textual inputs w and the visual inputs v as discrete probability distributions and cosine
similarity as cost-function. Optimal Transport now seeks the most efficient way to align
the two distributions in terms of the cost function.
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Masked-Region Modeling (MRM)

Like the MLM task, MRM masks some proportion of the visual input, i.e., the visual re-
gions, with the special MASK token. In MRM, the visual MASK token is an all-zero matrix
with the same size as the masked region. Since visual features are the high-dimensional,
continuous output of an object detector network (in this case Faster R-CNN with ResNet-
101) instead of the token’s discrete labels, it is not possible to classify the masked regions
like in the MLM task. The authors introduced three variants of MRM to overcome this
issue.

Masked-Region Feature Regression (MRFR)

In this task, the model learns to regress the masked-out regions by finding the minimum
of the L2-norm of the transformer’s CLS output and the target region.

Masked Region Classification (MRC)

With MRC, UNITER learns to predict the image regions’ discrete labels from the object
detection network’s output by minimizing the cross-entropy loss.

Masked Region Classification with Kullback-Leibler-Divergence (MRC-KL)

The problem with classic MRC is that the regions’ predicted labels from the object de-
tection network can be wrong because there are ground truth labels. To overcome this
problem, in MRC-KL, KLD is used to compute the loss between the continuous probabil-
ity density function over all classes of the object detector and the transformer’s output for
the MASK token.
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A.2 MMIRS – FSS Software Architecture

A.2.1 Design Goals

To support different datasets and retriever models in MMIRS (see Section 9.3) and to
achieve “real-time” retrieval latencies, the main design goals of the FSS architecture are
modularity, extensibility, and computational efficiency. These goals are realized by using
software design patterns like Singletons, Facades, and Factories (Gamma et al. 1995), and
by applying as many functions as possible in parallel. In the current version of MMIRS,
only TERAN models are supported out of the box because extracting WRA matrices from
UNITER is not straightforward and out of the scope of this thesis. In the future work
Section 10.6.3, approaches to do so are proposed.
Due to the modular software architecture of the FSS, adding TERAN models, trained

on a specific dataset, only requires specifying the model’s location in the corresponding
section in the configuration file. Adding datasets to MMIRS also only needs to be specified
by its name, location, the type of model that can access the data, and some additional
metadata in the configuration file. When booting MMIRS, the system parses the respective
sections in the configuration file, automatically instantiates the specified retrieval models
and datasets, and makes them available for the users. In the following, technical details of
this functionality get elucidated.

A.2.2 Details

The primary challenge while designing MMIRS was to support state-of-the-art models like
TERAN or UNITER, which are not supported yet by any framework as of the date of this
thesis. Hence, the codebase of the models had to be extended to leverage them for custom
text-image retrieval at inference time. Therefore, the original GitHub repositories2,3 were
forked4,5 to implement customized access to the models. Still, it is not entirely possible to
provide a universal interface for every type of model. This is because each model requires
image features in a different format and processes them differently. To support different
retrieval models on different datasets anyway, MMIRS is designed to wrap the model’s
retrieval functionality and the access to the image features of the datasets. Detailed UML
class diagrams of MMIRS’ Fineselection Stage are depicted in Figure A.1 and Figure A.2
and are explained briefly in the following. Note that the diagrams only show the most
important methods, parameters, and member variables to keep the overview, and that
UNITER is not (fully) supported in the current version of MMIRS.
The class diagram in Figure A.1 shows the software design to support different datasets.

The central interface is the ImageFeaturePool (IFP), which represents the complete pool
of image features in a particular dataset for a particular retriever model. This interface
has an abstract method to load the data, i.e., the features contained in the IFP, into
the hosting server’s main memory. The second abstract method is required to create an
ImageSearchSpace (ISS).
An ISS is an abstract subset of an IFP for a specific RetrieverType and is always stored in

memory. The abstract method of this class is used by a Retriever model to directly process
or forward the image features through the transformer stacks. As already mentioned,
MMIRS supports TERAN and UNITER models out of the box, i.e., the respective IFP
and ISS interfaces are already implemented. Instead of creating IFP instances manually,
the ImageFeaturePoolFactory singleton parses the respective section in the configuration
file and instantiates the specified IFPs automatically. An example IFP specification for
COCO dataset and TERAN retriever is shown in Listing 1.

2. https://github.com/mesnico/TERAN
3. https://github.com/ChenRocks/UNITER
4. https://github.com/floschne/TERAN
5. https://github.com/floschne/UNITER
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1 fine_selection:
2 feature_pools:
3 coco:
4 teran:
5 data_root: /raid/datasets/coco/pre_computed_embeddings
6 fn_prefix: COCO_000000
7 num_workers: 32
8 pre_fetch: False
9

10 wismir_v2:
11 teran:
12 data_root: /raid/datasets/wicsmmir/v2/pre_computed_embeddings
13 fn_prefix: ''
14 num_workers: 32
15 pre_fetch: False
16

17 f30k:
18 teran:
19 data_root: /raid/datasets/f30k/pre_computed_embeddings
20 fn_prefix: ''
21 num_workers: 32
22 pre_fetch: False

Listing 1: Example snippet of the configuration section which is parsed by the Image-
FeaturePoolFactory to instantiate the specified ImageFeaturePools (see Fig-
ure A.1). By parsing this specifications, TeranFeaturePools for COCO, WIS-
MIR and Flickr30k would get instantiated. The most important parameters
are the ”data_roots” in lines 5, 11, and 17. These tell the factory where the
files containing the features are located. The other parameters specify what file
prefix the features have, how many workers are used to load the files from disk
into memory in parallel, and whether the respective ImageFeaturePool should
be pre-fetched or loaded into RAM when booting MMIRS.

Figure A.2 shows the architecture to support different Retriever models. The Retriever
interface plays the central role and is the universal interface to retrieve the top-k matching
images according to a focus and context, i.e., a user’s query. In addition to the query pa-
rameters, an ImageSearchSpace is required, having the image features, which get forwarded
through the model, ready in memory. TeranRetriever and UniterRetriever implement the
Retriever interface to support TERAN and UNITER model types. The RetrieverFac-
tory singleton instantiates the specified retrievers by parsing the corresponding sections
in the configuration file. Example TeranRetriever and UniterRetriever specifications are
presented in Listing 2.
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1 fine_selection:
2 retrievers:
3 uniter_base:
4 retriever_type: uniter
5 device: cuda
6 model: downloads/pretrained/uniter-base.pt
7 model_config: config/uniter-base.json
8

9 teran_coco:
10 retriever_type: teran
11 device: cuda
12 model: pretrained_models/coco_MrSw.pth.tar
13 model_config: configs/teran_coco_MrSw_IR_PreComp_API.yaml
14

15 teran_wicsmmir:
16 retriever_type: teran
17 device: cuda
18 model: pretrained_models/wicsmmir_v2_MrSw.pth.tar
19 model_config: configs/teran_wicsmmir_v2_MrSw_IR.yaml
20

21 teran_f30k:
22 retriever_type: teran
23 device: cuda
24 model: pretrained_models/f30k_MrSw.pth.tar
25 model_config: configs/teran_f30k_MrSw_IR.yaml

Listing 2: Example snippet of the configuration section which is parsed by the Retriever-
Factory to instantiate the specified Retrieverss (see Figure A.2). By parsing this
specifications, three TeranRetrievers and one UniterRetriever would get instan-
tiated. The most important parameters are the ”model” and ”model_config”.
These tell the factory where the pretrained model files and the corresponding
configurations for the model are located. The parameter ”device” specifies on
which device, i.e., GPU or CPU, the model is executed, and the parameter
”retriever_type” tells the factory whether to instantiate a TeranRetriever or
UniterRetriever.
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Figure A.1: UML class diagram that shows part the software architecture of the Fineselec-
tion Stage designed to support different dataset for different retriever models.
Note that only the most important methods, parameters, and member vari-
ables are drawn to keep the overview.
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Figure A.2: UML class diagram that shows part the software architecture of the Fines-
election Stage designed to support different different retriever models. Note
that only the most important methods, parameters, and member variables are
drawn to keep the overview.
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A.3 IRST – Software Architecture

A.3.1 Central Technical Concept

IRST allows image rankings predicted by a text-image retrieval model to be evaluated by
human raters using three different tasks. The three primary classes, representing image
rankings, tasks, and the tasks’ results, are briefly introduced next. For more details, see
Section A.3.3 and Figure A.6.
A single image ranking, predicted by a model, consists of a text and a ranked list of

images and is represented by an instance of the MRanking class. MRanking instances are
generated from a DataFrame, where the raw image rankings, i.e., a model’s output, are
persisted. From MRankings, BaseSample instances are generated, which represent tasks to
be evaluated by human raters. Submitted evaluation results are stored and represented by
BaseResult. This data flow is depicted in Figure A.3.

Figure A.3: Relationship of the main classes in the IRST application. Image rankings pre-
dicted by a text-image retrieval model are stored in the rows of a DataFrame.
MRanking instances represent these predicted image rankings. From MRanking
instances, BaseSample instances are generated, which describe a task to eval-
uate an image ranking. BaseResult instances represent the evaluation results
submitted by raters.

Since IRST provides three different study methods (see Section 7.1), there are three
different subclasses of BaseSample, which represent the tasks of the respective study
method: RankingSample, RatingSample, or LikertSample. The results of the respective
tasks are represented by the three different subclasses of BaseResults: RankingResult,
RatingResult, or LikertResults.
A single image ranking consists of a text and a ranked list of images, i.e., their IDs,

represented by an instance of the MRanking class. From the MRankings, BaseSample in-
stances are generated and evaluated by the raters. The submitted results of a BaseSample
is contained in a BaseResult. This data flow is depicted in Figure A.3.
There are three different types of BaseSample: RankingSample, RatingSample, or LikertSample,

and hold information for a single evaluation task (see Section 7.2). An evaluation result of
a rater is represented by an instance of BaseResult, i.e., RankingResult, RatingResult,
or LikertResults, respectively.

A.3.2 Overview

IRST is a client-server application and consists of a python backend, a NuxtJs6 user inter-
face, and an admin UI based on SwaggerUI7. It is also highly customizable while still easy
to set up and deploy with or without Docker8.
The application consists of four major components: the frontend or user interface, the

backend, a Redis-server, and a static-image server. Typically, each component runs in a
Docker container, and all containers are orchestrated via docker-compose (see Figure A.4).
Note that while it is possible to deploy the application without Docker, it is not recom-
mended.

6. https://nuxtjs.org/
7. https://swagger.io/tools/swagger-ui/
8. https://www.docker.com/
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Figure A.4: High-level components or Docker containers of the IRST application, when
deploying with docker-compose. Arrows are indicating the communication
between the components.

The software design is roughly oriented to a layered architecture. A schematic overview of
the different layers is depicted in Figure A.5. The data model contains the data or domain

Figure A.5: Schematic overview of the different layers in the architecture of IRST.

classes, which are used throughout the whole application. Communication between the user
interface or frontend (see Section A.3.4) and the backend happens via HTTP through REST
API endpoints. The REST API layer (see Section A.3.5), which provides several endpoints
to execute certain actions, is part of the backend and communicates the requests from the
frontend to the Application Layer (see Section A.3.6). In this layer, the application’s
logic is contained and realized by several services responsible for particular actions. The
lowest layer, the persistence layer, is responsible for serializing and deserializing data class
instances to and from disk and is realized with Redis9. Redis was chosen as the database
because, in IRST, there are no complex relationships between the domain classes. Further,
Redis provides convenient JSON support, which is especially useful with the data classes
that are based on the pydantic framework.

A.3.3 Data Model

A UML class diagram that represents the data or domain model of IRST is shown in
Figure A.6. In this section, only a brief introduction is given because the classes can be
described best in the following sections where their usage is explained.
The super-class of all domain classes is the pydantic10 BaseModel. This class provides

data validation, JSON serialization, and deserialization functionality out of the box. There-

9. https://redis.io/
10. https://pydantic-docs.helpmanual.io/
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fore, it is commonly used in combination with FastAPI 11 and helpful for Redis-based12

persistence (see Section A.3.5 and Section A.3.6).
The most important classes are MRanking, BaseSample, BaseResult, and their respective

sub-classes. For an explanation, how the classes are related to each other, see Section A.3.1.

Figure A.6: UML class diagram that represents the data or domain model of IRST.

A.3.4 User Interface

The user interface of IRST is a NuxtJS single-page web application. In MTurk mode, it
consists only of a single page, where a worker evaluates the provided sample. Examples
for RankingResults, RatingResults, and LikertResults are depicted in Figures 7.1, 7.2,
and 7.3, respectively.

11. https://fastapi.tiangolo.com/
12. https://redis.io/
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The IRST UI also provides routes or pages for users to register, login, and logout in
Standalone mode. A Vuex13 store is used to share state information about a user between
the required components.
In addition to the Vue14 components that are the building blocks of the pages, several

services that handle communication with the backend are implemented in plain JavaScript
with axios15. To hide the communication with the backend from the clients and to avoid
CORS issues, a reverse-proxy middleware is employed.

A.3.5 REST API

The API layer provides multiple endpoints to execute different methods in the application
layer, realized with FastAPI16 and pydantic17 frameworks. Typically it accepts and returns
instances of classes from the data model shown in Figure A.6, which are automatically
marshaled in JSON format.
In total, there are currently 12 top-level endpoints, which are responsible for 54 different

dedicated actions. These endpoints are shown in Figure A.7, and their scope of functions
is briefly summarized in Table A.1. Most of the API resources are protected against
unauthorized requests and require an HTTP Bearer authentication header with a valid
JWT of an admin user sent with every request. This layer of security is crucial when the
application is available from the public internet.

Figure A.7: Overview of the components, i.e., FastAPI router instances, in the API Layer
of IRST.

A.3.6 Application Layer

This layer holds the business logic of IRST and consists of several singleton service classes
responsible for different functionalities. The different services are shown in Figure A.8 and
described in the following.

13. https://vuex.vuejs.org/
14. https://vuejs.org/
15. https://github.com/axios/axios
16. https://fastapi.tiangolo.com/
17. https://pydantic-docs.helpmanual.io/

133

https://vuex.vuejs.org/
https://vuejs.org/
https://github.com/axios/axios
https://fastapi.tiangolo.com/
https://pydantic-docs.helpmanual.io/


Route Purpose
/feedback Collecting Feedback submissions and listing of all Feedback or spe-

cific Feedback.
/image Converting image ids to URLs pointing to the static image server

and vice versa.
/user User registration and login.
/study Returns progress and state of studies in standalone mode.
/mturk Most complex endpoint with the highest number of functions. Re-

sponsible for: publishing, deleting, or listing of HITs; listing and
approving Assignments; managing Qualifications; sending messages
to Workers.

/mranking Listing of all MRankings or loading of single MRankings.
/ranking_sample Listing of all RankingSamples or loading of single RankingSamples.
/ranking_result Collecting RankingResult submissions and listing of all RankingRe-

sults or a specific RankingResult.
/rating_sample Listing of all RatingSamples or loading of single RatingSamples.
/rating_result Collecting RatingResult submissions and listing of all RatingResults

or a specific RatingResult.
/likert_sample Listing of all LikertSamples or loading of single LikertSamples.
/likert_result Collecting LikertResult submissions and listing of all LikertResults

or a specific LikertResult.

Table A.1: Scope of functions summary of the top-level endpoints of the IRST REST API.

Study Services

The RankingStudyService, RatingStudyService, and LikertStudyService manage and
coordinate studies of the respective type. That is, the services are responsible for creating
the respective samples, i.e., RankingSample, RatingSample, or LikertSample, from the
MRankings, handing out the samples, and, finally, accepting the submitted BaseResult
subclass (see Figure A.6).
In MTurk mode, the services need to provide the sample related to the respective HIT

a worker has accepted. When the worker submits her result, the service has to store and
reference it with the associated sample. The MTurk Marketplace completely handles the
distribution of HITs.
In standalone mode, the distribution of tasks has to be managed by the services. To

ensure that all samples of a specific study are evaluated, no sample is evaluated more
often than specified, and no user receives the same sample twice, the following concept was
developed.
For each study, the number of iterations is specified in the configuration file. One study

iteration comprises the evaluation of every sample or task. Therefore, the services manage
three lists, namely “todo”, “in progress”, and “done”, representing the state of a sample
similar to a Kaban board. When initializing a study iteration, all samples are added to
the “todo” list. If a user requests a sample, the service selects a sample the user has not
evaluated in previous iterations and moves it from “todo” to “in progress” by an atomic
action. A sample can be on the “in progress” list only for a specified amount of time. If a
user does not submit her result in the specified time, the respective sample expires and is
atomically moved from the “in progress” list back to the “todo” list. If a user submits her
result on time, the respective sample is moved from “in progress” to “done” list also in an
atomic fashion. This process is illustrated schematically in Figure A.9.
If all samples are on the “done” list, i.e., the other lists are empty, a new study iteration

gets initialized until the maximum number of iterations has been reached.
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Figure A.8: Overview of the different services in the IRST application layer.

Figure A.9: Schematic overview of the different states, i.e., lists, in which instances of
BaseSample. Transition arrows are indicating the actions of the study service
with the respective BaseSample instance as parameter.

When all samples of all iterations of a study are evaluated, or a user cannot receive
more samples because she already worked on every sample once, the services will throw an
exception, which is reflected in the return value of the respective API endpoint.

Auth Service

Since IRST is thought to be available from the public internet, protecting the API end-
points from unauthorized requests is crucial. Especially in MTurk mode, it is mandatory
that the application is reachable from all over the world. Therefore, almost all API end-
points require user authentication, and the administrative functions are only accessible by
admin users. The Auth service handles the authentication and authorization logic, real-
ized by combining JSON Web Tokens and PBKDF2. The registration, authentication, and
authorization processes are schematically sketched in Figure A.10.

MTurk Service

As the name suggests, the service is responsible for all functions related to MTurk. The
functions are accessible via the SwaggerUI of the REST API and require admin user au-
thorization. To execute the methods of the MTurk API, the AWS SDK boto318 is used.
Executing any method MTurk operation requires to provide AWS credentials (see Fig-
ure A.6) to associate the respective operation with the specified AWS account. These cre-
dentials can either be transmitted with every request or can be fixed in the configuration
file. The service’s primary purpose is to create and publish HITs based on RankingSample,
RatingSample, or LikertSample in the MTurk Marketplace. Therefore the service gener-
ates ExternalQuestion HITs from the respective samples and section in the configuration

18. https://aws.amazon.com/de/sdk-for-python/
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Figure A.10: Schematic overview of the registration process, the authentication process,
and the authorization process (from left to right) of the Auth service in IRST.

1 mturk:
2 rating:
3 hit_auto_approval_delay_in_seconds: 604800 # 1 week's seconds
4 hit_assignment_duration_in_seconds: 300 # 5 min
5 hit_reward: 0.15 # in dollars
6 hit_title: Example HIT Title
7 hit_description: Example HIT Description
8 hit_keywords: some, example, hit, keywords
9 hit_max_assignments: 3 # the number of times this HIT gets evaluated

10 hit_lifetime: 604800 # 604800 = 1 week's seconds
11 hit_custom_qualifications:
12 3KHNGLCXQI6RANDOMQUALIFICATIONID:
13 comparator: 'EqualTo'
14 integerValues: [99]
15 actionsGuarded: 'Accept'
16 worker_quali_req_min_hits_approved: 1000 # min number of approved HITs
17 worker_quali_req_min_percent_approved: 90 # assignment approval rate
18 external_question_base_url: https://url.to.irst.app/rating

Listing 3: Sample configuration for HITs generated from RatingSample.

file. A sample configuration for HITs generated from RatingSample is shown in Listing 3.
In addition to the HITs metadata, pre-defined and custom Qualification requirements can
be configured, which are also parsed and automatically incorporated by the service. To
save bandwidth because typically a large number of HITs are created, the service first
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creates a HITType and reuses it when the HITs themselves are created.
Another essential function of the service is to associate or disassociate Qualifications

with Workers. This can be done conveniently by providing a list of Worker IDs.
Additionally, the service can approve Assignments, send messages to workers, or get the

balance of the respective AWS account.

Redis Service

This service is the connection to the persistence layer and is responsible for storing and
loading instances of data classes (see Figure A.6). Since all data classes extend the pydantic
BaseModel, which supports serializing and deserializing objects in JSON format out of the
box, the service stores the id and the JSON serialization string of objects as key-value
pairs. Further, the service stores the state of the study services and information about
created MTurk HITs for caching reasons.
For the communication with the Redis server instance, the python redis-client19 library

is used.

Image Service

As hinted in Figure A.6, the images contained in an MRanking or any sample are only
IDs of images. By default, a Lighttpd20 instance is used as a static image server to host
and display the images. The Image Service converts the respective image IDs to URLs,
pointing to the image server as configured in the settings file.
One issue that IRST solves is the long page loading duration in the Client’s UI, which is

due to the images necessary to solve a task. To drastically save bandwidth and therefore
reduce the page loading duration of the clients, the service offers functionality to generate
thumbnails of the images and convert the images to WebP format. For example, the average
size of all Flickr30k images is 139149 Bytes, the average size of all thumbnails generated
from those images in WebP format is 15975 Bytes. In this case, using thumbnails in WebP
format would save 88.5% of the bandwidth.

19. https://developer.redislabs.com/
20. https://www.lighttpd.net/
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