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Abstract

Lexical Simplification (LS) aims to provide simpler alternatives for the complex words
in a text preserving equivalent meaning. This helps various groups of people like non-
native speakers, and children to better understand a given text. One of the crucial steps
in the LS pipeline is to identify complex words in a text to simplify, which considerably
improves simplification. Therefore in this thesis, I propose my approaches to build a
Complex Word Identification (CWI) system for English language learners, which takes
context into account. As a basis of my CWI system, I use the sequential model by Rei
(2017), which has been adopted by the current state-of-the-art SEQ model (Gooding
and Kochmar 2019) and further modify it to improve the model performance. For model
training and evaluation I used the same data that was used by the SEQ model, i.e., CWI
Shared Task 2018 data sets by Yimam et al. (2018). The SEQ model does not incorporate
any feature engineering and outperforms the previous state-of-the-art systems on CWI
shared task 2018 Yimam et al. (2018). I hypothesized that uniting linguistic knowledge
with the power of a neural network could improve the model performance. In this thesis,
I proposed a hybrid model, by modifying the sequential framework to include hand-
engineered features along with word embeddings. Among various features identified for
this task, I answered which features are important or do not have a significant impact on
the hybrid model performance for the CWI task. Further, I also fine-tuned transformer
models for this task as it is broadly adopted in various Natural Language Processing
(NLP) tasks owing to its parallelism and advantage in modeling the long-range context.
There is a lack of research in using transformers for CWI task on CWI shared task 2018
data, which I tried to cover in this thesis. Using transformers, I achieved the state-of-
the-art results for the CWI task, proving transformer-like encoder is just as effective for
CWI as other NLP tasks.
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1 Introduction

Complex Word Identification (CWI) is a base for many other applications like Lexi-
cal Simplification (LS), a multimodal application to show images for complex words or
machine translation. The words which can not be visually depictable, or translated to
other languages due to rareness are simplified using the LS system for further processing.
The LS system aims at replacing complex words of text with simpler alternatives while
preserving its meaning and grammaticality. It helps people with low literacy, reading
difficulties, and non-native speakers to understand the text better. Most of the modern
LS pipeline involves the following steps:

1. Complex Word Identification: This step identifies what all words in our input
sentence can be possible candidates for being complex for language learners and
hence must be simplified.

2. Substitution Generation: The process of finding words or phrases that could
replace the target complex word.

3. Substitution Selection: This step discards candidates that distort the meaning
of the input sentence or affect its grammaticality, and retain those that fit the
context.

4. Substitution Ranking: After generating all possible candidates for our target
complex word, they are ranked based on the amount of semantic and syntactic
similarity preserved by them.

Figure 1.1: Example demonstrating steps in Lexical Simplification Pipeline.

Figure 1.1 demonstrates an example sentence passing through various LS pipeline
(G. H. Paetzold and Specia 2017). The input text is ‘The cat perched on the mat.’
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1 Introduction

and the complex word identified is ‘perched ’. This identified complex word ‘perched ’ is
passed through substitution generation, selection, and ranking to simplify it, preserving
semantic similarity of the input text. The output results in a non-complex simplified
sentence ‘The cat sat on the mat.’.
The Complex Word Identification (CWI) is a crucial first step as inadequate identifi-

cation of complex words in the text will either result in an overly difficult text if many
complex words are missed, or meaning distortion with an LS system trying to unneces-
sarily simplify non-complex words (Shardlow, 2013a). Shardlow (2014) and G. Paetzold
and Specia (2016a) have shown in their research that the performance of CWI is crucial
as it considerably improves lexical simplification. They found that the most frequent
errors in the LS pipeline occur due to misclassification of target words as complex or
non-complex. This ensures CWI as a separate research area in itself since many popular
LS systems do not focus much on it. Nation (2006) shows that to understand the content,
the reader should be familiar with at least 95% of its text. Therefore, CWI is not just
an extension to the LS system, but a stand-alone application within intelligent tutoring
systems for second language learners or in reading devices for people with low literacy
skills. A CWI system can help identify unfamiliar words and thus support providing
readers other cues such as their definitions even when simpler alternatives are not avail-
able. These challenges motivate us to work on the CWI system in this thesis, targeting
English language learners.
Systems performing CWI in a static manner will unable to take the context into ac-

count, thus failing to predict word complexity for the word that has different meanings
with a common origin as well as words in various metaphorical or novel contexts. For
instance, words like ‘bat’, ‘bank’, and ‘minute’ have many different meanings in the dic-
tionary, which depends on the context where they occur. Table 1.1 demonstrates some
of the examples where word meaning changed based on the context.

Sentence Word Dictionary meaning

He hit the ball with bat. bat an implement with a handle and a solid sur-
face, typically of wood, used for hitting the
ball in games

The bat is flying in night. bat a small animal like a mouse with wings

He deposited money in bank. bank a financial establishment

He sat at the bank of Elbe
river.

bank the land alongside or sloping down to a river
or lake.

It took a minute to find the
paper.

minute a period of time equal to sixty seconds

There is a minute difference
between 2 cars.

minute extremely small

Table 1.1: Words with different meaning based on context

The same word ‘minute’, which is non-complex for language learners when used in the

2



context of ‘time’ could become complex when used to describe ‘extremely small’ things.
A similar complexity pattern based on context has been noticed in the CWI Shared Task
2018 data (Yimam et al. 2018) for the word ‘molar’. Whilst ‘molar’ has been annotated
as complex by 17 out of 20 annotators when it is used in the sentence ‘Elephants have
four molars...’, none of them annotated it complex when it is used in the sentence ‘...
new molars emerge in the back of the mouth’. The annotators may have found the word
‘molar’ simpler when it is surrounded by familiar words that imply the meaning (e.g.,
mouth), and found it complex when it is used in a rarer and less semantically similar
co-occurrence context (e.g., elephants). These complexities only can be captured by
using the CWI system that takes context into account. The current state-of-the-art SEQ
system (Gooding and Kochmar 2019) based on the sequential framework by Rei (2017) is
capable of taking word context into account, detecting complex words as well as phrases,
eliminating extensive feature engineering by relying on word embeddings only and does
not require genre-specific training. This system frames CWI as the process of identifying
words that are difficult for a given target population (for example, non-native speakers
of English) based on the annotation from a sample of that target population (Yimam
et al. 2018).
Most research works used the CWI shared task 2018 datasets (Yimam et al. 2018)

for the CWI task. However, for my application, I needed more general, common and
basic texts where second language learners would come across frequently. This requires
us to collect data for Second Language Learners (L2) from the InScript (Narrative Texts
Instantiating Script structure) (Modi et al. 2017) and OneStop (Vajjala and Lučić 2018)
corpus. Where OneStop texts are balanced in elementary, intermediate, and advanced
level texts, the InScript texts are based on ten different frequently faced scenarios by
people. The details of the datasets will be elaborated in Section 3.
The CWI system trained on a huge amount of data can find latent features in the data

successfully without the need for implicit feature engineering. However, when the task
gets complicated and the amount of data is limited, we can still profoundly benefit from
feature engineering approaches. Thus I hypothesize that the hand-engineered features
along with context-dependent features might be helpful to improve the CWI model per-
formance. I propose hybrid model in my thesis, which uses feature engineering along
with word embedding. The set of features employed in my experiments are based on the
insights from the CAMB at CWI shared task 2018 (Gooding and Kochmar 2018), which
is another state-of-the-art system based on feature engineering. In this thesis, I identified
thirteen different features for introducing into the sequential model. Further, I selected
the most significant features needed to improve the performance of the CWI system for
second language learners instead of incorporating extensive feature engineering.
Recently, the fully-connected self-attention architecture i.e., Transformer is broadly

adopted in various natural language processing (NLP) tasks such as sequence classifica-
tion, token classification, or question answering owing to its parallelism and advantage
in modeling the long-range context. While transformer models achieve state-of-the-art
performances in numerous NLP tasks, I observe a lack of research in the area of CWI.
In this thesis, I also present an empirical study of the performance of CWI approaches
derived from a pre-trained RoBERTa and BERT model.

3



1 Introduction

Specifically, I will address the following research questions:

• RQ1: Do the Hybrid approach outperforms the sequential model for the CWI
task?

• RQ2: Do the transformer-based models outperforms the sequential model for the
CWI task?

• RQ3: Are the models trained on CWI Shared Task data are good enough for
second language learners?

Further, in this thesis, I overview the related work in this field in Chapter 2. In Chapter
3, I have explained the data and their statistics that I am going to use for the model
training and evaluation. Section 3.1 demonstrates the technique used to annotate L2
data. Chapter 4 shows the data format I used for the various models. Chapter 5 presents
the evaluation metric used for the model evaluation. Chapter 6 presents the experimental
setup of the sequential model for CWI. In Section 6.1, I explained the architecture of the
sequential model, which I adapted to replicate the current state-of-the-art results for the
CWI task. I used the same architecture to replicate the results and then converted it to
a hybrid model by introducing features. In Section 6.3, I performed a pilot experiment
to replicate the original results for CWI shared task 2018 testsets as well as checking
model performance on my L2 testsets. I also presented the model performance by using
more sophisticated FastText embeddings instead of GloVe embeddings from the original
paper. Section 6.5 shows the features I am considering to introduce in the sequential
model, making it hybrid architecture 6.4. In Section 6.6, I detailed all the features I
adopted and their importance in the sequential model for CWI. The last Section 6.7
under Chapter 6, provides my feature selection approach and evaluates the performance
of the hybrid model using selected features. In Chapter 7, I fine-tuned the transformer
models RoBERTa and BERT for the CWI task and presented the performance on shared
task 2018 and L2 testsets. Section 7.1 presents the three different sets of training data to
be trained on transformer models. In Chapter 8, I discussed my various approaches for
CWI and key findings. Finally, I provided my conclusion and outline future directions
for this research in Chapter 9.
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2 Related Work

In this chapter, I will discuss the previous work done for the CWI using different Shared
Task datasets. In Section 2.1 I will discuss the very first dataset made available for the
CWI task and the various system approaches for CWI. Section 2.2 and Section 2.3 will
discuss about the Shared Task 2018 and SemEval-2021 Shared Task for CWI respectively.

2.1 SemEval-2016 Shared Task on CWI

CWI has often been regarded as a crucial first step for automatic lexical simplification
(Shardlow 2014). Although lexical simplification methods have been proposed for more
than a decade (Petersen and Ostendorf 2007), CWI has not been studied as a separate
standalone task (Shardlow, 2013a). The SemEval-2016 shared task on CWI (G. Paetzold
and Specia, 2016b) was the first evaluation campaign that provided a gold-standard
dataset as well as an extensive comparison of different machine learning approaches for
the task. The gold-standard dataset combines the data from the CW corpus of Shardlow
(2013b), the LexMTurk corpus of Horn et al. (2014) and the Simple Wikipedia corpus of
Kauchak (2013), all of which rely on Simple Wikipedia data. The dataset was annotated
as complex or simple by a set of 400 non-native speakers.
The SemEval-2016 shared task featured 42 systems based on different types of classi-

fiers and using different types of features, ranging from linguistic information like lexical,
morphological, semantic and syntactic level features, over psycholinguistic measures to
corpus-based information such as word frequencies. The most popular classifier among
the top participants was Random Forest (Brooke et al. (2016); Mukherjee et al. (2016);
Ronzano et al. (2016); Zampieri et al. (2016)), while the most common type of fea-
tures were lexical and semantic features (Brooke et al. (2016); Mukherjee et al. (2016);
Ronzano et al. (2016); G. Paetzold and Specia (2016c); Quijada and Medero (2016)).
Along with Random Forest classifier some participant used Naive Bayes (Mukherjee et
al. 2016) or SVM (Zampieri et al. 2016). Many other classification methods has been
used by participants like Maximum Entropy (Konkol 2016), Decision Trees (Quijada
and Medero 2016) or Nearest Centroid (Palakurthi and Mamidi 2016). The results on
the shared task showed how ensemble methods (G. Paetzold and Specia 2016c) trained
on morphological, lexical, and semantic features outperformed any other ML technique
and neural approaches in particular (Bingel et al. 2016). Also, the results showed that
simpler features based on word frequency (Konkol (2016), Wróbel (2016), and Zampieri
et al. (2016)) and word presence in certain lexicons (Mukherjee et al. (2016) and Wróbel
(2016)), work best.
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2.2 Shared Task 2018 on CWI

The CWI 2018 shared task (Yimam et al. 2018) used the data from News, Wikinews,
and Wikipedia articles, derived from the dataset of Yimam et al. (2017). In CWI 2018,
a multilingual dataset was made available containing English, German, and Spanish
training and testing data for monolingual tracks, and a French testset for multilingual
predictions. They approach CWI from two perspectives: under the binary setting, a
word can be either simple or complex, while in the probabilistic setting a word receives a
probability score reflecting the proportion of annotators that consider the word complex.
The dataset includes annotation for content words as well as for phrases. The most recent
research on CWI uses the data from the CWI 2018 shared task. AbuRa’ed and Saggion
(2018) evaluated the performance of five classification algorithms on the English part
of the dataset: Support Vector Machine (with linear and radial basis function kernels),
Naive Bayes, Logistic Regression, Random Tree, and Random Forest. They designed
two systems based on binary classifiers, one represents the context as word embedding
vectors, and the other uses a set of lexical, semantic, and contextual features. Random
Forest classifier performed best over the whole dataset for both systems. Kajiwara and
Komachi (2018) TMU system demonstrates the usefulness of a learner corpus for the
CWI task proving the word frequency counted from the Lang-8 learner corpus (Mizumoto
et al. 2011) worked better than that from the in-domain corpus written by the native
speakers. They use random forest classifiers and regressors with eight features including
the number of characters and words and the frequency of target words in various corpora.
CAMB system (Gooding and Kochmar 2018) was the winning system submitted to the

CWI Shared Task 2018. This system considers words irrespective of their context and
relies on 27 features of various types, encoding lexical, syntactic, frequency-based, and
other types of information about individual words. They incorporated Random Forests
and AdaBoost with 5000 estimators for binary classification while Linear Regression
algorithm for probabilistic. CAMB system incorporated features based on the insights
from the CWI shared task 2016 (G. Paetzold and Specia 2016c) in addition to the number
of words grammatically related to the target; a range of psycholinguistic features from
the MRC Psycholinguistic Database (Wilson 1988); CEFR levels (Council of Europe
2011); and the use of Google N-gram word frequencies. However, the CAMB system
is genre-dependent as the performance of the classifier varies according to the genre of
data leading to the choice of the features, algorithm, and training data depending on the
genre. Gooding and Kochmar (2019) presented a novel approach to CWI based on the
sequence modeling (SEQ system), which takes the context into account. SEQ system
eliminates the need for extensive feature engineering by relying on word embeddings
only, due to which it does not require genre-specific training and represents a one-model-
fits-all approach. SEQ system uses the sequential architecture by Rei (2017), which has
achieved state-of-the-art results on several NLP tasks. SEQmodel benefits from the use of
bi-directional long short-term memory (BiLSTM) (Hochreiter and Schmidhuber 1997),
as these units can capture the long-term contextual dependencies in natural language
and able to consider both the left and right contexts of a word. The SEQ system also
outperformed the CAMB system submitted to the CWI Shared Task 2018.
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2.3 SemEval-2021 Shared Task on CWI

2.3 SemEval-2021 Shared Task on CWI

Previous efforts (G. Paetzold and Specia (2016b); Yimam et al. (2018)) have focused
on framing this as a binary classification task, which might not be ideal, since a word
close to the decision boundary is assumed to be just as complex as one further away
(Shardlow et al. 2020). CompLex (Shardlow et al. 2020) is the most recent dataset used
for the Lexical Complexity Prediction (LCP) shared task at SemEval-2021 (Shardlow et
al. 2021), which formulates CWI task as a regression task. It is an English multi-domain
corpus in which words and multi-word expressions (bigrams) were annotated with respect
to their complexity using a five-point Likert scale, depending on whether it seemed more
or less easy to understand in the context. Each instance has been annotated multiple
times and authors have taken the mean average of these annotations as the label for
each data instance. To add variation in the data, authors selected English text at almost
equal proportions from three sources: the Bible (Christodouloupoulos and Steedman
2015), Europarl (Koehn 2005), and Biomedical (Bada et al. 2012) texts. SemEval-2021
task featured two Sub-tasks: Subtask 1 focused on single words and Subtask 2 focused
on multi-word expressions. Three main types of systems that were submitted to this task
were Feature-based systems, Deep Learning Systems, and Systems which use a hybrid of
the former two approaches.
JUST-BLUE system (Bani Yaseen et al. 2021) makes use of an ensemble of BERT

(Devlin et al. 2018) and RoBERTa (Liu et al. 2019) and attained the highest Pearson’s
Correlation for Subtask 1. Authors fine-tuned BERT and RoBERTa models with the
‘token’ and the ‘complexity’ label to be trained. As a second strategy, they also inserted
‘sentence’ and ‘complexity’ columns to both models. The results have been combined
using an ensembling voting method with weighted averaging. To calculate the degree
of complexity for a single word, authors consider 80% voting from the ‘token’ model
and 20% voting from the ‘sentence’ model as the complexity of the word is affected by
the complexity of the sentence. DeepBlueAI system by Song et al. (2021) has achieved
the best Pearson’s Correlation for Subtask 2 and was runner-up for Subtask 1. This
system used an ensemble of pre-trained language models RoBERTa and ALBERT (Lan
et al. 2019), which were fine-tuned with various hyperparameters and different training
strategies. The final prediction has been provided by applying a stacking mechanism on
top of the fine-tuned pre-trained language models.
Deep Learning based systems have attained the highest Pearson’s Correlation on

SemEval-2021 task, however, feature-based systems were not far behind and have been
placed in the third and fourth spots on Subtask 1. Mosquera (2021) used a feature-
based approach, incorporating 51 features based on length, frequency, semantic features
from WordNet (Miller 1995) and sentence level readability features. These features were
passed through a Light-GBM (Ke et al. 2017) implementation of gradient tree boost-
ing to give the final output score. While examining feature importance, it has been
observed that several sentence readability features are being identified as top contrib-
utors. Rotaru (2021) combined traditional feature-based approach with features from
pre-trained language models. They use psycholinguistic features, context-independent
features: Skip-gram (Pennington et al. 2014), Word2Vec (Mikolov et al. 2013) and Con-
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ceptNet NumberBatch (Speer et al. 2016) embeddings and context-dependent features
from an ensemble of pre-trained language models: BERT, RoBERTa, ELECTRA (Clark
et al. 2020), ALBERT, DeBERTa (He et al. 2020). All these three types of features are
passed through gradient boosted regression to give the final output score.
Taya et al. (2021) proposed an ensemble of pre-trained language models RoBERTa

and BERT along with various training strategies to boost performance. They also added
hand-crafted features during training to enrich contextual representations. As a feature,
word frequency information of the target word is introduced that has been computed
from the log frequency values using the Wiki40B corpus (Guo et al. 2020). Hybrid
approaches use a mixture of deep learning by fine-tuning a neural network alongside
feature-based approaches. The hand-crafted features could be concatenated directly to
the input embeddings, or at the output prior to further training. This strategy appears
to be the best of both worlds, uniting linguistic knowledge with the power of pre-trained
language models, however, the hybrid systems do not tend to perform as well as either
feature-based or deep learning systems (Shardlow et al. 2021).

In this thesis, I use the CWI Shared Task 2018 English data, which contains annotation
for both words and phrases, and represents three different genres of text. I focus on the
binary setting, i.e., complex or non-complex, and compare my results to the previous
state-of-the-art system. I have also incorporated transformer-based pre-trained language
models for this data, which have achieved state-of-the-art results in the newest shared
task data SemEval-2021. The hybrid approach has also been utilized for the SemEval-
2021 task, however, they did not perform better than the feature-based and deep learning
based systems, and ranked seventh in the CWI task.
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3 Datasets

For my experiment, I considered CWI Shared Task 2018 English dataset (Yimam et
al. 2018), which provides binary judgment of a word’s complexity, i.e, whether a word
is complex or not? Whilst SemEval-2016 dataset (G. Paetzold and Specia, 2016b) relied
only on Simple Wikipedia, the Shared Task 2018 dataset uses texts from 3 different
genres: professionally written news articles (NEWS), amateurishly written news articles
(WIKINEWS), and WIKIPEDIA articles, making it an optimum choice for language
learners. Also, I used one of the models, i.e., the sequential model from Shared Task
2018 as the baseline, therefore Shared Task 2018 seems to be the most logical choice.
The dataset includes annotation for a selected set of content words as well as for

phrases, which is provided alongside the full sentence and the word span. Table 3.1
presents the statistics on the number of words (w) and phrases (ph) annotated in the
training (train), development (dev), and test subsets of datasets. The annotation for
the English data is collected from 10 native and 10 non-native speakers of English using
the Amazon Mechanical Turk platform. The annotation contains both binary (bin) and
probabilistic (prob) labels. In binary labels, words and phrases are annotated complex if
at least one of the 20 annotators annotated them as complex, otherwise simple. However,
in probabilistic labels, words and phrases receive a label in the range between [0.0, ...,
1.0] depending on the number of annotators who marked them complex.

Dataset Train Test Dev

News (w) 11,949 1,502 1,813

News (ph) 2,053 262 282

WikiNew (w) 6,780 776 1,138

WikiNew (ph) 966 94 149

Wikipedia (w) 4,833 606 750

Wikipedia (ph) 718 88 120

Table 3.1: Number of words (w) and phrases (ph) annotated in CWI shared task datasets.

In Table 3.2, I have shown the Shared Task 2018 English dataset tokens distribution for
training, validation, and various test sets. This dataset has most of the data proportion
from the News genre and least from the Wikipedia genre. Also, it is very clear for this
table that every set has almost five times more non-complex words than complex words.
Every set has more than 80 % of words marked as non-complex making it imbalance.
The graphical representation of the distribution of tokens in Shared Task 2018 testsets
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3 Datasets

is presented in Figure 3.1.

Dataset #Sen #tokens #C #N N (percentage)

Full Train 2,063 52,476 8,408 44,068 83.98

Full Val 266 6,627 1,049 5,578 84.17

News Test 177 4,068 576 3,492 85.84

WikiNews Test 105 2,454 440 2,014 82.07

Wikipedia Test 61 1,775 353 1,422 80.11

Table 3.2: Total number of sentence and token distribution in Shared Task 2018 data.

Figure 3.1: Distribution of complex and non-complex words in Shared Task 2018 testsets.

For my experiment, I further need an English dataset that is annotated with complex
words at the same time frequently used by language learners, which makes us select my
L2 text from InScript (Modi et al. 2017) and OneStopEnglish (Vajjala and Lučić 2018)
corpus. InScript is a corpus of simple narrative texts in the form of stories, wherein each
story is centered around a specific scenario from 10 different scenarios. The 10 different
scenarios used in InScript corpus are bath, bicycle, bus, cake, flight, grocery, haircut,
library, train, and tree. The stories have been collected via Amazon Mechanical Turk,
asking the participants to describe a scenario in form of a story as if explaining it to a
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child. They collected 100 stories per scenario, giving a total of 1,000 stories with about
200,000 words. Table 3.3 presents the data statistics for different scenarios of InScript
data.

Category #tokens #sentences max_sen_len

bath 4,016 261 42

bicycle 3,783 256 38

bus 3,918 258 38

cake 3,950 278 32

flight 4,120 254 39

grocery 4,175 274 48

haircut 3,830 256 40

library 3,980 248 39

train 3,833 258 33

tree 3,729 237 36

Total/Max 39,334 2,580 48

Table 3.3: Number of tokens, sentences and maximum sentence length of InScript data.

The OneStopEnglish corpus was compiled from onestopenglish.com, which is the En-
glish language learning resources website. The website contains articles sourced from The
Guardian newspaper, which has been collected over the period 2013–2016 and rewritten
by teachers to suit three levels of English as Second Language learners: Elementary,
Intermediate, and Advanced. The advanced version is close to the original article, al-
though not with the exact same content. I selected OneStop data that are balanced in
3 categories with 33 paragraphs for each level. Table 3.4 presents the statistics as the
number of tokens, number of sentences, and maximum length of the sentence in different
levels of the OneStop data.

Category #tokens #sentences max_sen_len

advanced 30,787 1,364 79

elementary 20,136 1,125 72

intermediate 25,190 1,231 62

Total/Max 76,113 3,720 79

Table 3.4: Number of tokens, sentences and maximum sentence length of OneStop data.
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3 Datasets

3.1 L2 Data Annotation

For my experiment, I annotated all the words in L2 data utilizing Common European
Framework of Reference for Languages (CEFR) (Council of Europe 2011) levels. The
CEFR describes six broad levels of ability, with A1 being the lowest and C2 the highest.
Learners are classified into three distinct groups: the Basic User (levels A1 and A2),
the Independent User (B1 and B2), and the Proficient User (C1 and C2). The English
Vocabulary Profile (EVP) (https://www.englishprofile.org/wordlists/evp) offers reliable
information about which words (and importantly, which meanings of those words) and
phrases are known and used by learners at each level. Cambridge University Press is
making the A1-C2 EVP available free of charge to teachers and educationalists around
the world. A single word can exist in different CEFR levels based on some guidance, the
topic where it is used, and part of speech. For instance, the word ‘minute’ is assigned
level A1 when it is used in the context of time and it is also assigned level C2 when
it is used in the context of describing small things. For simplicity, I annotated words
as complex only if they exist above B1 level, else non-complex. However, this would
not ensure the word complexity on the basis of context at all. Also, the words which
could be complex for language learners but not present in the EVP were annotated as
non-complex using this technique (like ‘cyclones’).

Dataset #tokens #C #N N (percentage)

InScript 39,334 947 38,387 97.72

OneStop 76,113 4,311 71,802 94.56

Table 3.5: Token distribution in L2 data.

Table 3.5 shows the distribution of tokens in the InScript and OneStop data. Figure
3.2 shows the graphical representation of the distribution of tokens in L2 data. The total
number of words marked as complex using the CEFR level technique for the InScript
and OneStop data are 947 and 4, 311 respectively. OneStop data have almost twice the
number of tokens as InScript, however, it has almost four times more complex words than
InScript. This makes sense as OneStop data are based on English language complexity
categories including advanced English. The L2 data have a very high proportion of non-
complex words, which makes sense due to my annotation technique. As these L2 data
are not annotated by some language learners, I consider this data only as the testset
to compare the performance of models in totally unseen data. Table 3.6, shows some
example texts from these L2 data with bold words indicating complex words.
Initially, I pass my L2 data (annotated based on CEFR levels) on the pre-trained SEQ

model from Gooding and Kochmar (2019) on the English part of the CWI datasets from
Yimam et al. (2018) for identifying complex words in it. However, the results achieved in
my text did not seem to be promising. It has been found that most of the non-complex
nouns (whales, ducks, tub, bathtub, bubble bath, soaps, shower, temperature, oils, salts,
scent, sunscreen, bathrobe, lavender, scented, gym, clothes, shampoo, conditioner, taps,
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3.1 L2 Data Annotation

Figure 3.2: Distribution of complex and non-complex words in L2 data.

etc.) in my L2 data are annotated as complex by this system. It has also been seen
that some words, which seem to be complex according to CEFR levels such as ‘squeaky’
(CEFR level C2) are not identified as complex by the system. This ensures that the
vocabulary complexity for shared task data sets versus L2 data sets is different and for
the L2 CWI application, I need to train the model using human-annotated data similar
to my L2 data.

‘After I get squeaky clean’ - bold identified as non-complex

‘The bottom of the bath tub.’ - bold identified as complex

‘Fun toys for the bathtub are boats and plastic water animals like whales and
ducks.’ - bold identified as complex
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3 Datasets

L2
Data

Text

InScript
(Bath)

After going to the gym, I knew I needed to take a bath. I went to the bathroom
and turned the faucet on in the tub while plugging the drain to fill it. When
the water was at a good level I shut the water off. I took off all my dirty gym
clothes. I then made sure the temperature of the water was nice and warm
before I slowly got inside.

InSCript
(Train)

Today I am going to ride a train to visit my grandmother. We are going to visit
for my birthday. We left our home and drove in our car to the train station.
We then went up to the counter and bought two tickets to ride the train to my
grandmother’s town. We had to wait for twenty minutes in the station before it
was time to board our train. When it was time, we went over to the train and
handed our tickets to a man in a uniform that works on the train. He checked
our tickets and helped us up onto the train.

OneStop
(Inter-
mediate)

False memories are a major problem with witness statements in courts of
law. Evidence that eyewitnesses give often leads to guilty verdicts, but later
the convictions are overturned when DNA or some other evidence is used.
Susumu Tonagawa, a neuroscientist at the Massachusetts Institute of Tech-
nology (MIT), and his team wanted to study how these false memories might
form in the human brain, so they encoded memories in the brains of mice by
manipulating individual neurons.

OneStop
(Ad-
vanced)

Scientists have connected the brains of a pair of animals and allowed them to
share sensory information in a major step towards what the researchers call the
worlds first organic computer.The US team fitted two rats with devices called
brain-to-brain interfaces that let the animals collaborate on simple tasks to
earn rewards, such as a drink of water. In one radical demonstration of
the technology, the scientists used the internet to link the brains of two rats
separated by thousands of miles, with one in the researchers lab at Duke
University.

Table 3.6: Text examples from L2 Data (bold words are complex).
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4 Data Setup

Shared Task 2018 has data in the format as shown in Figure 4.1. The second column in
the format shows the actual sentence and the fifth column represents the target word.
The gold-standard label for the corresponding target word is present in the tenth and
eleventh columns. The tenth column shows the label for binary classification tasks while
the eleventh column is for probabilistic classification tasks.

Figure 4.1: CWI Shared Task 2018 data format.

The sequential framework by Rei (2017), which I adopted as baseline needed the data
in a format with complete word context as an input. This makes us tokenize the sen-
tences and includes the corresponding annotation for each word token, using C for the
annotated complex words otherwise, N , resulting in the following format:

The N
barren C
islands N
. N

Spanish N
lenders C
...

The data results in standard CoNLL-type tab-separated format. The file format is
one word per line, a separate column for token and label, and an empty line between
sentences. The empty line in this format lets the model know the end of the sentence.
There can be other columns in the middle of the token and label, which I utilized to
introduce hand-engineered features. I also converted L2 data in the same format.
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5 Evaluation Metrics

The evaluation metric reported is the macro-averaged F1, as it was used in the 2018 CWI
shared task (Yimam et al. 2018). Also, the same metric has been reported by the SEQ
model by Gooding and Kochmar (2019), which demonstrates state-of-the-art results for
CWI shared task 2018 dataset.
To evaluate model performance comprehensively, we should examine both precision

and recall. The precision is the ratio of correctly predicted positive observations to the
total predicted positive observations 5.1. This metric is used to measure how many
words, which are labeled as complex are actually complex. High precision is related to
the low false-positive rate, i.e., falsely classified as complex. The recall is the ratio of
correctly predicted positive observations to all observations in the actual class 5.2. This
metric is used to measure how many words, which are actually complex are labelled as
complex. The high recall is related to the low false-negative rate, i.e., falsely classified
as non-complex.

Precision = (TruePositive/(TruePositive+ FalsePositive)) (5.1)

Recall = (TruePositive/(TruePositive+ FalseNegative)) (5.2)

The F1 score 5.3 serves as a helpful metric that considers both of them by considering
harmonic mean of precision and recall for a more balanced summarization of model
performance. The macro-averaged F1 score is computed by taking the arithmetic mean
of all the per-class F1 scores. In my application, I have two classes for the target words
named complex and non-complex. Equation 5.4 demonstrates the macro-averaged F1
score computation for binary classification. For instance, if F1 score for complex and
non-complex class are 0.80 and 0.90 respectively then the macro-averaged F1 score will
be 0.85.

F1 = ((2 ∗ precision ∗ recall)/(precision+ recall)) (5.3)

MacroF1 = ((F1complex + F1non−complex)/2) (5.4)

In Chapter 3, I have also shown that shared task 2018 data sets have imbalanced
classes, using the macro average would be a good choice as it treats all classes equally. It
will allow us to compare the performance achieved by training the sequential model from
scratch to replicate original results. This evaluation metric will also allow us to illustrate
whether the hybrid model (sequential model introduced with features) technique or fine-
tuning transformers, improves the performance over the SEQ system. I will also present
precision and recall metrics to improve the recall of the model. This step is taken to
make sure that the model reduces the number of errors while identifying complex words.
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6 Sequential Model for CWI

6.1 Sequential Architecture

As the baseline architecture (Figure 6.1) for my CWI system, I use the sequence labelling
architecture of Rei (2017). This sequential model framework has the ability to infer rep-
resentations for previously unseen words and to share information about morpheme-level
regularities. Gooding and Kochmar (2019) has used this framework to build their SEQ
system and provided the state-of-the-art results in CWI Shared Task 2018. Within this
framework, the model receives as input a sequence of tokens (w1, w2, ..., wT ) and predicts
a label for each token using a bidirectional LSTM. The input tokens are first mapped to
a sequence of word embeddings (x1, x2, ..., xT ). The model use 300-dimensional GloVe
embeddings as word representations (Pennington et al. 2014). To construct context-
dependent representations for every word, two LSTM (Hochreiter and Schmidhuber 1997)
moving in opposite directions through the sentence are used. To obtain a context-specific
representation for each word in the sentence, the hidden representation (h1, h2, ..., hT )
from both directional LSTM are concatenated.

−→
ht = LSTM(xt,

−−→
ht−1)

←−
ht = LSTM(xt,

←−−
ht+1)

ht = [
−→
ht ;
←−
ht ]

Finally, the concatenated representation is passed through a feedforward layer (d1, d2, ..., dT )
allowing the model to learn from both context directions.

dt = tanh(Wdht)

In the above equation, Wd is a weight matrix and tanh is used as the non-linear
activation function. The architecture use softmax to predict the label (Complex or Non-
Complex) for each token.
To handle previously unseen words, while taking full advantage of the word embed-

dings, the framework also makes use of the character-level component. The individual
characters of a word are mapped to character embeddings and passed through a bidi-
rectional LSTM. The hidden representation from both directions is concatenated before
passing through the non-linear layer. Further, this resulting vector representation is com-
bined with a regular word embedding using a dynamic weighting mechanism allowing the
model to learn character-based patterns.
Instead of only using F1-Score 5.3, Rei (2017) has defined an additional metric F05-

Score 6.1 to define their best model and saving it. F05-Score is the weighted harmonic
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6 Sequential Model for CWI

Figure 6.1: The unfolded network structure for a sequence labeling model with an ad-
ditional language modeling objective, performing CWI on the sentence ”The
Hamburg University”. The input tokens are shown at the bottom, the ex-
pected output labels are at the top. The arrows above variables indicate the
directionality of the Bi-LSTM.

mean of the precision and recall, giving more weight to the precision. If the F05-score
of development data is better from the previous epochs, the model is saved and if the
performance did not improve for the next continuous 7 epochs the model training stopped.
Also, they keep decreasing the learning rate at the factor of 0.9 starting from 1, if the
model results did not improve for the 3 or more epochs continuously. They used a batch
size of 32 and set the maximum number of epochs to 200.

F05 = ((1.25 ∗ precision ∗ recall)/((0.25 ∗ precision) + recall)) (6.1)

6.2 Approach

I will consider sequence labeling architecture by Rei (2017) as a baseline architecture and
further do some changes on it to improve the CWI performance. Firstly, I will try to
replicate the original results from the SEQ model (Gooding and Kochmar 2019) and set
them as baseline results for further improvement. I will incorporate FastText (Bojanowski
et al. 2016) embeddings instead of GloVe (Pennington et al. 2014) to deal with unseen
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6.3 The Pilot Experiment

and rare words and better generalization from the model. Also, I will update the F05-
Score 6.1, used by the SEQ model to improve the recall. This change will make my
application more robust towards language learners as better recall results in less error in
identifying the complex words. Later, I will incorporate many hand-engineered features
(Section 6.5) useful for CWI and introduce them in the sequential model, resulting in
a hybrid model. All the results showed in this thesis for various experiments are taken
from the average of three experiments.

6.3 The Pilot Experiment

In this experiment, I tried to replicate the original results from Gooding and Kochmar
(2019) using the same model framework, hyperparameters, and embeddings. I trained
the sequential model using training datasets from News, WikiNews, and Wikipedia and
tested it on each test data individually. Table 6.1 displays the results achieved by this
experiment. The performance achieved for the InScript and OneStop data (L2 data) is
very low in comparison to News, WikiNews, and Wikipedia test data (Shared Task 2018
test data). This makes sense as the vocabulary complexity of L2 data is different from
shared task data, and I did not consider the L2 data for model training. For the rest
of the experiment, I will consider the results achieved by this model (SEQbaseline) as
baseline results.

Testset Precision Recall F-score

News 0.8945 0.8495 0.8694

WikiNews 0.9013 0.8236 0.8544

Wikipedia 0.8805 0.8097 0.8369

InScript 0.5610 0.6612 0.5815

OneStop 0.6064 0.6986 0.6317

Table 6.1: Precision, recall and macro F-score achieved for different testsets.

Table 6.2 compares the macro F-score achieved by SEQbaseline to the results published
by original paper (Gooding and Kochmar 2019). The performance achieved for News
and WikiNews testsets is almost similar to the published SEQ system. However, for
Wikipedia testsets I have achieved a better F-Score by 2.29%. The reason could be
either the way the SEQ system was built using sequence labeling architecture by Rei
(2017) or the way they formatted the system accepted file from Shared Task 2018 data.

6.3.1 Word Embeddings

In this experiment, I tried to improve the model performance by incorporating FastText
(Bojanowski et al. 2016) embeddings developed by Facebook instead of GloVe embed-
dings. GloVe builds word embeddings in a way that a combination of word vectors relates
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6 Sequential Model for CWI

Testset SEQ SEQbaseline

News 0.8763 0.8694 (-0.69)

WikiNews 0.8540 0.8544 (+0.04)

Wikipedia 0.8140 0.8369 (+2.29)

Table 6.2: Comparison of macro F-scores achieved by SEQbaseline to the state-of-the-art
SEQ system.

directly to the probability of these words co-occurrence in the corpus. Its embeddings can
be interpreted as a summary of the training corpus with low dimensionality that reflects
co-occurrences. However, there was one unsolved problem: generalization to unknown
words. FastText overcome this problem by going one level deeper instead of using only
words to build word embeddings. FastText improves embeddings by taking word parts
into account as well. This approach has two advantages: (1) generalization is possible
as long as new words have the same characters as known ones (2) less training data is
needed since much more information can be extracted from each piece of text.

The advantages of FastText above GloVe word embeddings are useful for my experi-
ment as I am determined to improve performance over the L2 testset while training the
model using the training set from CWI Shared Task 2018. In my experiment, I used the
pre-trained English word vectors from FastText, which contains 2 million word vectors
with subword information on Common Crawl (600B tokens). Table 6.3 displays the re-
sults achieved by training the sequential model using FastText embeddings (SEQFastText

model).

Testset Precision Recall F-score

News 0.9055 0.8724 0.8876

WikiNews 0.9019 0.8349 0.8626

Wikipedia 0.8918 0.8213 0.8497

InScript 0.5664 0.6614 0.5890

OneStop 0.6216 0.7252 0.6512

Table 6.3: Precision, recall and macro F-score achieved for different testsets using Fast-
Text embeddings

In Table 6.4, I compare the results achieved from SEQbaseline model (GloVe embed-
dings) to SEQFastText model (fastText embeddings). Incorporating FastText embed-
dings has increased the performance of sequential model noticeably in all testsets.
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Testset Precision Recall F-Score
SEQbaseline SEQFastText SEQbaseline SEQFastText SEQbaseline SEQFastText

News 0.8945 0.9055 0.8495 0.8724 0.8694 0.8876

WikiNews 0.9013 0.9019 0.8236 0.8349 0.8544 0.8626

Wikipedia 0.8805 0.8918 0.8097 0.8213 0.8369 0.8497

InScript 0.5610 0.5664 0.6612 0.6614 0.5815 0.5890

OneStop 0.6064 0.6216 0.6986 0.7252 0.6317 0.6512

Table 6.4: Comparison of results achieved from SEQbaseline to SEQFastText

6.3.2 Recall-oriented Learning

In this section, I tried to improve the recall of the SEQFastText model without compro-
mising the overall performance. Considering some applications utilizing the CWI system
like language learners application that chooses and displays the most relevant images
for the complex words, it does not matter if the system misidentifies some non-complex
words as complex (low precision). However, I do not want to miss complex words to be
identified as complex, so that language learners can understand the context easily.
For improving recall, I updated the metric F05-Score 6.1 introduced by Rei (2017)

in sequential framework to give more weight to the recall instead of the precision. The
resulting F05-Score is displayed in Equation 6.2.

F05 = ((1.25 ∗ precision ∗ recall)/(precision+ (0.25 ∗ recall))) (6.2)

Further, I trained the model using these changes (SEQFTRec model), and the results
achieved are displayed in Table 6.5.

Testset Precision Recall F-score

News 0.8750 0.9140 0.8929

WikiNews 0.8737 0.8870 0.8801

Wikipedia 0.8679 0.8720 0.8699

InScript 0.5688 0.7434 0.5945

OneStop 0.6135 0.7694 0.6444

Table 6.5: Precision, recall and macro F-score achieved for different testsets while im-
proving recall.

In Table 6.6, I compare the model results achieved from SEQFastText to the SEQFTRec,
where I tried to improve recall. The comparison shows that the recall for each testset
is improved by at least 4% with this experiment. However, there is always a trade-off
between precision and recall, which has been reflected here as well. But as the model
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6 Sequential Model for CWI

was trained on more non-complex words than complex words, the precision drop is very
less (approx. 2.5%) in comparison to recall growth, improving the macro F-score overall.

Testset Precision Recall F-Score

SEQFastText SEQFTRec SEQFastText SEQFTRec SEQFastText SEQFTRec

News 0.9055 0.8750 0.8724 0.9140 0.8876 0.8929

WikiNews 0.9019 0.8737 0.8349 0.8870 0.8626 0.8801

Wikipedia 0.8918 0.8679 0.8213 0.8720 0.8497 0.8699

InScript 0.5664 0.5688 0.6614 0.7434 0.5890 0.5945

OneStop 0.6216 0.6135 0.7252 0.7694 0.6512 0.6444

Table 6.6: Comparison of results achieved from SEQFastText model to SEQFTRec model.

The best results were achieved for CWI using the SEQFTRec model, which incorpo-
rated the FatText embeddings as well as tuned to improve the recall. In further sections,
I will try to introduce hand-engineered features in this model.

6.4 Hybrid Architecture

I propose the Hybrid approach for my CWI sequence system by including hand-engineered
features along with context-dependent features (word embeddings) in the sequence model.
I explicitly added hand-engineered features to the sequential architecture (see Figure 6.1),
resulting in hybrid architecture displayed in the Figure 6.2. The idea behind building
this architecture is that I could provide some external features useful for CWI that the
network could not learn on its own, like word frequencies in some learning corpus.
I achieve a hybrid model by concatenating the features (f1, f2, ..., fT ) from the sequence

of words, to the concatenated hidden representation (h1, h2, ..., hT ) from both directional
LSTM, before passing through a feedforward layer (d1, d2, ..., dT ).

−→
ht = LSTM(xt,

−−→
ht−1)

←−
ht = LSTM(xt,

←−−
ht+1)

ht = [
−→
ht ;
←−
ht ; ft]

dt = tanh(Wdht)

6.5 Features for CWI

We can profoundly benefit from feature engineering approaches when some NLP task is
complicated or the amount of data is limited. In my case, I have limited training data for
specific genres. Also, some features like target word frequency in most common English
words or some second language learner corpus can introduce external information that
the model can not learn from the training data. With this idea, I believed that adding
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6.5 Features for CWI

Figure 6.2: The unfolded network structure for a sequence labeling model with an ad-
ditional language modeling objective, performing CWI on the sentence ”The
Hamburg University”. The input tokens are shown at the bottom, the ex-
pected output labels are at the top. The arrows above variables indicate the
directionality of the Bi-LSTM. Features (f1, f2, f3) are concatenated to the
output vector from Bi-LSTM

some of these features could improve the model performance as well for the CWI task
overall, especially for L2 data. Instead of using extensive feature engineering, the features
are identified and selected for my model from the features used in the CAMB system
(Gooding and Kochmar 2018) because the CAMB system currently provides state-of-
the-art results based on feature engineering only. The most common features used by
several CWI systems are lexical and semantic features and corpus-based information
such as word frequencies. Additionally, I also identified some features based on sentences
to check the impact on target word complexity based on sentences. All the features I
identified for my experiment are listed below and would be described in more detail in
Section 6.6.

1) Sentence Features

1) Sentence length: the number of words in the sentence where target word
occurs.

2) Sentence complexity : ratio of complex words to the total words in the
current sentence.

3) Cosine Similarity : cosine similarity of target word to the other words in
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the same sentence.

2) Lexical Features

1) Word length: the number of characters in the word.

2) Number of syllables: the syllable count for the target word, collected using
the Datamuse API.

3) WordNet Features: number of synonyms, number of hypernyms and hy-
ponyms for the word’s lemma from WordNet.

3) Word Frequency

1) Google dataset of syntactic n-grams (Goldberg and Orwant 2013). This
dataset is based on a corpus of 3.5 million English books containing 345 billion
words. It contains several different forms of linguistic information on sequences
of words up to 5 tokens long, with frequency counts over a corpus.

2) Lang-8 English learner corpus (Mizumoto et al. 2011). This corpus con-
tains English learners’ text extracted from Lang-8: an online platform for
learning and practicing foreign languages. It has 100,051 English entries writ-
ten by 29,012 active users.

4) Lexicon-Based Features: binary features indicating the presence of the word
within a lexicon.

1) SubIMDB : a list produced using the SubIMDB corpus (G. Paetzold and
Specia 2016d). The word frequency in the subtitles from the ’Movies and
Series for Children’ section is calculated, and the top 1,000 words are included
in this list.

2) Simple Wikipedia (SimpWiki): a list of the top 6,368 words contained in
the Simple Wikipedia (Coster and Kauchak 2011).

3) Ogden’s Basic English: a list of 1,000 words from Ogden’s Basic English
list.

6.6 Features Details & Importance in Hybrid Approach

My goal for hybrid architecture is to get better model performance by using the least
number of features to avoid extensive feature engineering. This makes us identify features
in Section 6.5, which are used by previous research effectively. However, as I am using
deep learning most of the features do not put much impact on model learning. In this
section, I will try to identify the features from Section 6.5 that make more impact on the
model learning individually. For the hybrid approach, I will select the features, which
provide a better F-score for at least three testsets than the best F-score achieved from
the SEQFTRec model. For this purpose, I train the SEQFTRec model by introducing a
single feature at a time and comparing the F-score achieved from the SEQFTRec model.
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6.6.1 Sentence Length

For each target word, I computed the length of the sentence in which this target word
occurs through tokenization. The idea behind using this feature is that longer sentences
might be more complex for language learners than shorter sentences. In the whole train-
ing data, the maximum sentence length was 114 while the minimum sentence length was
3. The front propagation of neural networks involves the Dot Product of weights with
input features. So, if the values are very high, the calculation of output takes a lot of
computation time as well as memory. The same is the case during backpropagation due
to which the model converges slowly if the inputs are not normalized. Considering this, I
normalized the sentence length in the range [0,1] and passed this as an additional feature
in the hybrid model. The F-score achieved from this experiment is compared in Table
6.7 to the F-score achieved from SEQFTRec model.

Testset SEQFTRec Hybridsenlen

News 0.8929 0.8921

WikiNews 0.8801 0.8800

Wikipedia 0.8699 0.8683

InScript 0.5945 0.5964

OneStop 0.6444 0.6424

Table 6.7: F-score comparison of the SEQFTRec model results to the hybrid model with
normalized sentence length feature.

The F-score achieved from the hybrid model using normalized sentence length as a
feature has almost similar values to the F-Score achieved from the SEQFTRec model.
This indicates adding this feature to the sequential model does not help in the model
performance.

6.6.2 Sentence Complexity

I calculated the sentence complexity for each sentence by counting the total complex
words in a particular sentence and dividing it by the length of that sentence. I did
not consider only the complex word counts as sentence complexity because the shorter
sentence would be more complex than the larger sentence with the same number of
complex words. For instance, if sentence1 is of length 10 and sentence2 is of length 20
and both of them have 2 complex words then the complexity of both sentences would
be 2 if we consider complex word counts. However, if we consider the ratio of complex
words to sentence length then the sentence1 will have 0.2 complexity which is bigger (or
more complex sentence) than the 0.1 complexity of sentence2. For each target word in
a particular sentence, I calculated the sentence complexity from the same sentence in
which this word occur. I passed this complexity value as an additional feature in the
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hybrid model. The F-score achieved from this experiment is compared in Table 6.8 to
the F-score achieved from SEQFTRec model.

Testset SEQFTRec Hybridsencomp

News 0.8929 0.8934

WikiNews 0.8801 0.8804

Wikipedia 0.8699 0.8663

InScript 0.5945 0.5957

OneStop 0.6444 0.6465

Table 6.8: F-score comparison of the SEQFTRec model to the hybrid model with sentence
complexity feature.

From the comparison Table 6.8 I can say that both of these models have almost similar
performance, indicating, introducing sentence complexity as a feature does not help in
the improvement of performance.

6.6.3 Cosine Similarity

I used the cosine similarity of the target word with the other non-stop words in the
same sentence as an additional feature for the target word. I considered this feature as a
combination of three values: maximum similarity, minimum similarity, and the mean of
similarities from each non-stop word in the same sequence. The idea behind using this
feature is to capture the complexity of target words that are complex in some sentences
while non-complex in others. The cosine similarity could provide the logic behind this
on the basis of word similarities in the sentence irrespective of their size.
For computing cosine similarity I used TfidfVectorizer from Sklearn, Word2Vec (Mikolov

et al. 2013) and FastText (Bojanowski et al. 2016) embeddings. The similarities achieved
by TfidfVectorizer were not promising at all. The best similarities I achieved using Fast-
Text embeddings while Word2Vec embeddings provided less similarity score for most
similar words. Using FastText embeddings I computed the similarity of the target word
with other non-stop words in the same sentence and used the maximum similarity, mini-
mum similarity, and mean of all the similarities values as a feature for cosine similarity. I
passed these values as an additional feature for cosine similarity in the hybrid model. Ta-
ble 6.9 shows the comparison of F-Score achieved from this experiment to the SEQFTRec

model.
For News, WikiNews, InScript, and OneStop testsets, the hybrid model slightly outper-

forms the F-score achieved from the SEQFTRec model. At the same time, the Wikipedia
testset has a lower F-Score in the same proportion of higher in other shared task testsets.
For L2 testsets, both models have almost similar values. This indicates that both models
might converge to the same values if I will take an average of more experiments.
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Testset SEQFTRec Hybridcossim

News 0.8929 0.8963

WikiNews 0.8801 0.8860

Wikipedia 0.8699 0.8628

InScript 0.5945 0.5961

OneStop 0.6444 0.6469

Table 6.9: F-score comparison of the SEQFTRec model to the hybrid model with cosine
similarity feature.

6.6.4 Word Length

For each target word, I computed the number of characters the word included. The
idea behind using this feature is that longer words might be more complex for language
learners than shorter words. This feature is used by almost every paper using features
to train the model for CWI. In the whole training data, the maximum word length was
24 while the minimum word length was 1. As I mentioned earlier, using a high range
of values have their drawbacks in model training, I normalized the word length in the
range [0,1] before passing it to the model as an additional feature. The F-score achieved
from this experiment is compared in Table 6.10 to the F-Score achieved from SEQFTRec

model.

Testset SEQFTRec Hybridwordlen

News 0.8929 0.8941

WikiNews 0.8801 0.8804

Wikipedia 0.8699 0.8643

InScript 0.5945 0.5997

OneStop 0.6444 0.6449

Table 6.10: F-score comparison of the SEQFTRec model to the hybrid model with nor-
malized word length feature.

The F-Score achieved from word length as an additional feature is almost similar to
the F-Score achieved from the SEQFTRec model. This ensures that the word length as
an additional feature does not help the sequence model to improve the performance.

6.6.5 Syllables

A syllable is a unit of organization for a sequence of speech sounds. For instance, the word
cat has one syllable while the word computer have three (com / pu / ter) syllables. For
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each target word, I computed the number of syllables the word includes using Datamuse
API. The idea behind using this feature is that a word could be complex if it requires many
syllables to pronounce. In the whole training data, the maximum number of syllables
used by a word was 7 while the minimum number of the syllable was 0. I normalized
the values and passed them as an additional feature in the hybrid model. The F-score
achieved from this experiment is compared in Table 6.11 to the F-Score achieved from
SEQFTRec model.

Testset SEQFTRec Hybridsyll

News 0.8929 0.8939

WikiNews 0.8801 0.8778

Wikipedia 0.8699 0.8654

InScript 0.5945 0.5953

OneStop 0.6444 0.6469

Table 6.11: F-score comparison of the SEQFTRec model to the hybrid model with nor-
malized syllables feature.

The F-Score achieved from both models in the comparison table (6.11) have almost
the same values, which conclude that passing syllables as an additional feature do not
help to boost model performance.

6.6.6 Synonyms

For each target word, I computed the number of synonyms the word has using WordNet
lexical database (Miller 1995). In the whole training data, the maximum number of
synonyms of the word has 72 while the minimum number of synonyms was 0. I passed
the normalized value of synonyms as an additional feature in the hybrid model. The
F-score achieved from this experiment is displayed in Table 6.12 along with the F-Score
achieved from SEQFTRec model.

Testset SEQFTRec Hybridsyn

News 0.8929 0.8948

WikiNews 0.8801 0.8811

Wikipedia 0.8699 0.8693

InScript 0.5945 0.5948

OneStop 0.6444 0.6465

Table 6.12: F-score comparison of the SEQFTRec model to the hybrid model with nor-
malized Synonym feature.
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The F-Score achieved from synonym as an additional feature in sequence model is
almost similar to the F-Score achieved from SEQFTRec model for all testsets. This
indicates that introducing this feature in the sequential model is not much helpful for
improving performance.

6.6.7 Hypernyms

For each target word, I computed the number of hypernyms the word has using WordNet
lexical database (Miller 1995). Hypernyms is a word with a broad meaning constituting
a category into which words with more specific meanings fall. For instance, the color is
a hypernym of red. In the whole training data, the maximum number of hypernyms the
word has 3 while the minimum number of hypernyms was 0. I passed the normalized
value of hypernyms as an additional feature in the hybrid model. In Table Table 6.13, I
have shown the F-score achieved from this experiment along with the F-Score achieved
from SEQFTRec model.

Testset SEQFTRec Hybridhyper

News 0.8929 0.8961

WikiNews 0.8801 0.8826

Wikipedia 0.8699 0.8669

InScript 0.5945 0.5972

OneStop 0.6444 0.6435

Table 6.13: F-score comparison of the SEQFTRec model to the hybrid model with nor-
malized Hypernyms feature.

Comparing the results achieved from introducing hypernyms as an additional feature
in the sequence model to the SEQFTRec model, we can say that it does not help the
model to improve the performance.

6.6.8 Hyponyms

For each target word, I computed the number of hyponyms the word has using WordNet
lexical database (Miller 1995). Hyponyms are words that are specific examples of a
general word. For example pigeons, crow, eagle, and seagull are all hyponyms of bird.
In the training data, the maximum number of hyponyms the word has 402 while the
minimum number of hyponyms was 0. I passed the normalized value of hyponyms as
an additional feature in the hybrid model. The F-score achieved from this experiment is
compared to the F-Score achieved from the SEQFTRec model in Table 6.14.
F-Score achieved for all testsets using hyponyms as an additional feature in the se-

quence model is almost similar to the F-Score achieved from the SEQFTRec model.
Introducing hyponyms as an additional feature does not help the model to increase per-
formance.
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Testset SEQFTRec Hybridhypo

News 0.8929 0.8952

WikiNews 0.8801 0.8826

Wikipedia 0.8699 0.8672

InScript 0.5945 0.5934

OneStop 0.6444 0.6434

Table 6.14: F-score comparison of the SEQFTRec model to the hybrid model with nor-
malized Hyponyms feature.

6.6.9 Word Frequency: Google dataset

For each target word, I estimated the frequency using Google dataset of syntactic n-grams
(Goldberg and Orwant 2013), i.e, structures in which the contexts of words are based on
their respective position in a syntactic parse tree, and not on their sequential order in
the sentence. This dataset was derived from a very large (345 billion words) corpus of
3.5 million English books. The dataset includes over 10 billion distinct items covering a
wide range of syntactic configurations. In the whole training data, the maximum word
frequency was 6230 while the minimum word frequency was 0. I passed the normalized
frequency from the Google dataset as an additional feature in the hybrid model. The
F-score achieved from this experiment is displayed in Table 6.15 along with the F-Score
achieved from the SEQFTRec model.

Testset SEQFTRec Hybridgoogfreq

News 0.8929 0.8928

WikiNews 0.8801 0.8769

Wikipedia 0.8699 0.8694

InScript 0.5945 0.5930

OneStop 0.6444 0.6458

Table 6.15: F-score comparison of the SEQFTRec model to the hybrid model with nor-
malized word frequency in Google dataset as feature.

The F-Score achieved from both models shown in Table 6.15 has almost the same
values, which conclude that adding target word frequency in the Google dataset as an
additional feature does not help the model to improve the performance.
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6.6.10 Word Frequency: Lang-8 Corpus

For each target word, I estimated the frequency using language learner corpus from
Lang-8 crawled in September 2011. This corpus contains English learners’ texts written
by 29, 012 active users. It has a total of 100, 051 in English entries. The idea behind
using this feature is that language learners mostly use non-complex words and higher
frequencies of some word in this corpus indicates the word is non-complex. In the whole
training data, I found that the maximum word frequency was 996373 while the minimum
word frequency was 0 in the Lang-8 corpus. I normalized the word frequency from the
Lang-8 corpus in the range [0,1] and passed this value as an additional feature in the
hybrid model. The F-score achieved from this experiment is displayed in Table 6.16 along
with the F-Score achieved from the SEQFTRec model.

Testset SEQFTRec Hybridlang8freq

News 0.8929 0.8942

WikiNews 0.8801 0.8791

Wikipedia 0.8699 0.8671

InScript 0.5945 0.5969

OneStop 0.6444 0.6455

Table 6.16: F-score comparison of the SEQFTRec model to the hybrid model with nor-
malized word frequency in Lang-8 corpus as feature.

Comparing F-Scores achieved from this experiment to the one from the SEQFTRec

model, I did not find any significant difference. Hence, it ensures introducing word
frequency in the Lang-8 corpus as an additional feature in the sequence model does not
help to boost its performance.

6.6.11 SubIMDB

For each target word, I checked its presence in the top 1000 frequent words used in the
subtitles from the ’Movies and Series for Children’ section provided by G. Paetzold and
Specia (2016c). This is the binary feature, which is 1 if the target word is present in the
top 1000 frequent words from subtitles, otherwise, 0. The idea behind this feature is that
children’s movies and subtitles frequently use non-complex words. I passed this binary
value as an additional feature in the hybrid model. Table 6.17 compares the results
achieved from this experiment to the SEQFTRec model.
The F-Scores achieved from this experiment for all testsets are negligibly less than the

score achieved from the SEQFTRec model. However, there is no significant difference
between the two models’ F-Scores.
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Testset SEQFTRec Hybridsubimdb

News 0.8929 0.8852

WikiNews 0.8801 0.8752

Wikipedia 0.8699 0.8648

InScript 0.5945 0.5923

OneStop 0.6444 0.6392

Table 6.17: F-score comparison of the SEQFTRec model to the hybrid model with
subIMDB as feature.

6.6.12 Simple Wikipedia

For each target word, I checked its presence in the top 6, 370 frequent words used in
the simple Wikipedia corpus provided by Coster and Kauchak (2011). This is the binary
feature, which is 1 if the target word is present in the top 6, 370 frequent words from simple
Wikipedia, otherwise, 0. The idea behind using this feature is that Simple Wikipedia
mostly uses non-complex, simple English words and grammar. I passed this binary value
as an additional feature in the hybrid model. The F-Score achieved from this experiment
is displayed in Table 6.18 along with F-score achieved from the SEQFTRec model.

Testset SEQFTRec Hybridsimwiki

News 0.8929 0.8789

WikiNews 0.8801 0.8612

Wikipedia 0.8699 0.8674

InScript 0.5945 0.5836

OneStop 0.6444 0.6357

Table 6.18: F-score comparison of the SEQFTRec model to the hybrid model with simple
Wikipedia as feature.

The hybrid model uses a binary value for target words from simple Wikipedia most
frequent 6, 370 words as the feature did not perform well than the SEQFTRec model for
any testsets. Except for the Wikipedia testset this hybrid approach has an approximate
1% less score for all testsets.

6.6.13 Ogden’s Basic English

For each target word, I checked its presence in the list of 1, 000 words from Ogden’s Basic
English. This is the binary feature, which is 1 if the target word is present in Ogden’s
Basic English, otherwise, 0. The idea behind using this feature is that Ogden’s Basic
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English is the collection of non-complex words, which could help the model for better
classification. I passed this binary value as an additional feature in the hybrid model.
Table 6.19 displays the F-Score achieved from this experiment along with the F-Scores
achieved from the SEQFTRec model.

Testset SEQFTRec Hybridogdens

News 0.8929 0.8882

WikiNews 0.8801 0.8736

Wikipedia 0.8699 0.8730

InScript 0.5945 0.6002

OneStop 0.6444 0.6451

Table 6.19: F-score comparison of the SEQFTRec model to the hybrid model with Og-
den’s Basic English as binary feature.

For Wikipedia, and InScript testsets, the hybrid model slightly outperforms the F-score
achieved from the SEQFTRec model. However, for the News and WikiNews testsets it has
a slightly less score than the SEQFTRec model. This is the only feature that improves the
significance performance on the Wikipedia testset when it is introduced in the sequence
model.

6.7 Experiment using Hybrid Approach

In the hybrid approach for CWI, I will introduce two or more features in the sequential
model to improve the resulting hybrid model performance. My aim here is to introduce
the least number of hand-engineered features while improving model performance. In
Section 6.7.1, I provide my approach for features selection and Section 6.7.2 provides the
results achieved from the hybrid approach using selective features.

6.7.1 Features Selection

Almost every features discussed in Section 6.6 have achieved similar performance to
the SEQFTRec model (without any feature induction) except for Ogden’s Basic English
feature, which has improved the F-Score for Wikipedia testset significantly. However, this
feature does not perform competitively for other testsets. So, for my hybrid approach, I
decided to incorporate a small group of features together with the goal to improve the
hybrid model performance. I created two groups of features based on different approaches.

Manually Features Selection

In this features selection process, I have selected some important features, which have
negligibly better performance when introduced to the sequential model individually (see
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Section 6.6). Intending to select the least number of hand-engineered features, I further
filtered the list to five features that provide some external information as well as not
being redundant. I named this group of features as Featuresexp. The features placed in
this group are:

1) The Syllable count of the target word.

2) The number of Synonyms of target word.

3) The number of Hypernyms of target word.

4) The presence of target word in Ogden’s Basic English list.

5) The target word frequency in language learners Lang-8 corpus.

Features Selection Using Permutation Importance

Permutation feature importance is a model inspection technique that can be used after a
model has been fitted on a dataset. Then the predictions are made on the fitted model for
the dataset, although the values of a single column (feature) in the dataset are randomly
shuffled, leaving the target and all other columns in place. This process is repeated for
each feature in the dataset for the provided number of times. It uses predictions and the
true target values to calculate how much the loss function suffered from shuffling. The
result is a mean importance score for each input feature.
Figure 6.3 displays the scores achieved by various hand-engineered features by fitting

them in the Logistic Regression model using the permutation importance technique. As
these features are created independently from the context, I used logistic regression to
identify the features having more impact on the binary classification of the tokens. I
permuted five times each feature to decide the importance. With the aim of least feature
selection, I chose two features: length of the target word and the mean of the cosine
similarity of the target word to other words in the same sequence. For further reference,
I named this group of features as FeaturesPI .

6.7.2 Hybrid Experiment

For the hybrid approach, I perform two experiments based on the group of features
selected to introduce in the SEQFTRec model.

Hybrid Approach Using Featuresexp Features

I trained the hybrid model (SEQhybExp) by introducing Featuresexp features in the
SEQFTRec model. The F-score achieved from this experiment is displayed in Table 6.20
along with the F-Score achieved from the SEQFTRec model for comparison.
The SEQhybExp model with selected five features performed slightly better for the

InScript and OneStop test data. For the Wikipedia testset, it has the almost same
performance as from the SEQFTRec model. For the News, and WikiNews test data
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Figure 6.3: Permutation feature importance using Logistic Regression.

Testset SEQFTRec SEQhybExp

News 0.8929 0.8897

WikiNews 0.8801 0.8757

Wikipedia 0.8699 0.8701

InScript 0.5945 0.6025

OneStop 0.6444 0.6473

Table 6.20: F-score comparison of the SEQFTRec model to the SEQhybExp model intro-
duced with Featuresexp features.

35



6 Sequential Model for CWI

SEQhybExp model approach have slightly less score than the SEQFTRec model. However,
the score difference between these models is negligible and could get converged to the
same values if the average will be taken for multiple experiment runs.

Hybrid Approach Using FeaturesPI Features

In this experiment, I introduced FeaturesPI features in the SEQFTRec model while
training to achieve the SEQhybPI model performance. The F-score achieved from this
experiment is displayed in Table 6.21 along with the F-Score achieved from the SEQFTRec

and SEQhybExp models for comparison.

Testset SEQFTRec SEQhybPI

News 0.8929 0.8949

WikiNews 0.8801 0.8801

Wikipedia 0.8699 0.8666

InScript 0.5945 0.6000

OneStop 0.6444 0.6477

Table 6.21: F-score comparison of the SEQFTRec model to the SEQhybPI model intro-
duced with FeaturesPI features.

The F-Scores achieved from the SEQhybPI model is similar to the F-Scores achieved
from the SEQFTRec model without much significant difference. Whilst SEQhybPI model
has achieved the higher F-Score for the News testset, it has lower for the Wikipedia
testset in comparison to SEQFTRec model. These smaller changes in scores for these
models might converge to the same values if I take an average of more experiments.

Feature engineering, which was the essential part of the traditional machine learn-
ing algorithms, did not provide significant improvement on model performance while
introduced in the sequential model that incorporates FastText and is recall-oriented, es-
pecially for the Shared Task test sets. However, given the deviation of the L2 data from
the training data, the hybrid approach achieved a slightly better score for L2 test sets.
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Bidirectional long short-term memory networks (BiLSTMs) have been widely used as an
encoder for complex word identification (CWI) tasks. Recently, the fully-connected self-
attention architecture i.e., Transformer is broadly adopted in various natural language
processing (NLP) tasks owing to its parallelism and advantage in modeling the long-
range context. The Transformer model relies solely on the use of self-attention, where the
representation of a sequence (or sentence) is computed by relating different words in the
same sequence. The word embeddings techniques in transformers take into consideration
the context of the word and can be seen as dynamic word embeddings techniques, most
of which make use of some language model to help modeling the representation of a
word. This makes the same word have different representations based on the context
where it occurs. In this experiment, I prove that the Transformer-like encoder is just
as effective for CWI as other NLP tasks. Experiments on CWI shared task dataset
(Yimam et al. 2018) of 3 different genres show that the Transformers achieves superior
performance than the prevailing BiLSTM-based models.

7.1 Training Data Setup

I have generated two additional training data sets to be trained with transformers. The
additional two training data sets have been generated on the basis of excluding stop
words and punctuation. The three training data generated collectively for each genre in
the CWI shared task dataset has been described below.

• TrainAll: Training data with all the stop words and punctuation. This data was
used previously by almost all the previous systems including winning/state-of-the-
art systems. This training data have total 52, 476 tokens, out of that 8, 408 are
annotated as complex while 44, 068 are annotated as non-complex (Table 7.1).
This makes it a very imbalanced class with approximately 84% of tokens marked
as non-complex.

• TrainWoP : This training data was generated by removing all the punctuation
in the original training data. I created this training data with the belief that
punctuation does not carry any meaning in the context of sequence and removing
them would not degrade the performance of the model. However, it could improve
the model performance by reducing the number of majority non-complex tokens
as all punctuation were annotated as non-complex. As shown in Table 7.1, after
removing punctuation, training data have total 46, 260 tokens, out of that 8, 408
are annotated as complex while 37, 852 are annotated as non-complex. Removing
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7 Tuning Transformers for CWI

punctuation does not reduce the number of complex annotated tokens as none of
the punctuation has been annotated complex. This training data is still highly
imbalanced with approx 82% of the token are annotated as non-complex.

• Trainclean: This training data was generated by removing all the stop words and
punctuation from the original training data using NLTK (Bird and Loper 2004)
library. In this training data, along with punctuation I also removed stop words on
the same belief that stop words do not contribute to the context of the sentence.
Stop words are those words that are unnecessary words and they do not carry
meaning to your sentences or corpus. However, it is not always true as some stop
words like ‘not’ have the meaning and can change the context of the sentence that
could be very meaningful for the application like sentiment analysis. So removing
stop words from data bring down the data size but with a slight loss of information.
Also, the definition of what is a stop word may vary. We may consider a stop word
a word that has high frequency on a corpus or we can consider every word that is
empty of true meaning given a context. So, there is no straight answer for whether
we should remove stop words from the corpus or not. The solution is we can try
with and without stop words for model training and can decide whether removing
stop words is good for my application or not. This makes us create this training
data for my application of CWI.

Figure 7.1: Tokens distribution in different training sets.
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Figure 7.2: Word complexity distribution in different training sets.

Figure 7.2 displays the token distribution in different training sets. Removing stop
words from training data has drastically decreased the number of tokens in training data
as expected. In Figure 7.2, I displayed the word complexity distribution in different
training sets.

Training Data #Sen #tokens #C #N N (percentage)

TrainAll 2,063 52,476 8,408 44,068 83.98

TrainWoP 2,063 46,260 8,408 37,852 81.82

Trainclean 2,063 27,667 8,399 19,268 69.64

Table 7.1: Total number of sentence, tokens, complex and non-complex tokens and per-
centage of non-complex tokens in each training data for transformer

As shown in Table 7.1, after removing punctuation and stop words, training data have
a total of 27, 667 tokens, out of that 8, 399 are annotated as complex while 19, 268 are
annotated as non-complex. After removing punctuation I have almost 82% of tokens that
have been annotated as non-complex. The TrainAll training data has a 6, 216 number
of punctuation and an 18, 593 number of stop words. All punctuation was annotated as
non-complex, however, removing stop words from the TrainWoP training data reduced
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the number of complex words as well by 9. Digging into training data I found that stop
words like ‘nor’, ‘haven’, ‘whom’, ‘ain’, and ‘won’ were annotated as complex in total 9
times. However, this training data is no more highly imbalanced with approximate 70%
of tokens were annotated as non-complex. As these training data have been created to
reduce the class imbalance, I also reported accuracy to compare the transformer model
performance trained on three different training data.

7.2 Approach

I use the Transformers library provided by Huggingface (Wolf et al. 2019), which allows
us to pre-train and fine-tune BERT (Devlin et al. 2018) models with a simplified proce-
dure. BERT model can be fine-tuned on tasks that use the whole sentence (potentially
masked) to make decisions, such as sequence classification, token classification, or ques-
tion answering. For this study, firstly, I fine-tune an English RoBERTa (Liu et al. 2019)
large model using shared task training data together for token classification (CWI). As
RoBERTa was trained on a ton more data than BERT, RoBERTa outperforms BERT on
many benchmark results. RoBERTa has been pre-trained on the BookCorpus, English
Wikipedia, CC-News, OpenWebText, and stories amounting to a grand total of 160 GB
of text, which ensures that it could be the best fit for CWI for language learners from
different genres. The pre-trained RoBERTa model is cased, making it appropriate for
fine-tuning on CWI tasks by preserving casing information. Later, I also fine-tune an
English BERT (Devlin et al. 2018) base cased model, which has been pre-trained on the
BookCorpus, and English Wikipedia, amounting to a total of 16 GB of text (3.3 billion
words) on the same training data.
The RoBERTa large model contains 24 transformer blocks, 1, 024 hidden layers, 16

self-attention blocks, and 355 million parameters in total. The BERT Base model con-
tains 12 transformer blocks, 768 hidden layers, 12 self-attention blocks, and 110 million
parameters in total. I used the batch size of 16 and the learning rate of 5−5 as hyper-
parameters for the CWI task. I train the fine-tuned RoBERTa model for CWI using the
three different training data separately that I prepared based on with or without stop
words and punctuation (Section 7.1). Later, I train the fine-tuned BERT model for the
training data, for which I achieved the best score using RoBERTa model. Also, keeping
the other hyperparameters the same, I train the model for 6 epochs and notice the best
number of epochs required to train the model. For each experiment, I have reported the
average of three experiments and compared their performances.

7.3 Experiment

The experiment is broadly divided into two parts: firstly, evaluating the RoBERTa model
for CWI and finding the best training data from the three then evaluating the BERT
model on the training data, for which RoBERTa model performs best. An experiment
using the BERT model has been included to confirm whether RoBERTa model that has
been trained on a ton of data for many different genres gets the benefit of it for the CWI
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system or not. Also, this experiment will confirm whether we need a bigger network for
the CWI task or not. The experiment using RoBERTa model is divided into three parts
based on three different training data. Firstly, I perform the model training using the
training file with all the stop words and punctuation. Later, I will perform the model
training using the training file without any punctuation and another experiment using
the training file without any stop word and punctuation. Finally, I will compare the
model performance achieved by all three experiments and decide the best training file I
can use for CWI using transformers.

7.3.1 Fine-Tuning RoBERTa Large Model

Firstly, I have considered the TrainAll training data for the experiment, which includes all
the stop words and punctuation. This training data is similar to the previous researches
training data for CWI. In Figure 7.3, I plotted the learning curve from this experiment.
The training loss and development loss intersect each other after 2nd epoch. It indicates
that the best number of epochs to train this model using shared task train data is 2.
Training model for more than 2 epochs will overfit the model on training data.

Figure 7.3: Learning curve for training data with all stop words and punctuation
(TrainAll).

Table 7.2 compares the F-Scores achieved for the testsets by fine-tuning RoBERTa on
TrainAll data to the baseline results from the SEQbaseline model. The F-Score achieved
by fine-tuning RoBERTa model for all testsets has approximately 2.5% better value than
the baseline results.
Figure 7.4 demonstrates the learning curve for fine-tuning RoBERTa model on TrainWoP

training data, which does not include any punctuation. Training loss and development
loss line intersects each other after 3rd epoch indicating 3 epochs as the best number of
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Testset SEQbaseline RoBERTa

News 0.8694 0.8969

WikiNews 0.8544 0.8873

Wikipedia 0.8369 0.8613

InScript 0.5815 0.6069

OneStop 0.6317 0.6588

Table 7.2: Comparison of macro F-Scores achieved by fine-tuning RoBERTa on TrainAll

data to baseline results.

epochs for this model training. However, there is no improvement in development loss
after 1st epoch.

Figure 7.4: Learning curve for train data without punctuation

In Table 7.3 I compare the F-Scores achieved for the various testsets by fine-tuning
RoBERTa on TrainWoP data to the baseline results. Removing punctuation from train-
ing data did not help in model learning and achieved almost similar performance as using
TrainAll data. It has achieved approximately 2% better F-Score value for each testset.
Further, I fine-tuned the RoBERTa model for the cleaned Trainclean training data that

does not include any stop words and punctuation. This makes this experiment interesting
to see if it could improve the accuracy of the testsets. Figure 7.5 demonstrates the
learning curve for the model training. Training loss and development loss line intersects
each other after 5th epoch, indicating 5 epochs would be a good choice to train this
model. However, there is no improvement in development loss after 2nd epoch.
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Testset SEQbaseline RoBERTaTrainWoP

News 0.8694 0.8926

WikiNews 0.8544 0.8848

Wikipedia 0.8369 0.8580

InScript 0.5815 0.6074

OneStop 0.6317 0.6558

Table 7.3: Comparing macro F-Scores achieved by fine-tuning RoBERTa on TrainWoP

data to baseline results.

Figure 7.5: Learning curve for train data without stop words and punctuation

The F-Scores achieved by fine-tuning RoBERTa model on Trainclean data for various
testsets is displayed in Table 7.4 along with the baseline results.
In Table 7.5, I compared macro F-scores and accuracies achieved for testsets by fine-

tuning RoBERTa model on different training sets. From the comparison table, we can
see that for all testsets except for InScript, using the TrainAll training file I achieved
the best performance. For InScript testset as well, I have approximately the same F-
Scores by all three approaches. The F-Score achieved by training RoBERTa model using
TrainWoP training file has the almost same score as training with TrainAll training file.
And if I take the average of more experiments, the performance achieved by these two
files might converge to the same values. However, when I removed the stop words as well
from the training file (Trainclean), the performance of the model is noticeably degraded
for all testsets, especially for News and WikiNews testsets. Similar performance pattern
we see for the accuracies as well except for InScript testset, where using Trainclean
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Testset SEQbaseline RoBERTaTrainclean

News 0.8694 0.8829

WikiNews 0.8544 0.8648

Wikipedia 0.8369 0.8521

InScript 0.5815 0.6066

OneStop 0.6317 0.6503

Table 7.4: Comparing macro F-Scores achieved by fine-tuning RoBERTa on Trainclean

data to baseline results.

training file have the almost similar performance of using TrainAll training file. This
comparison ensures that removing stop words would not be a good idea for the CWI
system. Hence, for the CWI task, I will consider the TrainAll training file which includes
all the punctuation and stop words as a better approach.

F-Score Accuracy

Testset Trainclean TrainWoP TrainAll Trainclean TrainWoP TrainAll

News 0.8829 0.8926 0.8969 0.9457 0.9495 0.9513

WikiNews 0.8648 0.8848 0.8873 0.9250 0.9356 0.9364

Wikipedia 0.8521 0.8580 0.8613 0.9132 0.9172 0.9187

InScript 0.6066 0.6074 0.6069 0.9245 0.9187 0.9215

OneStop 0.6503 0.6558 0.6588 0.8846 0.8846 0.8892

Table 7.5: Comparison of macro F-Scores and accuracies achieved by fine-tuning
RoBERTa model with different training sets.

7.3.2 Fine-Tuning BERT Base Cased Model: Training with TrainAll data

As RoBERTa (160 GB) was trained on a ton more data than BERT (16 GB), I created
this experiment to clarify whether my CWI system gets the benefit of it or not. Also,
I have selected the ‘bert-base-cased’ model that has a smaller network than the ‘bert-
large’ model. It will ensure us that whether for my task we needed a larger network for
training or a smaller network is good enough. I have selected the cased model, as my
training data is cased and the complexity of each word will be based on the context of
sequence. It will be interesting to see the performance of the ‘bert-base’ model on my
L2 testsets as they are based on different genres than the BERT model was pre-trained,
unlike RoBERTa, which was also pre-trained on OpenWebText and stories.
In this experiment, I have considered the TrainAll training data that includes all the

stop words and punctuation as using this training data I achieved the best performance
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from the RoBERTa model. Also, the same training data has been used by previous
researchers for the CWI task. Figure 7.6 demonstrates the learning curve for the ‘bert-
base-cased’ model training. Training loss and development loss line intersects each other
after 2nd epoch indicating 2 epochs as the best number of epochs for this model training.

Figure 7.6: Learning curve for train data using BERT model

Table 7.6 shows the comparison between the F-Scores achieved for various testsets by
fine-tuning the BERT model using TrainAll training data to the baseline results. The
F-Scores achieved for the Shared Task testsets by fine-tuning the BERT model have
almost 3% better value than the baseline results. Especially for the Wikipedia testset, it
achieved a 4% better F-Score. For L2 testsets as well BERT model has achieved better
performance than baseline results.

Testset SEQbaseline BERT

News 0.8694 0.8975

WikiNews 0.8544 0.8859

Wikipedia 0.8369 0.8784

InScript 0.5815 0.5976

OneStop 0.6317 0.6529

Table 7.6: Comparing macro F-Scores achieved by fine-tuning BERT using TrainAll data
to the baseline results.
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In this chapter, I will discuss in detail my experiment results from various approaches
and the error analysis.

8.1 Results

The main objective of this thesis is to provide a CWI system, which could help the
English language learners in various applications built on top of this system. This makes
us collect and annotate the more general text (L2 Data) that language learners come
across frequently. In the following section, I will discuss the results achieved from various
approaches for Shared Task 2018 data and L2 data.

8.1.1 CWI Shared Task 2018 Dataset

For CWI on the Shared Task 2018 Dataset, I trained the baseline sequential model, hybrid
model, and transformer-based models RoBERTa and BERT. I also tried to improve the
baseline results in the sequential model by incorporating better word embeddings and
tuning F05-Score (6.1), which is the weighted harmonic mean of the precision and recall.
Table 8.1 shows the comparison of my baseline results (SEQbaseline) trained on Shared

Task 2018 Datasets with the state-of-the-art SEQ model and other approaches in this
thesis. The baseline results were achieved while I tried to replicate the results of Gooding
and Kochmar (2019) using the sequential architecture by Rei (2017). The SEQbaseline

model has almost the same results for News and WikiNews testsets as the SEQ model
achieved. However, for the Wikipedia testset, SEQbaseline model has 2.29% better value
than the SEQ model. As mentioned before, the reason could be either the way they
tokenized and formatted the model acceptance data file or the way they adapted the
sequential architecture by Rei (2017).
Further, I tried to improve the SEQbaseline model by incorporating FastText word em-

beddings instead of GloVe word embeddings. Also, I tuned this model (SEQFTRec) to
improve the recall so that the model better classifies the complex words. The F-Scores
achieved by the SEQFTRec model has 2.35%, 2.57, and 3.3% better values than the
SEQbaseline model for News, WikiNews, and Wikipedia testsets respectively. Adding
contextualized embeddings to the sequential model could be another interesting experi-
mental setting, but due to technical implementation problems and limited time, this was
left out. Along with taking the benefits of FastText word embeddings, the tuning of
the model to improve recall has done the trick for better performance of the SEQFTRec

model. As the data has an imbalanced class, improving recall lets the model focus to
learn the complex words better without much loss on the precision metric.
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News WikiNews Wikipedia

Models F-Score Gain F-Score Gain F-Score Gain

SEQ 87.63 +0.69 85.40 -0.04 81.40 -2.29

SEQbaseline 86.94 0.0 85.44 0.0 83.69 0.0

SEQFTRec 89.29 +2.35 88.01 +2.57 86.99 +3.3

SEQhybExp 88.97 +2.03 87.57 +2.13 87.01 +3.32

SEQhybPI 89.49 +2.55 88.01 +2.57 86.66 +2.97

RoBERTa 89.69 +2.75 88.73 +3.29 86.13 +2.44

BERT 89.75 +2.81 88.59 +3.15 87.84 +4.15

Table 8.1: Comparison of macro F-scores achieved from state-of-the-art SEQ model to
various approaches in this thesis for CWI in News, WikiNews and Wikipedia
testsets from Shared Task 2018. The values displayed in this table are in
percentage.

I also tried the hybrid approach by identifying thirteen hand-engineered features that
could be useful for the CWI and selected a few of them to introduce together in the
SEQFTRec model, resulting in a hybrid model. I created two groups of important features
named Featuresexp and FeaturesPI and introduced them separately in two different
experiments. Whilst the Featuresexp group is a collection of five features that have been
selected on the basis of their individual performance in the sequential model as well as
providing some external information that could not be extracted from the training data,
the FeaturesPI group has two features selected from the permutation feature importance
technique. The SEQhybExp model is trained by introducing the Featuresexp features,
which includes presence of target word in Ogden’s Basic English, target word frequency in
Lang-8 corpus, and Syllable count, number of Synonyms and Hypernyms. The F-Scores
achieved by the SEQhybExp model has 2.03%, 2.13%, and 3.32% better values than
the SEQbaseline model for News, WikiNews and Wikipedia testsets respectively. The
FeaturesPI features (target word length and cosine similarity of target to other words in
the same sentence) introduced in the SEQhybPI model training, which achieved 2.55%,
2.57%, and 2.97% better values than baseline. However, both of these models have almost
similar performance as I achieved from the SEQFTRec model, indicating, introducing
features in the SEQFTRec model is not helping the model to improve performance.
Finally, I also tried fine-tuning the transformer models RoBERTa and BERT for the

CWI task. Whilst the RoBERTa model has achieved 2.75%, 3.29%, and 2.44% better
F-Scores values than the SEQbaseline model for News, WikiNews and Wikipedia testsets
respectively, the BERT model has achieved 2.81%, 3.15%, and 4.15% better values.
Both models have achieved competitive, state-of-the-art results for News and Wikinews
testsets, however, the RoBERTa model fails to get similar performance in the Wikipedia
testset. The BERT model has performed exceptionally well for the Wikipedia testset
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than all other approaches, achieving 1.71% better F-Score value than the RoBERTa
model.

8.1.2 L2 Dataset

The L2 dataset is comprised of the InScript and OneStop data, which I have collected
as language learners data and annotated on the basis of CEFR levels. The vocabulary
complexity of this dataset is different from the Shared Task dataset. However, I did not
use the L2 data for model training as it is annotated programmatically and has the most
chances of being prone to errors. I trained the model on the Shared Task data and tested
the performance on the InScript and OneStop data.
In Table 8.2, I have shown the comparison of results achieved from the SEQbaseline

model to the other approaches I have used in this thesis. The macro F-Scores achieved
from the SEQbaseline model for InScript and OneStop testsets is 58.15% and 63.17%
respectively. The SEQFTRec model has a difference of 1.3% and 1.27% than the baseline
results for InSCript and OneStop data respectively, using the benefits of better word em-
beddings. Unlike for Shared Task testsets, introducing hand-engineered features helped
to achieve better results. Both models based on a hybrid approach, i.e., the SEQhybExp

model and the SEQhybPI have achieved almost similar performance for L2 testsets. The
reason could be that these data have been annotated on the basis of word complexity
only, without taking the context of the sentence where they occur into account.

InScript OneStop

Models F-Score (%) Gain (%) F-Score (%) Gain (%)

SEQbaseline 58.15 0.0 63.17 0.0

SEQFTRec 59.45 +1.30 64.44 +1.27

SEQhybExp 60.25 +2.1 64.73 +1.56

SEQhybPI 60.00 +1.85 64.77 +1.60

RoBERTa 60.69 +2.54 65.88 +2.71

BERT 59.76 +1.61 65.29 +2.12

Table 8.2: Comparison of macro F-scores achieved from baseline SEQbaseline model to
various approaches in this thesis for CWI in InScript and OneStop testsets
from L2 data.

The results achieved for these data by fine-tuning transformer-based language models
RoBERTa and BERT were also promising. The RoBERTa model has achieved the high-
est F-Scores for InScript and OneStop testsets by 2.54% and 2.71% values respectively
from the baseline. The BERT model has a difference of 1.61% and 2.12% from the
baseline for the InScript and OneStop testsets respectively.
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8.2 Error Analysis

In this section, I will investigate the systematic and random erroneous predictions by
models in different testsets included in this thesis. The predictions from the SEQbaseline,
SEQFTRec, BERT , and RoBERTamodels will be analyzed for each testset individually.

8.2.1 News Testset

Figure 8.1: Confusion matrix generated from SEQbaseline, SEQFTRec, BERT , and
RoBERTa models (left to right, top to bottom) on the News testset.

Figure 8.1 demonstrates the confusion matrix for News testset from the baseline
SEQbaseline model and my best approaches in this thesis, i.e., SEQFTRec, BERT , and
RoBERTa model for the CWI. The sequential models predicted the complex words bet-
ter than the transformer-based pre-trained language models. However, the sequential
models have more errors in predicting the non-complex words. In Figure 8.2, I have
shown the total number of errors made by these models for CWI in the News testset.
The BERT and RoBERTa models have performed almost similarly with a difference
of 2 errors and better than the sequential models. Figure 8.2 shows that my approaches
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have performed much better than the SEQbaseline model.

Figure 8.2: Comparison of total classification errors from SEQbaseline, SEQFTRec,
BERT , and RoBERTa models on the News testset.

The SEQbaseline model has incorrectly predicted some of the puctuation like :, “, and
’ and almost all words including hyphen like 18-year-old and last-minute as complex,
which is improved by my sequential framework based approach SEQFTRec model as well
as transformer-based models.
The sequential-based models were also prone to the name of a place, person, or ob-

ject, which has been correctly predicted by the transformer-based language models. For
instance, Londonderry and Orontes, which are a city in Ireland and a river in Syria
respectively are predicted as complex words from the sequential models.

Train Text Test Text Word Predictions

Bellaghy parish priest
Fr Andrew Dolan said the
teenager died trying to
protect her sister

Bellaghy parish priest Fr
Andy Dolan said the teenager
died trying to protect her
sister.

parish: SEQbaseline,BERT
priest: SEQFTRec

teenager: All models pro-
tect: SEQbaseline, BERT

Table 8.3: Similar text (bold words are annotated as complex) from News train and test
set and predicted complex words from various models.

It has also been observed that there is some duplicate text in testset, which also exists
in the trainset. Table 8.3 shows one of those instances along with the word predicted
as complex from different models. I found that many words in a similar context have
been annotated as complex as well as non-complex in training data. For instance, the
word teenager in the given example text in the table has been annotated with both
classes. This makes all models for this text to annotate teenager as complex even though

50



8.2 Error Analysis

it was annotated non-complex in this particular test text. Similarly, SEQFTRec model
has predicted the word priest as complex. However, other models predicted it as non-
complex. Further from analysis, I found that whenever the word priest followed by the
word parish, it has always been annotated as non-complex in training data. Most of the
errors in this testset have been noticed due to the same word annotated as complex as
well as non-complex.

8.2.2 WikiNews Testset

Figure 8.3: Confusion matrix generated from SEQbaseline, SEQFTRec, BERT , and
RoBERTa models (left to right, top to bottom) on the WikiNews testset.

The confusion matrix for the WikiNews testset from various models is demonstrated
in Figure 8.3. Similar to the News testset, the sequential models predicted the complex
words better than the transformer-based pre-trained language models for the WikiNews
testset with more errors while predicting the non-complex words. Figure 8.4 demonstrates
the total number of errors made by these models for CWI in the WikiNews testset. The
CWI using the BERT model has achieved the lowest number of total errors. Also, my
approaches have outperformed the SEQbaseline model with a big margin.
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8 Results and Error Analysis

Figure 8.4: Comparison of total classification errors from SEQbaseline, SEQFTRec,
BERT , and RoBERTa models on the WikiNews testset.

In the WikiNews testset as well, all the models have made similar errors as we have seen
in the News testset. The sequential models were prone to words including hyphens like
President-Elect, mid-1990s and nine-and-a-half while the SEQbaseline model specifically
predicted some punctuation as complex. Also, I found that some of the words like Apollo
have been incorrectly predicted as complex sometimes in test set, however, the same
word was annotated as complex at both times of its existence in training data.
I also noticed that whilst some of the words like bombers are annotated as non-complex

for all its existence in training data, the SEQFTRec model correctly predicted it as
a complex word in testset. However, the transformer-based models have incorrectly
predicted this word as non-complex. The question here this prediction raise is whether
the transformer-based models predicted this word wrong or it was the sequential model
as the models were trained to predict this word as non-complex. Anyway, this analysis
showed that the annotation of some of the words for Shared Task data seems to be
problematic.
In training data, I have also found many of the words like aircraft, crash and pilot,

which are annotated as complex as well as non-complex in different places in a similar
context. This led to many random predictions from models in testset. Further investi-
gation can be performed to address this issue.

8.2.3 Wikipedia Testset

In Figure 8.3, I demonstrated the confusion matrix for the Wikipedia testset from various
models. In this testset, the RoBERTa model has significantly more errors in predicting
the complex words. The BERT model has the least number of overall errors with a large
difference from other models. Figure 8.6 demonstrates the total number of errors made
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Figure 8.5: Confusion matrix generated from SEQbaseline, SEQFTRec, BERT , and
RoBERTa models (left to right, top to bottom) on the Wikipedia testset.

by each model for CWI in the Wikipedia testset.
The sequential models have similar kinds of errors in this testset as well, as they

achieved in other Shared Task testsets. The words like define and specific have been
annotated as complex for all of their existence in training data. However, sometimes
they have been annotated as non-complex in testset but all models have predicted them
as complex. I also found some hyphens containing words like best-known, late-Cretaceous,
soft-blocked and light-years as complex words in testset. The sequential model predicted
these words as complex words as it does for most of the words containing a hyphen, even
though if words are not complex. However, this time these words are also annotated as
complex. Except for the word light-years, transformer-based models also predicted these
hyphen-based complex words.
I have also found many unseen words on which the model was not trained. Table

8.4 shows two examples from the Wikipedia testset with complex annotated words in
bold. All the models have correctly predicted the complex words in these sentences.
The SEQFTRec model has incorrectly predicted the words prepared, acid and solution as
complex, instead these words are non-complex in training data as well except for word

53



8 Results and Error Analysis

Figure 8.6: Comparison of total classification errors from SEQbaseline, SEQFTRec,
BERT , and RoBERTa models on the Wikipedia testset.

solution, which is sometimes complex. The SEQFTRec model has been tuned to improve
recall due to which it has more errors on predicting non-complex words.

Test Text Incorrect Predictions

It is prepared by a reaction of arsenic trichloride and
potassium iodide : Hydrolysis occurs only slowly in
water forming arsenic trioxide and hydroiodic acid.

SEQFTRec : prepared, acid
SEQbaseline: occurs

The aqueous solution is highly acidic. SEQFTRec : solution

Table 8.4: Text from Wikipedia testset (bold words are annotated as complex) and in-
correct predictions from models.

8.2.4 InScript Testset

The confusion matrix for the InScript testset from various models is demonstrated in
Figure 8.7. Similar to the previous testsets, the sequential models made more errors
while predicting the non-complex words. Figure 8.8 demonstrates the total number of
errors made by different models in the InScript testset. The RoBERTa model has
achieved the lowest number of total prediction errors. My approaches have made a very
less number of errors in comparison to the SEQbaseline model. However, the SEQbaseline

model has correctly predicted most of the complex words in comparison to the other
models.
I analyzed the annotation of the InScript data and found that most of the simple

words like belong, self, cloth, such, setting, times, simply, found, able, round, sale, safety,

54



8.2 Error Analysis

Figure 8.7: Confusion matrix generated from SEQbaseline, SEQFTRec, BERT , and
RoBERTa models (left to right, top to bottom) on the InScript testset.

moving, days, deal, middle, and many more has been annotated as complex. I also found
that many words which could be complex to second language learners like sweaty, hamper,
gingerly, accumulated, stopper, squirt, dripped, disrobed, faucet, suds, rag, rinse, greased,
frosting, sift, blended, flimsy, stews, and many more has been annotated as non-complex.
These many errors on annotation ensure that the number of errors each model made
cannot be used to judge the performance. So, I checked each model’s prediction and
compared them with the other three models’ predictions along with self-feedback on the
complexity of each word.
I found that most of the simple words and nouns like bath, soap, tub, hot, finger, ears,

toys, whales, bed, dinner, bus, card, hello, and many more are predicted as complex using
the SEQbaseline model. These errors ensure that we cannot use the SEQbaseline model
outside the domain it was trained for. However, my approach of the sequential model
and transformer-based language models has drastically reduced these kinds of errors and
shows promising predictions. Although these models are fitted on Shared Task data,
they correctly identified the complex words in this unseen data. For instance, words like
pavement, scraping, wobbly, deflated, sid, hamper, gingerly, squirt, lathered, shard, gauge
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Figure 8.8: Comparison of total classification errors from SEQbaseline, SEQFTRec,
BERT , and RoBERTa models on the InScript testset.

and haphazardly are predicted as complex by my approaches. However, the SEQFTRec

model seems to have low performance as it predicted words like everywhere, correct,
pushed, driving and difficult as complex and words like soak, faucets, chores and glue as
non-complex.

8.2.5 OneStop Testset

The confusion matrix for the OneStop testset from various models is demonstrated in
Figure 8.9. The sequential models made fewer errors while predicting the complex words
and more errors while predicting the non-complex words. The total number of errors
made by different models in the OneStop testset is demonstrated in Figure 8.10. The
RoBERTa model has achieved the lowest number of total prediction errors. However,
it has the most errors while predicting the complex words in comparison to the other
models. My approaches have made a very less number of errors in comparison to the
SEQbaseline model.
Similar to InScript testset, most of the non-complex words like largely, days, known,

such, moving, planning, March, force, state, opening, base, whoever, remains, found,
billion, setting, official, loss, safety, global, and many more were annotated as complex
in OneStop testset. Similarly, many complex words like rainforest, charted, steered, car-
tography, telescopic, urbanites, traversing, cartographers, stalkers, sailed, reconnaissance,
philanthropy, puddles, arson, coinciding, confederations, and many more were annotated
as non-complex.
The SEQbaseline model incorrectly predicted most of the words as complex. For in-

stance, words like map, Canadian, chosen, mail, computer, snow, selected, city, fires,
bus, thats, changing, cheap, fish, taste, south-east, customers, and many more are pre-
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Figure 8.9: Confusion matrix generated from SEQbaseline, SEQFTRec, BERT , and
RoBERTa models (left to right, top to bottom) on the OneStop testset.

dicted as complex using SEQbaseline model. The SEQbaseline model also predicted some
punctuation like :, %, (, and ) as complex. The SEQFTRec model does not predict ex-
tensive errors like the SEQbaseline model but it also predicted many non-complex words
like largely, application, collecting, project, little-known, understands, address, thinking,
brought, sporting, burned, government, rise, completed, mountain, training, and many
more as complex. However, transformer-based pre-trained language models have per-
formed much better on this testset, predicting almost all words complexity correctly.
Table 8.5 demonstrates an example text from the OneStop testset along with the com-

plex words (annotated on the basis of CEFR level) in a bold letter in the text. The right
column of the table displays the words which have been predicted as complex from the
corresponding models. This is an advanced-level text from the OneStop testset. Most
of the words were not annotated as complex, however, almost all models have correctly
identified the complex words in this text. The sequential models have incorrectly identi-
fied simple words brought and sporting as complex. This ensures that my models trained
on CWI Shared Task 2018 training data could be used for different genres, especially
transformer-based pre-trained language models. Definitely, all models have achieved a
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Figure 8.10: Comparison of total classification errors from SEQbaseline, SEQFTRec,
BERT , and RoBERTa models on the OneStop testset.

low score in L2 testsets but it is due to the poor annotation of the L2 testsets.

Test Text Complex Word Predictions

Coinciding with the start of the Confederations Cup
a World Cup test event the rallies brought together
a wide coalition of people frustrated with the esca-
lating costs and persistently poor quality of public
services, lavish investment in international sporting
events, low standards of health care and wider un-
ease about inequality and corruption.

All models: Coinciding, Confed-
erations, rallies, coalition, frus-
trated, escalating, persistently,
investment, unease, inequal-
ity, corruption, lavish (except
SEQbaseline) SEQbaseline: brought
SEQFTRec: brought, sporting

Table 8.5: Advanced level text (bold words are annotated complex) from OneStop test
set and word complexity predictions from different models.
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In this chapter, I summarize my various approaches for the improvement of the CWI
task. Further, I explain in detail the methodologies I adopted to answer the research
questions I formulated in the Introduction (Section 1) and present the various challenges
faced during the entire process. In Section 9.2, I present future directions that could be
done to improve the model performance on the CWI for the second language learners.

9.1 Conclusion

In this thesis, I presented the hybrid approach and the transformers-based approaches for
CWI to support English language learners. The hybrid approach was implemented above
the sequential model by introducing the hand-engineered features. For all models, I used
the training data from Shared Task 2018 datasets to fit the model. For my experiments,
I collected the L2 data which is more common for language learners and they come across
to them frequently from InScript and OneStop corpus. I considered this dataset as an
additional testsets, which I simply annotated on the basis of CEFR levels.
All of my approaches outperform the previous state-of-the-art CWI systems trained

on Shared Task 2018 datasets. As a first approach, I included FastText word embed-
dings instead of GloVe word embeddings and tuned the sequential model by Rei (2017)
to improve the recall. The model benefits from the more sophisticated FastText word
embeddings as expected but tuning the model to improve recall, improved the overall
performance of the model without losing much precision. This could be due to the rea-
son that the data is highly imbalanced with a very less number of complex words in
comparison to the non-complex words.
To answer my first research question (RQ1), i.e., whether the hybrid approach

outperforms the sequential model for the CWI task, I have identified thirteen hand-
engineered features used by previous researchers to provide features based state-of-the-art
systems for the CWI. I introduced each feature individually in the SEQFTRec model and
performed the training. The results achieved from these experiments are almost similar
to the one I achieved without introducing any features and they might converge to the
same values if I take the average of more experiments. Further, from these experiments,
I identified five features that have slightly better results for at least three testsets and
provide some external information that the model can not see in the training examples. I
introduced these five features together in the sequential model while training the model.
There was no significant improvement in model performance using this approach as well.
Finally, I incorporated the permutation importance technique to identify the most im-
portant features. I have selected the top two features from this technique and introduced
them in the sequential model training. The results achieved from this experiment as well
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did not show any performance improvement of the model. This indicates that the neural
network can learn most of these features along with many others in its black box by itself
to give better results. These approaches answer my first research question as
introducing the hand-engineered features to build the hybrid model does not
help the sequential model learning to increase performance. However, I identi-
fied some features, which individually provide slightly better results for some testsets or
together provide almost the same performance as from the sequential model. This knowl-
edge could be useful while training the model for bigger datasets where these features
could help to boost the learning in initial network training.
To answer my second research question (RQ2), i.e., whether the transformer-

based models outperforms the sequential model for the CWI task, I have fine-tuned
pre-trained transformer-based language models RoBERTa and BERT on Shared Task
2018 data for CWI. Whilst for RoBERTa I consider the roberta-large model, for BERT
I consider the bert-base-cased model. I also prepared new training data, which does not
include any stop words and punctuation, resulting in the deduction of non-complex words
and reducing the imbalance data. I fine-tuned the RoBERTa model using both training
data and compared the performances. RoBERTa model fine-tuned on the new training
data performed worse than the original training data ensuring that removal of stop words
would not be a good idea for the CWI system. The reason behind these lower scores
could be due to the pre-trained language model that we are using is trained using stop
words and removal of them has an adverse impact on the encoded representation of the
sequence. As we are feeding full-sentence sequence as input to this model, feeding similar
data to this language model on which it has been pre-trained would perform better.
Whilst the RoBERTa model has achieved the highest F-Scores for WikiNews, InScript,

and OneStop testsets, the BERT model has achieved the highest F-Scores for the remain-
ing two News and Wikipedia testsets. The BERT model has achieved an exceptionally
high score for the Wikipedia testset on which the other approaches from the sequential
model and RoBERTa struggles. This could be due to the reason that the BERT model
has been pre-trained only on BookCorpus and English Wikipedia amounting to a to-
tal of 16 GB, which does not make it much diverse like the RoBERTa model, which
has been pre-trained on many other genres amounting to a total of 160 GB data. The
results achieved from these models answer my second research question that
transformer-based models outperform the sequential model for CWI task for
all testsets, including the L2 target domain. The results achieved from the BERT
base model for CWI ensure that we do not need a bigger network for the CWI task and
using BERT we can achieve the state-of-the-art results for it.
To answer my third research question (RQ3), i.e., whether the models trained

on CWI Shared Task data are good enough for second language learners, I tested perfor-
mance on the L2 dataset from all the models trained using the Shared Task 2018 dataset
in this thesis. The F-Scores achieved for this dataset are very low in comparison to the
Shared Task testsets. However, the L2 data has not been annotated manually instead
annotated on the basis of CEFR levels. All the words from L2 data which has a CEFR
level below B2 or are not present in CEFR vocabulary are annotated as non-complex
words. This also makes many words below B2 CEFR level which could be complex for
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second language learners, annotated as non-complex by the program. Also, during error
analysis, I found that most of the words are incorrectly annotated as complex as well.
This ensures us not have high expectations from the model for good performance in
the L2 dataset. From the error analysis, I noticed that the transformer-based language
models on the L2 dataset have performed better than the sequential models and have
precisely identified the complex words on these unseen data. Error analysis on the
model predictions answers my third research question that the models trained
on Shared Task data, specially transformer-based models are good enough for
second language learners. The RoBERTa model has achieved the best performance
for the L2 dataset, significantly better than all the other approaches. This could be
due to the reason that the pre-trained RoBERTa model has been trained using many
different genres corpus and it might be helping the RoBERTa model to achieve better
performance on the L2 dataset.

9.2 Future Work

The L2 dataset collected in this thesis is annotated on the basis of CEFR levels. This
technique defined the word complexity without taking the context where it occurred.
Also, many words were not present in their EVP word lists and I annotated all of them
as non-complex. These limitations with limited time did not allow us to train the model
in this dataset. Also, the performance achieved on this dataset from various models is
not up to the mark. In the future, the annotation for this dataset could be improved by
involving some English language learners using the Amazon Mechanical Turk or some
other platform. The results achieved on the L2 dataset from the pre-trained transformer-
based RoBERTa language model are exceptionally well in comparison to other models
including BERT. The better annotation of the L2 dataset would allow us to conclude
whether the RoBERTa model is getting benefit from its pre-trained approach on many
different genres corpus amounting to a ton of data in comparison to the BERT model.
From my experiment of fine-tuning RoBERTa model, I found that removing stop words

from the training data degraded the model performance. The reason could be that
transformer-based language models are pre-trained using stop words and removal of them
has an adverse impact on the encoded representation of the sequence. In future work,
instead of removing stop words, we can mask them before feeding them to transformer-
based models. This way we could achieve the original goal of removing stop words, as
well as a transformer will implicitly guess these masked tokens. Also, we will try to use
an ensemble of various pre-trained language models fine-tuned for the CWI task.
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