
M A S T E R T H E S I S

Unsupervised Entity Disambiguation Using
Pretrained Contextualized Word

Embeddings

Frederik Wille

Field of Study: M.Sc. Computer Science

Matr.-Nr. 6533918

First Reviewer: Prof. Dr. Chris Biemann

Second Reviewer: Dr. Seid Muhie Yimam

Supervisor: Steffen Remus

Date of Submission: 25.04.2022

i

Abstract

Mentions of named entities are an integral part of natural language. They link pieces of

text or speech to the entities of the real world. Named entities might be physical enti-

ties like persons and places, as well as abstract entities like organizations. Unfortunately,

names can be ambiguous. For example, when mentioning “Michael Jordan”, most peo-

ple will think of the former basketball player and name giver of the Air Jordan sneakers.

However, at the time of writing, Wikipedia lists 13 additional famous persons with that

name as well as media about the basketball player, e.g. movies. Consequently, disam-

biguation of entity mentions is essential to natural language processing.

In this thesis, we propose an unsupervised approach to entity disambiguation. We in-

troduce a heuristic classification of unambiguous entity mentions limiting unambiguity

to the scope of a knowledge base. Our approach clusters the unambiguous mentions

based on their contextualized word embeddings. The clustering captures semantic sim-

ilarities between the mentions through their embeddings. To disambiguate a mention,

we calculate the most similar cluster. Ambiguous mentions that have the same surface

form but refer to different entities are matched to different clusters. In contrast, mentions

referring to the same entities are matched to the same cluster. Additionally, we describe

the clusters with short texts based on the entities’ descriptions on a knowledge base and

leverage those descriptions for disambiguation. For example, Michael Jordan might be

described with “former basketball player”.

Our experiments show that the heuristic sufficiently classifies mentions as ambiguous

or unambiguous. The results further indicate that we successfully created clusters of

semantically related entities. Nonetheless, we can not yet compare our approach to others

due to limitations of the currently available datasets.

ii

Contents iii

Contents

1. Introduction 1

1.1. Entity Mentions . 2

1.2. Motivation . 2

1.3. Hypothesis . 3

1.4. Thesis Structure . 4

2. Related Work 5

2.1. Background . 5

2.2. Vector Space Representations . 7

2.3. Entity Linking & Typing . 11

3. Methodology 17

3.1. General Methodology . 17

3.2. Unambiguous Entity Mentions . 18

3.3. Entity Representations . 20

3.4. Clustering of Contextual Word Embeddings 22

3.4.1. Graph Construction . 22

3.4.2. Graph Clustering . 24

3.4.3. Hierarchical Clustering . 24

3.5. Describing Mention Clusters . 25

3.5.1. Statistical Language Model . 26

3.5.2. Tf-idf . 27

3.5.3. Log Likelihood . 27

3.6. Entity Assignment . 27

4. Evaluation 31

4.1. Data Analysis . 31

4.1.1. AIDA CoNLL-YAGO Corpus . 31

4.1.2. Wikipedia Corpus . 33

4.2. Analysis of Mention Unambiguity . 33

4.3. Graph & Cluster Analysis . 35

4.3.1. Graph Properties . 35

4.3.2. Cluster Properties . 37

4.3.3. Entity Assignments . 39

iv Contents

4.4. Description-focused Experiments . 43

4.4.1. Describing Clusters . 43

4.4.2. Evaluation Scheme . 45

4.4.3. Baseline & Variation Experiments 47

4.4.4. Wikipedia Dataset . 50

5. Summary, Conclusion & Future Work 51
5.1. Summary . 51

5.2. Conclusion . 51

5.3. Future Work . 52

Bibliography 55

Acronyms 61

A. Appendix 63

1

1. Introduction

Named entities are real-world objects referred to by proper names. Their mentions, i.e.

occurrences of their names, make up a significant part of natural languages. For ex-

ample, the news articles that we use in this thesis mention entities over 35 000 times in

about 22 000 sentences. That is more than one mention per sentence and it does not even

include all co-references referring to entity mentions in other parts of an article. As a

result, gaining an understanding of named entities gives an advantage in various natural

language processing (NLP) problems. For example, limiting results to those semanti-

cally fitting can improve information retrieval applications (Tan et al., 2017). Thus, the

NLP community has researched several problems around entity mentions for decades

(Nadeau and Sekine, 2007). The research started with named entity recognition (NER),

i.e. finding entity mentions in natural language. In the last few years, the focus has been

shifted to linking mentions to entity items in knowledge bases (KBs) and categorizing

mentions into more granular classes. Furthermore, there are special interests like domain

transferability to adapt to specialized domains like medical research.

Another recent topic in NLP are contextualized word embeddings (CWE). Word em-

beddings are, in general, numerical representations of words. Compared to a one-hot

encoding of the same dictionary, they are placed in a low-dimensional space. These rep-

resentations are calculated in a way that incorporates the word’s sense. The numerical

form also allows machine learning techniques to process the incorporated sense. Re-

cently, pretrained transformer models like BERT (Bidirectional Encoder Representations

from Transformer; Devlin et al., 2019) provide CWE. In contrast to previous embedding

approaches, CWEs capture the context in which a word occurs. Simplified, the previously

used static word embeddings only train a mapping from strings to embeddings which is

based on the contexts of the word in the embedding model’s training data. Through the

focus on a word’s context, CWEs have a particular advantage in understanding named

entities. Entity names consist of open-class words and there will always be unknown

names no matter the size of the training data. Thus, disambiguating entity names should

focus more on the context than the names themselves. For example, the name “Michael

Jordan” by itself does not convey much about the mentioned person. However, having

basketball established as the context gives a good notion of who might be mentioned.

In this thesis, we show an approach to entity disambiguation that uses CWEs of un-

ambiguous entity mentions to detect semantic similarities between related entities. We

introduce a heuristic on unambiguity that limits the scope of unambiguity to a KB dur-

ing training. The heuristic considers the names and aliases of entities listed in the KB to

2 1. Introduction

detect if there are multiple candidates for a mention. Otherwise, the mention is deemed

unambiguous. Instead of addressing entity disambiguation as a classification problem

with supervised learning, we tackle the issue using unsupervised learning. Ultimately,

we build a model that describes an entity mention with a short text based on the similar-

ity to mentions in the training data. We publish our code on Github1.

1.1. Entity Mentions

This thesis is concerned with named entity mentions in natural language. Generally,

named entities are referred to by proper names like those of persons, organizations and

locations. We define the following terms for this thesis:

• entity: concept of a real world object (like persons, organizations, and locations),

can be identified in a KB by a URI; we use Wikidata’s items as entities;

• mention: occurrence in natural language referring to an entity by a proper name;

• surface form: the concrete string of a mention, may consist of multiple words.

While the exact definition of what constitutes a named entity mention might vary (Nadeau

and Sekine, 2007), we limit it to those entities represented in the Wikidata2 KB and men-

tioned by one of the names denoted in that Wikidata item. At least for the training part

of our methodology, we omit mentions that are not part of the KB. Even so, during in-

ference, our methodology works independently of a strict definition and can be used on

any kind of sequence3. To apply our heuristic during training, we process the surface

form of a mention as well as the possible surface forms of the entities in the KB. The

surface form of a mention is the sequence, i.e. one or more words, that constitutes the

mention. For example, in the following sentence, the surface forms of the mentions are

“The Hitchhiker’s Guide to the Galaxy” and “Douglas Adams”.

The author of The Hitchhiker’s Guide to the Galaxy is Douglas Adams.

For an entity, the possible surface forms are the names that might refer to the entity. The

Wikidata entity Q424 can be referred to by the full name “Douglas Noël Adams” as well

as shorter versions like in the mention above. Of course, entities can also have nicknames

and aliases that are treated equally.

1.2. Motivation

Understanding of entities has been part of NLP research for years. Entity-focused tasks,

like NER and entity linking (EL), have improved with other parts of NLP. The latest

1https://github.com/3wille/Unsupervised-Entity-Disambiguation
2https://www.wikidata.org/
3a sequence can be any length of text, e.g. a sentence, a paragraph or even one or more documents
4https://www.wikidata.org/wiki/Q42

https://github.com/3wille/Unsupervised-Entity-Disambiguation
https://www.wikidata.org/
https://www.wikidata.org/wiki/Q42

1.3. Hypothesis 3

advancement of transformers is already in use for a variety of NLP tasks, including entity

linking. However, most of that work seems to be focused on supervised learning and

thus annotated data. Although most-recent work tends to go in the direction of distant

supervision (e.g. Choi et al., 2018), supervised learning does not take advantage of the

vast knowledge available in unlabeled corpora and KBs.

By using heuristically unambiguous surface forms of entities, we ensure that a CWE is

a proper representation of a specific entity in the KB. Thus, we do not need labeled data

for training our model but work completely unsupervised. Without the heuristic, there

is no trivial way of determining an entity for a mention. With it, any kind of corpus can

serve as training data as long as the mentioned entities are present in the used KB.

1.3. Hypothesis

In this thesis, we present our research on a method of unsupervised learning for entity

disambiguation. We detect unambiguous mentions in our training data and learn sim-

ilarities between their CWEs. Our goal is to leverage the learned knowledge about the

unambiguous entity mentions for entity disambiguation.

The unambiguity of a mention is a central part of our proposition. It is used to pro-

vide a set of entity links from which we gain further knowledge later on. We introduce

a heuristic to detect whether a mention in our training data can be considered unam-

biguous or not. The heuristic considers the names and aliases procured on Wikidata.

Using ontologies like Wikidata, we consider the open world assumption (OWA). The

OWA states that a knowledge base may always be incomplete (Hitzler et al., 2010). For

our case, this means that we are aware that unambiguity determination will never be

perfect using the heuristic. Nevertheless, we hypothesize that we retrieve sufficiently

unambiguous mentions based on the heuristic.

Once we have established a set of unambiguous mentions, we cluster them based on

the similarity of their CWE. The ability of CWE to represent semantics is shown in previ-

ous work (e.g. Wiedemann et al., 2019). We expect that the clustering yields meaningful

groups of related entities and that these groups can be used for entity disambiguation.

For the clustering, we also leverage that all mentions are unambiguous. It allows us to

treat all mentions with the same surface form as referring to the same entity. Thus, we

can merge their representations before the clustering.

Then, we use the semantically related groups for disambiguation. Ultimately, we

match ambiguous mentions to the clusters and produce a free-form description. These

descriptions are pre-generated for each cluster and have similarities to ultra-fine entity

typing (Choi et al., 2018).

For this thesis, we pose the following research questions:

1. Can we find correct mention-to-KB-item links using the unambiguity heuristic?

2. Can CWEs be used to produce clusters of semantically related entities?

4 1. Introduction

3. How can we generate descriptions for clusters of entities?

4. Can the clusters be leveraged to disambiguate candidate entities?

1.4. Thesis Structure

The rest of this thesis is segmented into four chapters. Chapter 2 introduces past works

relevant to this thesis, especially those around embeddings and entity disambiguation.

In Chapter 3, we describe our novel methodology for working with entities. The exper-

iments based on our methodology and their results are laid out in Chapter 4. Chapter 5

discusses our work and concludes this thesis.

5

2. Related Work

This chapter provides background information relevant to the thesis. First, we present

Wikidata and Chinese Whispers (CW; Biemann, 2006) that are essential parts of our

methodology. Then, we describe methods for calculating vector space representations

(VSRs). Last, we place our work in the context of other entity-focused tasks and method-

ologies.

2.1. Background

Wikidata

Central parts of our methodology use the KB Wikidata1 (Vrandečić and Krötzsch, 2014).

Wikidata is a multilingual KB developed and offered by Wikimedia, the organization be-

hind the encyclopedia Wikipedia. While people all over the world have amassed huge

amounts of knowledge on Wikipedia since its inception in 2001, its unstructured con-

tent poses a challenge for programmatic access. Furthermore, the same information on

different pages or languages on Wikipedia can be inconsistent.

Population numbers for Rome, for example, can be found in English and Ital-

ian articles about Rome but also in the English article “Cities in Italy”. The

numbers are all different. (Vrandečić and Krötzsch, 2014)

To address the lack of structure and consistency, the Wikimedia Foundation launched

Wikidata in October 2012. On Wikidata, some data values like the population number

of Rome are stored independently of language, i.e. the value for “population number

of Rome” is stored only once. Wikidata stores information like the population number

in property-value pairs2 attached to an item. In the example, Rome is the item and the

population number is the property. Together with the value, they form a Semantic Web

triple (Hitzler et al., 2008) consisting of subject, predicate, and object. Wikidata can also

store language-dependent information, e.g. the property representing population num-

bers can be annotated with a translation for different languages. Further, items can have

language-specific properties like the name, possible aliases, and a description that may

be different in every language. Throughout this thesis, we use exactly these three proper-

ties: name and aliases as possible surface forms of the referenced Wikidata item, as well

1https://www.wikidata.org
2we use the terminology as used by Vrandečić and Krötzsch (2014) which partly collides with Semantic

Web terminology, e.g. in (Hitzler et al., 2008)

https://www.wikidata.org

6 2. Related Work

as the descriptions (see Figure 2.1 for an example). However, as a KB, Wikidata is subject

to the OWA (Hitzler et al., 2008), i.e. the KB has to be considered as incomplete at all

times. Thus, the absence of content must be considered as unknown rather than being

treated as the negation of the content (Arnaout et al., 2021). For example, the item of au-

thor Douglas Adams3 states that he received the Inkpot Awards. However, the item does

not state whether Adams received the Nobel Prize in Literature, so we cannot assume

whether he did or did not, although the latter is true.

Figure 2.1.: Douglas Adams’ item on Wikidata with name, description andaliases. Re-
trieved on 21.3.2022.

Chinese Whispers

Chinese Whispers (CW; Biemann, 2006) is a graph clustering algorithm specifically de-

signed with NLP in mind. The author’s goal is to allow clustering of the large datasets

that are common in NLP. The algorithm works in a bottom-up method, i.e. all nodes are

initialized with a distinct class. Then, iterating over all nodes only a few times, each node

changes its own class to the strongest class amongst its neighbors. The strongest class is

the class with the maximal sum of all edge weights. The pseudocode of the algorithm

can be seen in Listing 2.1. During the iterations, groups of close nodes will stabilize to

the same class. These groups grow until they meet the border of another stable class.

Figure 2.2 shows the algorithm clustering an example graph. CW does not converge in a

formal sense, but Biemann shows that it reaches a state of almost-convergence quickly. In

our experiments, we see that a few iterations are enough to yield promising clusters. To

be used for large datasets, the clustering algorithm needs to be efficient. However, using

a graph as the representation of the data also allows us to apply optimizations, like using

edge pruning to reduce the complexity of the data. Other algorithms often work on a sim-

ilarity matrix that cannot be pruned so easily. The performance of CW is especially good

in small-world graphs. Small-world graphs (Watts, 2000) are characterized by a high clus-

tering coefficient4 and low average shortest path length between pairs of nodes. To deter-

mine whether a graph is a small-world, it is compared to equivalent graphs that are either

completely random or regularly structured (see Figure 2.3). Anecdotally, small-world

graphs represent the social small-world phenomenon (Milgram, 1967) which claims that

3https://www.wikidata.org/wiki/Q42, retrieved 21.3.22
4a high clustering coefficient means that the average of nodes have highly connected neighbors

https://www.wikidata.org/wiki/Q42

2.2. Vector Space Representations 7

1 initialize:
2 forall vi in V: class(vi)=i;
3 while changes:
4 forall v in V, randomized order:
5 class(v)=highest ranked class in neigborhood of v;

Listing 2.1: Chinese Whispers in pseudocode as presented by Biemann (2006)

most people know each other by just a few intermediary acquaintances. Biemann (2006)

lists a few examples of small-world occurrences in NLP research. We later show evidence

that our graph has small-world characteristics as well, so the high performance in quality

and speed of CW on these graphs is of interest to us.

(a) Initialization (b) First Iteration (c) Second Iteration

Figure 2.2.: An example of Chinese Whispers clustering an unweighted graph with 11
nodes in 2 iterations (from Biemann, 2006)

Figure 2.3.: Small-worlds graph are a middle ground between structured/regular and
random graphs. All three graphs have the same number of nodes and edges.
(from Watts and Strogatz, 1998)

2.2. Vector Space Representations

Vector space representations (VSRs) are an integral part of NLP. In general, VSR models

place a piece of text in a multi-dimensional space of real numbers. As a numerical rep-

resentation of text, they allow modern machine learning approaches, especially neural

networks, to be used. Depending on the specific algorithm, VSR can represent any type

of text: whole documents, paragraphs, sentences, words, or just parts of words. There is

8 2. Related Work

also research on compositionality, i.e. how to aggregate multiple representations at one

level to represent a higher level. For example, Reimers and Gurevych (2019) investigate

averaging word embeddings to represent a sentence. In this section, we focus on word-

level embeddings and later aggregate those to mention-level representations. The goal

of embedding algorithms is to produce word embeddings that map semantically similar

words into similar vectors. To achieve that goal, the algorithms presented here are based

on the distributional hypothesis by Harris (1954) which states that words that occur in

the same contexts tend to have similar senses. Here, we take a look at two different kinds

of VSR:

• static embeddings;

• contextualized word embeddings (CWE).

Static word embeddings are static with regard to the surface form of a word. They

produce the same vector for each surface form regardless of the word’s sense. Thus,

they cannot discern between polysemes, i.e. words with the same spelling but differ-

ent senses. Mikolov et al. (2013) introduce the static word embeddings model called

Word2Vec. Word2Vec was a novelty at the time for its simpler model compared to previ-

ous works that allowed it to be trained on significantly larger datasets. It is composed of

two submodels that are also illustrated in Figure 2.4:

• continuous bag-of-words (CBOW): predict a word given its context, i.e. the sur-

rounding words;

• continuous skip-gram: given a word, predict its context.

The usage of those two models allows Word2Vec to be trained more efficiently compared

to previous language model (LM) approaches, meaning more training data can be used

with the same effort in both computational resources and time. Building on the skip-

gram model, Bojanowski et al. (2017) introduce FastText. FastText expands Word2Vec’s

capabilities by processing character n-grams rather than whole words. The character n-

grams have two advantages. First, the model recognizes and thus learns morphological

similarities between words. An example provided by the authors is the German com-

pound noun Autofahrer (car driver), which consists of two components: Auto and fahrer.

FastText returns the average of those components. Second, it produces embeddings for

many words that are out-of-vocabulary (OOV) for Word2Vec on the same training data

because a word’s n-grams are more likely to have appeared in the training data. The

latter advantage is especially of importance to our methodology because entity mentions

are often OOV on a word level, even for extensive corpora.

Contextualized word embeddingss (CWEs) are, in contrast to static embeddings, de-

pendent on the embedded token’s context. Through the distributional hypothesis (Har-

ris, 1954), they carry some notion of an ambiguous word’s sense (as shown in Wiedemann

et al. (2019) that we introduce later on). One of the most prominent models for CWE is

2.2. Vector Space Representations 9

Figure 2.4.: Word2Vec models: CBOW predicts a word given its context; given a word,
Skip-gram predicts its context (from Mikolov et al., 2013)

BERT (Bidirectional Encoder Representations from Transformer; Devlin et al., 2019). It

is based on the transformer technology initially introduced by Vaswani et al. (2017) as a

model for machine translation. The original transformer is composed of an encoder and a

decoder. The encoder learns to produce a representation of the input that the decoder can

turn into an output sequence in the target language. The novelty in Vaswani et al. (2017)

is that the previously used recurrency in neural networks can be replaced with the self-

attention mechanism. With attention, all parts of the model can focus on different values

of the input or previous layers. Simplified, the attention is a factor applied to the output

of a network layer that increases specific values dynamically. This allows cost-effective

modeling of long-range dependencies between words. Before attention, learning such

dependencies was ineffective because it required the value to traverse through multiple

layers because the previous models could only consider a few words around the current

word.

BERT needs a way to deal with OOV words as well. For this purpose, it employs

WordPiece (Wu et al., 2016). WordPiece is a tokenizer originally built for languages like

Korean or Japanese. These languages have vastly large vocabularies as well as fewer

spaces between tokens than Latin-based languages (Schuster and Nakajima, 2012). This

property requires more complex tokenization in addition to a method to avoid errors on

OOV words. To train a WordPiece model, the vocabulary is initialized with the Unicode

characters relevant to the respective language. Then, a greedy algorithm chooses the pair

of vocabulary items that increases the likelihood of a language model the most when the

model is trained on the training data using the new vocabulary. Training completes once

the vocabulary reaches a defined target size or the increase in likelihood falls below a

threshold. The result is a tokenizer model that splits words into subtokens but can also

leave tokens as is when they are frequent enough in the training data.

In BERT, WordPiece is used to treat OOV words for latin-based languages as well.

To keep parameter complexity within limits, BERT limits the vocabulary of WordPiece

10 2. Related Work

to 30 000 tokens which is much less than the 200 000 used for Japanese and Korean by

Schuster and Nakajima (2012). In BERT’s WordPiece model, subtokens following the first

are prefixed with ## to denote which tokens are the result of a split. As an example,

the word Hitch is OOV and therefore it is split into two known subtokens: Hit and

##ch. Based on the WordPiece inventory, a mapping from tokens to integers is calcu-

lated. These integers are then used as the inputs for the BERT model during training and

inference in place of the tokens themselves. Architecturally, BERT (Devlin et al., 2019)

mostly replicates the model in Vaswani et al. (2017) but only includes the encoder leav-

ing out the decoder. Now, the previously internal representations serve as the output of

the model. Training of BERT itself is conducted targeting two tasks:

• Masked language model (MLM): during training, some of the tokens in a sentence

are masked (i.e. hidden) from the model and the model is asked to predict what the

token is;

• Next sentence prediction (NSP): the model is given two sentences and is trained to

decide on whether those appear together in the training data.

The masked language model task contributes especially to the model being trained in

a way that allows us to retrieve CWEs (Wiedemann et al., 2019) while the NSP task is

more helpful to some downstream tasks like question answering (Devlin et al., 2019).

BERT is pre-trained on a large dataset. The authors publish the learned parameters for

use in downstream tasks. The pre-trained model is then intended to be used in a fine-

tuning strategy for which it is meant to receive further training on a dataset-specific to the

downstream task. However, the authors also experiment with a feature-based approach,

i.e. using BERT’s output as features for another model rather than fine-tuning the BERT

model itself. We build upon this way of using BERT by leveraging the output as CWEs.

RoBERTa (Robustly optimized BERT Pretraining Approach; Liu et al., 2019) is a replication-

study of BERT (Devlin et al., 2019). To show further capabilities of the BERT architecture,

Liu et al. make the following adjustments to it:

• increasing training length, data, and batch size;

• removing the next sentence prediction (NSP) task;

• training on longer sequences, i.e. always making the best possible use of the 512

tokens limit per sequence;

• dynamically changing the masking pattern in MLM to diversify the task.

Increasing the training data is an obvious choice as the gains of larger datasets for LMs

were known even before Word2Vec (Mikolov et al., 2013). In contrast to some other works

that increased the size of BERT’s training data, the authors publish their dataset, which

aggregates five different corpora, to be used in future work. Larger batches are easier

to parallelize and show better downstream task performance in the paper. Based on

2.3. Entity Linking & Typing 11

previous works, the authors argue that the training loss generated by the NSP task does

not yield advantages and might even hinder the LM learning. They further find that it

is more important to use longer sequences and not individual sentences to learn long-

distance dependencies adequately. These adjustments together contribute to increased

performance over BERT that the authors show in their experiments.

To assess the semantic capabilities of CWEs, especially those produced by BERT, Wiede-

mann et al. (2019) propose a k-nearest neighbor (KNN) classifier on CWEs. The classifier

is used to tackle the word sense disambiguation (WSD) task comparing the performance

of three CWE producing models on different datasets. The authors chose KNN to be

able to gain insight into classifier decisions that support vector machines or neural net-

works would not allow. This insight is displayed in the example of six senses of the word

“bank” in comparison with the previous embedding models Flair (Akbik et al., 2018)

and ELMo (Peters et al., 2018). The contextualized embeddings for “bank” are shown

in a t-distributed stochastic neighbor embedding (t-SNE; Van der Maaten and Hinton,

2008)5 plot color-coded by their sense that we show in Figure 2.5. From the recognizable

clusters in the BERT example, the authors conclude that BERT can encode some form of

knowledge about word senses in its CWEs while Flair and ELMo seem to lack this kind

of information. We expect this knowledge of sense disambiguation to work similarly for

entity disambiguation due to the similarity of the tasks. Example usage of this similarity

can be seen in Moro et al. (2014) where a unified approach to both entity and word sense

disambiguation is shown.

(a) BERT (b) Flair (c) ELMo

Figure 2.5.: Distribution of the embeddings from three models for the word ’bank’ color-
coded by their sense; from Wiedemann et al. (2019)

2.3. Entity Linking & Typing

The purpose of this thesis is to gain an understanding of entity mentions. Computational

understanding of entity mentions has been part of NLP research since at least the early

1990s (Nadeau and Sekine, 2007). Historically, while starting with rule-based systems

(e.g. Rau, 1991), most techniques have relied on machine learning. Along with the rest

5technique to visualize data with more dimensions than displayable

12 2. Related Work

of NLP research, it took important steps forward with the growth of neural network

systems (e.g. Lample et al., 2016). Most recent research in the area of named entities is

further profiting from the adoption of the transformer architectures like BERT. There are

three entity mention focused tasks that we want to mention here:

• Named entity recognition (NER): detect mentions of named entities;

• Entity linking (EL): link a mention to the referred entity in a KB;

• Entity typing (ET): classify/describe a mention with one or more labels.

All three are related to this thesis which we describe as entity disambiguation (ED).

ED is often treated as one step in entity linking (EL) deciding which of a number of

candidates is referred to by a mention. An example of this is CHOLAN (Kannan Ravi

et al., 2021) that we describe in more detail later on. However, we take ED more into the

direction of ET by describing mentioned entities rather than producing an explicit link

to an entity in a KB while not fulfilling the ET task directly either. Nonetheless, EL is an

important task in NLP and we show how this thesis fits into EL, as well as ET, research.

One example of a downstream task for our approach can be zero-shot entity linking.

This task is introduced by Logeswaran et al. (2019) along with a dataset and a novel

approach called domain-adaptive pre-training (DAP). The authors define the new task

as an expansion of the scope of the previous entity linking task. They target a higher

generalization, especially to new domains that are possibly unknown at training time.

For that, they exclude a few assumptions that are allowed in previous EL tasks:

• a single entity set shared between training and test examples;

• an alias table that maps all names to their possible entities;

• frequency statistics, i.e. probabilities for the alias table;

• structured data, e.g. knowledge graph triples defining relations between entities.

Instead, they only assume access to an entity dictionary for targeting that incorporates

entities along with a text description each. For training and testing, they need labeled

mention and entity pairs that may come from multiple domains. The dataset published

alongside the paper is built on eight Wikias6 for training and four Wikias each for val-

idation and testing. Each Wikia is an encyclopedia on its own, focusing on a separate

topic, e.g. a specific sport like wrestling, lego, or different fictional universes. Thus, the

dataset targets the generalization and transferability that the novel task demands. The

descriptions in the dataset are different from those used in our methodology. Their de-

scriptions are full sentences, e.g. the Imperial Armored Transport from the Star Wars Wikia

is described as:

6https://www.wikia.com/

https://www.wikia.com/

2.3. Entity Linking & Typing 13

The Kuat Drive Yards Imperial Armored Transport was fifty meters long and

carried ten crewmen and twenty soldiers. (Logeswaran et al., 2019)

Meanwhile, our descriptions are shorter and use only a few descriptive words, e.g. the

AT-AT7, from the Star Wars franchise as well, is described on Wikidata as “four-legged

walker in Star Wars”. As for the author’s own implementation, they implement a two-

stage pipeline. First, as candidate generation, a variant of tf-idf (term frequency-inverse

document frequency)8 is used to produce 64 candidates. Then, they rank the candidates

with a transformer architecture based on BERT. As in BERT’s NSP task, they use special

tokens to separate two sequences that are the mention context and the candidate entity’s

description. The transformer produces a joint representation for the pairs of context and

description, which is passed to a last neural layer that learns a function to a final score for

the candidate. In evaluation, Logeswaran et al. (2019) use a similar approach to ours in

considering the top-k results. All in all, the zero-shot entity linking task works on similar

problems as this thesis, the understanding and disambiguation of entity mentions. The

research around entity linking has the potential to evolve further in the direction of higher

generalization and domain independence and zero-shot is a step in this direction.

Kannan Ravi et al. (2021) describe their approach to end-to-end entity linking named

CHOLAN. Though trained end-to-end, CHOLAN is modular and employs two indepen-

dent transformer models for mention detection (MD) and ED. For MD, BERT is chosen

as a token classifier. Each of the detected mentions is assigned a list of candidate enti-

ties for which the authors compare the performance of two different generation methods

from previous works. For ED, a mention with its sentence as context and a candidate

entity with its context, e.g. a Wikidata description, are fed into a second BERT model.

The ED model is trained for binary classification deciding whether a mention belongs to

a certain entity. To demonstrate CHOLAN’s ability to work across KBs, the authors base

their experiments on the T-REx (Elsahar et al., 2018) and AIDA datasets for Wikidata

and Wikipedia respectively. At their time of writing, they outperform the previous state-

of-the-art model (Kolitsas et al., 2018) in end-to-end EL in Micro-F1 score. They argue

that this advancement comes from the modularity of their approach and the high perfor-

mance of BERT on the MD subtask. The modularity allows for choosing the best system

for each subtask. Thus, modularity is of particular interest to our work as it would allow

our approach to be integrated into the CHOLAN architecture in future work.

Another task domain that is similar to our approach is entity typing (ET). In earlier

years, NER systems often included a classification into a small number of what are es-

sentially types. In this case, the task is also more specifically referred to as Named Entity

Recognition and Classification (Nadeau and Sekine, 2007). Methods targeting wider sets

of types are called fine-grained entity typing (e.g. Ling and Weld, 2012; Yogatama et al.,

2015; Yaghoobzadeh and Schütze, 2015). Ling and Weld (2012) set a fine-grained entity

7https://www.wikidata.org/wiki/Q19879, retrieved 22.3.22
8initially used in information retrieval as a measure of how important a term is for a document

https://www.wikidata.org/wiki/Q19879

14 2. Related Work

linking task based on 112 curated tags accompanied by a dataset that is automatically

labeled through Wikipedia anchor links and associated Freebase9 types. The tags are

curated to trade-off granularity with increasingly noisy type labels. Examples from the

selected tags are professions of famous persons like actors or artists and different types

of locations like cities, countries, or mountains. Comparing those tags with our descrip-

tion, they are definitely coarser than ours and also more concise, consisting primarily of

a single, short phrase.

A more recent work in entity typing is LUKE (Language Understanding with Knowledge-

based Embeddings; Yamada et al., 2020). LUKE is based on the BERT architecture and

extends RoBERTa’s pretrained model. The focus of LUKE is on entity mentions and treats

mentions as a single token each in addition to the usual representations of the input se-

quence. This allows the model to generate a single representation for each mention rather

than several representations for each subtoken. These mention tokens are then trained

with an entity-specific masked language model task. Furthermore, LUKE has an entity-

aware self-attention mechanism in addition to the usual self-attention of BERT to deal

with the new token type for entity mentions. For evaluation, the authors compare the

embeddings produced by LUKE with those produced by RoBERTa as a baseline, as well

as the scores reported by previous works. Yamada et al. report a state of the art perfor-

mance on entity typing but for only nine entity types. While we did not consider LUKE

during this thesis due to time constraints, it is definitely an interesting addition for future

work as a substitute embedding model.

Going even finer in entity typing is “Ultra-Fine Entity Typing” (Choi et al., 2018). In

contrast to the closed class of types the previously described fine grained entity typing

works used, the goal of Choi et al. is to predict free-form noun phrases in an open class.

Furthermore, multiple of those free-form types can be assigned to a single entity mention,

e.g. in the following sentence the mention “Sam” might be labeled with types such as

person, accused, suspect and defendant.

Sam has been asked to appear in court to face the charge. (Choi et al., 2018)

Both differences to fine-grained ET together allow for easier crowdsourcing to construct a

dataset because annotators do not have to agree on a single label and have more freedom.

Implementation-wise, the authors extend the fine-grained typing model by Shimaoka et

al. (2016) that builds a mention representation along with a context representation using

a long short-term memory (LSTM) network with an attention mechanism. The authors

improve the model’s representations as well as its training through their own dataset.

Additionally, they add learning of context-sensitive types to the model for cases where

an entity can have different types in different contexts, e.g. famous persons can be known

for different things. For example, Arnold Schwarzenegger is both an actor and former

governor of California, and depending on the context, only the respective types should be

9a former knowledge graph whose data was integrated into Wikidata

2.3. Entity Linking & Typing 15

produced. Ultra-fine grained entity typing as a task is the most similar to our approach.

Both methods produce a free-form description given an entity in its context. The main

differences lie in the supervision and thus required labeled dataset of Choi et al. (2018)

while our approach is unsupervised and can be trained on any kind of corpus and KB.

16 2. Related Work

17

3. Methodology

We propose an unsupervised approach to entity disambiguation. It builds upon a heuris-

tic on the unambiguity of entity mentions and clustering of VSRs. Throughout this chap-

ter, we will introduce our approach, starting with an overview. First, we introduce our

heuristic on unambiguity, applying it to extract unambiguous mentions from a corpus.

Then, we build representations of these unambiguous entity mentions. Based on those

representations, the entity mentions are clustered. As the last step of our training, we

generate descriptions for each cluster, leveraging the semantic similarity of the clustered

mentions. For inference, we assign unknown entity mentions to the clusters and describe

the mention with its cluster’s description.

3.1. General Methodology

We base our methodology on a set of unambiguous entity mentions. The unambiguity

is determined by querying the Wikidata KB with the mention’s surface form. Only men-

tions with a single hit in the query’s answer are considered unambiguous and used in

subsequent methodology steps. We leverage the unambiguity later on so that there is

only a single possible entity a mention can refer to. This allows us to train an unsuper-

vised model on any dataset. On a plaintext corpus, we first find entity mentions, e.g.

using an NER tagger. From the mentions found, we select those we deem unambiguous

(more on unambiguity in Section 3.2). Then, we build semantically related groups of un-

ambiguous mentions and the entities they refer to from which we draw knowledge. The

semantic relatedness of mentions is calculated as the similarity of the respective men-

tions’ VSR. The semantically related groups are then found by clustering the represen-

tations. Last, we generate descriptions for each group which are used during inference

to describe ambiguous mentions. Our goal is that the description represents its group

and generalizes from all entities in that group. To achieve that goal, we introduce and

compare different strategies for both clustering and description generation. The training

process can be summarized in five steps:

1. find mention candidates

2. select unambiguous mentions

3. build vector representations for unambiguous mentions

4. cluster representations

18 3. Methodology

5. generate descriptions

With our model complete, we look at inference and testing. For an unknown and po-

tentially ambiguous mention, we synthesize a text that describes the entity mentioned

based on the entity descriptions learned during training. The goal, again, is to produce

descriptions that incorporate important features of the described entity. Our model pro-

duces a set of descriptions based on the trained clusters that are most similar to the un-

known mention. The similarity is based on vector representations of the unknown men-

tion and of the mentions that constitute the clusters in the same way that the training

mentions are clustered.

3.2. Unambiguous Entity Mentions

We base our work on a set of entity mentions that we consider to be unambiguous. The

unambiguity allows us to link those mentions to entities in a KB without relying on a

labeled dataset. Having established a link, we request additional information about the

entity from the KB. Furthermore, we derive from the unambiguity that all mentions of

the same surface form, i.e. a mention consisting of the same tokens, refer to the same

entity and thus can be treated as such. In our experiments, we leverage this derivation

to merge the representations of mentions with the intention of combining the knowledge

inherent to the representations.

For this thesis, the unambiguity of a mention is determined by querying Wikidata for

the mention’s surface form. While the methodology can be transferred to any other KB,

we opted for Wikidata because of its structured and queriable storage of entity names

and aliases and thus potential surface forms of mentions. When querying for potential

entities, we only consider exact matches of the surface form with an entity’s name and

aliases (shown as “Also known as” on Wikidata’s website). Here, exact matches mean

that we ignore results with similar names that search engines might return. Taking the

Wikidata item of Douglas Adams1 as an example, we consider the following names as

surface forms:

• Douglas Adams

• Douglas Noel Adams

• Douglas Noël Adams

• Douglas N. Adams

We consider mentions as unambiguous for whose surface form Wikidata returns ex-

actly one result. If there are multiple matches, the mention is ambiguous. If there are no

matches at all, we ignore the mention as well because we cannot draw knowledge from

1https://www.wikidata.org/wiki/Q42, relevant part captured in Figure 3.1b

https://www.wikidata.org/wiki/Q42

3.2. Unambiguous Entity Mentions 19

the mention without a Wikidata entity. In the example sentences in Figure 3.1, we rec-

ognize the mention “Douglas E. Adams” as unambiguous and that of “Douglas Adams”

as ambiguous. While “Douglas Adams” is the name of the Wikidata entries for both

Douglas N. Adams and Douglas E. Adams, “Douglas E. Adams” refers to only the one

Wikidata entry. One issue arises for our unambiguity decision from the OWA. In the

context of this thesis, the OWA states that a knowledge base may always be incomplete

(Hitzler et al., 2010). We acknowledge that, following the OWA, there can be other en-

tities that would match our queries but that are not (yet) part of the KB. However, we

hypothesize that we find enough actually unambiguous entity mentions in our training

data to be of value to our approach. Furthermore, we believe that the impact of mentions

being assigned to wrong KB entities is negligible for the scope of this thesis. Thus, we

heuristically consider Wikidata as a closed world for the purposes of this thesis.

Douglas E. Adams published a paper in Structural
Health Monitoring, 2010.

“

(a) Unambiguous mention of the American
environmental engineer Douglas Edward
Adams

“
Douglas Adams published the book Hitch Hiker’s
Guide to the Galaxy.

(b) Ambiguous mention of the English writer
and humorist Douglas Noël Adams

Figure 3.1.: Two sentences showing the unambiguity heuristic using the example of two
persons called Douglas Adams along with excerpts of the persons’ Wikidata
items. Screenshots retrieved on 21.3.2022.

One of the main selling points of our approach is its unsupervised training. To lever-

age this capability, it needs to handle plain text without annotations found on many

datasets in NER or EL tasks. In this case, we first recognize entity mentions in a cor-

pus. There have been numerous methodologies and implementations of NER for years (J

Li et al., 2022). Newer implementations are based on the transformer technology. We use

spaCy’s2 transformer pipeline that NER tagging is a part of. It recognizes entity mentions

and labels the tokens accordingly. Those labels let us calculate which tokens belong to a

mention and the mention’s surface form. From the mentions found in a training corpus,

we select those with an unambiguous surface form as described above and proceed with

this set through the rest of our methodology.

2https://spacy.io/usage/linguistic-features#entity-linking

https://spacy.io/usage/linguistic-features#entity-linking

20 3. Methodology

3.3. Entity Representations

After building a set of unambiguous entity mentions in Section 3.2, we continue by com-

puting VSRs for those mentions. We introduced VSR and the three models in Section 2.2.

Here, we reiterate the facts that are most important to our methodology. VSRs are a nu-

merical representation of units of text like words, sentences and documents (Vajjala et al.,

2020). The VSRs used in this thesis place words in a continuous, low dimensional space

and are designed to convey a grasp of the words’ semantics. While there are different

kinds of vector space representations for words, we focus on CWEs provided by BERT

(Devlin et al., 2019) and RoBERTa (Liu et al., 2019) and further include static embeddings

for comparison.

Static embedding models like FastText (Bojanowski et al., 2017) build vector space rep-

resentations that are static in regard to the surface form of a word. Generally, they cannot

discern between polysemes, i.e. words with the same spelling but different senses. In-

stead, they produce the same vector for each surface form regardless of the sense of the

word. Static embeddings for a word are trained on the contexts of the word in a train-

ing corpus but treat all occurrences of a surface form as belonging to the same sense.

Furthermore, at inference, the prominent static embedding model Word2Vec (Mikolov

et al., 2013), among others, cannot handle OOV words, i.e. words that do not occur in its

training corpus. Hence, for building static embeddings, we choose FastText, which splits

words into chunks similar to syllables. This allows FastText to build static embeddings

for entity mentions whose surface form is not part of a training corpus in many cases. In

these cases, the word’s chunks can be used that are more likely to occur in the training

data.

In contrast to static embeddings, CWE models like BERT produce a vector that is de-

pendent on the context in which a word occurs. Thus, CWEs distinguish between differ-

ent senses of a surface form (Wiedemann et al., 2019), because the sense of an ambiguous

word depends on its context (Harris, 1954). The context-dependency also leads to differ-

ent embeddings of multiple occurrences of a specific word, even with the same sense. For

our work, we compare the CWEs from two models: BERT and RoBERTa. BERT, proposed

by Devlin et al. (2019), is an end-to-end language model that is build on a self-attention

based transformer architecture (Vaswani et al., 2017). To deal with OOV words, BERT em-

ploys WordPiece (Wu et al., 2016). WordPiece is a tokenizer originally built for languages

like Korean or Japanese, which have large vocabularies and do not allow for tokenization

as Latin-based languages do. When passing a sequence to BERT, it is tokenized by Word-

Piece, including OOV words being split into subtokens. Subtokens following the first

are prefixed with ## to denote which tokens are the result of a split. For example, the

word Hitchhiker is OOV and therefore is split into the known subtokens: Hit, ##ch,

##hi and ##ker. From the two tasks that BERT is trained on, mainly the masked lan-

guage model task contributes to producing CWEs that allow distinguishing word senses

(Wiedemann et al., 2019). Originally, BERT, being a pretrained model, was intended to be

3.3. Entity Representations 21

used in a fine-tuning setup for downstream tasks. Instead, we directly use the pretrained

model to build CWEs without further fine-tuning the model. RoBERTa (Liu et al., 2019)

is introduced as a replication study of BERT with the goal to improve its performance

through further hyperparameter tuning and a larger training dataset. By experimenting

with a second CWE model, we investigate the influence of the embedding model on our

approach.

[CLS] Douglas Adams published the book Hitch ##hi ##ker ‘ s Guide to the Galaxy . [SEP]

101 5203 5922 2405 1996 2338 27738 4048 5484 1521 1055 5009 2000 1996 9088 1012 102

e_11 e_12 e_13 e_1n
e_21 e_22 e_23 e_2n
e_31 e_32 e_33 e_3n
....
e_m1 e_m2 e_m3 e_mn

me_1
me_2
me_3
....
me_m

avg

.... e_1i e_1j

.... e_2i e_2j

.... e_3i e_3j

....

.... e_mi e_mj

me_1
me_2
me_3
....
me_m

avg

Figure 3.2.: Mention Embeddings: building a single vector for each mention. The sen-
tence is tokenized and encoded. The model then generates embeddings that
are averaged over all tokens of each mention.

For each unambiguous mention, we parse its sentence from the training corpus and

let the VSR model produce embeddings. While the FastText implementation outputs one

vector per word in the text input, the implementations of BERT and RoBERTa do not

automatically merge the subtoken vectors into word vectors. However, entity mentions

often consist of multiple words. For these cases, we merge the embeddings of the words

to obtain mention embeddings. Thus, we select the embeddings for all words of the

mention and their subtokens. Those are averaged, yielding a single VSR for each men-

tion. While averaging BERT embeddings generally does not yield very good results for

building sentence representations (Reimers and Gurevych, 2019), we argue that averag-

ing only a few tokens at a time reduces its impact on the representations. Further, there

are simple improvements like those proposed by B Li et al. (2020) to be considered in

future work. Our embedding process at the example of BERT is displayed in Figure 3.2.

First, BERT’s tokenizer splits the words into (subword) tokens and translates those into

training vocabulary-based integers. In the next step, these are the inputs for the BERT

model, which returns an embedding vector for each (subword) token. We then calculate

the indices of the tokens that compose a mention and average the embedding vectors at

those indexes. This yields a single vector that we use as the mention’s representation in

the following steps of our methodology.

22 3. Methodology

3.4. Clustering of Contextual Word Embeddings

Ultimately, our goal is to draw knowledge from the similarity of entity mentions through

their CWEs. To do so, we employ clustering algorithms yielding groups of mentions that

we expect to be semantically related through the CWE similarity. We experiment with

two clustering methods:

• graph clustering (GC)

• hierarchical clustering (HC)

The former requires us to think about how to construct a graph that allows the clus-

tering algorithm to perform well. The latter’s usage is more straightforward than the

former, but its hyperparameters need testing and optimization.

3.4.1. Graph Construction

For graph clustering, we first build a graph that is a well-designed representation of the

training data. It needs to properly incorporate the semantic relationships between the

entity mentions that serve as the nodes. However, we cannot just construct a complete

graph with an edge between all pairs of mentions. This would lead to computational

problems, especially for larger datasets. Furthermore, a sparse graph can help the clus-

tering algorithm to focus on the more important connections. In our experiments, we

compare two modes for the graph construction:

• mention level (M): each mention is mapped to a seperate node;

• surface form merged (SF): each node represents a surface form and therefore might

combine data from multiple mentions.

The graph clustering algorithm that we use, Chinese Whispers (CW; Biemann, 2006),

requires us to build an undirected, weighted graph We introduce CW in Section 2.1 and

describe its usage in this thesis in Section 3.4.2. The nodes of the graph comprise the un-

ambiguous mentions (multiple with the same surface form in SF) and the edges represent

the similarity between those mentions. The edge weights hold the similarity between the

respective mentions. Thus, the numeric similarity can be taken into account by the clus-

tering algorithm.

In both modes, M and SF, each mention contributes three edges to the most similar

mentions. The number of edges needs to be limited to keep the graph sparse for the clus-

tering to perform well. Building three edges is a heuristic that we do not delve deeper

into because it worked well from the start and we leave the optimization for future work.

In SF, we merge all mentions with the same surface form into a single node. This can

add more than three edges to a node because each mention still generates three edges.

However, this might also cause collisions when multiple mentions with the same surface

3.4. Clustering of Contextual Word Embeddings 23

European
Court of
Human
Rights

Tapie's lawyer has said he intends to appeal to the
European Court of Human Rights in an effort to
prevent or delay the loss of his European seat.

European
Commission

But Gilbertson said the greatest gloom in the
year came from the European Commission's
blocking of Implats' proposed merger with
Lonrho Plc's platinum interests.

Honam
Conference

on
Disarmament

0.1

0.8

0.7
0.78

0.8

Figure 3.3.: Graph Construction: The mention “European Court of Human Rights” in the
example sentence with edges to the three most similar mentions. One of the
three is highlighted in yellow with the corresponding sentence on the right.
Edges with lower similarity are indicated in red, and incoming edges in blue.
Arrows indicate the direction for which mention generated the edge and not
an edge direction

1 def auto_cosine_sim(embeddings):
2 normalized_embeddings = normalize(embeddings)
3 return mm(
4 normalized_embeddings,
5 normalized_embeddings.transpose(0,1)
6)

Listing 3.1: Auto cosine similarity for a list of vectors (based on implementation by
Reimers and Gurevych, 2019)

form have the same other mention in their top similarities. We resolve collisions by al-

ways using the maximum similarity of the colliding mentions pairs as edge weight. Pairs

of mentions with the same surface form are ignored in SF, i.e. we do not build reflex-

ive edges. An example node of the graph constructed in SF can be seen in Figure 3.3.

The surface form “European Court of Human Rights” (ECHR) appeared multiple times

in the training data and for one of the appearances, the three most similar mentions are

“Conference on Disarmament”, “Honam” and “European Commission” (EC). The simi-

larity between ECHR and EC in the two example sentences with 0.8 is the top similarity

for ECHR, and thus, the edge is actually constructed in the graph. Edges with lower

similarity than the three mentioned above are omitted in this example. Additional ap-

pearances of ECHR might lead to further edges being constructed or the shown edges

being overwritten.

As the similarity measure we choose the cosine similarity defined as:

cos(θ) =
A · B
‖A‖‖B‖ (3.1)

In practice, we use a simplified computation that uses matrix multiplication because we

24 3. Methodology

calculate the similarities between all pairs of embedding vectors. This can be seen in

Listing 3.1 using matrix multiplication of the normalized vectors with its transpose. For

example, 100 mentions produce 100 vectors and for BERT each embedding vector is of

length 768 resulting in a 100 × 768 matrix. Multiplying that matrix with its transpose

yields a 100× 100 matrix with element [i, j] denoting the similarity between mention i
and mention j. This similarity matrix is an easy way to compute all similarities needed

to construct the graph in a single computation. However, it grows quadratically with

the number of unambiguous mentions in the training data. This becomes a problem

quickly when working with larger datasets such as text extracts from Wikipedia. The

first problem is the memory consumption of the matrix, which we circumvented with

batching. With batching, we reduce the size of the matrix for n mentions from n× n to

n× batch_size. Even with batches, the computation is another problem. Once we have

computed the matrix for a batch of the data, we add edges to the graph for the top three

similarities of each mention. For that, we sort n vectors of n length, each sorting of one

vector taking O(n · log(n)) time. Then, we add an edge between the respective edges for

each mention, completing the graph.

3.4.2. Graph Clustering

For the graph clustering method, we employ Chinese Whispers (CW; Biemann, 2006).

CW is a graph clustering algorithm specifically designed with NLP in mind. It works

in a bottom-up manner by initializing each node of the graph with a distinct class. The

algorithm then iterates until no node changed its class during the previous iteration. Each

iteration updates all nodes in a random order with the predominant class among the

node’s neighbors. The update calculation also considers the edge weight for the class of

the respective neighbor. We describe CW in more depth in Section 2.1.

To solve clustering specifically in NLP, CW has a low computational complexity that

is needed to cluster large graphs within a reasonable time. Other work (Di Marco and

Navigli, 2013) shows that it performs well in tasks that deal with word senses which

relates to entity disambiguation. Furthermore, the algorithm is, in general, parameter-

free, meaning that we do not need to supply a target number of clusters or similarity

thresholds. However, we set an upper limit on the iterations performed, which showed

a more promising distribution of cluster sizes in preliminary experiments. Clustering the

graph with CW yields a partitional clustering directly that we use as semantically related

groups of entity mentions.

3.4.3. Hierarchical Clustering

Hierarchical clustering (HC) is another category of clustering algorithms (Maimon and

Rokach, 2005). In contrast to partitioning clustering algorithms like CW, HC algorithms

produce a structure of nested partitions. We show an example structure from our experi-

ments in Figure 3.4. There are two variants:

3.5. Describing Mention Clusters 25

• agglomerative: bottom-up, each mention starts in its own cluster and clusters are

merged iteratively;

• divisive: top-down, all mentions start in one cluster that is split consecutively.

We use the agglomerative variant, which works in a bottom-up manner. It starts with all

data points in a singleton cluster, i.e. clusters containing only a single element. Then, the

most similar clusters are iteratively merged until a single cluster is left. The structure can

be broken at any point to yield the final clusters. This point can be defined by a hyperpa-

rameter such as the desired cluster count or a similarity threshold. For our experiments,

we use the implementation in scikit-learn3. This implementation offers a number of affin-

ity metrics, linkage algorithms, and the option to either supply a distance threshold or a

number of clusters to produce. We explore and optimize these hyperparameters in Ta-

ble A.1 and use the best scoring methods for our experiments. The affinity defines the

similarity measure that is used. Examples that are implemented by scikit-learn are eu-

clidean, cosine, or manhattan distances. The linkage algorithms (Jain and Dubes, 1988)

differ in the way they compute the distances for non-singleton clusters based on all data

points in the clusters. The single-link linkage uses the minimum distance of all possible

pairs of points from each cluster. In contrast, complete-link uses that pair of points with

the maximum distance yielding more compact clusters and dealing better with noisy data

than single-link (Jain and Dubes, 1988). Further, scikit-learn’s implementation offers av-
erage linkage calculating the average of all distances from two clusters and ward which

minimizes the variance of the merged clusters. The method of how to separate the hier-

archical structure into partitions for comparability is of special interest. The structure can

either be split by some similarity threshold or by a defined number of clusters. The simi-

larity threshold defines a lower bound under which nodes are not merged. Alternatively,

the algorithm tries to satisfy the defined number of clusters.

3.5. Describing Mention Clusters

We now delve into generating descriptions for each cluster. Later, these descriptions

are used for inference on unknown, possible ambiguous mentions when those are as-

signed to clusters. First, we generate descriptions for the clustered training mentions.

Each cluster consists of a set of unambiguous mentions to which we already assigned a

Wikidata item. From those Wikidata items, we now retrieve their respective descriptions

that are often just a few words briefly outlining their subject. For example, the Douglas

N. Adams4 mentioned above is described with “English writer and humorist” which fo-

cuses on the person’s profession and further mentions the nationality. This combination

is also a recurring pattern for other persons on Wikidata. In the following, we introduce

3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering
4https://www.wikidata.org/wiki/Q42, viewed 15.12.2021

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering
https://www.wikidata.org/wiki/Q42

26 3. Methodology

Arthur Num
an

Rapid Vienna

W
illem

II Tilburg

Roda JC
Kerkrade

TEXAS

si
m

ila
ri

ty

Figure 3.4.: Dendogram of hierarchical clustered mentions revolving around association
football with the exception of “TEXAS” which refers to an Major League Base-
ball (MLB) team

three approaches to generating descriptions for clusters which we use for disambiguation

in the last section of this chapter.

3.5.1. Statistical Language Model

The first technique generates descriptions using statistical LMs. In general, LMs repre-

sent a language understanding that can be used to either generate new sequences in the

learned language or recognize whether a given string belongs to a language (Manning

et al., 2010). A statistical LM is trained by calculating the probabilities of word occur-

rences. The probability of a word can be just the count of the word’s occurrences over

the total count of all words, but there are numerous smoothing approaches to address

the inherently sparse distribution of word frequencies. The probability calculation can

involve any number of preceding words, e.g.

• a unigram model computes the probability of a word occurring, i.e. how often a

word occurs in the training data regardless of the context;

• a bigram model calculates the probability of a word occurring depending on the

previous word;

• a trigram model includes the two previous words in the calculation.

In our application, we train a separate language model for each cluster based on the clus-

ter’s Wikidata descriptions. Therefor, the Wikidata descriptions are tokenized and trans-

formed into uni-, bi- and trigrams with padding tokens at the beginnings and endings.

The probabilities are then calculated from the n-gram counts while applying Kneser-Ney

(Kneser and Ney, 1995) smoothing. Once the probabilities are calculated, they can be

used to generate new sequences based on the seen training data and thus generalize over

descriptions of a cluster’s mentions.

3.6. Entity Assignment 27

3.5.2. Tf-idf

The second technique generates descriptions using tf-ids scored n-grams. Tf-idf is a scor-

ing method developed for information retrieval (Manning et al., 2010). The score for a

given term in a given document is high for terms that frequently occur in the given doc-

ument but rarely across the dataset. In contrast, words that appear in many documents

are scored lower. Calculation-wise, it is the product of two parts: tf and idf.

tf-idft,d = tft,d × idft

The term frequency (tf) describes a relevance signal by how often a term t occurs in a

document d. The document frequency (df) describes a discriminating power by how

many documents a term t occurs in. To penalize terms that offer no discrimination be-

tween documents, an inverse of df is used and defined as follows with N being the total

number of documents:
idft = log

N
dft

In our case, we consider the clusters as documents and n-grams as the terms and use

the top scored n-grams as the cluster description. Again, from each cluster, we use the

Wikidata descriptions to produce uni-, bi-, and trigrams. We argue that calculating the

tf-idf scores yields the n-grams that are most relevant to the cluster in the context of all

clusters, similar to how tf-idf works in information retrieval. Based on that assumption,

each cluster’s top scored n-grams describe the cluster as a whole.

3.5.3. Log Likelihood

The third technique works similarly to tf-idf but uses the log likelihood ratio (LLR; Dun-

ning, 1993) measure for scoring. LLR is a statistical significance measure that used in

some NLP research (e.g. Moore, 2004; Remus, 2012). Originally, it is used to measure the

significance of two words co-occurring in bi-grams and for its ability to work with rare

events. This rarity stems from the very low frequency with which most words occur in

English, as described by Zipf’s Law (Zipf, 1936). However, LLR can be used for the oc-

currence of any two events. We measure the co-occurrence of an n-gram X with a cluster

Y. More specifically, X is n-gram in the description of some entity that is part of cluster

Y. Table 3.1 shows a contingency table of the co-occurrences that we count in the clus-

tered training data. Based on the event occurrence counts, we use the LLR score formula

shown in Equation 1 to calculate scores for the n-grams in each cluster. As in the tf-idf

technique in Section 3.5.2, we now calculate the top-scored n-grams for each cluster that

serves as a description of the cluster as a whole.

3.6. Entity Assignment

Once we have generated descriptions for the clusters with the previous methods, we de-

scribe new entities. While the previous sections described the training procedure of our

28 3. Methodology

LLR = −2 log(λ)
= 2 ∗

[
n log(n)− na log(na)− nb log(nb) + nab log(nab) + nAB log(nAB) + nAB log(nAB)

+ nAB log(nAB)− nA log(nA)− nB log(nB)
]

Equation 1: LLR formula (Dunning, 1993) (as written by Remus (2012))

A: occurrence of n-
gram X

A: non-occurrence
of n-gram X

∑

B: occurrence in
cluster Y

nAB: n-gram X oc-
curs in cluster Y

nAB: n-grams in
cluster Y but n-
gram X

nB: all occurrences
in cluster Y

B: occurrence not
in cluster Y

nAB: n-gram X oc-
curs in clusters but
Y

nAB: n-grams but X
that occur in clus-
ters but Y

nB: all occurrences
in all clusters but Y

∑ nA: all occurrences
of n-gram X

nA: all occurrences
of all n-grams but
X

n: all occurrences

Table 3.1.: LLR contingency table: co-occurrence of an n-gram X with a cluster Y. nmn
corresponds to the nmn in Equation 1.

methodology, we now introduce the method for inference. In an input sequence, e.g. one

or more sentences, we recognize any entity mentions and produce descriptions for all of

them. The sequence and the mentioned entities can be entirely unknown from the train-

ing. While unknown and known mentions are treated the same during inference, for this

thesis, a further heuristic might be to match mentions to the surface form encountered

during training directly. However, we argue that the effect of this heuristic is negligible

for the purpose of this thesis.

For finding entity mentions in the input sequence and building their representations,

we reiterate the same methods as described in Section 3.2 and Section 3.3. To be more

specific, we find entity mentions using an NER tool and then calculate VSR for them.

After that, we select clusters that are similar to the mentions in regard to the mention’s

VSR. We continue to use cosine similarity as the similarity metric. There are two possi-

bilities for the representation of a cluster when calculating the similarity to an unknown

mention:

• a cluster center based on the VSRs of all mentions in a cluster;

• best similarity of all individual VSRs of a cluster.

In both cases, the cluster with the best score is assigned to the new mention. We im-

plemented the cluster center variant because they can be precomputed at training time,

while the other variant requires calculating more scores during inference. Furthermore,

3.6. Entity Assignment 29

we chose to compute the mean of each cluster’s VSRs to serve as the respective clus-

ter’s center. This averaging follows our method of computing the entity representations

(Section 3.3). The cosine similarity between a new mention and all clusters can be calcu-

lated using the same technique used in Section 3.4.1 and Listing 3.1. This yields a list of

similarities from which we select the best.

With a cluster assigned to the new, unknown entity, we now draw knowledge from

that cluster. We base our experiments on the descriptions generated for all clusters in

Section 3.5. Below, we exemplify the results of assigning an entity mention to a cluster

and using the cluster’s description in the following sentence.

The European Commission said on Thursday it disagreed with German ad-

vice to consumers to shun British lamb until scientists determine whether

mad cow disease can be transmitted to sheep.

There are four mentions of named entities in the sentence: European Commission, Thurs-

day5, German and British. Our model, as introduced throughout this chapter, describes

the mention “European Commission” with “executive branch of the European” because

that is the highest scored n-gram for the most similar cluster.

5some definitions of named entities do not include weekdays

30 3. Methodology

31

4. Evaluation

This chapter is concerned with the experiments around our methodology and their evalu-

ation. First, we give an insight into the data on which the experiments are based. Second,

we look at the unambiguous mentions we found based on the previously introduced

heuristic. Then, we investigate the graph constructed and the clusters found during

training, as well as the cluster assignments of the mentions during inference. Last, we

evaluate experiments based on the descriptions introduced in Section 3.5. Unless oth-

erwise stated, references to data in this chapter refer to the AIDA dataset presented in

Section 4.1.1 or the models based on it.

4.1. Data Analysis

Throughout this thesis, we train our models on two datasets: AIDA CoNLL-YAGO and

one based on Wikipedia pages. We introduce the AIDA corpus that we use for both train-

ing and evaluation of our models. We build a second corpus based on Wikipedia pages to

show that our approach is trainable on plaintext corpora and that its performance scales

with the size of the training data.

4.1.1. AIDA CoNLL-YAGO Corpus

The primary corpus used for this thesis is the AIDA CoNLL-YAGO dataset provided

alongside Hoffart et al. (2011). Unless specified otherwise, the experiments and analytics

following this section are based on the AIDA dataset. It is based on the CoNLL-2003

shared task (Tjong Kim Sang and De Meulder, 2003). The CoNLL task itself focuses

on NER and classification into one of four categories: persons, organizations, locations,

and miscellaneous names. The dataset for the task is built upon the Reuters Corpus

for English and the ECI Multilingual Text Corpus for German. The English part, that

we use, consists of 1393 news articles, over 22 000 sentences and 300 000 tokens and is

annotated with 35 000 named entities. Each token is annotated with its part-of-speech

(POS) tag, its syntax parsing chunk tag and an entity tag, consisting of an IOB (inside,

outside, beginning) identifier and the category for tokens that are entity mentions. While

tokenization, POS tagging and chunking are automated, the entity categories have been

annotated manually. As another part of preprocessing, the data is also split sentence-wise

into roughly 68% training set, 16% development set and 16% test set.

While the CoNLL dataset targets NER, AIDA extends the data for Entity Linking. It

32 4. Evaluation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20
0

1,000

2,000

3,000

4,000

5,000 4942

2959

1406

993

364
154 80 32 17 10 3 6 2 1 2 1 1

Number of mentions in a sentence

N
um

be
r

of
se

nt
en

ce
s

Figure 4.1.: Count of sentences by number of mentions in the AIDA training set

provides assignments for a portion of the entity mentions in the English CoNLL dataset

to YAGO2, Wikipedia, and Freebase1 entities. Of the 34 450 entity mentions in CoNLL,

AIDA provides Wikipedia IDs for 27 608. For the training part of AIDA, there are about

23 000 detected entity mentions. The development set, that we use for evaluation, has

8500 mentions of which 6400 are labeled with a Wikipedia page. Sentences may, of course,

mention multiple entities; the distribution of the count of mentions per sentence is shown

in Figure 4.1. This insight leads to the realization that mere sentence embeddings are not

specific enough because multiple mentions in a sentence would be represented by the

same embeddings. Representing two semantically different entities by the same embed-

dings would increase the similarity between those two entities. While it is unlikely that

completely different entities are mentioned in the same sentence, it would still distort

their similarity. Because of this, we use mention-level embeddings as presented in Sec-

tion 3.3.

During the training of our model, we only use the tokens and NER tags. Instead of the

Wikipedia or YAGO2 annotations, we directly learn from Wikidata, which allows us to

extend the learning data by any available texts. We use the Wikipedia ID annotations for

evaluation only.

As mentioned before, AIDA is built upon the Reuters Corpus. The Reuters corpus

consists of news stories that were published from August 1996 to August 1977. Exper-

imenting with our methodology gives us an insight into that corpus. One issue arises

from sequences in AIDA that are not proper English sentences. For example, part of

AIDA are end results of sport-events like “Ajax Amsterdam 1 AZ Alkmaar 0”. While

there is enough context for transformers to produce embeddings, it is not trivial whether

it affects the similarity of those embeddings to those of proper sentences with mentions

of the same entity.

1a former knowledge graph whose data was integrated into Wikidata

4.2. Analysis of Mention Unambiguity 33

4.1.2. Wikipedia Corpus

As a second corpus, we use the texts of Wikipedia pages. The corpus is based on a

2017 Wikipedia dump which consists of texts of 5 490 664 Wikipedia pages. While the

AIDA corpus is already tagged with NER tags, the Wikipedia dump is only pure text. To

compensate, we use basic NER tagging provided by spaCy2. The tagged mentions are

then processed as described in Section 3.2 to select the unambiguous mentions. We build

two sets of different sizes to investigate the performance gain on a larger training set. The

first set consists of 20 000 unambiguous mentions occuring on random Wikipedia pages

and the other adds another 10 000 resulting in 30 000, including the 20 000 of the first.

Table 4.1 reports basic statistics of both datasets. The Surface Forms column describes

how many unique surface forms occur in the respective dataset and Wikidata (WD) Links
to how many unique entities they are linked to. The small difference means that only a

few different surface forms are linked to the same entity.

unamb. Mentions Surface Forms WD Links Source Pages Sentences Tokens

20 000 9256 9158 769 34 778 598 978
30 000 12 931 12 782 1058 59 514 977 760

Table 4.1.: Statistics of the Wikipedia datasets. Both are limited to 20k and 30k unambigu-
ous mentions to keep the computational effort within limits. Surface forms and
Wikidata (WD) links count the unique values each.

4.2. Analysis of Mention Unambiguity

In the AIDA dataset, we recognize the mention “St. Louis” as unambiguous and link it

to the item for the city in Missouri, United States3. However, we demonstrate that it

is ambiguous and thereby exemplifies a false-positive resulting from the heuristic. The

surface form “St. Louis” appears seven times in AIDA’s training set, one of those appears

in this sentence:

In St. Louis, Gary Sheffield and Devon White each drove in two runs and

Mark Hutton scattered four hits over six innings to lead the Florida Marlins

past the St. Louis Cardinals.

The mention above and one other are labeled in AIDA with St. Louis, Missouri4 while five

of the seven mentions are not labeled. The sentence already shows an additional entity

that could be referred to by the surface form St. Louis: the baseball team St. Louis Cardi-

nals. Referring to teams just by the city they are based in is common in sports contexts.

This phenomenon is frequent in European football, where many clubs are abbreviated

2https://spacy.io/usage/linguistic-features#entity-linking
3https://www.wikidata.org/wiki/Q38022
4http://en.wikipedia.org/wiki/St._Louis,_Missouri

https://spacy.io/usage/linguistic-features#entity-linking
https://www.wikidata.org/wiki/Q38022
http://en.wikipedia.org/wiki/St._Louis,_Missouri

34 4. Evaluation

through their city names. There are even some cases, like Hamburg, where two clubs

play on the same level (FC St. Pauli5 and HSV6) but only one of them is usually meant

by mentioning the city name (HSV in the case of Hamburg). In the St. Louis example,

there are even more entities that are possible candidates. The city’s county7 is also called

St. Louis, as is a county in the US state Minnesota8, cities in Michigan9 and Oklahoma10,

teams in other sports11 than the mentioned baseball team and more12. According to the

OWA, there can be even more entities that are not yet documented in both Wikidata and

Wikipedia. The effect of OWA is also shown by this example because we recognize St.

Louis as unambiguous based on an outdated Wikidata dump, while based on the on-

line Wikidata the heuristic deems it ambiguous. Thus, additional St. Louis entities were

added to Wikidata in the meantime. However, we linked to the correct entity in this in-

stance, although we were working on incomplete data. Intuitively, a more famous entity

is both more likely to be present on a KB as well as more likely to be mentioned in texts.

While this is just a heuristic, it supports our hypothesis on unambiguity.

Another mention that we recognize as unambiguous is “O’Neal” in the sentence:

"The good news is, if you’re highly skilled and have many abilities, you’ll be

paid more", said O’Neal.

From this sentence alone, humans cannot easily guess the correct entity referred to by

the mention. However, it is clear to a human that O’Neal must be a person. Looking

a few sentences behind in the corpus, we see that the last name O’Neal is used as an

abbreviation after introducing the person in:

Presently, for example, if an accountant’s job involves doing five specific tasks,

he or she can expect a certain salary, said Sandra O’Neal, a Towers Perrin

principal.

Unfortunately, we link the mention to a settlement13 in Virginia, USA. The mention also

should not be considered unambiguous because it is a common last name in the USA and

there are multiple famous persons with that name.

However, there are also mentions of persons whose names might be ambiguous con-

sidering the whole world population but unambiguous when only considering famous

persons. We limit the scope for our unambiguity heuristic to famous persons because we

work on a publicly accessible KB and thus, the scope of persons described by the KB is

limited. This might be different in other applications, e.g. when working on private KBs.

5https://en.wikipedia.org/wiki/FC_St._Pauli
6https://en.wikipedia.org/wiki/Hamburger_SV
7https://www.wikidata.org/wiki/Q498034
8https://www.wikidata.org/wiki/Q111549
9https://www.wikidata.org/wiki/Q3046589

10https://www.wikidata.org/wiki/Q3135108
11https://www.wikidata.org/wiki/Q207735
12https://en.wikipedia.org/wiki/Saint_Louis
13https://www.wikidata.org/wiki/Q7071880

https://en.wikipedia.org/wiki/FC_St._Pauli
https://en.wikipedia.org/wiki/Hamburger_SV
https://www.wikidata.org/wiki/Q498034
https://www.wikidata.org/wiki/Q111549
https://www.wikidata.org/wiki/Q3046589
https://www.wikidata.org/wiki/Q3135108
https://www.wikidata.org/wiki/Q207735
https://en.wikipedia.org/wiki/Saint_Louis
https://www.wikidata.org/wiki/Q7071880

4.3. Graph & Cluster Analysis 35

An example in AIDA of such famous persons is Steffen Freund, a German football player,

in the sentence:

He will, however, have to do without the Dortmund trio of libero Matthias

Sammer, midfielder Steffen Freund and defender Rene Schneider, who were

all formally nominated despite being injured.

Both his first and last names are somewhat common in Germany, so the combination

should be ambiguous in general. However, taking the above consideration into account,

it is unlikely that there are other famous people called Steffen Freund aside from the

football player that are not yet part of the KB. Thus, we consider the mention of Steffen

Freund as unambiguous within the scope of the KB.

4.3. Graph & Cluster Analysis

This section analyzes the graph and the clusters produced by our approach as described

in Section 3.4. We aim for a semantically consistent clustering that allows us to draw con-

clusions when assigning unknown mentions to the clusters. Furthermore, we look at the

assignments of clusters when applying the AIDA dev-set in inference. For the duration

of this section, we focus on the SFGC-bert (surface form merged, graph clustered, using

BERT embeddings) mode, i.e. the mode for which we merge mentions on their surface

form into a single node and use BERT as the VSR model. Additionally, we occasionally

make comparisons to the other models as well.

4.3.1. Graph Properties

We construct a graph as presented in Section 3.4.1 based on the AIDA dataset that we

introduced in Section 4.1.1. As required by the employed graph clustering algorithm,

Chinese Whispers (CW; Biemann, 2006), the graph is undirected and weighted. Further-

more, we keep the graph sparse so that CW performs well. Table 4.2 shows that the SF

mode constructs a smaller graph than the M mode. The SF graph has less than half the

nodes as well as edges of the M graph. Despite that, the average node degree suggests that

M is slightly sparser. We display the distribution of node degrees in Figure 4.2 showing

that most nodes have only a few edges in both graphs. For each mention, we construct

edges to the three mentions with the highest similarity so that the peaks of both graphs in

Figure 4.2 are at three. Nodes with a lower degree appear only in the SF mode, whereas

in the M mode, all nodes have at least degree three. Nodes with a lower degree than three

have multiple mentions with the same surface form in their top three. In this case, we

use the highest similarity as edge weight. An example of a node with only two edges is

Ernie Els which is connected to the nodes Frankie Fredericks and Wayne Westner because

the first and third best similarities are to Frankie Fredericks. In SF, surface forms that occur

36 4. Evaluation

multiple times in the training data lead to nodes with a higher degree than three. Addi-

tionally, in both modes, mentions can get additional edges when they happen to be in the

top three similarities of other mentions. For example, John Veldman occurs four times and

the respective node has degree 23. The four mentions contribute 12 edges and the rest

are constructed by other mentions having John Veldman in their top three.

0 10 20 30 40 50
0

100

200

300

400

500

Node degree

N
um

be
r

of
N

od
es

(a) SFGC-bert mode

0 10 20 30 40 50
0

100

200

300

400

500

20
74

95
7

50
9

Node degree

N
um

be
r

of
N

od
es

(b) MGC-bert mode

Figure 4.2.: Number of nodes with a certain degree in comparison for SF and M modes.

Incidentally, the SF graph consists of two components. The smaller only contains three

surface forms: Ginebra San Miguel, Philippine Basketball Association, and Philippine

Basketball Association. In the other component, all the other surface forms’ nodes are

connected. The small component’s surface forms have multiple mentions that take up the

top three similarities for each other so that no other edges are constructed. In retrospect,

we should have made sure that always at least three edges are constructed. This would

have led to a connected graph with a single component, which is preferable because it

integrates the otherwise disconnected nodes in the clustering. However, the component

also shows that these surface forms’ embeddings are similar across their mentions. Fur-

4.3. Graph & Cluster Analysis 37

Nodes Edges Avg. Node Degree ω S

SF 1952 5304 5.434 −0.2542 38.8671
M 4757 11742 4.936 −0.4345

Table 4.2.: Comparison of graphs constructed by different modes. Small-world metrics
omega (Telesford et al., 2011) and S (Humphries and Gurney, 2008)

thermore, there are 20 bridges in the larger component, i.e. edges that are the only edges

connecting two otherwise disconnected components. The bridges should be considered

in further experiments when tuning the top-k or testing a similarity threshold for edge

pruning. A higher number of bridges shows a risk that the graph may break into compo-

nents when pruned further. In contrast, fewer bridges may indicate a less sparse graph.

Some problems in NLP are known to be representable by small-world graphs. Small-

world graphs are characterized by a high clustering coefficient and low average shortest

path length between pairs of nodes. This combination allows message passing systems

to perform well (Telesford et al., 2011) which CW essentially is. Two coefficients indicate

whether a graph is a small-world: S (Humphries and Gurney, 2008) and ω (Telesford

et al., 2011). Both metrics are based on comparisons to generated equivalent graphs that

are either fully random or regularly structured. Humphries and Gurney (2008) deem

a graph as a small-world if S > 1. Additionally to just determining small-worldness,

ω places a graph in the range of −1, completely structured, to 1, purely random. In

their experiments, Humphries and Gurney find that small-world graphs usually fulfill

−0.5 ≤ ω ≤ 0.5. However, they state that the exact range varies with the size of the

graph. We report small-world measures for SF and M modes in Table 4.2. Unfortunately,

the computation for S of the M graph did not complete in time. The generation of equiv-

alent graphs is computationally expensive and was not finished in a week. Still, the

ω measures show that the M graph follows more structured patterns and the SF graph

has more indications of small-world properties. The small-worldedness of SF is further

supported by its S measure. Although we have no point for comparison, it falls in the

restriction for small-worlds of S > 1.

4.3.2. Cluster Properties

We cluster the entity mentions to draw knowledge from their semantic similarity. To

achieve that, we want the clusters to incorporate multiple mentions that can be general-

ized over. Arguably, the more mentions are comprised by a cluster, the more knowledge

it accumulates. However, in a real-world application, this would increase the risk of

incorporating unrelated mentions. To not add too much noise to the cluster, a middle

ground is needed. A cluster of a single node does not give a knowledge gain and is thus

to be averted. As a start, we look at the distribution of cluster sizes in Figure 4.3 compar-

ing the SF and M modes with BERT embeddings. CW produced 430 clusters in SF and

944 in M. The plots for both modes are similar. Both have only a few clusters of size one.

38 4. Evaluation

Then, a peak directly follows at sizes two or three. From there, the count is declining.

While the largest cluster in SF has 16 nodes, the M mode has nine clusters larger than that

up to size 29. The similarity suggests that the differences in the modes do not affect the

clustering in regard to the cluster sizes.

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16
0

10
20
30
40
50
60
70
80

5

79 81
76

63

46

19
24

14

6 4 3 1 1 2

Cluster Size

C
ou

nt
of

C
lu

st
er

s

(a) SFGC-bert mode

1 2 3 4 5 6 7 8 9 1011121314151617 19 212223 29
0

25

50

75

100

125

150

175

27

179

164

144

118

79

62

47

33 30

18
13

8 6 5 2 3 2 1 1 1 1

Cluster Size

C
ou

nt
of

C
lu

st
er

s

(b) MGC-bert mode

Figure 4.3.: Count of clusters by size in comparison for SF amd M modes. Here, size is the
number of nodes in a cluster.

Figure 4.4 shows an example cluster that is a semantic capture of Major League Base-

ball (MLB) teams. Most mentions refer to the teams by their names directly. Only “St.

Louis” mentions the city’s name, however all mentions of “St. Louis” are in the context

of MLB matches. Some of those mentions refer to St. Louis, the city, and some refer to

the St. Louis Cardinals14. Again, this example is not actually unambiguous as described

in Section 4.2. Still, the cluster assignment shows that the CWE captured the baseball

context. However, this also marks a vulnerability of SF. Imagining an additional men-

tion in a non-MLB context, e.g. talking about St. Louis’ city council, would mingle the

contexts because the different mentions are merged on the surface form “St. Louis”. The

cluster still captures the similarity of 52 mentions with 12 surface forms. Anecdotally, the
14https://www.wikidata.org/wiki/Q504309

https://www.wikidata.org/wiki/Q504309

4.3. Graph & Cluster Analysis 39

Seattle Mariners

California Angels

St Louis

Oakland Athletics

Chicago White Sox

Toronto Blue Jays

Boston Red Sox

Minnesota Twins

Kansas City Royals

Atlanta Braves

Chicago Cubs

Houston Astros

Figure 4.4.: Cluster consisting of mentions of Major League Baseball teams’ names and of
“St Louis”. The nodes can have additional edges to nodes outside the cluster
that are omitted for brevity.

surface form “St. Louis Cardinals” does not appear in the cluster because it is found to be

ambiguous. There was an American football team15 before the MLB team that currently

uses the name.

In Figure 4.5, we show the unambiguous mentions as clustered in SFGC-bert and

SFHC-bert (surface form merged, hierarchical clustering, using BERT embeddings).

The position of the mentions is calculated by applying t-SNE (Van der Maaten and Hin-

ton, 2008) to their embeddings. T-SNE reduces the dimensionality of the embeddings to

fit into the 2D space. We use the same t-SNE mapping in both plots and denote the clus-

ters through combinations of color and shape. Both plots show some discernable clusters,

for example the dark-orange squares in Figure 4.5a or the yellow crosses in Figure 4.5b.

SFHC-bert produces fewer but larger clusters while the clusters in SFGC-bert are more

fine-grained so that we only colored clusters with five or more members in Figure 4.5a.

The larger clusters of SFHC-bert are visually seperable indicating that the clustering is

too coarse. All in all, Figure 4.5 gives a visual insight into how the clusterings differ.

4.3.3. Entity Assignments

We describe the inference of our methodology in Section 3.6. Now, we investigate how

the inference behaves on the development portion of the AIDA dataset. To start with

an example, “The Netherlands” in the following sentence is assigned to the cluster in

Table 4.3a.

The Netherlands drew 2 with Brazil (half 0) in a soccer friendly on Saturday.

The assignment captures the soccer topic of the sentence. The cluster also is composed of

15https://www.wikidata.org/wiki/Q20976246

https://www.wikidata.org/wiki/Q20976246

40 4. Evaluation

75 50 25 0 25 50 75 100
80

60

40

20

0

20

40

60

80

(a) SFGC-bert; grey nodes belong to clusters with less than 5 members.

75 50 25 0 25 50 75 100
80

60

40

20

0

20

40

60

80

(b) SFHC-bert

Figure 4.5.: T-SNE (Van der Maaten and Hinton, 2008) plots of the mentions’ embeddings
in comparison of two clustering methods. Clusters are denoted by combina-
tion of color and shape of the nodes.

4.3. Graph & Cluster Analysis 41

(among others) Dutch football clubs, which should contribute to the similarity between

the sentence and the cluster.

The development set incorporates 5846 mentions in 3227 sentences. We plot the distri-

bution of clusters being assigned to multiple mentions in Figure 4.6. It shows that most

of the clusters are assigned to only a few mentions in the dev-set. Further, most of the

mentions are assigned to one of those clusters. However, there are also a few clusters

that are the most similar to many mentions. While such a distribution is expected, the

often assigned clusters might be favored due to the nature of the AIDA dataset that we

described in Section 4.1.1. Complementing Figure 4.3a, Figure 4.7 shows the number of

assignments per cluster size. Comparing both figures, the latter’s distribution follows

the former’s. This observation suggests that the assignment is independent of the cluster

sizes.

0 10 20 30 40 50 60 70 80 90 100 110
0

50

100

150

200

Number of assigned mentions to a cluster

To
ta

la
ss

ig
ne

d
m

en
ti

on
s

0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

N
um

be
r

of
cl

us
te

rs

Figure 4.6.: Number of assigned mentions and number of cluster by how many men-
tions are assigned a cluster. E.g., at 50 on the x-axis shows that there are two
clusters to which 50 mentions are assigned during evaluation, totaling 100
mentions.

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16
0

200

400

600

800

1,000

12

456

968

859

687

517

308

439

241

76 56 49 19 1
36

Cluster Size

C
ou

nt
of

A
ss

ig
nm

en
ts

Figure 4.7.: Number of entity mentions from the AIDA dev-set grouped by cluster sizes.
Here, cluster size means the number of mentions that the cluster is build by
during training.

42 4. Evaluation

Surface form Wikipedia ID Wikidata ID Wikidata description

Sparta Rotterdam 79818 Q209895 Dutch association football club
Vitesse Arnhem 834256 Q219233 Dutch association football club

based in Arnhem
Fortuna Sittard 1336325 Q854167 association football club in the

Netherlands
Willem II Tilburg 834275 Q332664 association football club in the

Netherlands
Genk 1433871 Q189692 city an municipality in Limburg,

Belgium
NAC Breda 505173 Q332642 association football club
Red Star Belgrade 361966 Q173009 Serbian association football club
Roda JC Kerkrade 834196 Q24719 Dutch professional association

football club
RKC Waalwijk 1107824 Q24699 Dutch association football club
Andruw Jones 875934 Q1376903 retired Major League Baseball cen-

ter fielder
Ajax Amsterdam 2273 Q81888 Dutch professional football club

based in Amstedam
AMSTERDAM 844 Q478362 None
NEC Nijmegen 834154 Q318348 Dutch association football club

from Nijmegen

(a) Entities that comprise the first example cluster. Most of the entities are association football
clubs.

Surface form Wikipedia ID Wikidata ID Wikidata description

Jordi Burillo 14891740 Q964079 Spanish tennis player
Tommy Haas 1118005 Q53560 German tennis player
Renzo Furlan 3929800 Q1852367 Italian tennis player
Kris Goossens Q6437173 tennis player
Francisco Clavet 4076952 Q974264 Spanish tennis player
Dominique Van Roost 1849753 Q270967 Belgian tennis player
Roberto Carretero 1723684 Q1640440 Spanish tennis player

(b) Entities that comprise the second example cluster. The empty Wikipedia ID means that the
mention is not labeled in the AIDA dataset.

Table 4.3.: Entities in two example clusters with the surface form that they are mentioned
with, the Wikipedia ID that is labeled in Aida, the Wikidata ID based on
the unambiguity heuristic and the corresponding Wikidata description. The
Wikipedia ID can be used in https://en.wikipedia.org/?curid={ID}
and Wikidata ID in https://www.wikidata.org/wiki/{ID}.

4.4. Description-focused Experiments 43

To display the disambiguation capabilities of our approach, we show the mentions

with the surface form “Estes” as an example. Estes is mentioned two times in the AIDA

development set and is one of only 116 surface forms with multiple different labels. The

labels refer to Bob Estes16, an American golfer and Shawn Estes17, a former MLB pitcher.

Our approach produces former Major League Baseball player for Shawn Estes by the best-

scored n-gram from the most similar cluster. Judging by the Wikipedia page, this is an

almost perfect description. Only the specific role within a baseball team is missing from

our description. For Bob Estes, our model does not perform as well. Only the third

most similar cluster provides a description incorporating the golfer profession. The most

similar cluster is described as Miss Universe and the second most similar as sprinter. How-

ever, this example shows that our model can disambiguate mentions through similarity

of CWEs.

4.4. Description-focused Experiments

We now layout experiments focused around the cluster descriptions, which we intro-

duced in Section 3.5. First, we exemplarily compare the three methods for generating the

cluster descriptions. Second, we introduce an evaluation scheme based on the n-gram

overlap of the descriptions with gold standard Wikipedia pages. Thirdly, we compare

variations on our methodology by evaluating the variations using the evaluation scheme.

Last, we show the scalability of our approach by applying it to the Wikipedia corpus that

we introduced in Section 4.1.2.

4.4.1. Describing Clusters

The three methods for generating descriptions, presented in detail in Section 3.5, are

now compared to yield the one used in the following experiments. For each method we

present the generated descriptions for two clusters shown in Table 4.3. The first example

cluster consists of football clubs that are mostly based in the Netherlands. There are also

a few clubs from other countries, a baseball player and the mention “AMSTERDAM”,

which is capitalized as being the dateline of a news report. The second cluster comprises

seven European tennis players. The goal is to produce a text for each cluster that is a

proper description of the entities that are part of the respective cluster. While the first

cluster is a mix of entities that appear to be rather different, we expect the generated

description to focus on the football clubs, optionally taking the focus on the Netherlands

into account. Being more concise, we expect the second cluster to express clearly that the

incorporated entities are tennis players. The two example clusters are used to exemplary

display the capabilities of the methods.

16https://en.wikipedia.org/?curid=5841428
17https://en.wikipedia.org/?curid=3902338

44 4. Evaluation

Language Models

The first of our experiments generates descriptions using statistical language models.

For each cluster, we build a separate language model based on its cluster’s Wikidata

descriptions. The Wikidata descriptions are tokenized and transformed into uni-, bi-,

and trigrams. We use n-gram counts with Kneser-Ney smoothing to train the model. In

the following, we display five sample outputs for both example clusters. Both examples

show only cases in which the language model merely reproduces the input sequences

rather than abstracting from them. Even though we do not generate proper sentences, we

do not have enough data that the LMs can learn from to generate abstracted descriptions.

First example:

• retired Major League Baseball center fielder

• association football club in the Netherlands

• Dutch association football club based in Arn-

hem

• Dutch association football club

• association football club in the Netherlands

Second example:

• Belgian tennis player

• Italian tennis player

• German tennis player

• Italian tennis player

• Spanish tennis player

tf-idf

For the second experiment, we generate descriptions based on tf-idf scores. Again, from

each cluster, we use the Wikidata descriptions to produce uni-, bi-, and trigrams. The

n-grams serve as the terms and the clusters as documents. Calculating the tf-idf scores

yields the n-grams that are most relevant to the cluster in the context of all clusters, sim-

ilar to how tf-idf works in information retrieval. We display the top three n-grams for

each regarded level along with their respective tf-idf scores for both example clusters in

Table 4.4. For both examples, some n-grams represent the cluster’s entities well while

also generalizing rather than just reproducing the entire entity descriptions. However, it

is not entirely clear which n-gram length is the best representation of the cluster. In the

second example, “Spanish tennis player” has a higher tf-idf score than “tennis player”

although the latter can be considered the better representation. Evidently, the scores can-

not be compared easily. An adjustment might be to compute tf-idf across the n-gram

lengths and not seperately for each length.

Log Likelihood Ratio

The third experiment continues the second by substituting the tf-idf scores with the LLR

(Dunning, 1993) measure. LLR is based on event co-occurrence and originally used with

bi-grams. We measure the co-occurrence of n-gram X with cluster Y across the three n-

gram lengths. The counted event combinations can be seen in Table 3.1. Based on the

4.4. Description-focused Experiments 45

club 0.5284
football 0.3655
association 0.3645

football club 0.6712
association football 0.4470
Dutch association 0.3241

association football club 0.8116
Dutch association football 0.4191
in the Netherlands 0.3265

(a) Example 1 from Table 4.3a

tennis 0.7273
Spanish 0.5473
player 0.4129

tennis player 1.1243
Spanish tennis 1.0375
Belgian tennis 0.3910

Spanish tennis player 2.2480
Belgian tennis player 0.8473
Italian tennis player 0.7912

(b) Example 2 from Table 4.3b

Table 4.4.: Top n-grams by tf-idf score, n-gram lengths seperated by rules.

football club 47.28
club 44.89
association football club 42.87
Dutch association football club 32.22
association football 26.36

(a) example 1 from Table 4.3a

tennis player 29.17
tennis 29.11
Spanish tennis player 25.05
Spanish tennis 25.05
Spanish 19.4

(b) example 2 from Table 4.3b

Table 4.5.: Top n-grams by LLR score for the two examples clusters.

event occurrence counts, we use the LLR score formula shown in Equation 1 to calcu-

late scores for the n-grams in each cluster. The five highest scored n-grams for the two

examples from Table 4.3 can be seen in Table 4.5. Both “football club” and “association

football club” are pretty good descriptions for the example (a) cluster because they repre-

sent most of the cluster’s entities abstracting from their descriptions while also neglecting

outliers. For the second example “tennis player” represents the entities nicely, “tennis”

at least gives a general topic and the n-grams including “Spanish” are already somewhat

specific to s smaller subset of the cluster’s entities.

4.4.2. Evaluation Scheme

We introduce an evaluation scheme based on n-gram overlap with gold standard Wikipedia

pages. In the following sections, this scheme is used for a quantitative comparison of

variations on our methodology as well as on the training data. From the description

generation methods introduced in Section 4.4.1, we use the LLR method from now on

because it showed the most promising results in preliminary experiments.

This quantitative evaluation is based on the labeled data from the AIDA-CoNLL dataset

described in Section 4.1. We use the development set of AIDA providing us with 6452 la-

beled mentions in 2296 sentences. For each of those mentions we build embeddings and

calculate the cosine similarities to the centers of the trained clusters. Derived from preci-

sion@k in information retrieval, we look at the k most similar clusters for each mention

46 4. Evaluation

and for those at the k highest LLR scored n-grams per cluster. We argue that depend-

ing on the downstream task multiple candidates might be needed or might improve the

downstream results or that a downstream implementation needs a tasks specific selec-

tion of the best candidate so that using the top-k for evaluation makes sense. Ultimately,

we have three clusters with three descriptions each, yielding nine candidate descriptions

for scoring. Each candidate is compared to the lead section18 (i.e. the first section be-

fore the table of contents and main page content) of the annotated Wikipedia page. Fig-

ure 4.8 shows the n-gram matching at the example of Shawn Estes being mentioned in a

sentence, the Wikipedia page referred to by the AIDA label, and the top-scored descrip-

tions for the most similar clusters. The comparison uses n-gram co-occurrence based on

ROUGE (Recall-Oriented Understudy for Gisting Evaluation, Lin, 2004) scores. ROUGE

is commonly used for evaluation of summarization and translation tasks to compare a

machine output with a gold standard. We calculate precision for ROUGE-N with uni-,

bi-, and tri-grams, ROUGE-L, ROUGE-S, and ROUGE-SU with skips of up to four tokens.

We use precision rather than recall that ROUGE normally focuses on because the target

sequence, i.e. the lead section, often consists of multiple sentences while the system se-

quence, our description, consists of only a few tokens based on the n-gram length used

for the LLR scoring. The best scores for each mention are averaged to yield the scores on

the whole dataset.

Estes (3) was lifted for closer Rod Beck after yielding a single with two out in
the ninth.

1. baseball player
baseball
from the United States

2. baseball player
baseball
Puerto Rican baseball player

3. former Major League Baseball
player
former Major League Baseball
Major League Baseball player

Figure 4.8.: Example sentence mentioning Estes that is labeled with the Wikipedia page
(retrieved 06.04.22) on the right. Below the sentence are the 9 descriptions for
the 3 clusters with the highest similarity to the mention.

In Section 4.3.2, we already looked at different cluster sizes. With the cluster descrip-

tions and the evaluation scheme, we investigate how the cluster descriptions represent

their clusters. We calculate the ROUGE scores as described above but do not assign

18https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Lead_section

https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Lead_section

4.4. Description-focused Experiments 47

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4 Cluster Size Count of Clusters

0.800 0.750 0.760 0.743 1 5
0.468 0.207 0.457 0.334 2 79
0.451 0.213 0.438 0.308 3 81
0.508 0.182 0.497 0.339 4 76
0.563 0.192 0.552 0.366 5 63
0.576 0.253 0.575 0.419 6 46
0.524 0.148 0.515 0.356 7 19
0.491 0.189 0.486 0.289 8 24
0.538 0.201 0.538 0.351 9 14
0.603 0.127 0.597 0.345 10 6
0.315 0.160 0.310 0.213 11 4
0.710 0.028 0.710 0.308 12 3
0.667 0.583 0.667 0.625 13 1
0.308 0.308 0.308 0.308 15 1
0.293 0.133 0.293 0.279 16 2

0.416 0.185 0.081 0.207 all 430
Table 4.6.: ROUGE scores for n-gram overlap between cluster descriptions and the

Wikipedia pages annotated at the cluster’s mentions; Scores are grouped by
cluster size and number of clusters in each group; Using the SFGC-bert
model, i.e. cluster size means number of nodes in the cluster with possibly
more mentions

unknown entities, yet. Instead, we use the Wikipedia entities as targets that are anno-

tated at the mentions that constitute the cluster. We show a selection (for brevity) of the

ROUGE scores across cluster sizes in Table 4.6. The clusters with only a single node score

best across all metrics. As mentioned before, single-node clusters should be avoided be-

cause there is no gain by generalization. However, the high scores suggest that we found

matching Wikidata entities to the gold standard Wikipedia entities. The scores for the

other sizes are lower and vary, for example, from about 0.3 to 0.7 in ROUGE-1. This in-

dicates that the description generation has potential for improvement when it actually

needs to generalize over multiple Wikidata descriptions, in contrast to the single-node

clusters. The number of clusters with a larger size declines and the low numbers might

explain the variance of the scores there. The smaller sizes have more clusters and are

more stable around 0.5 in ROUGE-1.

4.4.3. Baseline & Variation Experiments

We explore variations of our methodology to get an insight into how it behaves with dif-

ferent implementations. The quantative evaluation is based on the scheme presented in

Section 4.4.2 and the resulting scores can be seen in Table 4.7. Each experiment is trained

on the AIDA training set and evaluated on the AIDA development set. The baseline ex-

periments are expected to perform noticeably worse than the other approaches and are

used to show the gain of using CWEs and clustering those. The variant experiments,

48 4. Evaluation

Baseline Experiments Variant Experiments

SFGC-bert MNN-bert SFGC-SE SFGC-roberta MGC-bert SFHC-bert

ROUGE-1 0.452 0.350 0.323 0.461 0.443 0.321
-23% -29% +2% -2% -29%

ROUGE-2 0.155 0.109 0.055 0.102 0.152 0.059
-30% -65% -35% -2% -62%

ROUGE-3 0.050 0.037 0.013 0.024 0.052 0.007
-26% -74% -52% +4% -86%

ROUGE-L 0.422 0.331 0.307 0.445 0.418 0.291
-22% -28% +5% -1% -32%

ROUGE-S4 0.152 0.110 0.055 0.117 0.158 0.059
-28% -64% -24% +3% -62%

ROUGE-SU4 0.275 0.221 0.170 0.261 0.277 0.148
-20% -39% -6% +1% -47%

Table 4.7.: ROUGE scores for the main method in comparison with baseline and vari-
ant experiments. All are trained on the AIDA dataset. Percentages are the
gain/loss on SFGC-bert.

however, change only minor parts of the methodology. Thus, we expect them all to per-

form similarly.

In the previous sections of this chapter, we already focused our discussion on SFGC-bert

(surface form merged, graph clustered, using BERT embeddings). It represents our method-

ology as we initially imagined and implemented it. Thus, we use it here as a central point

for comparisons as well. In SFGC-bert, we use CW for clustering. The mentions are

merged on their surface form so that all mentions of a surface form build up a single

node in the graph and embeddings for the mentions are built using BERT.

For MNN-bert (mention-specific, nearest neighbor, using BERT embeddings) we do

not build a graph from the training mentions and cluster that graph but treat each men-

tion as a separate candidate during evaluation. In contrast to SFGC-bert, this cannot

generalize over the similarities of CWEs for similar entities because we do not group the

mentions. Indeed, the scores decrease by 20 to 30 percent. However, a benefit is the less

demanding training due to the lack of clustering that becomes more complicated with

large amounts of training data.

In SFGC-SE (surface form merged, graph clustered, using static embeddings) we sub-

stitute the BERT embeddings with static embeddings produced by FastText (Bojanowski

et al., 2017). While we introduce FastText shortly here, it is described in more depth in

Section 2.2. FastText is a library that can generate static word embeddings even for OOV

words. The OOV capability is the reason for us choosing FastText over the prominent

Word2Vec, which cannot produce embeddings for words that are not part of the training

dictionary. FastText works on character n-grams rather than whole tokens. As long as one

of the n-grams has been seen during training of the embedding model, it can use those

to produce embeddings for unseen words. This is important for embedding entity men-

tions because a finite length dictionary cannot incorporate the open class entity names.

4.4. Description-focused Experiments 49

Compared with CWEs as produced by BERT, static embeddings do not encapsulate the

context of a token in the sequence it occurs. Instead, the embeddings are always the same

for a surface form. This leads to lexically ambiguous words like homographs, i.e. words

with the same spelling that carry different senses, being represented by the same embed-

ding. We expect this to be disadvantageous to our approach and thus decrease the scores

in the evaluation. In comparison, we show with this experiment that CWEs incorporate

enough context for our model to differentiate ambiguous entity mentions. The respective

scores in Table 4.7 indicate this lack of disambiguation as they are worse than those for

the unclustered mentions in MNN-bert which uses CWEs.

SFGC-roberta (surface form merged, graph clustered, using RoBERTa embeddings)

continues the SFGC-bert experiment by using RoBERTa (Liu et al., 2019) for build-

ing embeddings. Robustly optimized BERT Pretraining Approach (RoBERTa) itself is

an evolved version of BERT that aims to outperform BERT by improving training con-

ditions with, among others, a larger training dataset, more focus on word masking and

adjusted hyperparameters (see also Section 2.2). In contrast to our expectation that the

revised training of RoBERTa would definitely benefit our approach, the scores in most

metrics decreased compared to SFGC-bert. Still, SFGC-roberta outperforms all other

models on ROUGE-1 and ROUGE-L and is close behind SFGC-bert in ROUGE-SU4.

MGC-bert (mention-specific, graph clustered, using BERT embeddings) is a variant

on the graph construction. In SFGC-bert, all mentions with the same surface form are

merged into a single node in the graph. That follows our assumption that all those men-

tions sharing a surface form refer to the same entity because, based on our heuristic,

only unambiguous mentions are used for the clustering. We now investigate the impact

of that merging of mentions into a single node by comparing this unmerged version in

MGC-bert. The Table 4.7 shows that the MGC-bert scores are the closest to SFGC-bert.

It seems that merging mentions on their surface form does not have an impact as large as

expected.

A comparison for the whole clustering approach is taken with SFHC-bert (surface

form merged, hierarchical clustering, using BERT embeddings). Here, we use hierarchi-

cal agglomerative clustering as a substitute for CW along with our graph construction

methodology. We choose hierarchical clustering because it allows us to gain an insight

into the clustering decisions, such as dendrograms. We conduct a hyperparameter opti-

mization whose evaluation scores are shown Table A.1 and whose top score we use for

the comparison Table 4.7. In Section 4.3.2, Figure 4.5b shows a t-SNE plot of the hierar-

chical clustering. While the plot shows a few rather concise clusters with some outliers,

those clusters include nodes that are visually seperated. There is also a large mass of men-

tions where no clear clusters are recognizable. Despite the hyperparameter optimization

and the t-SNE showing some concise clusters, HC does not perform well in our evalua-

tion scheme. The scores show even worse performance than the baseline experiments.

In general, HC should perform on par with GC so that we believe that there might be an

50 4. Evaluation

error somewhere in SFHC-bert.

4.4.4. Wikipedia Dataset

We now show that our approach is applicable to other datasets and scales with increasing

training data. In Section 4.1.2, we introduce a second corpus in addition to the AIDA

dataset. It is based on the plain text of random Wikipedia pages, of which we use 20 000

and 30 000 mentions as two sets for comparison. We train our model on both sets and

then compare the scores with the model trained on the AIDA corpus. The scores shown

in Table 4.8 are calculated as introduced in Section 4.4.2 and all models are build and

trained the same as SFGC-bert in Section 4.4.3. As before, all three experiments are

evaluated on the AIDA development set.

AIDA Wikipedia 20k Wikipedia 30k

ROUGE-1 0.452 0.541 0.544
ROUGE-2 0.155 0.123 0.131
ROUGE-3 0.050 0.031 0.043
ROUGE-L 0.422 0.520 0.526
ROUGE-S4 0.152 0.131 0.138
ROUGE-SU4 0.275 0.280 0.293

Table 4.8.: ROUGE score comparison of the datasets. All three models are build using
SFGC-bert.

The smaller Wikipedia dataset already improves the method’s performance compared

to the training on AIDA in three of the six reported metrics. It outperforms AIDA in

ROUGE-1, ROUGE-L and ROUGE-SU4. With the additional training data, the larger

Wikipedia model outperforms the smaller one in all metrics. As described in Section 4.1.2,

the 30k corpus just extends the smaller by the 10 000. Increasing the score only by extend-

ing the dataset shows that the increase is caused by the larger training data rather than the

selection of the data. While the larger model gets closer to the AIDA model in the lacking

scores, it cannot overtake the AIDA model. However, as mentioned in Section 4.1.1, the

AIDA corpus does not consist completely of full sentences and is special in being based

on news items. This bias might have led to the AIDA model being over-specialized for

that kind of sequence and evaluation being harder for other models.

51

5. Summary, Conclusion & Future Work

5.1. Summary

In this thesis, we introduced an unsupervised approach to entity disambiguation. This

novel approach is based on a heuristic approach to unambiguous entity mentions. Us-

ing the heuristic, we found matching Wikidata entities to the mentions in two datasets

without requiring annotations. We clustered the unambiguous mentions based on the

similarity of their CWEs. For clustering, we compared a graph clustering algorithm with

hierarchical clustering. We constructed a sparse graph for the graph variant that allows

computationally efficient clustering. Then, we showed three methods to generate short

texts describing the clusters based on the descriptions of the individual entities.

Once trained, our model generates short descriptions for arbitrary entity mentions. To

generate a description, the mention’s VSR is matched to the VSRs of the clusters. The

most similar cluster supplies its description, which was generated during training. We

evaluated the approach with the Wikipedia labels of the AIDA CoNLL-YAGO dataset.

As no labeled dataset specific to our needs exists, we introduced a custom evaluation

scheme. It compares the description with the Wikipedia pages annotated in the AIDA

dataset. Using the evaluation scheme, we investigated the performance gains and losses

of model variants. We found three models to perform similarly, with each having a top

score in different metrics. Additionally, we showed that our model improves perfor-

mance on more extensive training data.

We described the data at each step of our methodology. First, we introduced the two

datasets on which we base our work. Then, we showed examples of the unambiguity

heuristic succeeding, contrasting them with examples for which the heuristic produced

incorrect results. Additionally, our evaluation scheme quantitatively indicated a good

performance of the heuristic. We illustrated the properties of the constructed graph and

the clusters found in it. Primarily, we showed that the graph is sparse and possesses

small-world characteristics. Further, we gave an insight into how entity mentions are

assigned to clusters during inference.

5.2. Conclusion

In Section 1.3, we set four research questions to our hypothesis. First, we asked whether

our heuristic produces correct links. While we do not have a metric proving it, we found

some evidence that suggests correct links are produced. In Section 4.4.2, we saw that the

52 5. Summary, Conclusion & Future Work

scores for single-node clusters are substantially higher than those for other sizes. While

the sample size is small, this difference indicates that we can produce correct links be-

cause the score is high when we merely reproduce descriptions. In contrast, the score

decreases when the description-generation method abstracts over multiple entities. In

Section 4.2, we showed examples of the heuristic both succeeding and failing. During

our experiments, we saw many more examples of both. However, some of the negatives

seemed to result from the issues of the AIDA corpus that we described in Section 4.1.1.

We reason that the heuristic performs up to our expectations. The evidence suggests a

high precision and a recall high enough to produce sufficient numbers of unambiguous

mentions.

Second, we researched whether we can produce semantically related clusters of the

unambiguous mentions. We showed an example of a semantically concise cluster in Fig-

ure 4.4. Naturally, it is only one cluster among many and there are also clusters whose

entities have no obvious semantic similarities. Looking at the scores in Table 4.7, two

variants change the clustering method: MNN-bert and SFHC-bert. As a reminder,

MNN-bert does not cluster mentions at all and SFHC-bert uses hierarchical cluster-

ing. The scores of both are inferior to those of the graph clustered methods. Furthermore,

SFGC-SE shows that static embeddings do not work as well as CWEs. We answer the

second research question positively because the effect of clustering CWEs is apparent.

Third, we examine methods to generate text descriptions for the clusters. We devised

three methods that we described in Section 3.5: a statistical language model as well as

n-grams scores by both tf-idf and LLR. They were compared by examples in Section 4.4.1

showing the capabilities of each. We found LLR to work best.

Last, we investigated the disambiguation capabilities of our approach. We gave an

example on those capabilities in Section 4.3.3. Unfortunately, the AIDA corpus does

not offer many of those examples. The example shows that the clusters definitely can

disambiguate entity mentions. However, we can not yet determine the performance in

comparison with other approaches.

5.3. Future Work

Throughout the thesis, we already left some improvements up for future work. First

and foremost, the issues of the AIDA corpus that we described in Section 4.1.1 caused

problems throughout our work for this thesis. Consequently, future work should include

changing the dataset. We believe that a training corpus that is more general than AIDA

will benefit the evaluation in general and interpretability specifically. Furthermore, we

already showed that our approach is easily adapted to a plaintext corpus and increases

performance on more training data. Thus, the models would benefit from using a large

plaintext corpus for training. A new dataset for evaluation should focus on disambigua-

tion rather than EL. The task that we imagine is to determine whether mentions in multi-

5.3. Future Work 53

ple contexts refer to the same or different entities. A model fulfilling that task could then

be used in EL as well as other tasks.

Changing the dataset also allows for investigating the transferability of our approach

to specific domains like medical texts. That would require access to a domain-specific

KB to determine unambiguity. We believe that our approach should work similarly in

a domain as long as the VSR captures the semantic similarities. Domain-adaption can

be achieved in two ways. On the one hand, combined training of a single graph would

require amassing corpora and KBs for all desired domains before training. On the other

hand, a separate graph for each domain can be constructed and clustered. In that case,

the inference of a mention in a multi-domain setting only requires the cluster centers.

These can be calculated independently of each other, assuming that entities from different

domains should not be mingled regardless.

In Section 3.3, we described how we build VSRs for entity mentions. Future work

might consider different techniques to extract embeddings from the BERT model. We

average the last layer of the respective model for all WordPiece tokens that compose

the mention. Similar to the different approaches to sentence embeddings (Reimers and

Gurevych, 2019), there are possible alterations to our approach on embeddings of en-

tity mentions. Instead of averaging, we could directly use the embedding of the first or

last token of a mention. The other layers of the BERT model could also be included in

the averaging. There are also other works like LUKE (Yamada et al., 2020) that extend

BERT architecturally to improve the understanding of entity mentions. Their learnings

and models are left for further examination that could improve the VSR in capturing

similarities and differences of multiple mentions.

During graph construction, we build three edges for each mention. The number of

edges is a configurable hyperparameter and changes the structure of the graph. With

more edges, the graph becomes denser and is less prone to have bridges or even discon-

nected components. However, increasing denseness has drawbacks, e.g. the clustering

becomes less efficient. Instead of specifying the number of edges per mention, the graph

could also be pruned by means of a similarity threshold. With a threshold, mentions that

are similar to many other mentions would lead to high-degree nodes. In contrast, there

might be nodes with no edges when a mention does not reach the similarity threshold

for any other mention. Further experiments would be required to identify an appropriate

threshold.

54 5. Summary, Conclusion & Future Work

55

Bibliography

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018. Contextual string embeddings for
sequence labeling. In Proceedings of the 27th International Conference on Computational
Linguistics, 1638–1649. Santa Fe, NM, USA, August. (Cited on page 11).

Hiba Arnaout, Simon Razniewski, Gerhard Weikum, and Jeff Z. Pan. 2021. Negative Knowledge
for Open-World Wikidata. In Companion Proceedings of the Web Conference 2021, 544–551.
New York, NY, USA: Association for Computing Machinery, April. (Cited on page 6).

Chris Biemann. 2006. Chinese Whispers: An Efficient Graph Clustering Algorithm and Its
Application to Natural Language Processing Problems. In Proceedings of the First Workshop
on Graph Based Methods for Natural Language Processing, 73–80. Manchester, UK: Association
for Computational Linguistics, June. (Cited on pages 5 sqq., 22, 24, 35).

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching Word
Vectors with Subword Information. Transactions of the Association for Computational
Linguistics (Cambridge, MA, USA) 5 (June): 135–146. (Cited on pages 8, 20, 48).

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettlemoyer. 2018. Ultra-Fine Entity Typing. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), 87–96. Melbourne, Australia: Association for Computational Linguistics,
June. (Cited on pages 3, 14 sq.).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 4171–4186. Minneapolis, MN, USA: Association for
Computational Linguistics, June. (Cited on pages 1, 9 sq., 20).

Antonio Di Marco and Roberto Navigli. 2013. Clustering and Diversifying Web Search Results
with Graph-Based Word Sense Induction. Computational Linguistics (Cambridge, MA, USA)
39, no. 3 (September): 709–754. (Cited on page 24).

Ted Dunning. 1993. Accurate Methods for the Statistics of Surprise and Coincidence.
Computational Linguistics (Cambridge, MA, USA) 19, no. 1 (March): 61–74. (Cited on
pages 27 sq., 44).

Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci, Christophe Gravier, Jonathon Hare,
Frederique Laforest, and Elena Simperl. 2018. T-REx: A Large Scale Alignment of Natural
Language with Knowledge Base Triples. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018). Miyazaki, Japan: European
Language Resources Association (ELRA), May. (Cited on page 13).

Zellig S Harris. 1954. Distributional structure. WORD 10 (2-3): 146–162. (Cited on pages 8, 20).

56 Bibliography

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. 2010. Foundations of Semantic Web
Technologies. 1st ed. Chapman / Hall/CRC. (Cited on pages 3, 19).

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, and York Sure. 2008. Semantic Web.
Springer, Berlin, Heidelberg. (Cited on pages 5 sq.).

Johannes Hoffart, Mohamed Yosef, Ilaria Bordino, Hagen Fuerstenau, Manfred Pinkal,
Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum. 2011. Robust
Disambiguation of Named Entities in Text. In Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, 782–792. Edinburgh, UK: Association for
Computational Linguistics, July. (Cited on page 31).

Mark D. Humphries and Kevin Gurney. 2008. Network ’Small-World-Ness’: A Quantitative
Method for Determining Canonical Network Equivalence. PLOS ONE (San Francisco, CA,
USA) 3, no. 4 (April): 1–10. (Cited on page 37).

Anil K. Jain and Richard C. Dubes. 1988. Algorithms for Clustering Data. Hoboken, NJ, USA:
Prentice-Hall, Inc. (Cited on page 25).

Manoj Prabhakar Kannan Ravi, Kuldeep Singh, Isaiah Onando Mulang’, Saeedeh Shekarpour,
Johannes Hoffart, and Jens Lehmann. 2021. CHOLAN: A Modular Approach for Neural
Entity Linking on Wikipedia and Wikidata. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume, 504–514.
Stroudsburg, PA, USA: Association for Computational Linguistics, April. (Cited on
pages 12 sq.).

R. Kneser and H. Ney. 1995. Improved backing-off for M-gram language modeling. In 1995
International Conference on Acoustics, Speech, and Signal Processing, vol. 1, 181–184 vol.1.
(Cited on page 26).

Nikolaos Kolitsas, Octavian-Eugen Ganea, and Thomas Hofmann. 2018. End-to-End Neural
Entity Linking. In Proceedings of the 22nd Conference on Computational Natural Language
Learning, 519–529. Brussels, Belgium: Association for Computational Linguistics, October.
(Cited on page 13).

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and
Chris Dyer. 2016. Neural Architectures for Named Entity Recognition. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 260–270. San Diego, CA, USA: Association for Computational
Linguistics, June. (Cited on page 12).

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. 2020. On the
Sentence Embeddings from Pre-trained Language Models. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), 9119–9130.
Stroudsburg, PA, USA: Association for Computational Linguistics, November. (Cited on
page 21).

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. 2022. A Survey on Deep Learning for Named
Entity Recognition. IEEE Transactions on Knowledge and Data Engineering (Washington, DC,
USA) 34, no. 1 (January): 50–70. (Cited on page 19).

Bibliography 57

Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries. In Text
Summarization Branches Out, 74–81. Barcelona, Spain: Association for Computational
Linguistics, June. (Cited on page 46).

Xiao Ling and Daniel Weld. 2012. Fine-Grained Entity Recognition. Proceedings of the AAAI
Conference on Artificial Intelligence (Toronto, ON, Canada) 26, no. 1 (September): 94–100.
(Cited on page 13).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv: 1907.11692 [cs.CL]. (Cited on pages 10,
20 sq., 49).

Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, Jacob Devlin, and
Honglak Lee. 2019. Zero-Shot Entity Linking by Reading Entity Descriptions. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, 3449–3460.
Florence, Italy, July. (Cited on pages 12 sq.).

Oded Maimon and Lior Rokach. 2005. Data mining and knowledge discovery handbook.
2nd ed. New York City, NY, USA: Springer Science+Business Media, LLC. (Cited on
page 24).

Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. 2010. Introduction to
information retrieval. Natural Language Engineering (New York City, NY, USA) 16, no. 1
(January): 100–103. (Cited on pages 26 sq.).

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word
Representations in Vector Space. In 1st International Conference on Learning Representations,
ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings. (Cited on
pages 8 sqq., 20).

Stanley Milgram. 1967. The small world problem. Psychology today (New York City, NY, USA) 2
(1): 60–67. (Cited on page 6).

Robert C. Moore. 2004. On Log-Likelihood-Ratios and the Significance of Rare Events. In
Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing,
333–340. Barcelona, Spain: Association for Computational Linguistics, July. (Cited on
page 27).

Andrea Moro, Alessandro Raganato, and Roberto Navigli. 2014. Entity linking meets word
sense disambiguation: a unified approach. Transactions of the Association for Computational
Linguistics (Baltimore, MD, USA) 2 (June): 231–244. (Cited on page 11).

David Nadeau and Satoshi Sekine. 2007. A survey of named entity recognition and
classification. Lingvisticae Investigationes (Amsterdam, Netherlands) 30 (1): 3–26. (Cited on
pages 1 sq., 11, 13).

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. 2018. Deep Contextualized Word Representations. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2227–2237. New Orleans,
Louisiana, USA: Association for Computational Linguistics, June. (Cited on page 11).

https://arxiv.org/abs/1907.11692

58 Bibliography

Lisa F. Rau. 1991. Extracting company names from text. In [1991] Proceedings. The Seventh IEEE
Conference on Artificial Intelligence Application, 29–32. Miami Beach, FL, USA: IEEE. (Cited
on page 11).

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 3982–3992. Hong Kong, China: Association for Computational
Linguistics, November. (Cited on pages 8, 21, 23, 53).

Steffen Remus. 2012. Automatically Identifying Lexical Chains by Means of Statistical Methods
— A Knowledge-Free Approach. Master’s thesis, Technische Universität Darmstadt,
October. (Cited on pages 27 sq.).

Mike Schuster and Kaisuke Nakajima. 2012. Japanese and Korean voice search. In 2012 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5149–5152.
Kyoto, Japan, March. (Cited on pages 9 sq.).

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and Sebastian Riedel. 2016. An Attentive
Neural Architecture for Fine-grained Entity Type Classification. In Proceedings of the 5th
Workshop on Automated Knowledge Base Construction, 69–74. San Diego, CA, USA:
Association for Computational Linguistics, June. (Cited on page 14).

Chuanqi Tan, Furu Wei, Pengjie Ren, Weifeng Lv, and Ming Zhou. 2017. Entity Linking for
Queries by Searching Wikipedia Sentences. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, 68–77. Copenhagen, Denmark: Association for
Computational Linguistics, September. (Cited on page 1).

Qawi K Telesford, Karen E Joyce, Satoru Hayasaka, Jonathan H Burdette, and Paul J Laurienti.
2011. The ubiquity of small-world networks. Brain connectivity (New York City, NY, USA) 1
(5): 367–375. (Cited on page 37).

Erik Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition. In Proceedings of the Seventh Conference
on Natural Language Learning at HLT-NAACL 2003 - Volume 4, 142–147. Edmonton, Canada:
Association for Computational Linguistics. (Cited on page 31).

Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana. 2020. Practical
Natural Language Processing: A Comprehensive Guide to Building Real-World NLP
Systems. Sebastopol, CA, USA: O’Reilly Media, Incorporated, June. (Cited on page 20).

Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of
Machine Learning Research 9 (11): 2579–2605. (Cited on pages 11, 39 sq.).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural
Information Processing Systems, vol. 30. Long Beach, CA, USA: Curran Associates, Inc. (Cited
on pages 9 sq., 20).

Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: A Free Collaborative Knowledgebase.
Commun. ACM (New York, NY, USA) 57, no. 10 (September): 78–85. (Cited on page 5).

Bibliography 59

Duncan J Watts. 2000. Small worlds: The dynamics of networks between order and randomness.
Princeton, NJ, USA: Princeton University Press. (Cited on page 6).

Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ’small-world’ networks.
Nature 393, no. 6684 (June): 440–442. (Cited on page 7).

Gregor Wiedemann, Steffen Remus, Avi Chawla, and Chris Biemann. 2019. Does BERT Make
Any Sense? Interpretable Word Sense Disambiguation with Contextualized Embeddings. In
Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019): Long
Papers, 161–170. Erlangen, Germany: German Society for Computational Linguistics &
Language Technology. (Cited on pages 3, 8, 10 sq., 20).

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner,
Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil,
Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s Neural Machine
Translation System: Bridging the Gap between Human and Machine Translation. CoRR
abs/1609.08144. (Cited on pages 9, 20).

Yadollah Yaghoobzadeh and Hinrich Schütze. 2015. Corpus-level Fine-grained Entity Typing
Using Contextual Information. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, 715–725. Lisbon, Portugal: Association for Computational
Linguistics, September. (Cited on page 13).

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, and Yuji Matsumoto. 2020. LUKE:
Deep Contextualized Entity Representations with Entity-aware Self-attention. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 6442–6454. Online: Association for Computational Linguistics, November.
(Cited on pages 14, 53).

Dani Yogatama, Dan Gillick, and Nevena Lazic. 2015. Embedding methods for fine grained
entity type classification. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), 291–296. Beijing, China. (Cited on page 13).

G. Zipf. 1936. The Psychobiology of Language. London, UK: Routledge. (Cited on page 27).

60 Bibliography

61

Acronyms

Acronyms in teletype refer to our experiments while the others are more generally

acronyms.

BERT Bidirectional Encoder Representations from Transformer

CBOW continuous bag-of-words

CW Chinese Whispers

CWE contextualized word embeddings

DAP domain-adaptive pre-training

ED entity disambiguation

EL entity linking

ET entity typing

GC graph clustering

HC hierarchical clustering

KB knowledge base

KNN k-nearest neighbor

LLR log likelihood ratio

LM language model

LSTM long short-term memory

M mention level

MD mention detection

MGC-bert mention-specific, graph clustered, using BERT embeddings

MLB Major League Baseball

MLM masked language model

MNN-bert mention-specific, nearest neighbor, using BERT embeddings

62 Acronyms

NER named entity recognition

NLP natural language processing

NSP next sentence prediction

OOV out-of-vocabulary

OWA open world assumption

POS part-of-speech

RoBERTa Robustly optimized BERT Pretraining Approach

SF surface form merged

SFGC-bert surface form merged, graph clustered, using BERT embeddings

SFGC-roberta surface form merged, graph clustered, using RoBERTa embeddings

SFGC-SE surface form merged, graph clustered, using static embeddings

SFHC-bert surface form merged, hierarchical clustering, using BERT embeddings

t-SNE t-distributed stochastic neighbor embedding

VSR vector space representation

WSD word sense disambiguation

63

A. Appendix

Hyperparameter Tuning

euclidean cosine
ward average complete single
0.850 0.925 0.150 0.300 0.600 0.150 0.300 0.700 0.150 0.300 0.400 0.500

ROUGE-1 0.240 0.240 0.205 0.226 0.321 0.196 0.215 0.317 0.206 0.230 0.246 0.271
ROUGE-2 0.027 0.025 0.021 0.023 0.059 0.019 0.024 0.051 0.022 0.022 0.055 0.047
ROUGE-3 0.002 0.002 0.003 0.001 0.007 0.002 0.002 0.005 0.002 0.001 0.007 0.007
ROUGE-L 0.224 0.223 0.194 0.210 0.291 0.186 0.201 0.290 0.196 0.209 0.228 0.244
ROUGE-S4 0.033 0.028 0.026 0.030 0.059 0.025 0.028 0.057 0.027 0.024 0.037 0.032
ROUGE-SU4 0.125 0.124 0.106 0.115 0.148 0.102 0.111 0.145 0.107 0.110 0.119 0.137

Table A.1.: Hyperparameter Optimization for Hierarchical Clustering

64 A. Appendix

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudien-

gang Informatik selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel

– insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen – benutzt

habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen wur-

den, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit

vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die eingereichte

schriftliche Fassung der elektronischen Abgabe entspricht.

Hamburg, den 25.04.2022 Frederik Wille

Veröffentlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Hamburg, den 25.04.2022 Frederik Wille

	Introduction
	Entity Mentions
	Motivation
	Hypothesis
	Thesis Structure

	Related Work
	Background
	Vector Space Representations
	Entity Linking & Typing

	Methodology
	General Methodology
	Unambiguous Entity Mentions
	Entity Representations
	Clustering of Contextual Word Embeddings
	Graph Construction
	Graph Clustering
	Hierarchical Clustering

	Describing Mention Clusters
	Statistical Language Model
	Tf-idf
	Log Likelihood

	Entity Assignment

	Evaluation
	Data Analysis
	AIDA CoNLL-YAGO Corpus
	Wikipedia Corpus

	Analysis of Mention Unambiguity
	Graph & Cluster Analysis
	Graph Properties
	Cluster Properties
	Entity Assignments

	Description-focused Experiments
	Describing Clusters
	Evaluation Scheme
	Baseline & Variation Experiments
	Wikipedia Dataset

	Summary, Conclusion & Future Work
	Summary
	Conclusion
	Future Work

	Bibliography
	Acronyms
	Appendix

