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Abstract

Coreference resolution is an essential pre-processing step for many natural language pro-

cessing tasks. In the past, there has been a shift from rule-based approaches to machine-

learning-based approaches. A recent approach that focuses on the German language in-

volves two end-to-end trained models: a coarse-to-fine and an incremental model. While

the first model suffers from the problem of requiring an increasing amount of memory,

the second model performs worse than the coarse-to-fine model but only requires a con-

stant amount of memory.

Unfortunately, there is currently no memory-efficient and well-performing method for

predicting mentions and entities in long documents. To address this issue, we propose in

this thesis the idea of splitting documents into shorter segments, predicting them using

the coarse-to-fine model, and then merging the entities together. For the merging step,

we propose three rule-based methods: string-matching, overlapping, and one based on

word embeddings. Additionally, we introduce a neural merging method that adapts the

incremental model.

The results of the thesis show that all the proposed methods underperform the given

strong baseline of the coarse-to-fine model. Nevertheless, they all work with a limited

amount of memory. Furthermore, we observed that the rule-based methods perform bet-

ter than the more complex adapted incremental model. This thesis demonstrates that

splitting documents and merging entities can be a viable solution for coreference resolu-

tion in long documents. However, further research is necessary to match the baseline of

the coarse-to-fine model.
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1 Introduction

In this first chapter of this thesis we will begin with a brief introduction to the importance

of natural language processing, with a specific emphasis on coreference resolution. Fol-

lowing that, we will discuss the problem that this thesis aims to solve and the research

question we seek to answer. Finally, we will explain the structure of this work.

1.1 Motivation

In recent years, the awareness and use of Natural Language Processing (NLP) has in-

creased significantly. This trend can be observed in the global market value of NLP, which

is expected to exceed 127 billion U.S. dollars by 2028 (Fortune Business Insights, 2022).

One reason for this rise is the emergence of voice and chat assistants such as Amazon’s

Alexa or Google Assistant, which utilize NLP technology. In addition, Natural Language

Processing (NLP) tools such as ChatGPT by OpenAI1, which utilizes a large language

model (Markovski, 2023), and the machine-learning based translator DeepL2 have found

widespread application in various industries.

To create NLP systems, computers need to process text and extract information from

it. Texts can contain various types of information, one of which is the coreference of

words. In a text, multiple persons or objects can appear multiple times, and specific

words can refer to a particular person or object. In general, these persons or objects are

called entities, and when two words or phrases in a text refer to the same entity, they are

called coreferent. (Crystal, 2008) The computational methods that can extract all entities

and their occurrences from a text are called coreference resolution. (Ng, 2010)

As demonstrated by Stojanovski and Fraser (2018), this information can be applied

to natural language processing tasks such as machine translation. Azzam et al. (1999)

also showed that it can be used in text summarization. Initially, rule-based algorithms

were used for coreference resolution, but in the last two decades, machine-learning based

approaches have become more prevalent. Recent models like the two architectures by

Schröder et al. (2021) use end-to-end trained neural networks. However, these two in-

troduced models have some limitations. The former model does not scale well for long

texts due to the memory requirements, while the latter provides worse results than the

first one but can scale well. Moreover, there is currently no satisfactory solution for eval-

uating long documents, such as whole books, with these models.

1https://chat.openai.com/
2https://www.deepl.com/translator

https://chat.openai.com/
https://www.deepl.com/translator
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Therefore, the purpose of this thesis is to propose different approaches to utilize the

two models by Schröder et al. (2021) to predict entities in text of arbitrary length and

evaluate their performance. By doing so, we aim to overcome the limitations of the exist-

ing models.

1.2 Problem Description

As mentioned in the previous section, Schröder et al. (2021) adapted two machine learn-

ing models for coreference resolution in the German language. However, both models

have some limitations. The coarse-to-fine model’s memory usage grows quadratically as

the text length increases, whereas the incremental model uses only a constant amount of

memory but does not perform as well as the coarse-to-fine model. The main issue with

the existing models is that there is no model that can process documents of arbitrary

length while using a limited amount of memory and performing well. To address this

issue, we propose a hybrid approach that combines the strengths of the coarse-to-fine

model and the incremental model.

Our approach involves splitting long documents into shorter segments, predicting the

entities using the coarse-to-fine model, and then merging them using one of four ap-

proaches. Three of these approaches are rule-based, while the fourth involves adapting

the existing incremental model using a neural approach.

Our research question can be stated as follows:

Can splitting long documents, predicting mentions and entities independently

using the coarse-to-fine model, and merging them afterwards improve the

performance of existing coreference resolution systems while requiring only

a limited amount of memory?

The hypothesis for this thesis is that predicting splits using the coarse-to-fine model

and merging entities together will perform equally or better than the existing incremental

model, while also using limited memory.

1.3 Structure of the Work

We will start this work by presenting all theoretical background information necessary to

understand the work in this thesis. The background section will include detailed expla-

nations of coreference and coreference resolution, brief introductions to machine learning

techniques used in this work, and an explanation of the metrics used to evaluate the per-

formance of the proposed solutions.

The related work section will focus on existing coreference resolution systems and their

architecture and functionality. We will specifically examine the two models by Schröder

et al. (2021) that form the direct basis for this work.
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The following methodology chapter will provide information about the datasets used

to train the underlying models and evaluate the proposed approaches. The main part of

this chapter will be dedicated to introducing the four merging approaches proposed in

this work. We will start with the simpler rule-based approaches and progress to the more

complex hybrid solution that adapts the incremental model.

Finally, we will evaluate all the proposed methods in detail. We will begin by providing

an overview that can be used to compare the results to the baseline, followed by separate

experiments that evaluate different settings of the proposed solutions. The thesis will

conclude by answering the stated research question and providing an outlook on possible

future work that could improve the results of the proposed approaches.
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2 Background

This chapter serves as a comprehensive introduction to the fundamental concepts and

techniques that are indispensable to comprehend the problem and proposed solution of

this thesis. The focus is primarily on the essential knowledge required to understand

coreference and coreference resolution, as well as the approaches used to process data,

such as machine learning and cosine similarity, and represent data using word embed-

dings. The final section of this chapter will detail the methods used to evaluate the per-

formance of a coreference resolution system

2.1 Coreference Resolution

Coreference is a part of lingustics and is defined by Crystal (2008, p. 116) as a "term

used in linguistics, to refer to constituents in a sentence that have the same reference". A

constituent is further defined as "a linguistic unit which is a functional component of a

larger construction" (Crystal, 2008, p. 104). In other words a constituent is a single or a

group of words which form a unit. Coreference resolution is a task in Natural Language

Processing (NLP) where programmatically all mentions that point to an entity are found

and partitioned into the same equivalence class, where in each class all mentions refer

to the same physical entity. In this thesis we will follow the naming convention that

has been introduced in the Automatic Content Extraction (ACE) task (Doddington et al.,

2004) and so each individual phrase, which can consist of an arbitrary amount of words,

is called a mention and each equivalence class is called an entity. (Luo, 2005)

Denn [Alexander]0 erwiederte so von ganzem Herzen die Liebkosungen

des [Kleinen]1 , sprach [sich]0 so warm und unverholen über [seine]1 herrlichen An-

lagen, über [sein]1 tiefes Gemüth aus, daß [Linovsky]2 erfreut, von den Lip-

pen eines [Fremden]0 bestätigt zu hören, was die eigene Ueberzeugung [ihm]2

oft zugeflüstert hatte, ein inniges Behagen an der Gerechtigkeit fand, die [seinem]2

[Otto]1 widerfuhr.

Figure 2.1: Excerpt of the book “Erna” by Charlotte von Ahlefeld and part of the
Deutsches Roman Corpus (Krug et al., 2018)

Given the example sentence in Figure 2.1, all italic and colored words are mentions and

all words with the same color refer to the same three physical entities Alexander, Otto and
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Linovsky. Per definition all words with the same color form an entity and so the sentence

contains a total of three entity. A special kind of entity can be seen in the sentence in

Figure 2.2. The mention "Erna" has no other mention that it refers to (given that only the

one sentence is seen as the context) and is therefore referred to as a "singleton". Singletons

can be defined as "a cover term for mentions that are never coreferent [. . . ] and mentions

that are potentially coreferent but occur only once in a document" (Kübler and Zhekova,

2011, p. 261).

Da sah [ihn]0 [Erna]1 an mit einem Blick, dessen reine Klarheit, obwohl von Mitleid

getrübt, [ihn]0 hoch empor über allen irrdischen Kummer hob.

Figure 2.2: Sentence from the same document as Figure 2.6, that contains a singleton

Coreference resolution is used as a technique in many NLP tasks to improve the results

of these tasks. For instance Azzam et al. (1999) used it as part of text summarization. Text

summarization involves constructing a representation of the source text and generating a

summary from it. Coreference resolution is applied to model the summary representation

of the text. The best coreference chain is selected as the summary representation, based

on the assumption that the text revolves around a central entity, which serves as the

topic or focus of the discourse. Another use case has been introduced for example by

Krishna et al. (2017). They made use of coreference resolution to identify on what exactly

customers refer to in their review. Two other fields of application are question answering

(Bhattacharjee et al., 2020) or machine translation (Stojanovski and Fraser, 2018).

2.2 Machine Learning

According to Zhou (2021, p. 2), machine learning is "the technique that improves system

performance by learning from experience via computational methods". In other words,

it learns from multiple example cases or, more generally, data. The primary objective

of machine learning is to create a model capable of solving a given task. This model is

built solely by processing data, a step referred to as learning or training. If the required

output of the model is present alongside the input in the training data, it is considered

labeled. Machine learning models can be learned in two ways: supervised or unsuper-

vised. The former uses labeled data, while the latter uses unlabeled data. A model that

learns without labeled data and subsequently generates the labels itself is called self-

supervised (Mikolov et al., 2013a).

2.2.1 Feed Forward Neural Network

One of the most popular machine learning techniques is artificial neural networks, which

are inspired by the way the biological brain works. These artificial networks, called neu-

ral networks in the following, consist of neurons (sometimes called nodes) that are in-
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terconnected with weights, just like the neurons in the human brain are connected using

synapses (McCulloch and Pitts, 1943). Neurons are the processing nodes of the neural

network. They sum up all the weights of the active neurons that they are connected to,

and calculate their own output by processing this sum through an activation function

(Sazli, 2006). The simplest way to connect neurons is called a perceptron, which can be

seen in Figure 2.3a. It consists of one input layer and one neuron as an output node.

Only the output processes any values. Neurons inside one layer are not interconnected,

but only connect to nodes in other layers.

(a) Single Perceptron (b) Feed-forward neural network

Figure 2.3: Architecture of an exemplary perceptron with only one input and output layer
and an exemplary feedforward neural network with 2 hidden layers.
(graphics taken from Aggarwal (2018))

If more layers are added to the neural network, they are called multilayer neural net-

works. When the output of a node is only transported to nodes in a layer closer to the

output, the network is referred to as a feed-forward neural network (FFNN). A FFNN

consists of at least three layers: one input layer, one output layer, and at least one addi-

tional layer in between both. In the example FFNN in Figure 2.3b, there are two fully-

connected additional layers, each consisting of three neurons (Aggarwal, 2018). These

layers are called hidden layers because the calculations are not visible to the user at the

output nodes. The number of hidden layers defines the depth of the network, which is

why they are also often referred to as deep feedforward neural networks or just deep

neural networks (Goodfellow et al., 2016).

2.2.2 End-to-End Learning

When it comes to using machine learning to solve a task, there are multiple approaches

that can be taken. Machine learning approaches like decision trees, random forest, k-

nearest neighbor, or even multiple neural networks can be used, depending on the spe-

cific problem at hand. Complex tasks may require multiple layers, and each layer may

require a different machine learning approach. This can result in errors that add up across

the layers and also requires specific knowledge for each layer. (Roza, 2019)

To address these challenges, a more complex deep neural network can be used instead
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of multiple machine learning algorithms. In this approach, each layer of the neural net-

work can specialize in solving a sub-task, resulting in only one model being learned.

This training process is known as end-to-end learning, and it is widely used in many

fields which rely on machine learning (Glasmachers, 2017).

End-to-end learning has been shown to be highly effective in NLP tasks, reducing the

need for engineers to create task-specific solutions and not relying on deeper prior knowl-

edge. Collobert et al. (2011) demonstrated the effectiveness of this approach, highlighting

its ability to solve many NLP tasks through a single, end-to-end trained model.

2.3 Word Embeddings

Many tasks in Natural Language Processing require words to be represented in a way

that machines are able to work with them. One of the best ways to achieve this is by con-

verting the characters and whole words to real-valued vectors with multiple hundreds

of dimensions. These vectors also encode the syntactic and semantic word relationships,

so that words that are similar are placed near each other in the vector space (Almeida

and Xexéo, 2019). Words that are dissimilar are placed far away in the vector space. Fur-

thermore, simple algebraic operations with the vector representations of the words are

possible. Thus, it is possible to identify a word that bears a similar semantic relationship

to "small" as "biggest" does to "big". In a well trained embedding space, the vector of

smallest should be the nearest on to the computed vector of vec("biggest") - vec("big")

+ vec("small"). These two characteristics of the embedding space also allow to calculate

the similarity between words or even words clusters. This is for example achieved by

calculating the angle between two word vector with the cosine similarity. The smaller

the angle between the two vectors, the greater the similarity between the two words.

These real-valued vectors are called word embeddings. By definition word embed-

dings are dense, distributed, fixed-length word vectors (Turian et al., 2010) that can for

example be built using word co-occurrence statistics as per the distributional hypothesis.

The distributional hypothesis states that words which are similar in meaning also occur

in similar contexts (Harris, 1981).

The word embeddings which are used in this thesis and are explained in detail in the

following chapters are generated using self-supervised learning of neural networks. This

means that the model is trained without annotated training data but rather by providing

are large data set of texts. These word embedding models are also called prediction-

based models because they use language models which predict the following word given

a surrounding context (Baroni et al., 2014).

2.3.1 Word2vec

Word2vec was introduced in 2013 by Mikolov et al. (2013a). It is not a single algorithm,

but rather a family of model architectures that can be used to learn word embeddings
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from large datasets. It allows for two methods of learning vector representations for

given words: continuous bag-of-words (CBOW) and continuous skip-gram model. As

seen in Figure 2.4 the former model predicts the middle word based on the surrounding

context words, which form the input for the neural network. The order of the words does

not matter, hence the name "Bag-of-Words".

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

       INPUT         PROJECTION         OUTPUT

w(t)

          INPUT         PROJECTION      OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

                   CBOW                                                   Skip-gram

Figure 2.4: Architectures of the CBOW and the Skip-gram model (graphic taken from
(Mikolov et al., 2013a))

The second model is the inverse of the first one. It takes one word vector as input and

predicts the words within a given context range before and after the current word in the

same sentence. Mikolov et al. (2013b) demonstrated that this model achieves better re-

sults than the CBOW approach. It is also superior to previous neural network approaches

because it does not rely on dense matrix multiplications, which makes the method ex-

tremely efficient. Training time also depends on the number of context words. More

context words result in more training examples, which can lead to higher accuracy, but

at the cost of longer training times.

The training objective of the skip-gram model is to maximize the probability of pre-

dicting context words given a target word. This probability is increased by adjusting the

numbers in the input vector (or multiple input vectors if the CBOW method is used) if

the predicted word is not correct. As a result, words with similar contexts are brought

closer together in the embedding vector space.

In this thesis, we use a model by deepset, that has been pre-trained for the German

language based on a corpus of the German Wikipedia1. The model is trained with a

1https://gitlab.com/deepset-ai/open-source/word2vec-embeddings-de

https://gitlab.com/deepset-ai/open-source/word2vec-embeddings-de
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window size of five and outputs real-valued vectors with a length of 300.

2.3.2 FastText

The biggest disadvantage of using word2vec embeddings is that they do not take into

account the internal structure of words. Instead, each word in the vocabulary is repre-

sented by a distinct vector. This means that words which are not present in the training

dataset, or are only rarely seen, may not have a good embedding vector assigned to them,

or even none at all.

FastText by Bojanowski et al. (2017) is an extension of the word2vec model that takes

into account the internal structure of words. To achieve this, each word is represented as

a bag of character n-grams. The word is first prefixed and suffixed by the symbols < and

>, respectively, to distinguish between prefixes or inner parts of the word. Then, it gets

broken down into n-grams. For example, if n = 3, the word "where" will be represented

by <wh, whe, her, ere, re>, and also the word in total, <where>. A vector representation is

learned for each n-gram, and the word in total is represented by the sum of these n-gram

vectors.

The experimental results indicate that the fastText model generally outperforms the

word2vec skip-gram and CBOW approaches, and consistently performs better when

computing vectors for out-of-vocabulary words. In particular, for Arabic, Russian, and

German, the fastText model produces better results than the word2vec model (Bojanowski

et al., 2017). As this thesis focuses only on German datasets, it is expected that using

fastText word embeddings will lead to improved results in the corresponding merging

approach.

For this thesis, we used a by Grave et al. (2018) pre-trained model for the German

language that utilizes the Common Crawl dataset and a Wikipedia dump2. The model

employs the CBOW method with a window size of 5 and character n-grams of length 5.

2.3.3 BERT

One known problem with the word2vec and fastText embedding models is that they only

produce static vectors stored in a simple lookup table. This means that every known

word is assigned exactly one vector in the embedding space. As a result, these models

do not represent the existence of polysemy well, which is the fact that the same word can

have multiple meanings. Often, these multiple meanings are a result of the context in

which the word is used, but this context is not encoded in the embedding space repre-

sentation (Peters et al., 2018).

Nowadays, models such as BERT, which was introduced by Devlin et al. (2019), solve

this problem. BERT is an acronym for Bidirectional Encoder Representations from Trans-

formers. BERT is based on the machine learning technique of transformers, which was

2https://fasttext.cc/docs/en/crawl-vectors.html

https://fasttext.cc/docs/en/crawl-vectors.html
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introduced by Vaswani et al. (2017). The transformer model uses an encoder-decoder ar-

chitecture that can process sequential data, such as natural language. The embeddings

created by this model are contextualized by employing an attention mechanism during

the encoding and decoding phases, which is the specialty of the transformer model. BERT

is a further development of ELMo (Embeddings from Language Model) (Peters et al.,

2018), which also provided context-sensitive word embeddings. So this model produces

different vectors for words that have the same spelling but a meaning that depends on

the context. BERT is thus a bi-directional encoder, because the model is pre-trained by

"reading" the sentences from the left to the right and from the right to the left, so that the

context is taken into account in both directions.

The framework is built in two steps: a pre-training step and a fine-tuning step (De-

vlin et al., 2019). The pre-training step creates a general knowledge base using a large

set of unlabeled data. Therefore, this step is rather computationally expensive because

it takes a substantial amount of processing time, but only needs to be done once. This

pre-training step has two training objectives. The main objective is a "masked language

model" (MLM). A random percentage of input words are masked and the goal is to pre-

dict the original vocabulary ID of the masked words based on the left and right sur-

rounding context. The second objective is called Next Sentence Prediction and is used

to pre-train the understanding of the relationship between two sentences. Here two sen-

tences A and B are given, where only 50% of the time B is the correct next sentence. The

other 50% are random sentences from the corpus. The goal is to predict whether B is the

correct following sentence. This pre-training objective is necessary because many NLP

tasks require an understanding of the relationship between two sentences, which is not

given by the language model alone. The second step of the framework is the fine-tuning

phase, where the parameters of the pre-trained model are adapted to task-specific top-

ics. This step is not as costly as the pre-training, and therefore the BERT model can be

adjusted to the desired downstream task at low cost.

2.4 Cosine Similarity

One way to determine the similarity between two documents or clusters of words is by

using the cosine similarity method (Singhal, 2001). This mathematical technique calcu-

lates the angle between two vectors. As seen in Equation 2.1, the cosine similarity score

is retrieved by calculating the dot product of the vectors and dividing it by the product of

the length of both vectors. The resulting similarity score is independent of the magnitude

of the word vectors.

cosine similarity = cos(θ) =
A · B
∥A∥∥B∥ (2.1)

The resulting decimal numbers ranges from 0 to 1, since the numbers in the word

embedding vectors are never negative. A cosine similarity score of 0 indicates that the
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vectors are orthogonal to each other, while a score of 1 means that they point in the

same direction (Kotu and Deshpande, 2019). This can also be applied to the similarity of

the word clusters. A score of 1 indicates that both clusters are identical, while a cosine

similarity value of 0 indicates maximal dissimilarity between them.

2.5 Evaluation Metrics

In order to evaluate and compare the approaches proposed in this thesis with each other

and with existing coreference solutions, we need to find a suitable way to score the per-

formance of our system. However, this is not a simple task for coreference resolution

systems because there is no straightforward way to count "correct" and "wrong" answers

due to the complexity of the coreference task. As stated by Luo (2005), a metric needs to

achieve two important properties: discriminativity and interpretability. The former refers

to the score’s ability to differentiate "good" systems from "bad" systems based solely on

the score, while the latter means that the value should be easily understandable with

human sense only. For instance, if a score of 95% is given, one would expect that most

mentions in a text have been correctly identified and classified into the correct entity.

As shown in Figure 2.5, creating a single metric that satisfies these requirements with-

out any drawbacks is a challenging task. While several metrics have been proposed to ad-

dress this issue, they all focus on different aspects simultaneously. The CoNLL-F1 score,

introduced during the CoNLL shared task by Pradhan et al. (2012), is a combined metric

that averages three different F1 scores: the B-Cubed score, a mention-based score; the

MUC score, a link-based score; and the CEAF metric, an optimal mapping-based score.

All these metrics provide a way to calculate both precision and recall values, which can

then be combined to calculate the F1 score by taking the harmonic mean of both.

Figure 2.5: Classification of metrics that can be used for evaluation of coreference system
(graphic taken from (Sukthanker et al., 2020))

In the following subsections, we will explain in detail how these three scores are cal-

culated. To provide a better understanding, we will use an example to calculate a recall

and precision value. This will also demonstrate how strongly the values can vary even

on a relatively simple example. The example mentions and entities for the calculation of

the recall are depicted in Figure 2.6. The annotated entities are referred to as the "key"



2.5 Evaluation Metrics 13

or "gold" entities and are considered the ground truth. On the other hand, the entities

produced by a coreference system are called "response" entities and are shown on the

right side of the figure. In the following, the set of entities from the key is denoted by K,

and the set of entities from the response is denoted by R. Furthermore, ki and ri denote

individual entities from these sets, respectively.

(a) Key entities set (b) Response entities set

Figure 2.6: An example of three entities, where each number represents a mention. The
color of the number indicates the true clustering, whereas the circles show the
resulting clustering of the algorithm.

2.5.1 MUC

The MUC score was introduced by Vilain et al. (1995) at the 6th Message Understanding

Conference, hence the name. It is sometimes also referred to as the MUC-6 score. The

scores compare the number of links in a response set to the number of links in a key

entity set. The recall is calculated as follows:

Recall =
∑ki∈K (|ki| − |p(ki)|))

∑ki∈K (|ki| − 1))
(2.2)

To evaluate a system’s entity linking performance, we count the number of mentions

in each entity in the key or gold set and subtract the number of partitions found in the

response sets. For a given entity in the key set, which consist of multiple mentions, we

count how many entities in the response set contain those mentions. For example, if the

key set generates only one entity k1 = {A, B, C, D}, but the response set only includes the

relation < A− B >, the partition of p(ki) would be {A, B}, {C}, and {D}. This difference

is then divided by the minimal number of links required to create the key set. In a perfect

result, all mentions would be in the same entity in the response, requiring only one link,

hence |ki| − 1 as the denominator. The precision is hereby calculated by switching the

key and response entities.

Based on the example in Figure 2.6, the number of partitions for all three entities in

the gold/key data would be one, since they all intersect with only one entity in the re-

sponse set. Since this is also the minimum number of required links, the recall is 100%.

To calculate precision, the partition for the two entities in the response must be deter-
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mined. For S1, the resulting partition is {1, 2, 3, 4, 5}, while for the entity S2, the partition

is [{6, 7}, {8, 9, 10, 12, 12}]. This results in a precision of 90%.

Final Precision =
(5− 1) + (7− 2)
(5− 1) + (7− 1)

=
9

10
= 0.9 (2.3)

Final Recall =
(5− 1) + (2− 1) + (7− 1)
(5− 1) + (2− 1) + (7− 1)

= 1.0 (2.4)

2.5.2 B-cubed

The B-cubed scoring algorithm, introduced by Bagga and Baldwin (1998), examines the

presence or absence of mentions relative to each of the other mentions in the same entities

that were produced. This results in the calculation of both precision and recall. Precision

describes how many of the found mentions are correctly placed in this entity, while re-

call describes the number correct entities that have been found. Specifically, for every

mention i, precision and recall are defined as follows:

Precisioni =
number of correct elements in the entity containing mentioni

number of elements in the response entity containing mentioni
(2.5)

Recalli =
number of correct elements in the entity containing mentioni

number of elements in the key entity containing mentioni
(2.6)

The final precision and recall of the entire document are calculated as the weighted sum

of the individual recall and precision values, as shown in Equation 2.7 and Equation 2.8.

The weight can be chosen based on the task being addressed. In our case, every mention

is equally important, so every mention is assigned the same weight of 1/N, where N is

the total number of mentions found in the document.

Final Precision =
N

∑
i=1

wi ∗ Precisioni (2.7)

Final Recall =
N

∑
i=1

wi ∗ Recalli (2.8)

Given the example clustering of mentions into entities shown in Figure 2.6, recall and

precision can be calculated as shown in Equation 2.9 and Equation 2.10. The recall of

100% means that for every mention, every other mention that is coreferent to it is also

in the same entity. However, the recall only achieves a value of 75% because only 2 of 7

and 5 of 7 mentions in the second and third gold entities, are correctly clustered in the

algorithm’s response.

Precision =
1
12
∗
(

5
5
+

5
5
+

5
5
+

5
5
+

5
5
+

2
7
+

2
7
+

5
7
+

5
7
+

5
7
+

5
7
+

5
7

)
= 0.75 (2.9)
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Recall =
1
12
∗
(

5
5
+

5
5
+

5
5
+

5
5
+

5
5
+

2
2
+

2
2
+

5
5
+

5
5
+

5
5
+

5
5
+

5
5

)
= 1.0 (2.10)

2.5.3 CEAF

The CEAF metric, introduced by Luo (2005), calculates a best alignment of entities from

a key set to entities from a response set, hence its name, Constrained Entity Alignment F-

Measure. To find the best alignment, a matching problem in a maximum bipartite graph

is formulated. For every entity in the key set and in the response set, a vertex is added to

create the graph. All pairs (ki, ri) of nodes, where ki is an entity from the key set and ri is

an entity from the response set, are connected via an edge with the weight of ϕ(ki, ri). The

Kuhn-Munkres algorithm (Kuhn (1955) and Munkres (1957)) can then be used to solve

the maximum bipartite graph problem in polynomial time and find an optimal mapping

of the entities. The function g∗ represents the one-to-one mapping, returning an entity

from the response set when given an entity from the key set as input.

ϕ3(ki, rj) = |ki ∩ rj| (2.11)

ϕ4(ki, rj) =
2 ∗ |ki ∩ rj|
|ki|+ |rj|

(2.12)

The weights of the edges in the graph use a similarity metric ϕ(ki, ri), where ki and ri

are entities. The metric should be large when both entities share most of the mentions

and small when they are different. Based on the similarity metric ϕ, two different types

of CEAF can be defined: ϕ3 Equation 2.11, also called mention-based CEAF, and ϕ4 Equa-

tion 2.12, called entity-based CEAF (Moosavi and Strube, 2016). To calculate the recall

and precision, the maximum total similarity Φ Equation 2.13 is first calculated using the

previously found best entity alignment g∗. We assume here that K∗ are all entities from

the key set, that are part of the found optimal mapping. The final recall and precision are

calculated using the entity self-similarity ϕ(ki, ki) where ki ∈ K, representing the number

of entities in the key set is used for recall. For precision, the self-similarity ϕ(ri, ri) equals

the number of entities in the response set.

Φ(g∗) = ∑
ki∈K∗

ϕ(ki, g∗(ki)) (2.13)

Precision =
Φ(g∗)

∑ri∈R ϕ(ri, ri)
(2.14)

Recall =
Φ(g∗)

∑ki∈K ϕ(ki, ki)
(2.15)

To calculate the CEAF ϕ3 and ϕ4 precision and recall scores using the key and response
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entities shown in Figure 2.6, we need to identify their one-to-one mapping. The key entity

{1, 2, 3, 4, 5} perfectly matches the response entity {1, 2, 3, 4, 5} and is therefore mapped.

Additionally, the key entity {8, 9, 10, 11, 12} is aligned to {6, 7, 8, 9, 10, 12, 12}. Since each

response entity can only be mapped once, the entity {6, 7} remains unaligned. Once we

have established the mapping, we can calculate the maximum total similarity for both

the ϕ3 and ϕ4 similarity functions.

Φ3 = ϕ3({1, 2, 3, 4, 5}, {1, 2, 3, 4, 5}) + ϕ3({8, 9, 10, 11, 12, 13}, {6, 7, 8, 9, 10, 11, 12})

= |{1, 2, 3, 4, 5}|+ |{8, 9, 10, 11, 12}|

= 5 + 5 (2.16)

Φ4 = ϕ3({1, 2, 3, 4, 5}, {1, 2, 3, 4, 5}) + ϕ3({8, 9, 10, 11, 12, 13}, {6, 7, 8, 9, 10, 11, 12})

=
2 ∗ |{1, 2, 3, 4, 5}|

5 + 5
+

2 ∗ |{8, 9, 10, 11, 12}|
5 + 7

= 1 +
5
6

(2.17)

To obtain the actual recall and precision scores, we need to divide the Φ values by the

self-similarity score of the key entities for recall and the response entities for precision. In

the case of the ϕ3 similarity function, the self-similarity score corresponds to the number

of mentions across all entities, which is why it is called the mention-based CEAF. As seen

in Equation 2.18 and Equation 2.19 for ϕ3 recall and precision both equal 5
6 .

Precisionϕ3 =
10

ϕ3({1, 2, 3, 4, 5}, {1, 2, 3, 4, 5}) +
10

ϕ3({6, 7}, {6, 7})

+
10

ϕ3({8, 9, 10, 11, 12}, {8, 9, 10, 11, 12})

=
10

5 + 2 + 5
=

5
6
≈ 0.83 (2.18)

Recallϕ3 =

=
10

ϕ3({1, 2, 3, 4, 5}, {1, 2, 3, 4, 5})

+
10

ϕ3({6, 7, 8, 9, 10, 11, 12}, {6, 7, 8, 9, 10, 11, 12})

=
10

5 + 7
=

5
6
≈ 0.83 (2.19)

The precision and recall functions used in the entity-based CEAF score are the same

as those used in the mention-based score, except that the ϕ4 similarity function is used.
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In Equation 2.20 and Equation 2.21, we omit displaying the entities for the similarity

function and instead show the result of the ϕ4 function to simplify the calculation.

Precisionϕ4 =
1 + 5

6
2∗5
5+5 +

2∗7
7+7

=
1 + 5

6
2

=
11
12
≈ 0.92 (2.20)

Recallϕ4 =
1 + 5

6
2∗5
5+5 +

2∗2
2+2 +

2∗5
5+5

=
1 + 5

6
3

=
11
18
≈ 0.61 (2.21)
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3 Related Work

This chapter introduces the work that this thesis is based on and discusses the current

state of existing coreference resolution solutions. Firstly, a brief overview of the progress

in the development of coreference resolution is provided. Secondly, two models used

in the field, a coarse-to-fine model and an incremental model, are delved into in deeper

detail. Finally, we will explain which problems still exist in the presented models for

coreference resolution, for which we want to present possible solutions in this thesis.

3.1 Existing Coreference Resolution Solutions

Coreference resolution has been a core task of natural language processing for a long

time. The first rule-based approach was introduced by Hobbs (1978) with the Hobbs’

naïve algorithm. In the 1990s, a paradigm shift occurred from heuristic and statistical

approaches to machine-learning-based coreference resolution. The first learning-based

solution by Aone and Bennett (1995) used decision trees, and today’s state-of-the-art

approaches outperform rule-based ones by far. Ng (2010) published a survey about the

first years of machine learning-based coreference resolution research and clustered the

different models into three categories: mention-pair model, entity-mention model, and

ranking models.

Mention-pair models consist of a classifier that determines whether two mentions are

coreferent, like the first introduced decision tree approach by Aone and Bennett (1995).

This approach entails the problem that the transitivity property of the coreference rela-

tion cannot be enforced. The decisions are made independently, so two mentions that are

marked as coreferent to a third mention may not be marked as coreferent to each other.

This problem has been tackled by the entity-model. Here a machine learning model clas-

sifies whether a mention is coreferent with a preceding cluster of entities. The model by

Schröder et al. (2021) that this thesis is based on can be categorized as a ranking model.

For a given mention, all possible antecedents are scored and the best candidate is chosen.

They adapted two existing end-to-end trained models for the German language, tak-

ing advantage of the fact that neural approaches can be easily transferred to different lan-

guages. These models, and thus the focus of this thesis, are on German datasets, which

will be further introduced in section 4.1. The architecture of both models can be seen in

Figure 3.1, and will be described in the following section, along with a brief overview of

the research progress that led to these models.
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Figure 3.1: The Figure provides an overview of how the two end-to-end neural models
process an input sentence to retrieve a list of entities as output. (graphic taken
from (Schröder et al., 2021))

3.1.1 Coarse-to-Fine Model

Lee et al. (2017) introduced the first model that learned an end-to-end approach using

only gold mention clusters. Unlike previously introduced models, it does not rely on

syntactic parsers. Instead, the model learns which spans are entity mentions and can

cluster them based on their coreference.

Given an input document D containing T words, the model’s basic task is to assign an

antecedent span yi to each of the N = T(T+1)
2 possible spans. The possible assignments

for each yi are {ϵ, 1, ..., i − 1}, which include a dummy antecedent ϵ and all preceding

spans. An assignment to an antecedent j (everything except ϵ) indicates a coreference

between span i and span j. A dummy antecedent means, that the span is not a mention

at all, or that the mention is not coreferent to any previously seen span in the text.

The model aims to learn, for every mention span x, a probability distribution over

every possible antecedent spans Y.

P(Y) =
es(x,y)

∑y′∈Y es(x,y′)
(3.1)

Hereby s(x, y) is the calculated coreference score. As seen in Figure 3.2 and Equa-

tion 2.1 the coreference score is calculated using the mention score sm and the antecedent

score sa. The mention score indicates the likelihood that a span is a mention, while the

antecedent score indicates the likelihood that spans x and y refer to the same entity. Both

scores are retrieved using a feed-forward neural network (FFNN), which takes a vector

representation of the span as input and returns the corresponding score as output. In the

original paper by Lee et al. (2017), a bidirectional Long Short-Term Memory (LSTM) was

used in conjunction with ELMo and GloVe word embeddings to encode lexical informa-

tion. Joshi et al. (2019) further improved this by replacing the LSTM-based encoder with

the BERT transformer.

s(x, y) = sm(x) + sm(y) + sa(x, y) (3.2)
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Figure 3.2: Calculation the coreference score as a sum of the mention scores and the an-
tecedent score (graphic taken from (Lee et al., 2017))

The problem with this approach is, that computing the antecedent score is challeng-

ing because it requires computing a tensor of size M ∗ M ∗ (3|g|+ |ϕ|), where M is the

number of previous mention spans, |g| is the size of one embedding vector and |ϕ| is

the size of meta-informations (like for example information about the speaker). To re-

duce the computational size, a "coarse-to-fine" approach has been proposed by Lee et al.

(2018). They introduced an alternate bilinear scoring function, which requires less com-

putational power.

sc(i, j) = gT
i Wcgj (3.3)

Wc is a weight matrix learned using a feed-forward network. This scoring function

is less accurate than the previous score, resulting in a performance loss of over 3 F1.

However, it only requires matrices of size M ∗ |g| and M ∗M. This new, efficient scoring

function is used in the coarse-step of the model. Up to M spans are kept based on their

mention score, and the top K antecedents of all remaining span i are kept based on the

sum of their mention score and the lightweight coarse-score.

sm(i) + sm(j) + sc(i, j) (3.4)

In the model architecture by Schröder et al. (2021), that this thesis is directly based on,

K is limited to min(4096, 0.4 ∗ |D|), where |D| is the number of words in the document.

Up to a maximum of the top 64 antecedents per mention are further processed in the

following Fine Ranking step, as shown in Figure 3.1. This step sums up the computation-

ally expensive coreference-score s(i, j) and the coarse-score sc(i, j) (Equation 3.3) from the

previous coarse step. Based on this final score, the probability distribution will be calcu-

lated, and the assignments of antecedents for all mentions will be decided. The resulting
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chain of antecedents will be used to group together all mentions that belong to the same

entity and these will be the output entities.

3.1.2 Incremental Model

The previously described coarse-to-fine model has limitations when processing long doc-

uments. The issue is that even when using the coarse step, it requires simultaneous access

to all spans Θ(n) for a document with length n and all scores Θ(n2). Additionally, the

size of the vector representations of the span embeddings increases as the dimensionality

of contextualized encoders may increases with further research. As a result, the required

memory for long documents can exceed the available resources when they are limited.

To address this, Schröder et al. (2021) adapted a model whose underlying idea was

introduced by Xia et al. (2020) and Toshniwal et al. (2020). Instead of scoring all possible

mention spans against each other, a growing list of entities is created incrementally, where

each possible mention span is scored against all available clusters.

The first step, the Mention Proposal, is taken from the coarse-to-fine model, as seen

in Figure 3.1. Retrieving the top possible mention spans uses the same scoring function,

and following Xia et al. (2020), the weights from the coarse-to-fine model are reused.

As stated earlier, the clustering of the mentions to the corresponding entities does not

require scoring of all mention spans against each other. Instead, it will work in an incre-

mental manner, as seen in Figure 3.1, where Schröder et al. (2021) call this step "Entity

Assignment".

Listing 3.1 shows the code for the FindClusters function that processes this step.

Each document is split into segments, and a growing list of entities is created during the

iteration of all segments. For each mention out of the mention proposal step, a score

is calculated using a feed-forward neural network. This network takes as inputs the

embedding of the mention span and the representations of the existing entity clusters.

These representations of the entities are updated every time a new mention is added to

the entity, using a weight that has been learned through a FFNN.

The weight network takes the concatenation of the current representation of the entity

cluster with the representation vector of the added mention span as input. The result

is then mapped to a value between 0 and 1 using the sigmoid function, as shown in

Equation 3.5. The resulting weight vector is used to update the representation of the

entity cluster as a weighted sum of the existing representation and the embedding of the

newly added mention (Equation 3.6).

α = σ(FFNN([etop_e, em])) (3.5)

etop_e ← α ∗ etop_e + (1− α) ∗ em (3.6)

The FindClusters algorithm adds every mention to an existing entity or creates a new
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entity to hold the mention. The only way to discard mentions, either because they are not

true mentions or because they are singletons, is to remove all entities that have only one

mention in a post-processing step. However, removing singleton clusters eliminates the

possibility of finding them, as they cannot be distinguished from non-mention entities. To

address this, an additional "dummy" cluster can be added to the scoring function where

non-mention entities can be added. In the post-processing step, only the non-mention

entities are removed, and singleton mentions that belong to an entity without a referent

are retained.

As the list of entities grows, so does the required amount of memory needed to store

them. In order to keep the required memory amount constant after each segment itera-

tion, entities will be evicted using the EVICT function (Listing 3.1, line 15). This function

removes entities from the list used for the scoring function, but keeps them on the CPU

so that they persist until the end of inference. Entities that will be removed are chosen

based on their cluster size and their distance from their last appearance to the current

position in the document.

1 FindClusters(Document):

2 Create an empty Entity List, E

3 for segment ∈ Document do

4 M ← SPANS(segment)

5 for m ∈ M do

6 scores ← PAIRSCORE(m, E)

7 top_score ← max(scores)

8 top_e ← argmax(scores)

9
10 if top score > 0 then

11 UPDATE(top_e, m)

12 else

13 ADD_NEW_ENTITY(E, m)

14
15 EVICT(E)

16 return E

Listing 3.1: Pseudocode for incremental entity assignment step (Xia et al., 2020)

3.2 Remaining Problems of Coreference Resolution Solutions

For both models the results are still not optimal and two major problems remain. The

most significant problems of the coarse-to-fine model is the requirement of a matrix of

n× n, where n is the number of possible spans in the document. This leads to a quadratic

growth in the required memory proportional to the length of the document. To reduce

the required memory, the coarsing step was introduced, but the proportional growth

remains. To address this issue, the incremental model was introduced, which reduces
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the required memory and eliminates the quadratic dependency. The incremental model

even reduces the required memory by using the evict step to maintain a constant memory

requirement. This can be seen in Figure 3.3, where the orange markers show the required

amount of memory from the incremental approach proposed by Xia. Earlier models, such

as the coarse-to-fine model, had an increasing required amount of memory, whereas the

incremental model remains constant.

Figure 5.1 illustrates two major problems related to the performance of both models.

Firstly, the incremental model performs worse than the coarse-to-fine model across all

document lengths. Secondly, the performance of both models decreases as document

length increases. The optimal system should achieve the same or better performance as

the coarse-to-fine model, while using constant memory like the incremental model. To

address this issue, this thesis proposes adapting both models introduced in this chapter.

Figure 3.3: Required amount of allocated
tensors based on their doc-
ument length (graphic taken
from Xia et al. (2020))

Figure 3.4: CoNLL-F1-score for both mod-
els for increasing document
length (graphic taken from
Schröder et al. (2021))
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4 Methodology

In the previous chapter, we explained that the coarse-to-fine model generally outper-

forms the incremental model for coreference resolution. However, its memory require-

ments are quadratic to the document length, limiting its usefulness for longer docu-

ments. To address this limitation, this thesis proposes a neural method that combines

the strengths of both models.

The concept is based on the premise to split long documents into shorter ones and

use the coarse-to-fine model to predict mentions and corresponding entities in the splits.

Subsequently, the incremental model will merge the entities of the splits together. In

this chapter, we introduce this neural method and three other simpler methods based on

pre-defined rules.

All methods create a growing list of entities by iterating over the split document and

merging the entities of the current split into the entities that have already been seen. The

entities of the current split are called "local" entities, while the entities that have already

been merged are "global" entities. Each document is processed independently, thereby

maintaining the document-level scope of the term "global"

This chapter will begin with introducing the dataset used to train the neural models

and evaluate the merging methods. Before introducing the proposed merging methods,

an explanation of how the data is pre-processed will be provided.

4.1 Datasets

To evaluate the different merging approaches, we will use two datasets containing Ger-

man-language documents with manually annotated entities. Although none of the pro-

posed merging approaches rely on unique features of the German language, we will use

these sets since they were also used to train and evaluate the models introduced in sec-

tion 3.1, which this work is based on. This allows us to compare our results to existing

solutions without the need to retrain the models.

The first dataset is the "Tübinger Baumbank des Deutschen / Zeitungskorpus" (TüBa-

D/Z), published by Telljohann et al. (2017) from the University of Tübingen. This cor-

pus exists in different versions, where the latest one contains 3,816 manually annotated

articles from the German newspaper "die tageszeitung". The data is given in the CoNLL-

2012 format, which was introduced by Pradhan et al. (2012) for the CoNLL (Conference

on Natural Language Learning) shared task of 2012. This format defines the de facto

standard for datasets used in NLP. To establish a comparison with the baseline, we will
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employ version 10 of this dataset, despite the existence of more recent versions. Version

10 was used in the SemEval-2010 shared task and therefore provides a state-of-the-art

comparison for the paper that this thesis is based on (Recasens et al., 2010).

The second dataset is the Deutsches Roman Corpus (DROC) by Krug et al. (2018). It

contains 90 literary documents from German novels. Unlike TüBa-D/Z, only the mention

heads are annotated in DROC, meaning that "der kleine Max" would form a mention in

TüBa-D/Z, whereas only "Max" would be annotated in the DROC dataset. This results in

a shorter average mention span length in the DROC data. Additionally, only references

to characters are annotated in the DROC dataset, and mentions of other entities are not

part of the gold data.

Although only character references are annotated, the documents contain an average

of 575.52 mentions on the DROC dataset, whereas on the TüBa-D/Z dataset, there are

an average of 10.89 entities per article, with 3.65 mentions per entity. The main reason

for this is that the documents in the DROC dataset are considerably longer, with an av-

erage length of 3,945.39 tokens, compared to the TüBa-D/Z set, which has an average of

347.53 tokens. As such, the TüBa-D/Z dataset can be divided into fewer splits. Figure 4.1

shows the number of splits with a maximum length of 512 tokens for both corpora. All

documents in the DROC dataset can be split into at least six splits, whereas most of the

documents in the other dataset cannot be split when using 512 tokens as the maximum

length. We will exclude from the evaluation all documents that cannot be split into at

least two splits because no merging step would be required for them.

0 2 4 6 8 10 12 14 16 18 20 22
Number of splits

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
um

be
r

of
do

cu
m

en
ts

(a) DROC

1 2 3 4 5 6
Number of splits

0

100

200

300

400

N
um

be
r

of
do

cu
m

en
ts

(b) Version 10 TüBa-D/Z1

Figure 4.1: Amount of splits using a maximum split length of 512 tokens

4.2 Data Preparation

In order to utilize one of the merging algorithms or the existing coarse-to-fine and incre-

mental model, preprocessing of the textual data provided by the datasets is necessary. As

1For a better overview, an outlier document with 21 splits is not shown.
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the existing models and pre-processings steps by Schröder et al. (2021) and their prede-

cessors are implemented in Python, the code for this thesis has also been realised in it. In

order to maintain a better overview and comprehensibility, code examples are written in

Python-like pseudocode throughout the work. Most of the pre-processing, like convert-

ing the input to the ConLL-2012 format and further into an input format for the neural

networks or splitting the words into sub-tokens, has already been done in the work on

which this thesis is based on. Two major steps still need to be done before the merging

algorithm can be applied:

1. Splitting the long documents into shorter sub-documents

2. Predicting the mentions and entities in the splits using the coarse-to-fine model

The second step is only necessary if entities in unlabeled documents need to be identi-

fied, or if merging algorithms are to be tested using the coarse-to-fine model. If the sole

purpose is to evaluate merge quality, the gold mentions within the splits can be used, and

the prediction step is not necessary.

The splitting method needs to handle three different parameters to support all pro-

posed merging algorithms: the length of each split (maximum number of sub-tokens per

split), whether the splits should be overlapping, and if so, how long the overlap should

be. It is crucial to consider the length parameter as a maximum value rather than a fixed

length. The reason is that splitting sentences should be avoided whenever possible, as

it can result in the model losing valuable contextual information, ultimately causing its

performance to suffer. As a result, the split may be shorter than the maximum number

of sub-tokens, which can lead to some variation in the length of the splits. However,

the hard cut-off is the more important criterion because the coarse-to-fine model has a

maximum length that it can work with.

The sentences in the document will be added iteratively, and the index of the last added

sentence will be stored in a counter variable. The index of the next added sentence will

be the value of the counter variable plus one. This approach ensures that each sentence

is added precisely once to its corresponding split in the default configuration. If the

overlapping parameter is active, the sentence counter will be decreased by the length

specified by the overlapping-length parameter after creating each split. Consequently,

every split, except the first one, will include the last sentences from the preceding split.

Another sub-step that needs to be done during the splitting process is changing some

consecutive indices. These indices must be realigned relative to the split start, rather than

being absolute values for the entire document. Attributes in the data that require index

alignment include for example the subtoken_map, which contains the index of the word

in the document that each sub-token belongs to, or the sentence_map, which contains

the index of the sentence that each sub-token belongs to.

Once the splitting and realigning of data has been completed, each split can be re-

garded as an independent document. This allows the coarse-to-fine model to be used
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to predict mentions and entities without any modifications. If the merge method needs

to be tested independently of entity prediction, the gold clusters from the dataset can

be copied into the corresponding split. In this case, the mention indices must also be

adjusted accordingly.

4.3 Rule-Based Approaches

In the following three sections, we introduce three approaches for merging clusters of two

splits together if they belong to the same entity. As explained previously, the underlying

idea is that the coarse-to-fine model is used to identify mentions and belonging entities in

the split. Then, the clusters are merged using our proposed merging methods so that the

whole document is analyzed afterwards. These methods are based on predefined rules

rather than (directly) on a neural network.

Each approach will be explained in detail and illustrated with an example merging

step.

4.3.1 String-Based Merging

The first rule-based method is based on the following basic idea: if two entities of consec-

utive splits share the same word, and no other entities do so as often, then they are likely

the same entity.

This idea is realized through an iterative approach over the splits created in the docu-

ment. The iteration is done in order. For the first split, nothing needs to be merged, and

each entity will be copied to the document-wide set of entities. For every following split,

each entity will be checked separately. As illustrated in Figure 4.2, for every mention of

the “to-be-merged” entities, the appearances in the already existing global entities will

be counted. The string that appears most often in any existing cluster will determine the

merge.

There are three possible outcomes when checking if an entity will be merged with an

existing one:

1. There is exactly one other entity in the already merged ones, that shares a string

with "to-be-merged" entity more often than any other string in any other entity.

Those two entities are probably the same one, and consequently will be merged.

2. There are two or more entities that share the same string the same number of times

as the "to-be-merged" entity, and no other string is shared more often. As an exam-

ple, let’s consider the string "ihr" appearing in Figure 4.2. It exists in two entities

within the current split once and also in two global entities once. In this case, both

clusters are equally viable for merging. Since we cannot determine a definitive win-

ner, the entity will not be merged and will instead be added as a new entity in the

global document.
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Figure 4.2: Conceptual visualisation of the string matching approach

3. No strings are shared between the "to-be-merged" entity and any other already ex-

isting entity. We cannot determine any entity that is probably related to this one, so

the merge is skipped. Like in scenario 2, the entity is added as a new one.

To clarify the merging algorithm, we will explain it based on the entities and corre-

sponding mentions from the first two splits of the document "Erna" by Charlotte von

Ahlefeld from the DROC corpus (Krug et al., 2018), which are displayed in Table 4.1 and

Table 4.2. Initially, all entities from the first split are taken over into the document-wide

entities, as there are no entities to merge. In the following, all entities that have already

been merged are referred to as "global entities".

Table 4.1: Entities and corresponding mentions of the first split of document "Erna". The
index column displays the index of the entitiy in the entire unsplit document.

Index Mention-Strings

0 "Alexander", "ihm", "Herr von Norbeck", "Alexander", "Herr von Norbeck",
"ihm", "er", "seinem", "seines", "sich", "er", "Alexander", "ihn", "seinen", "sein",
"ihn", "Freund", "seines", "seinen"

1 "ich", "wer", "Linovsky", "Ich", "er", "sein", "er", "sich", "Gemahls", "er", "sein",
"ihm", "er", "Herr von Linovsky"

2 "meine", "dir", "Erna", "Erna", "ich", "ich", "sie", "ihr", "du", "ich", "Erna", "sie"
3 "seines", "Wundarzt", "er", "Wundarzt"
4 "Kinder", "Kindern"
5 "uns", "unserm"

In the first iteration step, the goal is to find a matching entity for the first entity of the

second cluster. The first string to be checked is "seiner". This string does not occur in any
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Table 4.2: Entities and corresponding mentions of the second split of document "Erna"

Index Mention-Strings

0 "seiner", "ihm", "Alexander", "ihn", "sich", "ihm", "seines", "seinem", "ihm",
"sich", "seine", "Alexander", "dieser", "seinen", "ihm", "seine", "ihm", "seinen",
"Leidenden", "er"

1 "Linovsky", "sein", "er", "Linovsky"
2 "ihrer", "sie", "Sie", "sie", "sie", "sich", "Erna"
3 "er", "Arztes", "der", "seiner", "Arzt", "Chirurgus"

entity of the global entities and is therefore not relevant for the merge.

Next, the string "ihm" is checked. This string occurs in entity 0 and 1 of the global

entities, with a maximum appearance count in entity 0. The same appearance counts are

checked for all remaining strings of the first entity of the second split. The results can be

seen in Table 4.3, where the "best matching cluster" is the index of the entity in the global

entities where the string appears most often. The maximum number of appearances in

this entity can be seen in the second column, and the total number of entities in which

the string occurs is shown in the last column.

In this example, the merge-deciding mention/string is "alexander" because it only ap-

pears in exactly one existing entity and appears more often than "ihn", "seinem", and

"seinen". Therefore, the first entity of the second split is merged with the first entity of

the global entities, which is indeed the correct merge.

Table 4.3: Results of the merging algorithm for the first entity of the second split

Mention-String "se
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"

"ih
m

"
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an

der
"
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n"
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ch

"
"se

in
es

"
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in

em
"

"se
in

e"

"d
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er
"

"se
in

en
"

"le
id

en
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"

"er
"

best matching cluster -1 0 0 0 0 0 0 -1 -1 0 -1 1
max. appearance count 0 2 3 2 1 2 1 0 0 2 0 4
clusters with match 0 2 1 1 2 2 1 0 0 1 0 2

For all other entities in the second split, the merging process will be similar. Entity 1

will be merged with entity 1 based on the word "linovsky," and entity 2 will be merged

with entity 2 based on the word "erna." As for the last entity, the previously described

second outcome will occur. The string "er" appears twice in entity 0, four times in entity

1, and once in entity 3. Since no other words are found in any global entity, no entity can

be declared as the best match. Therefore, nothing will be merged, and the entity will be

taken over as a new one in the global entities.

After merging the first two splits, there are a total of seven global entities, and three

out of the four entities were merged correctly. This process will now be repeated for all

other existing splits.
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4.3.2 Overlapping Merging

We propose a second approach for merging entities, which is based on overlapping splits.

The underlying idea (like in all other approaches) is that the document is not predicted

in its entirety, but rather we have a moving window of the document where the mentions

and entities are predicted. If in two overlapping splits, the same string (at the same po-

sition) is marked as a mention, we assume that it is likely that they belong to the same

entity. These two entities will then be merged together to one. Because the window is

larger than only the overlapping part, the entities grow when the window is moved for-

ward. Two mentions are marked as overlapping if they share at least one token at the

same global index. For example, consider the string "die Landesvorsitzende Ute Wede-

meier". If the first split includes all four words as part of the mention, but the second

split only marks "Ute Wedemeier" as a mention, the two splits would still be considered

intersecting. This can also be seen in Figure 4.3, where the mention [17, 18] of the first

split and the mention [18, 18] are considered overlapping, even though only the sec-

ond token is marked in the second split. Therefore, these two entities likely belong to the

same global entity and should be merged.

As described in section 4.2, the splits in this approach always contain the last segments

of the previous split and all following segments until the maximum number of tokens is

reached.

Figure 4.3: Conceptual visualisation of the overlapping approach

Entities will always be merged with the entity they most frequently intersect with. This

is necessary because it is possible for entities to collide in the overlapping part of the split.

For example, in the first split, there are three mentions that all belong to entity A. In the

overlapping part of the second split, all these mentions are also present, but two belong

to entity A and one is categorized as entity B. In this situation, entity A will be merged

because the amount of overlap is larger, and it is more likely that the one mention is

misclassified. However, entity B will not be merged into entity A, given that it does not

intersect with any other entity, because once an entity was merged into a global entity, it
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will not be merged again during the same merging step. Instead, the entity will be added

as a new one to the global entities.

An example of the overlapping approach can be seen in Figure 4.4, which shows two

splits of the first document. In this example, entity 4 intersects ten times in the over-

lapping split and would therefore be merged. Although only one mention overlaps in

entity 0, both clusters will be merged. The same applies for entity 5. In the case of clus-

ters 0 (Erna) and 4 (Linovsky), the example shows that new mentions have been added

to existing clusters because of the overlap. Cluster 2 does not appear in the overlapping

section of the two splits and thus cannot be merged. A new global entity would be added,

containing the mentions "Wundarzt" and "der".
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Ruhig sagte [Erna]0 : Weder die

[Kinder]1 noch [ich]0 bedürfen

[seines]2 Beistandes, aber einen Fre-

und von [uns]3 hat nicht weit von

[unserm]3 Hause ein Unfall betroffen,
der zwar, dem Himmel sei Dank, nicht
bedeutend ist, aber dessen Behandlung
denn doch [meine]0 wenigen medicinis-
chen Kenntnisse übersteigt.
Auch dauerte es einige Minuten, während
[er]4 [sich]4 mit [Erna]0 in leisem

Gespräch in eine Fenstervertiefung
zurückgezogen hatte, wohin [sein]4
Blick [ihm]4 nicht folgen konnte, bis

[er]4 zu [seinem]4 Lager trat und

[ihm]4 , als einen der Höflichkeit nicht
gern dargebrachten Zoll, einige halb un-
verständliche Worte von dem Vergnügen,
[ihn]4 wieder zu sehen und von der

Freude, daß [sein]4 Haus gerade das
nächste bei dem sich ereigneten Unfall
gewesen sei, um [ihm]4 als Zufluchtsort
dienen zu können, zumurmelte.
[Alexander]5 stellte [sich]5 kränker als

[er]5 war, um diese Gemeinplätze nur
nicht beantworten zu müssen.

Auch dauerte es einige Minuten, während
[er]4 [sich]4 mit [Erna]0 in leisem

Gespräch in eine Fenstervertiefung
zurückgezogen hatte, wohin [sein]4
Blick [ihm]4 nicht folgen konnte, bis

[er]4 zu [seinem]4 Lager trat und

[ihm]4 , als einen der Höflichkeit nicht
gern dargebrachten Zoll, einige halb un-
verständliche Worte von dem Vergnügen,
[ihn]4 wieder zu sehen und von der

Freude, daß [sein]4 Haus gerade das
nächste bei dem sich ereigneten Unfall
gewesen sei, um [ihm]4 als Zufluchtsort
dienen zu können, zumurmelte.
[Alexander]5 stellte [sich]5 kränker als

[er]5 war, um diese Gemeinplätze nur
nicht beantworten zu müssen.
In [Linovsky′s]4 frostigen Mienen, und
den feindseligen Blicken, mit denen er
[ihm]4 gegenüber stand, spiegelte sich

ein Theil [seiner]4 eigenen Gesinnung,

und der herbeigerufene [Wundarzt]2 ,

[der]2 eben herein trat, unterbrach sehr
willkommen die Spannung dieses nicht
wohlthuenden Beisammenseyns.
[Erna]0 hatte bereits Charpie und Lein-

wand zum Verband zurecht gelegt.

Figure 4.4: Excerpt from the DROC dataset (Krug et al., 2018) split into overlapping splits
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4.3.3 Embedding Space Merging

The third proposed rule-based approach makes use of word embeddings introduced in

section 2.3. Specifically, we utilize the feature that allows algebraic operations on em-

beddings. The basic idea is to calculate an embedding vector for all entities in a split,

and then use cosine similarity to compare all mentions of the entities to all entities that

have already been processed in previous splits. Entities that exceed a given threshold for

similarity will be merged together, as they likely refer to the same entity.

As shown in Figure 4.5, we will split the documents into smaller pieces and predict

them separately, as in all proposed approaches. In this approach, the splits will not over-

lap. The merging process will iterate over all splits in order, and for every entity of the

split, it will either merge with an already existing "global" entity (an entity that has been

processed in a previous split merging step) or create a new global entity. For the first

split, all entities are simply taken over because nothing can be merged there.

For each subsequent split, we will use word embeddings of entity mentions. For every

mention, we will obtain a vector that represents the word in the embedding space. To

obtain these embeddings, we will make use of pre-trained models of word2vec (Mikolov

et al., 2013a) and fastText (Bojanowski et al., 2017). Two things must be considered when

obtaining these embeddings. First, mentions can consist of multiple words, but word em-

beddings only exist for individual words. If we encounter mentions with more than one

word, we will split them at the whitespace and treat them as two independent mentions.

Second, when using the word2vec model, not all mentions may have word embedding

vectors. This can be the case if the words did not appear in the training data that the

word2vec model was trained on. Therefore, before retrieving all the word embeddings,

we will need to filter out all words without a representation in the embedding space.

As explained in subsection 2.3.2, this filtering is not required for fastText because it can

generate embeddings for words not in the training data.

After obtaining all the embedding vectors, we will calculate the mean vector for each

entity. This will result in a vector of dimensionality 300 for each entity, both for the split

and the already merged ones. To compare these vectors, we will use cosine similarity,

which is explained in section 2.4. The score ranges from 0 to 1, where 0 means that the

entities are as different as possible, and 1 means that both entities are exactly the same.

This step results in a matrix of scores where all split entities have a similarity score for all

"global" entities.

To perform the actual merging step, we will iterate over all entities in the current split

and merge them with the entity in the "global" entities that they have the highest score

with, provided that two other conditions are true:

1. The similarity score exceeds the threshold.

2. No other entity has its highest score on this entity and has a higher score than the

entity to be merged.
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Figure 4.5: Conceptual visualisation of the embedding space approach

By following these two rules, we will always merge the entity with its best matching

cluster, but we will not merge two entities of a split into the same global entity. We make

this assumption because we assume that the predictions of the splits are perfect. If two

mentions are not in the same entity in the split, they should not be in the same entity after

the merge. This process is then repeated for every split to obtain all the predictions for

the entire document.

Figure 4.6 displays an example matrix showing cosine similarity scores for entities from

Table 4.1 and Table 4.2. Rows represent entities from the current split, while columns

represent entities that have already been processed. The embeddings were calculated

using the pre-trained word2vec model, and two entities are merged if their score exceeds

the 0.8 threshold. In the filtering step, the mention "Linvosky" was removed from the

second entity of the current split and also from the second entity of the "global" entities

because it does not appear in the training data, and no embedding vector exists for the

word when using word2vec. The entities that were merged are marked with a red border.

The only entity that does not get merged is the third one of the entities of the current

cluster. Even though the correct "global" entity has the highest similarity score, it does

not pass the 0.8 threshold and is therefore not considered for merging. This entity will be

added as a new one to the "global" entities.
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Figure 4.6: Example of cosine similarity matrix using word2vec and a threshold of 0.8.
Entities that are merged are marked with a red border.

4.4 Neural Approach

In the final approach, we will use both existing neural models and create a hybrid solu-

tion to evaluate documents of arbitrary lengths. Like in all rule-based approaches, the

document will be split into shorter parts, in this case, without any overlap. The coarse-

to-fine model will be used to predict all mentions and cluster them into corresponding

entities. These predictions will then be merged using the incremental model. The incre-

mental model iterates over segments of the document and can handle split documents,

as described in subsection 3.1.2. In this model, each mention is assigned individually to

an existing entity or a new entity is created for the mention candidate. As shown in Fig-

ure 4.7, we will modify this algorithm so that instead of merging on a mention-level, it

will merge based on whole entities. As such, instead of single mentions, complete entities

will be assigned to existing entities.

As shown in Listing 4.1, we will iterate over all entities that have been found using

the coarse-to-fine model (or gold entities in the evaluation) instead of iterating over all

mentions of the split. Unlike the original incremental model, we will need to calculate

the score for all entities of the current split before modifying any existing entities. This

is because, like in all rule-based approaches, we see the predictions of the coarse-to-fine

model as absolute. To prevent merging two entities of the same split into the same global
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entity, we first need to calculate the score. Afterward, every entity gets merged into the

entity that has the highest score, and no other entity has a higher score.

We want to reuse the weights of the already trained incremental model and cannot

modify the structure of the input of the scoring function. To be compatible, we need

to provide a representation of the to-be-merged entity as a single vector, together with

the representation of all existing models. The latter representation does not need to be

modified, as it already exists in that way in the original incremental model.

To create the representation of the to-be-merged entity, we propose two different solu-

tions. In the first solution, we will calculate the mean of all embeddings of the mention

span without any weighting. In the second solution, we will make use of the weight-

ing introduced in subsection 3.1.2 for the representation of the existing entities. In the

Listing 4.1 this can be seen in line 10 by using exemplary the mean function. We will

iteratively calculate the weights for all mentions in the order of their appearance in the

document and add them up as a weighted sum in the same way as the representation of

the existing entities is created.

Figure 4.7: Conceptual visualisation of the adapated incremental approach
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Listing 4.1: Pseudocode for modified incremental entity assignment step

1 MergeClusters(Document):

2 Create an empty Entity List, global_E

3 for split ∈ Document do

4 local_E ← Coarse-To-Fine(split)

5 all_scores ← []

6 already_merged_entities ← []

7
8 # Calculating the scores for all entities of the current split

9 for e ∈ local_E do

10 scores ← PAIRSCORE(mean(e), global_E)

11 all_scores.append(scores)

12
13 # Merging with the best global entity

14 for e, index ∈ local_E do

15 scores ← all_scores[index]

16
17 top_score ← max(scores)

18 top_e ← argmax(scores)

19
20 # We will stop when an entity has been found in that

21 # has not been merged, or creating a new entity

22 # (top_e = 0) has the highest score

23 while top_e in already_merged_entities and top_e > 0

24 scores[top_e] ← -1 # Ignoring the entity from now on

25
26 top_score ← max(scores) # Finding the next best entity

27 top_e ← argmax(scores)

28
29 already_merged_entities.append(top_e)

30 if top score > 0 then

31 MERGE_ENTITIES(top_e, e)

32 else

33 ADD_NEW_ENTITY(global_E, e)

34
35 EVICT(global_E)

36 return global_E
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5 Evaluation

In this chapter, we will focus on the performance evaluation of our proposed approaches

for merging entity clusters. Our goal is to determine the best performing approach and

test our hypothesis. Additionally, we will investigate how adjusting different settings of

the approaches affects performance. To achieve this, we introduce several experiments

that target different aspects of the approaches.

The chapter begins by introducing the baseline for German coreference resolution,

which serves as a reference point for our comparison. Subsequently, we explain the ex-

perimental setup and how we collect performance scores. Within the principal section of

this chapter, we describe each experiment and highlight its significance. For each experi-

ment, we present the resulting scores and provide a discussion of the outcomes.

All results will be presented using the evaluation metrics introduced in section 2.5,

with the CoNLL-F1-score serving as the main metric for comparison.

5.1 Baseline

As explained in the previous chapters, in this thesis, we are comparing our modified

neural models to the baseline introduced by Schröder et al. (2021), which is explained

in section 3.1. We aim to determine if our modifications improve performance, building

upon the existing work. Table 5.1 displays the CoNLL-F1-scores for both models on both

data sets. The prefix "base" and "large" refer to the versions of ELECTRA used in the

study. Specifically, the base model refers to the, by the German NLP Group pre-trained,

GNG_ELECTRA model1, while the large model is the GELECTRA model2.

Table 5.1: CoNLL-F1-score of the incremental and coarse-to-fine model by Schröder et al.
(2021) on TüBa-D/Z 10.0 and DROC datasets

Dataset Model CoNLL-F1-Score

TüBa-D/Z 10.0 Incremental 65.79
TüBa-D/Z 10.0 Coarse-to-fine (base) 77.21
TüBa-D/Z 10.0 Coarse-to-fine (large) 78.79

DROC Incremental 64.72
DROC Coarse-to-fine (base) 61.66

1https://huggingface.co/german-nlp-group/electra-base-german-uncased
2https://huggingface.co/deepset/gelectra-large

https://huggingface.co/german-nlp-group/electra-base-german-uncased
https://huggingface.co/deepset/gelectra-large
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The table shows that the CoNLL-F1 score is higher for the TüBa-D/Z new data set,

regardless of the neural model used. Moreover, it is noteworthy that in the DROC data

set, the incremental model outperforms the coarse-to-fine model, whereas in the news

data set, the incremental model is significantly behind (-13 F1) the coarse-to-fine model.

This pattern can also be seen in Figure 5.1, which additionally indicates that both models

exhibit decreased performance as document length increases.

Figure 5.1: Performance of the coarse-to-fine and incremental model with increasing doc-
ument length. (graphic taken from Schröder et al. (2021))

5.2 Experimental setup

In the following, we will explore various factors of the proposed merging approaches.

However, we will focus on evaluating only one specific setting in all experiments, with

different values for these settings. This approach allows us to observe how changes in

these settings directly affect performance. We will use the data sets introduced in chapter

3.3 for evaluation purposes. As previously mentioned, the datasets differ significantly in

the length of the individual documents. As a result, the information we gather from the

news dataset is less relevant, as the documents are short, requiring only a few merging

steps. For most experiments, we will focus primarily on the DROC dataset, as these

documents can be split into more segments, requiring more merging steps.

To create the splits, we will utilize the method introduced in chapter 3.4. For each

experiment, we will provide information on the maximum length of the splits. It should

be noted that the splits will not all have the exact same number of tokens since a split will

not break a sentence and will retain context. Therefore, the length of the splits should be

viewed as a maximum number of tokens.

To compare the approaches against each other or against different settings, we will

use the gold data provided by the datasets for evaluation purposes. By doing so, the

results will not be influenced by the predictions of the neural model. When comparing
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our approaches to the baseline, we will use the coarse-to-fine model to predict the splits.

The base model is employed for the DROC dataset, whereas the large model is utilized

for the news dataset. If a neural model is required, we will use the models trained by

Schröder et al. (2021), which are publicly available on GitHub3. This will save us time

and enable us to compare our results more precisely to the baseline.

5.3 Experiments

In the next section of this chapter, we will delve into the experiments that we conducted

to evaluate the proposed merging approaches. We will explain each experiment in detail,

present the results, and discuss the performance of the approaches. In total, we present

five separate experiments.

5.3.1 Overview

The first experiment will also be the most important one, as it will determine whether we

can accept or reject our hypothesis. The hypothesis of this thesis is that predicting splits

and merging entities together will perform equally or better than the incremental model

while also using limited memory. To prove or disprove this, we will provide an overview

of the performance of all proposed approaches in this experiment. We will compare the

approaches and determine which perform best and worst, and create a comparison with

the baseline.

To create this overview, we will calculate the CoNLL-F1 score for both datasets using

gold-labeled data and predicted splits from the coarse-to-fine model. We will use the

settings that work best for both datasets and split them into a maximum length of 512

tokens. Although larger splits perform better, as shown in a later experiment, we chose

this maximum length to evaluate the shorter documents of the TüBa-D/Z 10.0 dataset.

However, not all documents in this set are long enough to create two splits, so we re-

moved all documents that cannot be split into at least two splits and evaluated only on

the remaining ones.

For the overlapping approach, we added the last two sentences of the previous split to

create the overlap. The embedding approaches will utilize fastText and word2vec with

the pre-trained values specified in section 2.3, and we will define a merging threshold

of 0.9. In the neural approach, we create the representation of the to-be-merged entities

by taking the mean of the mention embeddings. This approach performs better than the

more complex weighted sum, as we have seen in pre-testing.

Figure 5.2 and Table 5.2 display the CoNLL-F1 scores for all methods used in this study

on the TüBa-D/Z news dataset and the DROC dataset, respectively, when using gold

entities. The results indicate that all methods perform better on the TüBa-D/Z news

dataset than on the DROC dataset. One reason for this is that the documents in the
3https://github.com/uhh-lt/neural-coref/releases/tag/konvens

https://github.com/uhh-lt/neural-coref/releases/tag/konvens
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Figure 5.2: Performance of all approaches on the TüBa-D/Z 10.0 and DROC dataset.
Using gold data and maximum split length of 512 tokens.

DROC set are much longer than those in the news set, as discussed in section 4.1. When

using gold data, the F1-score can only decrease due to two reasons: incorrect merging of

entities into a global entity or the creation of a new entity instead of merging an existing

one. These errors are introduced in each merging step and accumulate over time. Longer

documents result in more splits, which lead to more merging steps and, consequently,

more errors. This trend is illustrated in Figure 5.3, which shows the average CoNLL-F1

score of all documents for each merging step, using the string-based merging approach.

The news dataset contains shorter documents (we exclude one outlier document with 21

splits, because it would disproportionately affect performance) and therefore experiences

fewer errors and a more gradual decline in F1-score than the DROC dataset. Furthermore,

Figure 5.3 also indicates that the merging approach performs better on the news dataset

in the beginning. This could be due to the fact that the news dataset has fewer entities

on average and many of these entities only appear briefly in the text and do not require

merging.

The overlapping method outperforms all other methods with F1-scores of 79.11 and

92.22 for the DROC and TüBa-D/Z 10.0 datasets, respectively. This is because, when

using the gold data, every merge performed is correct, and errors are only introduced

when an entity is absent in one split but appears later. This leads to the loss of context,

resulting in the creation of a new entity instead of merging into the correct global one.

This reasoning is further supported by the performance of the overlapping method when

the coarse-to-fine model is used to predict the entities in the splits. In this case, the over-

lapping approach underperforms, with a CoNLL-F1-score of only 50.04 on the DROC

dataset, making it the worst performing method, as seen in Figure 5.4.

The embedding approach using fastText performs slightly worse than word2vec on
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Figure 5.3: Average CoNLL-F1-score of all documents, for the string-based merging
approach on both datasets for each merging step

both datasets. This result is surprising, as fastText has the capability to generate embed-

dings for out-of-vocabulary words, which word2vec does not. However, this could be

due to the fact that most words, which were not part of the training corpus, are proper

nouns, and the way fastText generates embeddings for them may lead to representation

vectors that negatively affect the calculated mean of the mentions.

The neural merging approach, which is the most complex and advanced method using

the adapted incremental model, underperforms on both the DROC and news datasets.

Even much simpler word embedding approaches that calculate only the cosine similarity

and do not train any weights perform better, with an F1-score of only 66.95 on the DROC

data for the neural approach.

Upon examining the performance of all proposed merging approaches when using the

coarse-to-fine model to predict entities, it becomes apparent that all approaches perform

significantly worse compared to the baseline models by Schröder et al. (2021). The best

performing approach, which is the word embedding based merging using the word2vec

model, is 7.99 F1 worse for the DROC dataset and even 8.49 worse for the news dataset.

The high F1-score of 70.09 for the overlapping method on the news data is probably a

result of the few entities, that are in this data. Most entities are singletons there or appear

only in a short section of the text, so that no merging is needed at all. As already observed

for the gold data, all approaches perform better on the news dataset than on the DROC

dataset. This is also the case when using the coarse-to-fine model.
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Dataset Approach Precision Recall CoNLL-F1-Score

DROC

string-based 71.32 68.94 65.61
overlapping 82.28 77.40 79.11
word embeddings (fastText) 78.78 63.89 70.06
word embeddings (word2vec) 80.70 66.73 72.64
neural 75.23 62.46 66.95

TüBa-D/Z 10.0

string-based 90.27 87.95 88.93
overlapping 94.90 89.82 92.22
word embeddings (fastText) 93.59 88.42 90.89
word embeddings (word2vec) 95.38 90.37 92.74
neural 92.46 88.35 90.36

Table 5.2: Precision, recall and CoNLL-F1-score for all approaches on the TüBa-D/Z 10.0
and DROC dataset. Using gold data and maximum split length of 512 tokens.

The loss of power of the overlapping approach, which has already been mentioned

earlier, can also be seen in Figure 5.2, when taking a look at the score for the DROC

data. The errors that are introduced during inference of the coarse-to-fine model make

the method the worst approach. This problem can also bee seen by looking at the recall

and precision values. The overlapping approach has a low recall value of only 44.95 for

the DROC dataset, compared to a recall value of 57.32 for the best performing method,

which is the string-based merging. While most of the entities are not merged at all, those

that are merged are likely to be correct, as evidenced by the high precision value of 59.94,

which is the second highest precision value of all methods, topped only by the neural

approach with 60.56.
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Figure 5.4: Performance of all approaches on the TüBa-D/Z 10.0 and DROC dataset.
Using coarse-to-fine model to predict splits and maximum split length of 512
tokens.
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5.3.2 Length of Splits

In the previous experiment, we utilized a relatively short split length of only 512 tokens.

The reason behind this was that we aimed to maintain the same configuration for both

datasets. However, we also wanted to ensure that we had at least two merging steps.

Though this approach served our purpose, it did not reflect the real-world scenario. The

coarse-to-fine model can efficiently process slightly longer documents with an acceptable

amount of memory. In this experiment we will evaluate how the merging approaches

perform when maximum length of the splits is increased.

To achieve this, we use only the DROC dataset because the documents in the news

dataset are too short. The evaluation will begin by taking a maximum length of 500 to-

kens and gradually increasing up to 2,500 maximum tokens. With this upper limit we will

still perform at least one merging step, even on the shortest DROC document. However,

for this experiment, we will not consider the overlapping approach as we investigate it

more deeply in the following experiment. For the embedding-based approaches we are

using a similarity threshold of 0.8. For the neural approach, we create the representation

of the to-be-merged entities again by taking the mean of the mention embeddings instead

of using the weighted update-gate.
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Figure 5.5: CoNLL-F1-score depending on maximum split length using the DROC
dataset

Figure 5.5 demonstrats that increasing split length improves the performance of all

methods, whether evaluated on gold labeled data or with coarse-to-fine predicted splits.

The findings from the initial overview experiment are also evident in both graphs. Gold-

labeled data consistently outperforms the coarse-to-fine model predicted evaluation. The

performance of all merging methods on the coarse-to-fine model predicted splits never

matches the baseline. Among the methods tested, embedding methods exhibit the best

performance, while neural and string-based methods perform similarly well.

When evaluating on real predicted data, the word2vec-based embedding method ex-

hibits an improvement in F1 score, increasing from 57.28 F1 for a split-length of 500 to-
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kens to 60.36 F1 for a maximum split length of 2,500 tokens. This is close to the coarse-to-

fine model baseline CoNLL-F1-score of 61.66. The reasons for the observed improvement

in performance are three-fold. Firstly, the coarse-to-fine model has more context to pre-

dict the splits, resulting in better entities in the splits themselves. Secondly, longer splits

yield fewer opportunities to introduce errors, as fewer merging steps are required. Fi-

nally, merging methods have longer context to decide on the merges. These last two

factors also account for the observed improvement in performance on gold data.

In summary, the experiment results suggest that all merging methods perform better

with longer splits. These findings should be considered when determining the optimal

split length, while also accounting for the fact that the performance of the coarse-to-fine

model decreases when the document length is too long, as indicated in section 5.1 on the

baseline.

5.3.3 Threshold for Word Embeddings

As discussed in the introduction of the embedding method, two entities are merged only

when the cosine similarity between them exceeds a given threshold. The threshold de-

termines the similarity between the mentions of both entities required to consider them

related to the same global entity. In this experiment, we will evaluate the impact of dif-

ferent threshold values on the performance of both embedding methods (fastText and

word2vec). The evaluation will be conducted on both datasets, and to ensure that we can

evaluate most of the documents from the news dataset, a relatively short maximum split

length of 500 tokens will be used. This evaluation will help us determine the optimal

threshold value that maximizes the performance of both embedding methods. We will

only evaluate using the gold data to ensure that the results are independent of any errors

introduced by the coarse-to-fine model.

As seen in Figure 5.6, we observe that the highest CoNLL-F1 score was achieved for

word2vec on both datasets with a threshold value of 0.9. Similarly, fastText achieved the

highest score on DROC for a threshold of 0.9. However, for the news dataset, fastText

achieved the highest score for a threshold of 0.95. The performance then decreased as

the threshold value decreased until a threshold of 0.65. The performance changes only

slightly from there on.

We attribute the high performance at high threshold values to the higher probability of

two entities belonging to the same global entity when the similarity of their mentions is

higher. However, as the similarity decreases, this probability drops. Setting the threshold

too high at 0.95 in most cases leads to no merging at all, as the mentions of the two entities

would need to be nearly the same.

In conclusion, our findings suggest that a threshold value of 0.9 is optimal for both

word2vec and fastText. Although fastText performs slightly better with a threshold of

0.95 for the news dataset, the other three cases show significant improvement with a

threshold of 0.9.
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Figure 5.6: Performance of the word embedding approaches on different similarity
thresholds. Using gold data and maximum split length of 500 tokens

5.3.4 Size of Overlap

As mentioned in the previous chapter, this experiment aims to investigate the optimal

overlapping size further. We hypothesize that with a larger overlap, the performance

should increase because more entities are potentially included in the overlap.

For this evaluation, we will only use with the coarse-to-fine model predicted splits

since evaluating the overlapping approach on gold data is not meaningful. This is be-

cause all overlapping mentions are part of the correct entity, and the evaluation would

not reflect real-world performance.

We will evaluate using a fixed split length of a maximum of 1,500 tokens and increase

the overlapping length from one sentence up to 11 overlapping sentences. The maximum

overlapping size for this dataset with this maximum length is 11 sentences since every

split must contain at least one new sentence. This condition is only met up to the maxi-

mum overlapping size of 11 sentences. We only evaluate on the DROC dataset due to the

required maximum tokens per split length.

As seen in Figure 5.7 surprisingly, the performance already declines when the overlap-

ping size exceeds three sentences. The maximum F1 score was reached at three overlap-

ping sentences, with a CoNLL-F1-score of 57.17. Even at the optimal overlapping size,

our approach still falls behind the word2vec based embedding approach, with a differ-

ence of 2.01 in F1 score. Word2vec achieved a CoNLL-F1-score of 59.19 for the same

maximum split length of 1,500 tokens. We achieved higher results for the overlapping

approach than those presented in the overview in subsection 5.3.1, because we used a

larger maximum split length in this experiment. As demonstrated in the last experiment,

larger split lengths lead to better performance.
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Figure 5.7: CoNLL-F1-Score depending on the number of overlapping sentences. Using
coarse-to-fine model and an maximum split length of 1500 tokens

One reason for the decline in performance with larger overlapping windows is that

more mentions overlap, but they are not part of the correct entity in the split itself. This

results in incorrect merges in the global entity, leading to a lower F1 score. In addition

to the poor performance of the overlapping method, another disadvantage is its large

computational expense. Due to the numerous overlaps, much of the text needs to be

processed twice. When overlapping with only one sentence, the coarse-to-fine model

only needs to predict 73 sub-documents in total. However, this value increases to 294

documents when 11 sentences overlap.

5.3.5 Excluding Pronouns in String-Based Merging

All previous experiments have utilized the string-matching approach, as described in

subsection 4.3.1, in its default configuration. However, this approach can lead to prob-

lems because, in the default configuration, all strings are considered when finding the

merging token. In some cases, a pronoun may appear most often in two clusters and not

in any other entity of the split, resulting in the clusters being merged based on this token.

The issue here is that pronouns without any context only provide limited information

about an entity, while other nouns may appear less frequently but provide much more

information.

For instance, the appearance of a name like "Linovsky" in two clusters almost certainly

indicates that it is the same global entity. Therefore, it is crucial to evaluate how the

string matching approach performs when pronouns are not considered in the process of

deciding the merge. To accomplish this, a list of all German pronouns will be used to

check each mention against it before counting the appearances.
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Figure 5.8: CoNLL-F1-Score for both datasets when exlcuding pronouns from merge de-
cision. Using maximum split length of 500 tokens

The results presented in Figure 5.8 indicate that, for both datasets, the CoNLL-F1-

score improves when the string-matching approach is used without considering pro-

nouns. This holds true for using gold data and using the coarse-to-fine model to predict

splits. For the DROC dataset, the string-based approach without considering pronouns

achieved the best working approach, with a CoNLL-F1-score of 55.64. Meanwhile, for

the news data, it was only outperformed by the overlapping approach, with a score of

68.97. However, the baseline scores were not reached for both datasets.

In conclusion, ignoring pronouns for the merging process can improve the CoNLL-F1-

score, but it is not sufficient to surpass the baseline.
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6 Conclusion

In the previous chapter, we conducted an evaluation of various settings for all approaches

and thoroughly discussed the outcomes. Now, in this final chapter, we aim to provide an

answer to the research question presented in this thesis and reiterate the key findings we

have uncovered. Additionally, we will conclude our work by offering a list of suggestions

for potential future endeavors in this field.

6.1 Key Findings of This Work

Our evaluation clearly showes that none of the proposed approaches could match the

performance of the coarse-to-fine model. Therefore, we can conclude that the split-and-

merge strategy, which involves using the coarse-to-fine model to split and predict splits

before merging them together, does not improve the performance of existing coreference

resolution systems. This finding leads us to reject the hypothesis presented in this thesis,

and answers our research question.

In summary, our thesis has yielded the following several key findings.

All approaches perform worse than the baseline

As we have demonstrated through our overview and all other experiments, none of our

proposed merging methods could match the CoNLL-F1-Score of the baseline established

by Schröder et al. using the coarse-to-fine and incremental model. Even more signifi-

cantly, our approaches performed worse than the unchanged incremental model, which

already employs a constant amount of memory. Therefore, the split-and-merge approach

does not provide any benefits over the existing model.

Longer splits lead to better results

All proposed approaches yield better results when the document is split into longer sub-

documents. The coarse-to-fine model benefits from this approach by having more context

to accurately predict mentions and corresponding entities in the splits itself. Addition-

ally, fewer merging steps need to be performed while also having more context to decide

the optimal split.
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String-based merging without considering pronouns works best

While the string method does not perform as well as other approaches when considering

all words, our evaluation has shown that it outperforms all other approaches when pro-

nouns are ignored. However with a CoNLL-F1-Score of 58.55 for the DROC dataset and

68.97 for the TüBa-D/Z 10.0, the string method falls short of the baseline’s performance

Overlapping approach performs worst on real data

As shown in the overview and fourth experiment, the overlapping approach performs

worse than all other proposed approaches when evaluated with the coarse-to-fine model

predicted splits. Increasing the overlap does not improve performance either. Addi-

tionally, this algorithm requires more computational power than the other approaches

because the text in the overlap needs to be processed twice by the neural model.

In theory, the overlapping-based merging method we utilized could potentially achieve

a near-perfect score, as we observed when evaluating on the gold data. However, this is

only possible in the unrealistic scenario where the coarse-to-fine model predicts perfectly.

Thus, while this approach may seem promising in theory, it is not practically feasible.

word2vec performs better than fastText

In the embedding-based approach, using pre-trained word embeddings from word2vec

leads to better results than using pre-trained embeddings from fastText. This is despite

the fact that some words are not part of the training dataset and therefore do not have

any vector representation when using word2vec. Although fastText can generate embed-

dings for these words, its overall performance in evaluation is worse.

In conclusion, the results revealed limitations of all approaches, since no approach matched

the baseline performance. Furthermore, the less complex rule-based approaches outper-

form the more complex neural approach.

6.2 Suggestions for Future Work

Our results showed that the neural model did not perform optimal. Hower it offers

the highest potential for improvement, since the modification of the other approaches is

limited. In future work, two main issues would be interesting to explore on this merging

approach. Firstly, the calculation of the representations of the to-be-merged entities could

be improved. Currently, only the mean or the already trained update-gate is used to

calculate a representation vector from the embeddings. Fine-tuning the weights of the

update-gate could further improve performance. Secondly, the weights for the scoring

were not changed in our work. It would be interesting to see how the incremental model

performs when these weights are fine-tuned in a further training step.
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Additionally, we suggest evaluating all proposed methods on a dataset with longer

documents to see if the merging approach performs better at even longer document

lengths. Currently, all documents could be processed with only the coarse-to-fine model.

If this model can no longer be used, it would be interesting to see how the merging ap-

proaches compare to the incremental model. However, there is currently no dataset of

long documents with manually annotated mentions and corresponding entities.
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