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Abstract

The growing prevalence of artificial intelligent (AI) systems in nearly all aspects of ev-

eryday life has also led to their integration into critical domains, e.g. in nuclear power

plants, autonomous vehicles, and the detection of fatal diseases. Given that these systems

are initially designed and tested within controlled, closed-world environments, they may

face unanticipated inputs when deployed in real-world scenarios, leading to uncertainty

in their interpretation and response. To mitigate the risk of incorrect decision-making,

Out-of-Distribution Detection (OOD detection) techniques ensure that AI systems make

decisions only for data that originates from familiar distributions. Zero-Shot Out-of-

Distribution Detection (Z-OOD detection) is a special case recently introduced, which

builds on the zero-shot classification paradigm.

In this thesis, we explore the potential and limitations of Z-OOD detection for im-

age classification by leveraging the capabilities of recent multi-modal architectures, such

as the Clip model. To test the generalizability of the approach, we conduct large-scale

benchmarks on 12 datasets with strong semantic shifts in the data using the two pub-

lished Z-OOD detection methods, Maximum Concept Matching (MCM) and Zero-Shot

Out-of-Distribution Detection based on Clip (ZOC), followed by a challenging compari-

son with a smaller semantic shift. The robustness of the methods is tested under differ-

ent conditions, such as image corruption, and attempts are made to determine the lower

bound of task difficulty of the methods. We investigate correlations with difficulty met-

rics from OOD detection and assess their predictive power.

The thesis also aims to understand whether advancements in domain adaptation meth-

ods can be transferred to OOD detection. To accomplish this, we test the methodology

in a few-shot setup and compare it against benchmark results. Our findings indicate

that Z-OOD detection is generally effective, especially in far-OOD scenarios. However,

challenges arise in near-OOD cases, where the underlying Clip model faces difficulties in

classification. We propose the Universal Clip-based Confusion Log Probability (UC-CLP)

as a universal indicator of the difficulty of selected In-Distribution/OOD splits, improv-

ing comparability within the field.

Finally, we propose T-MCM and T-ZOC as domain-adapted few-shot OOD detection

methodologies, with T-MCM demonstrating a lightweight, fast-adapting approach. The

performance of these methods depends on the success of domain adaptation, showing

potential for improvement.
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1. Introduction

There are numerous real-world applications where detecting anomalies is crucial, as they

can range from low-risk scenarios, such as bird species classification in an informational

app, to high-risk situations like autonomous vehicle navigation or medical diagnostics.

Artificial intelligence becomes increasingly integrated into various aspects of human life,

so it is imperative to ensure that these models operate only within their intended do-

mains to maintain safety and efficacy. Out-of-Distribution Detection (OOD detection) is

a critical area of research within the realm of machine learning, which focuses on iden-

tifying input data that falls outside the scope of a closed-world classification model. In

these models, only a limited set of classes are recognized, and any input data not belong-

ing to these classes is considered Out-of-Distribution (OOD).

Despite rapid advancements in machine learning benchmarks and state-of-the-art sys-

tems, the issue of robustness against incorrect or malicious input is frequently over-

looked. This is where OOD detection plays a vital role: it aims to identify inputs that

are out of distribution while simultaneously classifying them. One common approach

is to assess a classifier’s confidence and reject input if the prediction confidence does

not exceed a specific threshold. However, research has shown that cross-entropy-based

classifiers tend to produce overconfident predictions for incorrect classifications [2, 29],

which highlights the need for more reliable OOD detection methods.

The advent of large-scale pre-trained vision-language models has given rise to a new im-

age classification paradigm: zero-shot classification. This method, which relies solely on

an image and a set of textual labels, can classify images with remarkable accuracy with-

out any task-specific training. Zero-shot classifiers measure the similarity between image

and label representations in a shared hyperdimensional embedding space, which offers

several advantages, such as saving computational resources and time, and alleviating the

need for extensive data collection. Recently, zero-shot classification has been applied to

OOD detection, demonstrating competitive performance compared to more complex de-

tection methods.

This thesis will explore the potential and limitations of Zero-Shot Out-of-Distribution De-

tection (Z-OOD detection) through three distinct approaches. Firstly, we will analyze ad-

ditional datasets beyond the existing research to include a variety of scenarios and data

shifts. This analysis will assist in evaluating the generalizability of zero-shot methods,

which is not explicitly mentioned but is inherent due to the limited options for adapta-

tion in these methods. Second, we will evaluate the robustness of these techniques by

subjecting them to challenging detection problems and image corruptions. Finally, we
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will employ domain adaptation strategies for the multi-modal pre-trained backbone of

these methods, seeking to enhance their performance in Z-OOD detection to leverage the

methods towards few-shot OOD detection. Throughout this investigation, we will also

examine difficulty metrics from the closely related field of OOD detection and assess their

relevance in Z-OOD detection, ultimately aiming to predict the limitations and potential

of these techniques.

1.1. Motivation

The primary inspiration for this thesis stems from the remarkable achievements of foun-

dation models, particularly the multi-modal models such as OpenAI’s Clip [74], which

is known to be one of the first to achieve competitive results in classification tasks and

related challenges without the need for task-specific training. Although Clip itself is

a large model with substantial resource consumption during training, widespread de-

ployment of such models could potentially reduce the resource demands of artificial in-

telligence systems. This is because, for downstream applications, there is no need for

vast amounts of training data, an extensive human effort for task adaptation, or high

computational power. Overall, the potential to conserve resources is inherent in these

methodologies. Therefore, this thesis investigates the novel application of the zero-shot

paradigm in the research area of OOD detection. The transfer of the paradigm to OOD de-

tection prompted similar challenges, which inspired this work and are briefly discussed

below, along with the general issue in OOD detection of the difficult comparison between

different methods.

Clip Zero-Shot Classification and its Limits

All Z-OOD detection methods are based on Clip and its zero-shot classification mech-

anism. However, it is known that this approach has limitations. Firstly, there are spe-

cific image domains, such as OCR, where the classifier performs significantly worse than

even the simplest computer vision techniques, though still better than random guessing.

Other, more specialized datasets, such as satellite images [34] or cancer detection [97], do

not yield reliable results. The question arises whether OOD detection works with these

methods as long as classification is functional, or if there is a knowledge gap.

Transfer of Domain Adaptation Methods to OOD Detection

The aforementioned gap can often be closed using domain adaptation techniques, which

can significantly improve or even enable the performance of Clip zero-shot classification.

Novel methods manage to utilize additional layers with relatively few parameters and

require comparatively little data. It remains to be seen whether these methods can be

transferred to OOD detection.
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Comparability of Methods

OOD detection research faces a challenge: artificial environments are created by com-

bining in-distribution and out-of-distribution data, and the goal is to identify the OOD

instances. The combination possibilities are virtually infinite, and only a small subset of

these possibilities can be chosen to cover a specific range of requirements. These possi-

bilities are often qualitatively delineated from one another, making concrete comparisons

beyond this range, such as for practical applications, difficult. Quantifying the chosen

setup could provide valuable insights in this regard.

1.2. Approach

The primary question guiding this thesis, and thus its title, is: What are the potential

and limits of Z-OOD detection? First, we will address the question of potential: How

reliable and functional are the methodologies based on Clip’s zero-shot classifier? We

will investigate whether a wide range of common datasets can be combined to form In-

Distribution (ID) and OOD tasks. This includes seemingly simple combinations as well

as more challenging ones. Additionally, the two currently published methods for Z-OOD

detection are closely related, and we will explore whether one of them is superior or in

which areas each method excels.

Initially, the experiments will focus on the realm of image data where Clip zero-shot

classification is feasible. As the methods are based on the classifier, it is highly likely

that their potential is initially limited by its capabilities, and the area where it is possible

provides ample room for research. Within these boundaries, we will examine which

shifts in the ID and OOD distributions can be solved and how difficult a problem can

become before the methodologies fail.

Furthermore, we will investigate whether these methods have the fundamental po-

tential to compete with more complex, fine-tuned approaches; that is, whether they can

achieve this in the zero-shot setup or if task improvements in the Clip backbone can

transfer and enhance these methods. To this end, we will utilize current domain adap-

tation strategies, which have already shown significant improvements in classification

tasks with very little data, thus aligning with the resource-saving setup.
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1.3. Research Questions

The research questions driving this thesis are listed here. They result from the above

discussion and aim to demonstrate the potential and limitations of Z-OOD detection.

RQ. 1 Is the performance of current Zero-Shot Out-of-Distribution Detection method-
ologies generalizable, i.e., transferable to datasets within the realm of Clip’s zero-
shot capabilities?

RQ. 2 Where are the boundaries of Zero-Shot Out-of-Distribution Detection methods
with respect to different difficulty metrics for Out-of-Distribution Detection?

RQ. 3 How does the performance of Out-of-Distribution Detection methods using Clip’s
zero-shot classifier compare to traditional state-of-the-art Out-of-Distribution De-
tection methods? This question focuses on applying domain adaptation techniques

to the backbone model in order to enhance Out-of-Distribution Detection perfor-

mance without altering the detection method itself.

1.4. Structure of this Work

To tackle the research questions, the remainder of this work is structured as follows: the

next chapter introduces Z-OOD detection as a method to detect outliers in image classifi-

cation tasks and provides the necessary theoretical background to understand this study,

followed by related research in this area. The next two chapters present the experiments,

focusing on the generalization and robustness of Z-OOD detection, and then exploring

improvements through domain adaptation. Finally, we summarize the findings, discuss

potential limitations, and suggest future work. The chapters are described in more detail

below.

Chapter 2 provides the theoretical background to the methods used in this work. More

specifically, it will describe the utilized machine learning and deep neural network archi-

tectures as well as a theoretical approach to Out-of-Distribution Detection.

Chapter 3 contextualizes this thesis by showing related work in Z-OOD detection and

the overarching topic, OOD detection. Furthermore, we provide related work regarding

Clip and adapter-based fine-tuning strategies for Clip-like models.

Chapter 4 provides detailed information about the experiments conducted in this work.

This includes an overview of the datasets, architectures, training and fine-tuning strate-

gies and experimental setup.
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Chapter 5 investigates the applicability of Z-OOD detection as a novel approach to

OOD detection in image classification across a wide array of domains, which are charac-

terized by multiple datasets with distinct properties. More specifically, the methodology

is evaluated using twelve different image classification benchmarks and numerous im-

age corruptions to assess the robustness of these approaches.

Chapter 6 expands the methodology of current Z-OOD detection to few-shot OOD de-

tection by domain-adaption of the utilized models.

Chapter 7 concludes this thesis with a summary of findings, together with an outlook

on possible future work.

Following the list of abbreviations and the bibliography, additional material is pro-

vided in Appendix A.
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2. Background

This chapter provides an overview of the essential concepts and methodologies that form

the foundation of our research. Understanding these fundamental ideas is crucial for

gaining insights into the potential and limitations of Zero-Shot Out-of-Distribution De-

tection (Z-OOD detection). The chapter is structured as follows: First, we present an

introduction to learning theory, where we discuss the key principles that guide the de-

sign and evaluation of machine learning algorithms. Next, we delve into deep learning

architectures, highlighting the critical components and techniques that have driven the

success of modern artificial intelligence systems. Lastly, we explore the field of Z-OOD

detection, discussing its importance in ensuring the robustness and reliability of artificial

intelligent models when confronted with unforeseen inputs. This comprehensive back-

ground will equip readers with the necessary knowledge to comprehend the challenges

and opportunities that Z-OOD detection presents in the context of the rapidly evolving

landscape of artificial intelligence.

2.1. Learning Theory

This section introduces learning theory as the foundation of machine learning and deep

learning. This introduction is followed by a more specific description of the two cases of

learning used in this thesis, supervised learning [27, 80] and contrastive learning [44].

Machine learning aims to develop models that can learn from data, identify patterns, and

make predictions. Formally, these predictions are made with a differentiable function f
with parameters θ that makes the predictions ŷ based on inputs x:

f (x, θ) = ŷ.

Central to the process of learning is the definition of a learning objective, which out-

lines the goal that the model seeks to achieve. The learning objective typically involves

minimizing an error function, also known as a loss function or objective function, that

quantifies the discrepancy between the model’s predictions and the ground truth. By

optimizing the error function, the model adjusts its internal parameters to capture the

underlying data distribution and improve its performance on the given task. Formally,

the goal of the learning process is to find the best set of parameters θ∗ that minimize a
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loss function L with respect to the predictions ŷn:

θ∗ = arg minθ L(ŷi, ...)

To minimize the error, machine learning models iteratively adjust their parameters in

response to the available data. This adjustment process, known as learning or training,

relies on optimization algorithms, such as gradient descent [78] or its variants. Gradi-

ent descent-based models are very common in the machine learning community and are

characterized by leveraging the gradient of the error function with respect to the model

parameters to guide the updates during the training process, ultimately converging to a

set of parameters that minimize the error function.

This thesis uses methods that rely on two different learning approaches, supervised

learning and contrastive learning, which training processes are described in detail in the

following subsections. The ultimate goal of supervised learning is to learn to predict

from the training data so that the model can make accurate predictions when presented

with new, unseen data. Contrastive learning is an approach that focuses on learning

useful representations in a shared latent space by comparing similar and dissimilar data

points. It is often used in contexts where crafted labelled data is scarce or unavailable,

even though it does need a large amount of text-image pairs: These are usually crawled

from the Internet, so the captions are used as labels for the images. [74].

Finally, after training on training data, the model is tested using test samples of the

same data distribution, that are not part of the training. This is crucial for assessing the

model’s ability to generalize to new examples, which is a key objective in machine learn-

ing. The testing set typically contains a smaller portion of the available data (e.g., 20-30%)

and is kept separate from the training set to ensure that the evaluation is unbiased and

reflects the model’s true generalization performance. This is called the train-test paradigm,

which helps prevent overfitting. This occurs when a model performs exceptionally well

on the training data but poorly on new, unseen data. Overfitting typically arises when

the model learns to memorize the training data rather than capturing the underlying data

distribution, resulting in poor generalization to the testing set. By evaluating the model’s

performance on the testing set, practitioners can gain insights into its generalization ca-

pabilities and make informed decisions about model selection, hyperparameter tuning,

and other aspects of the machine learning process.

2.1.1. Supervised Learning

In this paradigm, the learning process is guided by a ground truth that pairs input ex-

amples with their corresponding target outputs. Supervised learning algorithms aim to

establish a mapping between inputs and outputs by minimizing a predefined loss func-

tion, which quantifies the discrepancy between the model’s predictions and the actual

ground truth values. Common supervised learning tasks include classification, where
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the goal is to assign discrete class labels to input instances, and regression, where the ob-

jective is to predict continuous values. Supervised learning has been successfully applied

across various domains, such as image recognition [49, 33], natural language processing

[95, 17], and financial forecasting [14, 18], demonstrating its versatility and effectiveness

in solving diverse real-world problems.

2.1.2. Binary Classification

Binary classification, or single-label classification, is a fundamental task in machine learn-

ing, where the objective is to categorize input samples into one of two distinct classes.

Given a set of input features, the binary classification model generates a prediction, which

corresponds to either the positive or negative class. The model’s performance is often

evaluated using metrics such as accuracy, precision, recall, and the F1 score. Using ac-

curacy is, especially for highly imbalanced data, oftentimes misleading, as predicting

only the majority class will provide good results. Thus, the other mentioned metrics are

oftentimes preferred In essence, binary classification serves as the foundation for under-

standing more complex classification problems, enabling the development of advanced

algorithms for diverse applications [7].

Multi-Class Classification

Multi-class classification represents a specific case where the objective is to predict one

of multiple discrete class labels k for a given input. This task differs from binary clas-

sification, which involves predicting between only two classes. Multi-class supervised

learning requires the development of models that can discern and differentiate between

the distinct classes present in the dataset.

To accommodate the complexity of multi-class problems, various algorithms and tech-

niques have been developed. Some prominent approaches include:

One-vs-All or One-vs-Rest: This strategy involves training multiple binary classifiers,

one for each class, to distinguish between instances of that class and instances of all other

classes. During the prediction phase, the class with the highest confidence score or prob-

ability from the individual binary classifiers is assigned to the input.

One-vs-One: This approach trains a binary classifier for each pair of classes, resulting in

a total of k(k − 1)/2 classifiers. During the prediction phase, the input is passed through

each classifier, and a majority voting scheme determines the final class assignment.

Neural networks: Deep learning models, such as convolutional neural networks [53]

for image classification and recurrent neural networks [92] or transformers [95] for nat-

ural language processing, can inherently handle multi-class problems by adjusting the

output layer to match the number of classes and employing an appropriate activation

function. This approach is further described in Section 2.2.
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Contrastive Learning

Contrastive learning is a self-supervised machine learning approach that aims to enhance

the discriminative capabilities of deep learning models by leveraging the inherent struc-

ture of data. This method involves training models to distinguish between positive (sim-

ilar) and negative (dissimilar) pairs of data samples, which in turn allows the model to

learn meaningful representations. The focus is on the identification of similarities and

differences between data points, so contrastive learning effectively mitigates the need

for large amounts of labelled data, the reliance on costly manual annotations is reduced.

Recent advancements in contrastive learning have led to significant improvements in

various tasks, including computer vision and natural language processing, contributing

to the development of more robust and efficient AI systems. In contrastive learning,

the commonly used loss function is the contrastive loss, also known as the triplet loss

or the InfoNCE loss [69], depending on the specific implementation. The objective of

the contrastive loss function is to minimize the distance between positive (similar) pairs

while maximizing the distance between negative (dissimilar) pairs in the latent feature

space. The distance is usually measured as cosine similarity, which is defined for two

n-dimensional vectors a and b as

simcos = cos(Θ) =
a · b

||a|| · ||b|| =
∑n

i=1 aibi√
∑n

i=1 a2
i

√
∑n

i=1 b2
i

. (2.1)

As loss, there are as described multiple options. The InfoNCE [69] is often used for

multi-modal text-image similarity learning, which is the foundation of models used in

this thesis. The loss is adapted to fit text-image pairs [75]. The InfoNCE loss for feature

vector xi, a positive sample x+i (the anchor) and a set of negative examples X− is defined

as:

LInfoNCE(xi, x+i , X−) = − log
exp(sim(xi, x+))

exp(sim(x, x+)) + ∑N
i=1 exp(sim(x, x−i ))

(2.2)

The numerator represents the similarity between the anchor and positive pair, while

the denominator represents the sum of similarities between the anchor and all pairs, in-

cluding the positive and negative samples. This loss basically classifies the positive pair

correctly among the set of positive and negative pairs conditioned on the anchor sample.

This way, the similarity to the positive pair increases and the similarity for all negative

pairs decrease. The InfoNCE loss shown in equation 2.2 is not introduced for multi-

modal learning, but can easily be adapted by replacing the xi with features of an image,

x+i with features of a matching text and X− with a batch of non-fitting text features, e.g.

randomly sampled. This is the approach of Clip [74], which is used in this thesis.
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2.2. Deep Learning Architectures

In recent years, deep learning has revolutionized the field of artificial intelligence, en-

abling groundbreaking advancements in various domains, including Natural Language

Processing (NLP) and Computer Vision (CV). This section will provide a comprehensive

overview of the key deep learning architectures that have contributed to these advance-

ments, focusing on both Natural Language Processing (NLP) and Computer Vision (CV)

models. Finally, multi-modal models will be explored with a specific focus on OpenAI’s

Clip model [74]. Clip bridges the gap between NLP and CV. By combining the advance-

ments of both fields, Clip demonstrates the potential for a more unified and versatile AI

landscape. It will end with domain adaption methods, especially Adapters [12, 73, 111,

26], that build up on foundation models [8] to adapt these models to special domains.

This section aims to provide a solid foundation for understanding the key deep-learning

architectures used in this thesis and their respective contribution.

2.2.1. Classification

Deep learning architectures employed for classification tasks are typically designed with

a number of output neurons corresponding to the number of classes. Each neuron is as-

sociated with one output label, and the outputs represent the activations of these neurons

[27]. The softmax function,

so f tmax(zi) =
ezi

∑ j = 1Kezj

is frequently used to convert the outputs into class probabilities. A common loss function

in this context is the Cross-Entropy Loss, which quantifies the dissimilarity between the

predicted probabilities and the true class labels. The objective is to minimize this differ-

ence during the model training process. Cross-entropy loss is particularly well-suited for

models that generate probability distributions [27].

In such models, the targets are one-hot encoded, meaning that a target ti corresponding

to input xi is a vector in R|K|, consisting of |K| − 1 zeros and a single 1 at the position that

corresponds to the label. For example, given the classes "cat", "dog", and "bird", a one-hot

encoded target for a sample of a dog would be tdog = [0, 1, 0], with the second position in

the vector representing "dog". The Cross-Entropy Loss penalizes activations at the first

and last positions, thereby encouraging the output of the second position to approximate

1.

The equation for cross-entropy loss is given by:

LCE = −
N

∑
i=1

C

∑
c=1

yi,c log(pi,c)

where LCE, with the number of classes C, the number of samples N, yi,c as the true label of
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the i-th sample for class c, and pi,c as the predicted probability of the i-th sample belong-

ing to class c, By minimizing the cross-entropy loss, a model learns to generate accurate

probability estimates for each class, thereby enhancing classification performance [27, 7].

2.2.2. Natural Language Processing

NLP is a subfield of artificial intelligence that focuses on the interaction between comput-

ers and humans through natural language. This includes tasks such as text classification,

named entity recognition, sentiment analysis and machine translation. Before the ad-

vent of deep learning architectures, oftentimes statistical and/or frequency-based meth-

ods such as the Bag-of-Words or tf–idf [83] were used. Even though these "traditional"

methods can perform a variety of tasks, they lack in-depth representation and the per-

ception of the subtleties of language. This includes multiple meanings, neo-composites

and long-term dependencies. Computational advances and architectures improved these

methods substantially in the last years, such that current state-of-the-art in almost every

subdomain is achieved by deep learning architectures, which will be described in the

following. As foundation, the next paragraph describes the process of tokenization, an

important preprocessing technique to further process texts in neural networks.

Tokenization

Tokenization refers to the process of converting textual information into a format suitable

for machine learning algorithms and deep neural networks. In this context, a token can

represent a character, a subword, or a word. One of the major challenges when working

with text is the near-infinite number of possible tokens, rendering it infeasible to store

them all in a vocabulary. A vocabulary, in this context, denotes a set of known words

for an algorithm. When a vocabulary does not encompass all possible words, unknown

words (out-of-vocabulary words) are disregarded, which can render input sentences or

entire texts unintelligible. Utilizing characters as vocabulary is feasible and circumvents

this problem, as every word can be constructed from a language’s characters. However,

a word conveys more than just the sum of its parts; thus, working at the character level

omits crucial aspects of language [7]. To strike a balance between capturing the distinct

meaning of a word and the impracticality of storing all possible words, Byte Pair Encod-

ing (BPE) [25, 85] is widely employed. BPE is a data compression algorithm repurposed

for NLP as a subword tokenization technique. It addresses the issue of out-of-vocabulary

words by decomposing text into subword units, allowing for a more efficient represen-

tation of rare or unseen words. BPE functions by iteratively merging the most frequent

pairs of characters or character sequences in the training data, constructing a vocabulary

of subword and word tokens. During tokenization, text is divided into the longest pos-

sible subwords present in the created vocabulary. By utilizing BPE, models can accom-

modate a wide range of linguistic variations while maintaining a manageable vocabulary

size.
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Figure 2.1.: From [95]: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention
consists of several attention layers running in parallel.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [92] are a class of neural networks designed to han-

dle sequential data by maintaining an internal hidden state that can capture information

from previous time steps, thus addressing the issue of capturing long-term dependencies.

RNNs are particularly well-suited for NLP tasks due to their ability to process variable-

length input sequences, such as sentences or paragraphs. However, due to the design of

RNNs, all previous information for an output at one timestep is stored in a single state,

which creates a bottleneck in the architecture. Other variants of the RNN, e.g. the Long

Short-Term Memory (LSTM) [40], and Gated Recurrent Unit (GRU) [13] tried to mitigate

this problem.

RNNs have certain other limitations, such as difficulty in capturing long-range depen-

dencies due to the vanishing gradient problem, which hampers their ability to learn com-

plex language patterns. Moreover, RNNs are inherently sequential, making it difficult to

parallelize computations and take advantage of modern hardware accelerators.

Attention Mechanism

The different attention mechanisms were introduced to address the limitations of RNNs,

particularly their inability to efficiently capture long-range dependencies. The attention

mechanism enables the model to assign different weights to parts of the input sequence

according to their relevance to the current context, allowing the model to concentrate
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on the most crucial information. Attention can be used in combination with RNNs, as

demonstrated in the Seq2Seq model with attention, which has been extensively applied

to tasks such as machine translation and summarization. Unlike RNN, the input is not

processed sequentially but entirely, up to a model-dependent maximum sequence length.

Textual input is encoded using BPE to account for the position, which is automatically

handled in RNNs due to their sequential processing. A positional encoding is added

to represent different positions. Consequently, the same word at the first position has a

distinct representation compared to the same word at the last position. This approach

allows the model to learn the sequential aspects of language effectively.

Scaled Dot-Product Attention
Figure 2.1 illustrates the two different forms of attention used in most cases. The inputs

are called queries (Q), keys (K) and values (V), which are learnable linear projections from

the output of the last layer or the input encodings combined with positional encodings,

if it is the first attention block.

On the left, the Scaled Dot-Product Attention, which computes attention for queries Q
and key-value pairs K and V with dimensions dx as :

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V.

Q, K, V are all derived using three separate linear layers from the input of the same input,

either the linear projected output from the previous block. Both are vectors of the same

size, called dmodel

Multihead-Attention Modern Transformer use Multihead-Attention, which basically

splits the calculation of using Scaled Dot-Product Attention with dmodel dimensional keys

to h (the Heads of a Transformer model) different, learnable linear projections to dk, dk

and dv dimensions. Each of those projections can now attend to the input in parallel. In

the end, the h outputs are concatenated and fed into the next attention layer via a linear

projection. Formally, the Multihead-Attention is

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO

with headi = Attention(QWQ
i , KWK

i , VWV
i )

(2.3)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel are the

parameter matrices with learnable weights.

Transformers

The Transformer model [95] represents a paradigm shift in Natural Language Process-

ing (NLP), as it entirely replaced recurrent structures with attention mechanisms. Trans-

formers offer the advantage of being highly parallelizable, enabling efficient training on
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Figure 2.2.: From [95]: The Transformer - model architecture

large-scale datasets and significantly improving performance across a wide range of NLP

tasks. The advent of the Transformer architecture led to the development of pre-trained

language models, such as BERT [17], GPT models like the recently published GPT-4 [70],

Llama [94], and many others. These models serve as foundation models [8] and have

task-adapted, specialized successors and variations that cater to nearly every aspect of

NLP.

The original Transformer proposed by Vaswani et al. [95] consists of an encoder-decoder

architecture, with each component composed of multiple layers of multi-head self-attention

and feed-forward neural networks. The encoder-decoder structure is visualized in Fig-

ure 2.2. However, in practice, both components are also used independently. This thesis

relies on architectures that use only the encoder (e.g., Clip’s vision and text encoder) or

the decoder (e.g., ZOC’s caption generator).

Using an encoder-only Transformer model is straightforward: after the last encoder

block, the output is not fed into the decoder structure but to a task-specific final layer,

such as for text classification. Task-specific loss is applied and the model weights are

updated according to the specific optimizing process. For decoder-only models like

GPT [75], the second Multi-Head Attention block, visible on the right side in Figure 2.2,

which receives key-value pairs from the encoder output, is removed. The model takes

the start input, called the prompt, and generates one token. This token is appended to



16 2. Background

the prompt and fed back into the decoder to generate new output, a process known as

auto-regression [30].

For other applications, it is possible to still use the Multi-Head Attention block without

input from an encoder, but with other features, such as image features. In this way, a

decoder can learn to generate textual output based on image features. Instead of using a

prompt as the starting point for auto-regressive generation, only the image and the start

token are fed into the decoder. Subsequently, at each step t, the output from step t − 1 is

fed back into the model.

2.2.3. Computer Vision

CV is a field of artificial intelligence that focuses on enabling machines to interpret and

understand visual information. Traditional methods focus on line- and edge detection al-

gorithms such as the Canny-Edge detector [11] and feature detection algorithms such as

SIFT [62]. With the emergence of deep learning, the landscape of CV has undergone a sig-

nificant transformation, leading to remarkable progress in various tasks, such as image

classification, object detection, and semantic segmentation. Deep learning architectures

for CV have evolved over time, starting with CNNs [53], followed by the development of

Residual Networks (ResNets) [33], and more recently, the introduction of Vision Trans-

formers [20].

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of neural networks designed to pro-

cess grid-like data, such as images, by exploiting the inherent spatial structure of the

input. A CNN consists of multiple layers, including convolutional layers, pooling layers,

and fully connected layers. The convolutional layers are responsible for extracting local

features from the input, while the pooling layers reduce spatial dimensions, and the fully

connected layers perform high-level reasoning.

A convolutional layer consists of multiple learnable filters. Usually, these filters are of

squared size (e.g. 3 × 3) which slide over the input image from the top left to the bottom

right and multiply the pixel values at each position with the filter kernel values. The

results are the sum of all multiplication results and process the whole image by sliding

over the input. This way, an activation matrix for the filter is created. By adding multiple

layers with different filter sizes, oftentimes increasing with depth, features of different

sizes and shapes can be captured. One of the pioneering CNN architectures is the LeNet-

5 [54] for digit recognition. Subsequently, the AlexNet [49], which is one of the first deep

convolutional networks, achieved a breakthrough performance in the ImageNet Large

Scale Visual Recognition Challenge [79] and sparked renewed interest in deep learning

for computer vision.
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Residual Networks

Despite the success of CNNs, increasing the depth of these networks led to issues such

as vanishing gradients and degradation of performance, similar to the earlier described

RNNs. ResNets [33] addressed these problems by incorporating residual connections

or skip connections. In the standard formulation, these connections add the unchanged

input li of layer f to the output of the layer. The formulation of a residual connection is

simply

res(x) = f (x) + x.

These connections were already known from RNN architectures like the LSTM and allow

the gradients to bypass certain layers, enabling the training of much deeper networks

without suffering from the vanishing gradient problem. The function f ()̇ of ResNets

usually consists of three convolutional layers, batch normalization layer and activation

functions and the residual connection. These layers can be stacked up to at least 200 lay-

ers [5].

The ResNet50 (for 50 layers) became also one of the most used benchmarks for feature

extraction and image classification in Computer Vision and is up to date used as a base-

line in numerous works. Even though there are now superior architectures [20], ResNets

are again the focus of research and still show very good performances in various tasks

[59].

Vision Transformer

The Vision Transformer (ViT) [20] represents a shift in computer vision by adapting the

Transformer architecture, originally propesed for NLP, to image data, also, with great

impact. A major challenge for the usage of Transformer architectures was the size of in-

put tokens: As sentences, or short text usually consist of a few up to hundreds of tokens

(the words), a 224× 224 RGB image, which is quite small, consists of about 150.000 token.

Transformer are not suitable for such big inputs due to the quadratic runtime complex-

ity of the self-attention mechanism. Therefore, the input image is processed in so-called

patches, e.g. 32× 32, which is usually indicated by a number after the vision transformer

in research (e.g. ViT-B/32 for a Clip model with patch size 32). That means, a patch of

32× 32 pixels is treated as one token for the self-attention mechanism, which reduces the

tokens to N = HW/P2 = 49 non-overlapping patches for height H = 224 and width

W = 224. These are linearly embedded into a flat vector. These vectors, along with posi-

tion embeddings, are then processed by the Transformer model.

Vision Transformers have shown competitive performance compared to CNNs on vari-

ous benchmarks, such as ImageNet, suggesting that the self-attention mechanism can be

effectively applied to visual data as well.

In conclusion, deep learning architectures for computer vision have evolved from CNNs

to ResNets, culminating in the recent emergence of Vision Transformers. Each stage of de-
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Figure 2.3.: Figure from [74]: Summary of Clips approach. It jointly trains an image en-
coder and a text encoder to predict the correct pairings of a batch of (image,
text) training examples. At test time the learned text encoder synthesizes a
zero-shot linear classifier by embedding the names or descriptions of the tar-
get dataset’s classes.

velopment has brought advancements in modelling capabilities and performance, paving

the way for increasingly sophisticated computer vision applications.

2.2.4. Clip

Clip [74] is a neural network architecture that jointly learns visual and textual represen-

tations by leveraging the power of Transformers [95] and contrastive learning [69]. Clip

is designed to understand images and their semantic context within natural language

descriptions. The model is pre-trained on a large dataset of 400 million images text pairs

from the web, allowing it to perform well on various tasks, such as zero-shot image clas-

sification, object detection, and image captioning, without requiring task-specific fine-

tuning. Clip consists of two primary components: a vision encoder and a text encoder.

The architecture is also illustrated in Figure 2.3.

The vision encoder is a CNN or a ViT that processes input images and generates visual

feature representations. The text encoder is a Transformer model that processes textual

input and generates contextualized word embeddings. During training, the model forces

both encoders to maximize the similarity between matching text image pairs while reduc-

ing the similarity to other pairs. This is achieved using the contrastive learning approach

with InfoNCE loss [69]. As similarity metric, Clip uses cosine similarity. Notably, even

though the model could use pre-trained weights, due to the large training set Clip is able

to train all weights of both encoders from random initialization. The model is trained to

correctly match images and their textual descriptions, learning meaningful joint repre-

sentations that can be transferred to a wide range of downstream tasks, such as zero-shot

classification or linear probing for downstream tasks.
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Zero-Shot Transfer

Zero-shot transfer in machine learning refers to the ability of a model to perform well on

tasks or classes it has not seen during training, by leveraging its knowledge learned from

related tasks or classes. This ability is essential for achieving generalization in real-world

scenarios, where data for all possible tasks or classes may not be available during the

training phase [74].

An early approach to achieve zero-shot transfer is attribute-based zero-shot learning,

where a semantic relationship between seen and unseen classes is established using at-

tributes, allowing the model to make predictions for unseen classes based on their at-

tributes [51]. A significant advancement was the introduction of word embeddings, par-

ticularly Word2Vec [63] and GloVe [72]. Socher et al. [88] demonstrated the possibility of

using these embeddings for zero-shot transfer. Following the introduction of the Trans-

former [95] and the accompanying large-scale pre-trained language models such as BERT

[17] and GPT [75], zero-shot transfer significantly improved in Natural Language Pro-

cessing. The text features these models produced were so powerful that simply adding

(and fine-tuning) a task-specific head was sufficient to approach State-of-the-Art (SOTA)

in many different tasks [17]. Recently, with the advent of Vision Language Models such

as Clip [74], language and vision understanding have been combined, enabling zero-shot

transfer across a wide range of tasks. These models learn a joint representation space

for images and text, allowing them to perform zero-shot transfer for tasks like image

classification, object detection, and more. Furthermore, the joint feature space enables

zero-shot classification, a true zero-shot methodology that eradicates the need to train a

task-specific head. This functionality has also been transferred to other domains, such as

OOD detection.

One of the key advantages of Clip is its ability to perform zero-shot transfer given only

an image and a set of candidate textual labels. Clip can perform classification by ranking

the labels based on their cosine similarity to the image’s visual representation. This is

also illustrated on the right side in Figure 2.3. The classification effort is thus reduced

to encoding the image with the encoder and a one encoding a batch of textual labels

with the text encoder and a subsequent matrix multiplication of the normalized features.

Note that for normalized embeddings the cosine similarity is equal to the dot product of

vectors.

This zero-shot capability stems from the model’s pre-training on a diverse dataset,

which enables it to learn rich visual and textual representations that are applicable across

various tasks and domains [74]. This demonstrates the potential for more versatile and

robust AI systems and is therefor called a foundation model [8].
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2.2.5. Adapters

Adapters [41] are a parameter-efficient technique for fine-tuning deep learning models,

preserving the original model’s weights while learning task-specific information through

the addition of a small number of trainable parameters. Adapters have been successfully

applied to Transformer models in natural language processing, such as BERT [17], to

enable efficient transfer learning. Integrating adapters into the Clip model can further

improve its performance on downstream tasks while maintaining the benefits of param-

eter efficiency and task-specific adaptation.

There are two types of adapters for Clip. The first is identical to that used in NLP Trans-

former architectures [41], and recently also for vision transformers [12]. In the context of

Clip, these adapters can be integrated into both the vision and text encoders individually.

The adapter module is typically inserted after each layer of the original architecture, con-

sisting of a small feed-forward neural network with linear layers. The adapter module

also includes layer normalization and skip connections to maintain the original informa-

tion flow. To fine-tune the full architecture to a task, all weights of the original Clip model

are frozen and only the weights of the adapters are trained. The second type of adapters

are not plugged into the transformer architecture of the encoder but are external small

feed-forward structures which interact with the encoder outputs of the model [111, 26].

These adapters are specifically designed to serve as few-shot domain adaption modules.

TIP-Adapter [111] is a recent strategy with state-of-the-art results in few-shot domain

adaption and used in this theses for such tasks.

TIP-Adapter

Figure 2.4 shows a detailed illustration of TIP-Adapters [111]. The model uses a so-called

cache model of a few-shot training set as domain knowledge, which is ultimately added

up to Clip’s "general" knowledge using only matrix multiplication and addition. Given

a pre-trained Clip model and a dataset of images IK with K images for each of the N
classes and corresponding labels LN . The adapter is a key-value cache created from this

K-shot training set containing knowledge of every of the N classes. For each image, the

knowledge is the L2-normalized C dimensional feature obtained by Clips vision encoder

together with a N-dimensional One-Hot encoded class label. For the NK training sam-

ples, the visual features are called Ftrain ∈ RNK×C, the keys of the cache model and the

corresponding labels Ltrain ∈ RNK×N , the values. Formally noted,

Ftrain = VisualEncoder(IK),

Ltrain = OneHot(LN),

Both together form the key-value cache, where Ftrain are treated a keys and Ltrain as
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Figure 2.4.: From [111]: Given a K-shot N-class training set, we construct a cache model
to adapt Clip on downstream tasks. It contains few-shot visual features FT

train
encoded by Clip and their ground-truth labels LT

train under one-hot encodings.
After retrieval from the cache model, the few-shot knowledge is incorporated
with Clip’s pre-trained knowledge, achieving the training-free adaption

values. To further improve the classification abilities, the cache model can be treated

as initialization point for a trainable linear layer that can be fine-tuned via SGD [78] to

surpass the frozen cache model. During fine-tuning, the Tip-Adapter’s predictions are

supervised with few-shot training data and cross-entropy loss, updating the weights in

the cache model. The key weights are unfrozen, while the value weights and the two

encoders in the Clip model remain fixed. This approach allows adaptive affinity estima-

tion and boosts distance calculation between training and testing images in the embed-

ding space. The Tip-Adapter requires only a small number of epochs for fine-tuning and

achieves strong performance with fast convergence and limited resources.

For accessing the knowledge during inference with a test image, first, the Clip features

ftest ∈ R1×N are obtained by querying the vision encoder. Now, the features are used as

query to calculate the affinity A between the test image and the few-shot cache model.

The affinity is

A = exp(−β(1 − ftestFT
train)),

where β is a sharpness hyperparameter, which controls the influence of low-similarity

training samples on the output. The prediction of the cache model is obtained via linear

combination of cached values weighted by A as ALtrain ∈ R1×N .

Given the Clip zero-shot prediction, which is the matrix multiplication of the normalized
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class features WT
c and ftest, so predClip = ftestWT

C and ALtrain, the predictions (logits) of

the whole model, and α, the parameter controlling the residual ratio, are given by

predTIP = αALtrain + predClip (2.4)

The key aspect, why TIP-Adapter where chosen in favor of other few-shot fine-tuning

methods, is that in Equation 2.4 the Clip prediction, especially those of the visual en-

coder, are unchanged and are thus suitable to be used in Zero-Shot Out-of-Distribution

Detection methods (see Section 4.3 for details) without changing any of the pre-trained

models.

2.3. Out-of-Distribution Detection

This section introduces Out-of-Distribution Detection (OOD detection) and introduces

relevant terms and concepts. It should be noted in particular that the definitions of OOD

detection are not uniform and can vary slightly. In this work, the common definition

and delimitation used in current surveys on the topic [108, 82] will be used. This section

is structured as follows: first, key terms are defined and the background to this work

is explained. Finally, OOD detection is classified in more detail and distinguished from

related topics. We refer to In-Distribution (ID) as each image associated with a known

label and Out-of-Distribution (OOD) as each image not associated to a known label.

Closed-World Assumption

The closed-world assumption [22, 108], also known as closed-set assumption [108, 65],

is a principle in machine learning that assumes all possible information about a system

is known and available to the learning algorithm. This means that the algorithm does

not consider any information that is not contained in the training data. In other words,

the algorithm assumes that all relevant information is already present in the data, and

does not attempt to reason about information that is missing or unknown. While this

assumption can simplify the learning process and make it more efficient, it can also limit

the generalizability of the model to new situations where relevant information may be

missing or unknown. Closely related is the term closed-world classifier, which describes

the classifier trained on the closed set of labels.

Outlier Exposure

Outlier exposure [38] is a concept in machine learning that refers to the intentional ex-

posure of a model to outlier data points during training. This approach is often used to

improve the model’s robustness to outliers, which are data points that deviate signifi-

cantly from the majority of the data. By exposing the model to outliers during training, it

can learn to identify and handle them better during inference, leading to more accurate
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predictions on real-world data. However, the effectiveness of outlier exposure depends

on the type and distribution of outliers in the data, as well as the specific modelling tech-

niques used.

Task Difficulty

Evaluating and defining the difficulty of an Out-of-Distribution Detection (OOD detec-

tion) task in machine learning involves assessing various factors that influence the com-

plexity. Aspects to consider when evaluating the difficulty of an OOD detection task

include:

• Distribution overlap: If the ID and OOD class samples have significant overlap in

their feature space, it becomes challenging to distinguish between them. The more

distinct the distributions, the easier a task becomes [36].

• Dimensionality: High-dimensional data spaces make it difficult to detect ID sam-

ples for multiple reasons. Firstly, the curse of dimensionality makes it difficult to

detect outliers by distance [7]. Secondly, as the dimension of the embedding space

increases, the features become more uniformly distributed [98]. Consequently, the

overlap between ID and OOD samples increases.

• Data complexity: The complexity of the data, such as variations in texture, colour,

shapes, and sizes of the objects, can affect the difficulty. More complex data may

require more advanced techniques or larger models to distinguish between ID and

OOD samples [38].

Aside from these factors, there may be additional considerations. In the following

section, an overview of methods that attempt to assess difficulty is presented.

The most widely used metric is the Openness Score [84], which quantifies the degree

to which a recognition system is exposed to unknown classes, providing a measure of

how well the system can handle new or unseen classes during testing. Given the seen

training classes Ctrain, the seen testing classes Ctest, and the target classes Ctarget, which is

the total number of classes to be identified (i.e., all seen and unseen classes), the openness

is defined as:

openness = 1 −
√

2 × |Ctrain|
|Ctest|+ |Ctarget|

.

As the definition indicates, defining openness requires some degree of outlier exposure.

Therefore, the metric is not suitable for predicting difficulty or performance in real-world

scenarios. Although openness and performance are strongly correlated [84], the score

does not consider visual similarity that can exist between classes. Consequently, dif-

ferent datasets with identical openness may yield different performances. Nonetheless,

openness is still in use and helps define difficulty to some extent, as it is easier to detect
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IDsamples from one outlier class (low openness) and thus distribution, or from many

other distributions (high openness).

A commonly used distinction made in OOD detection is between near and far outliers

[104]. Near-OOD describes outliers, that are close (semantic, statistically, etc) to the ID

data while far-OOD describes the opposite. Both have distinct features and challenges,

but in general, near-OOD is perceived as the harder challenge [104, 82]. Nevertheless,

both are active research fields, because while most near-OOD methods also do work for

far-OOD (vice versa is not necessarily the case), the latter can be detected with methods

that need less resources or have other benefits.

Out-of-distribution Detection

Out-of-Distribution Detection (OOD detection) is a critical problem in machine learning

that refers to the task of identifying samples that are significantly different from the train-

ing data distribution. This problem arises in many real-world scenarios, such as detecting

unseen data or identifying anomalous samples that can cause errors or unexpected be-

haviour in the system.

One popular approach for OOD detection is based on the outlier exposure principle,

which suggests training the model on both in-distribution (ID) and out-of-distribution

(OOD) samples. This approach exposes the model to a wide range of data, including

samples that are significantly different from the training data distribution, thereby im-

proving the model’s ability to identify OOD samples.

However, this approach assumes a closed-world assumption, which means that the

OOD samples are drawn from a known distribution that is distinct from the ID distribu-

tion. In practice, this assumption may not hold, as the OOD samples may come from an

unknown distribution that is similar to the ID data, making them difficult to detect using

traditional OOD detection methods.

Several novel techniques for OOD detection have been proposed that do not rely on

the closed-world assumption. These methods include density-based approaches, such as

using a density ratio to distinguish between ID and OOD samples, e.g. [1, 81] (157-161),

and deep generative models, which can learn to generate samples from the ID distribu-

tion and identify OOD samples by measuring their distance to the learned distribution,

e.g. [16, 46].

Overall, OOD detection is a challenging problem in machine learning, and developing

effective methods for detecting OOD samples is critical for ensuring the reliability and

safety of machine learning systems in real-world applications.

2.3.1. Differentiation from Related Topics

Figure 2.5 shows an overview of related topics and classifies them by four bases: The shift

to detect (covariate, semantic), the ID data type (single class, multiple classes), whether

the ID data needs to be classified and transductive vs inductive learning. Transductive
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Figure 2.5.: Taxonomy of the generalized OOD detection framework by [108]: Illustrated
by classification tasks. Four bases are used for the task taxonomy: 1) Distri-
bution shift to detect: the task focuses on detecting covariate shift or semantic
shift; 2) ID data type: the ID data contains one single class or multiple classes;
3) Whether the task requires ID classification; 4) Transductive learning task
requires all observations; inductive tasks follow the train-test scheme. Note
that ND is often interchangeable with AD, but ND is more concerned with
semantic anomalies. OOD detection is generally interchangeable with OSR
for classification tasks

means, that all samples are available at training time, thus this includes methods with

outlier exposure. In the following, the two most important differentiations are briefly

explained, the distributional shifts and the classification objective.

Covariate Shift and Semantic Shift

Semantic shift in context of OOD detection refers to a change of the labels and the related

concepts of the instances of these labels. Consider the ID data to be classes of different

birds. A semantic shift would mean the occurrence of any other class that is not a bird.

Also, the occurrence of any bird class, which is not in the training dataset, is a semantic

shift.

Covariate shift, on the other hand, refers to a change in the distribution of input variables

that can affect the performance of a machine learning model. For example, if a model is

trained on data from one geographical region, but is applied to data from a different ge-

ographical region, there may be differences in the distribution of input variables (smaller

or bigger birds, colour differences) that can lead to reduced accuracy or precision in out-

lier detection. Covariate shifts can also arise when there are changes in the data collection

process, such as changes in sensor calibration or sampling rates. Covariate shift is com-

monly more used to evaluate model generalization than robustness [108].

Out-of-Distribution Detection addresses semantic shift.
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Classification objective

The classification objective separates anomaly detection and novelty detection from OOD

detection (see Figure 2.5). In anomaly detection, the classification of the ID data is not part

of the objective. It is a technique used to identify data points that are significantly differ-

ent from the majority of data points. It is typically used in unsupervised learning, where

the algorithm learns to identify patterns and relationships in the data without being ex-

plicitly trained on what constitutes an anomaly. Anomaly detection is used to identify

rare or unusual events, such as fraud detection, network intrusion detection, or equip-

ment failure prediction.

OOD detection and also Open Set Recognition [84] are methods, that should recognise

if a given input is outside the distribution of the training data. It is commonly used in

supervised learning, where the algorithm has been trained on a specific set of inputs and

outputs. Both are used to identify when the model is given inputs that are unlike any-

thing it has seen during training. This can help prevent the model from making incorrect

predictions or providing unreliable results.

Out-of-Distribution Detection and Open Set Recognition

As stated in Figure 2.5, the terms are often used interchangeably or described with identi-

cal properties [104, 21, 108, 6]. In Yang et al. [108] the difference and similarity is described

as "[OOD-Detection] canonically aims to detect test samples with semantic shift without

losing the ID classification accuracy. However, OOD detection encompasses a broader

spectrum of learning tasks and solution space." This can be interpreted as models that do

detect outliers by using the classifier’s output confidence [36, 56].

2.3.2. Zero-Shot Out-of-Distribution Detection

Zero-Shot Out-of-Distribution Detection (Z-OOD detection) describes models with the

ability to deliver robust performance and generality without relying on training using

ID samples [65, 21]. Unlike traditional OOD detection methods, which often necessitate

training from scratch or fine-tuning on a specific ID dataset, Z-OOD detection capital-

izes on pre-trained models to accomplish two goals: 1) accurately classify test samples

from seen classes and 2) detect samples not belonging to any of the seen classes. This is

achieved using only the names of the seen classes, without any training data or the need

for building a closed-world classifier. As of now, in the research area of image classifi-

cation, there are two published methodologies, which both rely on the large-scale pre-

trained multi-modal model Clip, which enables zero-shot classification [74]. Thus, the

methods rely not only on images but also on textual labels. All Z-OOD detection meth-

ods do rely on this functionality or on the functionality on related multi-modal models.
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Figure 2.6.: From [21]: The diagram illustrates the inference steps of ZOC for a sample
from an unseen class ‘boat’. The available seen class labels (shown in green)
are Ys = {‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’}. In the first step,
the image is encoded through Clipimage and then image description is gener-
ated in the output of Decodertext. The description is in fact a set of candidate
unseen labels Yu. In the second step, Ys ∪ Yu are encoded through Cliptext on
the right. The purple ellipsoid shows Clip’s feature space where the relevant
labels are aligned with the image. Clip quantifies the alignment by calculat-
ing the cosine similarity of each encoded label to the encoded image. Then
S(x) is obtained according to Eq. 2.5. The score is high for this image as it is
more similar to the set of Yu than Ys. The inference relies on Clip pre-trained
encoders as well as Yu generated by Decodertext (best viewed in color)

ZOC

The Zero-Shot Out-of-Distribution Detection based on Clip (ZOC) [21] is a recent OOD

detection that distinguishes itself among numerous methods (see Chapter 3) as the first

published technique to detect outliers using solely general pre-trained models, without

task-specific training. This approach is referred to as Zero-Shot Out-of-Distribution De-

tection (Z-OOD detection). The method employs Clip’s zero-shot classifier to measure

the similarity of a given input image to known labels and a set of image-specific labels.

These unseen labels, denoted as Yu, are generated for each image using a description

generator based on the image’s Clip features. The known labels Ys along with unseen

labels Yu, are used to calculate class probabilities using Clip ’s zero-shot classifier and the

softmax function.

Decisions about whether a given image is an outlier or an ID image are made based

on these probabilities. The model can generate meaningful labels for test images without
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any outlier exposure, effectively utilizing zero-shot classification for outlier detection.

Figure 2.6 illustrates this process in detail. The underlying intuition is that if an image is

ID, there exists a semantic label describing a discernible object within the image (e.g., a

dog for the label ’dog’). Clip ’s zero-shot classifier generates features for the label and the

image with high similarity. The description generator creates labels based on the image,

but if the label ’dog’ is already present in the seen labels Ys, it will be removed. As a

result, no unseen label in Yu should be as similar to the image as the existing label ’dog’.

Conversely, if the input is an OOD image (e.g., a pig) without a matching label in Yu, the

most similar label will be among the generated labels.

Architecture: The model comprises a Clip [74] model, which includes a trained vision

encoder Clipvision, text encoder Cliptext, and a description generator Decodertext. This

description generator is a Transformer-Decoder that generates image descriptions based

on image features from Clipvision. Image descriptions can be generated by extracting

image features from the vision encoder and feeding them through the caption generator.

Consequently, a description ITEXT for an image Itest is generated as follows:

ITEXT = Decodertext(Clipvision(Itest)).

The description is split into individual words, which serve as generated unseen labels

Yu. The complete set of labels for an image is given by Y = Ys ∪ Yu. By passing each label

through Cliptext, the features are generated as Wtest = Cliptext(Y). Further details on the

caption generator’s training and the model are provided in Chapter 4.

Next, the cosine similarity between image features and all labels Yfull = Ys ∪ Yu is

calculated, and a softmax score is computed over the similarities with Czoc. Instead of

employing the maximum softmax score max(ŷ1, . . . , ŷk), which is standard for OOD de-

tection [36], ZOC utilizes the summed probability of the generated labels. Formally, the

ZOC score for an input image I is defined as follows:

score(I) = ∑
c∈Cgen

p(yc|I). (2.5)

In summary, ZOC leverages the generalization capabilities of recent transformer archi-

tectures, combined with the vision-language gap bridging provided by Clip, to create a

form of outlier exposure with generated labels that do not contradict real-world settings,

where outliers cannot be provided1. This is unlike other work with outlier exposure,

as the unseen labels here are not derived from predefined OOD content but are image-

specific. This approach is theoretically applicable to numerous scenarios where acquiring

training data is challenging, making it a versatile and innovative solution for OOD de-

tection.

1Outlier exposure implicitly assumes knowledge, what incorrect input will be given to a model
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MCM

Maximum Concept Matching (MCM) [65] has been recently introduced as a zero-shot

OOD detection technique, building upon the foundation of an earlier used baseline [21].

This method, also referred to as "MSP + Clip" there, integrates the Maximum Softmax

Probability [36] with Clip’s zero-shot classifier [74]. During inference, the image similar-

ity to all known labels is computed, forming a closed-world classifier within the zero-shot

classification paradigm.

The classifier’s softmax output, ŷk, represents the probability that image I belongs to

class ck. A probability threshold t is determined such that if max(ŷ1, . . . , ŷk) < t, the im-

age is classified as OOD, otherwise as ID. In essence, if the classifier’s confidence in the

image belonging to a known class falls below a specific level, the image is deemed not

part of the set of known classes..

A notable characteristic of this method lies in its end-to-end application speed. As-

suming the model is deployed and zero-shot labels are pre-calculated, inference requires

only a single forward pass through the image encoder and one matrix multiplication to

produce output logits, subsequently utilized for softmax score calculation. Consequently,

the method exhibits O(n) complexity for inference and virtually no domain adaptation

overhead for new data distributions. Furthermore, this approach significantly reduces

the demand for training data, ultimately eliminating the need altogether.

Metrics

• AUROC: The Receiver Operating Characteristic [9] is a well-known criterion for

OOD detection and the de-facto standard to measure performance [84, 82].

The ROC is a graphical plot illustrating the relationship between True Positive Rate

(TPR) and False Positive Rate (FPR) for different threshold values of the model.

Formally, TPR and FPR are defined as follows:

TPR =
true positive

true positive + false negative

FPR =
false positive

false positive + true negative

The Area Under Receiver Operating Characteristic (AUROC) is threshold-independent

and defined between 1 and 0. 1 indicates a perfect detection, while .5 is the worst

outcome for this scenario, as it is the result an uninformed guesser would reach, so

no useful information is processed. Values < .5 indicate that information is pro-

cessed wrong, as the result is worse than guessing. In practice, that means the pre-

dictions can simply be flipped, thus the absolute difference from .5 can be consid-

ered relevant, however, that practice ignores that the model does something wrong

with the given information, which should be understood and fixed instead of being
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ignored. Thus, in this work, this practice will not be applied.

• FPR@TPR: The False Positive Rate (FPR) at the True Positive Rate (TPR) is a per-

formance metric commonly used in the evaluation of binary classification models,

thus also useful for OOD detection. The FPR measures the fraction of false positive

predictions made by the model, while the TPR measures the fraction of true pos-

itive predictions. The FPR@TPR metric provides a way to visualize the trade-off

between the two quantities and is often plotted on a ROC curve, which shows the

relationship between the FPR and TPR as the classification threshold is varied.

• F1-Score: The F1 score is the harmonic mean of precision and recall. Precision is the

fraction of relevant instances (True Positives, TP) among the retrieved ones, which

are the TP and false negatives (FN). The Recall is the fraction of relevant instances

that are retrieved by the model:

F1 = 2 × Precision × Recall
Precision + Recall

with Precision =
TP

TP + FP

and Recall =
TP

TP + FN

The F1 score is a good overall measure of the model’s performance, taking into

account both false positive and false negative predictions. A high F1 score indicates

that the model has a good balance between precision and recall, while a low F1 score

indicates that the model has either a high false positive rate or a high false negative

rate.
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3. Related Work

This chapter discuss and present related approaches to those in this thesis with the goal

to contextualize this work. First, it will provide an overview to Out-of-Distribution De-

tection (OOD detection) with a special focus on methods that use foundation models [8]

and build up on those. The second part will focus on multi-modal models such as Clip

[74] and adapters [41, 26] as domain adaption methods, which are of relevance to the

third research question.

3.1. Out-of-Distribution Detection

The section starts with an overview of evaluation protocols for OOD detection, which

enables the reader to understand further use of the terms performance, score and im-

provements regarding OOD detection, before presenting approaches to relevenat aspects

of OOD detection. Existing OOD detection approaches differ in their use of outlier ex-

posure, which refers to whether the model has access to any OOD samples during the

training process, such as in [56, 37], or not, like in [21, 43]. This work primarily focuses

on OOD detection without outlier exposure. From this perspective, approaches are pre-

sented that can handle scarce data (Few-shot OOD detection) and no data at all, called

Zero-Shot Out-of-Distribution Detection (Z-OOD detection). Furthermore, methods for

assessing the difficulty of OOD detection tasks are introduced, which are useful for im-

proving the comparability of different techniques.

For a comprehensive overview of OOD detection strategies and methods, readers are

referred to current surveys such as [82, 108].

3.1.1. Evaluation Protocols

Evaluating Procedure

In the field of OOD detection and related areas, such as Anomaly Detection and Open Set

Recognition, there is a lack of standardization in the evaluation procedures. The CIFAR10

and CIFAR100 datasets [48] are commonly used, but they are not yet a standard dataset

like ImageNet [49] is for image classification. The selection of ID and OOD classes is

also not standardized. Some researchers split one dataset into ID and OOD classes, such

that these classes are related [21, 96], while others use OOD classes that are self-defined as

"close" to the ID data to make the task harder [104, 65]. Self-defined means, that there is no

clear foundation used in the publication, even though Winkens et al. [104] provided the
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CLP to define near- and far-ood. Some others create ID/OOD splits by choosing differ-

ent datasets from a group of "semantic shift datasets" [96], which includes ImageNet as a

large-scale evaluation for category shift and multiple fine-grained classification datasets,

two of which (Caltech CUB and Stanford Cars) are also used in this research.

The general issue in the research on OOD detection is the infinite combinations of ID/OOD

and each combination yields different properties that influence the performance. All

combinations can occur in reality, so the selection of some combinations is a necessary

design decision, but the significance and generalizability of the results to the whole re-

search topic is challenging to estimate. It is open to question whether an improvement in

a specific niche translates to the entire area. Nevertheless, a benchmark or more standard-

ized testing procedure would be beneficial for comparing results. Summarizing, it can

be said that the most published work either uses combinations of well-known datasets

[65, 104] or explicitly decide to use a harder near-OOD setting [21, 24], where either close

related classes from different datasets are used or the dataset is split into ID and OOD.

3.1.2. Out-of-Distribution Detection without Outlier Exposure

There are currently very few proposed methods for Zero-Shot Out-of-Distribution De-

tection (Z-OOD detection) without any data exposure, so with no trained closed-world

classifier as well as no access to OOD data. Thus, a broader look at the topic is presented,

and recent methods for OOD detection are included with ID exposure and trained closed-

world classifiers.

A solid baseline for OOD detection is the Maximum Softmax Probability (MSP) [36],

which follows the assumption that a trained closed-world classifier should be more con-

fident predicting a class for ID data than predicting an erroneous class, as it is always

the case for OOD data. Even though neural networks are sometimes overconfident when

predicting erroneous classes, the general trend is that more confident predictions tend

to be more accurate [36]. The experiments showed, that the confidence based approach

combined with recent feature extractors, can outperform more sophisticated approaches.

Generalized ODIN (G-ODIN) [43] is based on ODIN [56]. However, it eliminates the

need for OOD data in the training process. The authors argue that this step makes their

model more generalizable, hence the name Generalized-ODIN. The original ODIN trains

a vanilla classifier, fθ , on DIN , the In-Distribution data for a given task and uses a scoring

function S(X; fθ). This scoring function has parameters that are learned with OOD data.

The scoring function applies temperature scaling [32] for a more realistic confidence esti-

mation of the classifier’s output. Additionally, ODIN utilizes specific input preprocessing

to further enhance performance, which also relies on OOD data. G-ODIN enhances the

temperature scaling methodology and the input preprocessing so that the learned confi-

dence output of the network is not dependent on any OOD data but outperforms ODIN

on every reported test [56].
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Class Anchor Clustering [64] utilizes anchored class centers in the logit space, which

encourages the formation of dense clusters around the seen classes (i.e. the ID data).

The OOD samples are detected simply based on the distance to the class centers. This

approach can also be easily improved by using more effective feature extractors, such as

Clip, which shows better semantic feature extraction than the utilized feature extractor

in the original paper.

In light of remarkable advancements in sophisticated methods for OOD detection, the

findings of Vaze et al. [96] present an intriguing and potentially paradigm-shifting per-

spective. By employing state-of-the-art training strategies and scaling the confidence of

the classifier, the researchers demonstrated that OOD detection scores based on the clas-

sifier’s softmax output could match or even surpass several current state-of-the-art meth-

ods across various experimental setups. This evidence suggests that a well-performing

closed-world classifier is not merely a baseline but, in fact, competes with the top-performing

methods in the OOD detection domain.

In summary, several methods have been developed for OOD detection with varying

degrees of reliance on OOD data exposure. While the MSP serves as a simple and effec-

tive baseline, more advanced techniques such as G-ODIN and Class Anchor Clustering

aim to improve performance by refining confidence estimation or leveraging class cen-

ter distances in the logit space, respectively. These methods can be further enhanced by

employing more powerful feature extractors or adapting them for specific application

scenarios. As research in this area continues to evolve, new techniques and approaches

will emerge to address the challenges of OOD detection in different contexts, ultimately

improving the robustness and reliability of classification models.

3.1.3. Few-Shot Out-of-Distribution Detection

Some noteworthy techniques in the domain of few-shot OOD detection include few-shot

learning algorithms, such as prototypical networks [87], and meta-learning methods,

such as Model-Agnostic Meta-Learning (MAML) [23]. These methods capitalize on the

limited OOD data to adapt and generalize the model to new, unseen OOD samples. Fur-

thermore, the incorporation of transfer learning and pre-trained models, like Clip [74],

has shown potential for enhancing few-shot OOD detection performance. Despite the

progress in this area, few-shot OOD detection remains an ongoing research topic, with

the goal of developing more effective and robust techniques to handle the challenges

posed by limited OOD data.
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3.1.4. Zero-Shot Out-of-Distribution Detection

The development of zero-shot classifiers has significantly advanced with the introduc-

tion of the Clip model, which has enabled new techniques for OOD detection. Fort, Ren,

and Lakshminarayanan [24] initially explored the potential of Clip -based zero-shot clas-

sifiers, demonstrating promising results in various experiments. Their research primarily

focused on improving OOD detection performance through the incorporation of outlier

exposure. Very similar work was done by Liznerski et al. [60], which main purpose was

also to further dive into outlier exposure but also showed promising results with Z-OOD

detection.

Following these initial efforts, Zero-Shot Out-of-Distribution Detection based on Clip

(ZOC) [21] was proposed as the first true zero-shot method for OOD detection. Notably

Ming et al. [65] later published a method called Maximum Concept Matching (MCM),

that built upon the same MSP baseline and introduced temperature scaling, adopting the

ideas from ODIN [104] to enhance OOD detection performance.

Currently, ZOC and MCM represent the two primary true zero-shot OOD detection

methods in the field. Both approaches leverage the capabilities of Clip -based zero-shot

classifiers while incorporating additional techniques to optimize their performance. As

research in this area continues, further advancements in zero-shot OOD detection meth-

ods are expected, ultimately contributing to the development of more robust and accurate

classification models.

3.1.5. OOD Detection Difficulty

Liang, Li, and Srikant [56] adapted the commonly used metric in statistics, the Maximum

Mean Discrepancy (MMD), with a Gaussian RBF kernel [89, 31, 91]. MMD defines the

distance between the ID and OOD distributions, thus assessing the difficulty of the task

based on the visual content of the distributions. A high similarity (a low MMD) makes

it more difficult for a machine learning system to discriminate between ID and OOD

samples, and vice versa. Consequently, the MMD tends to be negatively correlated with

OOD detection performance [56]. Although this approach demonstrates the correlation

and is both intuitive and comprehensible, it has two limitations: First, applying the L2

RBF kernel directly in the image space only identifies nearly identical images [104]. Sec-

ond, when applying it to high-dimensional feature spaces, it will suffer from the curse

of dimensionality, and the MMD will lose its significance. Especially in models trained

with Contrastive Learning [69], such as Clip, the embeddings of all images tend to be

very similar, further reducing the significance of the MMD.

To address the limitations of the MMD, Winkens et al. [104] propose the Confusion Log

Probability (CLP) to measure the difficulty of OOD detection tasks. The CLP is based on

the probability with which a classifier confuses ID and OOD samples. As a result, the
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classifier also needs access to ID samples. In the original publication, an ensemble of five

ResNet-34 [33] classifiers was trained individually on the union of all datasets used in

their work. In their specific case, this led to training a 486-way classifier. An ensemble is

chosen because of their well-calibrated predictions compared to single classifiers [50]. As

the OOD detection score is often directly derived from a classifier’s output, the metric is

close to the problem, interpretable, and, like MMD, negatively correlated with the OOD

detection score. Moreover, it does not suffer from the curse of dimensionality. However,

as the example from [104] shows, it is computationally expensive to calculate, and there

are design decisions that can directly influence the CLP, such as the choice of classifica-

tion model, the number of models in an ensemble, learning rates, etc. The CLP is also

an intra-task metric, meaning that it can only be used to compare task difficulty between

different combinations in one setting, as the classifier needs to be trained on all classes.

Therefore, adding and removing classes directly influences the CLP. With this method, a

general CLP that quantifies difficulty comparably across different combinations and use

cases is not possible.

Derived from CLP, the terms near-OOD and far-OOD were introduced [104]. A low

CLP indicates near-ID, and a high CLP indicates far-OOD; near-OOD is perceived as

more challenging. The terms are widely accepted and used, e.g., in [21, 76, 82], but often

without the direct link to the CLP. Instead, they rely on the semantic definition Winkens

et al. [104] provided: "[they] distinguish between near OOD regimes where inlier and

outlier distributions are meaningfully similar, and far OOD regimes where the two are

unrelated." The problem with this rather vague definition is that both near and far can be

defined arbitrarily. Usually, splitting one dataset into an ID and OOD part is considered

near-OOD. However, in many research datasets, such as CIFAR-10/100 [48], the classes

are arbitrary (’airplane’, ’dog’, ’car’, etc.). In contrast, some datasets have all classes shar-

ing semantics, e.g., birds. Splitting different bird classes into ID and OOD results in very

closely related distributions. Splitting the CIFAR datasets means splitting only loosely

connected classes and is closer to a far-OOD setting (’dog’ and ’airplane’ are as close as

’dog’ and ’rocket’, for example). Thus, merely defining near-/far-OOD does not capture

all the necessary information, and using the CLP would improve interpretability.
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3.2. Zero-shot Transfer

The published Z-OOD detection methods all rely on zero-shot transfer from the multi-

modal model Clip [74]. Even though Clip gained lots of attention in research, there are

several other approaches and methods, which also allow zero-shot image classification

and therefor might be suitable for Z-OOD detection. This section provides an overview

of these methods and also shows alternative task and domain adaption methods, which

enable the models to adapt to domains not yet covered by foundational knowledge.

3.2.1. Vision Language Models

In addition to the previously discussed Clip, there are several other vision-language mod-

els capable of performing zero-shot downstream tasks, and therefore, they are potentially

suitable for Zero-Shot Out-of-Distribution Detection methods. However, to the best of

knowledge, no method or adaptation has been published for these models in this con-

text. Here, a brief overview of competing approaches in this area is provided. For a more

comprehensive examination of current methods and models, a recent blog post [19] pro-

vides an comprehensive overview.

Locked-image Tuning (LIT) [110] is a method that employs contrastive training [44] to

align image and text models while preserving the benefits of their pre-training. The au-

thors find that the optimal configuration involves locked pre-trained image models com-

bined with unlocked text models. LIT teaches a text model to extract useful representa-

tions from a pre-trained image model for new tasks. The proposed method is versatile

and works reliably with multiple pre-training methods (supervised and unsupervised)

as well as diverse architectures (ResNet [33], Vision Transformers [20]).

A Foundational Language and Vision Alignment Model (Flava) [86] learns separate

unimodal vision and language representations and combines them with a multi-modal

encoder, which is also a Transformer [95]. The model utilizes masked image modelling [4]

and masked language modelling [93] for the encoders, while a novel contrastive, masked

multi-modal modelling (MMM) loss and image-text matching (ITM) loss are employed

over paired image-text data.

BridgeTower [107] addresses the limitations of existing visual-language representation

learning approaches, which typically involve unimodal encoders that learn to extract,

align, and fuse both modalities simultaneously in a deep cross-modal encoder, or use the

last-layer unimodal representations from deep pre-trained unimodal encoders as input

for the top cross-modal encoder. The authors propose BridgeTower, a method that in-

troduces multiple bridge layers to connect the top layers of unimodal encoders with lay-

ers of the cross-modal encoder. This approach enables effective bottom-up cross-modal

alignment and fusion between visual and textual representations of different semantic

levels from pre-trained unimodal encoders within the cross-modal encoder.
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3.2.2. Task and Domain Adaption

Numerous strategies exist to improve the classification accuracy for models like Clip.

In addition to non-task-related factors, such as selecting appropriate hyperparameters

and defining well-tuned loss functions, it is beneficial to choose strategies that adapt the

model to the task domain. Foundation models, although covering many aspects of com-

mon data, may not learn all relevant features and information from a target domain dur-

ing pretraining. Domain adaptation is the most widespread method to align the model

with the target domain, which can be achieved in multiple ways: A traditional approach

is fine-tuning the entire model on a given dataset [42] or only selected weights, e.g., the

last layers of a model. In theory, this leads to improvements, but it has many pitfalls in

practice, such as the risk of overfitting the transformers from Clip on the training data

and losing generalization abilities. WiSE-FT [105] addresses this issue by introducing a

method that enables domain adaptation without sacrificing generalization ability.

Aside from these traditional approaches, recent research has explored domain adapta-

tion methods without fine-tuning, leveraging the power of pre-trained models like Clip.

Prompting, as discussed in a comprehensive survey by [58], represents one such method.

CoOp [112] is an example of a prompting technique that learns prefix prompts for Clip’s

encoder to enable domain adaptation. Building upon this, Clip-Adapter [26] introduces

a two-layer Multi-Layer Perceptron with a residual connection at the end, serving as a

bottleneck adapter for improved performance. TIP-Adapter [111] further extends this

concept by incorporating a cache model, which not only allows efficient adaptation but

also supports few-shot learning scenarios, as detailed in the background section. Finally,

another line of research explores the use of adapters [41] that can be integrated into the

transformer layers of the model. These adapters can either be pre-trained or fine-tuned

for task-specific applications, providing a flexible and efficient approach to domain adap-

tation.
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4. Methods and Datasets

The methodology chapter of this scientific work provides a comprehensive overview of

the methods and techniques used to address the research questions. It begins with a gen-

eral introduction to the field of Out-of-Distribution Detection (OOD detection) and the

benchmark methods utilized in this study. This is followed by a comprehensive descrip-

tion of the Zero-Shot Out-of-Distribution Detection (Z-OOD detection) methods used in

the experiments.

The chapter also includes a detailed description of the datasets used in the experi-

ments, along with the corruptions applied to test the robustness of the Z-OOD detection

methods. This section provides a qualitative and quantitative description of the datasets,

their properties, and the metrics used to evaluate the results.

The methodology chapter also provides a comprehensive description of the model ar-

chitectures and training procedures used in the experiments. This includes a detailed

explanation of the adapter layer injection technique used for few-shot domain adapta-

tion in Clip. The chapter concludes with a summary of the methods used in this study,

ensuring the reproducibility of results and a clear understanding of the methodology

used to address the research questions.

4.1. Methodology

This section outlines the methodology used to address each of the research questions in

this thesis. The task of OOD detection is a binary detection task in all experiments, where

In-Distribution (ID) data is labelled as 0 and Out-of-Distribution (OOD) data is labelled

as 1. Unless otherwise stated, the detection score or performance of a method is mea-

sured using the Area Under Receiver Operating Characteristic (AUROC).

Research Question 1: Is the performance of current zero-shot OOD detection
methodologies generalizable, i.e., transferable to datasets within the realm of Clip’s
zero-shot capabilities?

To address this question, we first define the term generalizable since it is not possible to

make this statement without exhaustive testing over all possible data. We approach it by

first selecting multiple datasets (12) and running all far-OOD combinations with Maxi-

mum Concept Matching (MCM), which has a low inference time. The main part of the
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comparison is between the different zero-shot OOD detection methods in near-OOD set-

tings. This approach was chosen because experiments have shown that both MCM and

Zero-Shot Out-of-Distribution Detection based on Clip (ZOC) work well in far-OOD sce-

narios, but there is little to no comparison in hard experiments. In total, we run 144 (132

far-OOD, 12 near-OOD) different combinations with zero-shot OOD detection methods

to determine their limits and potential.

The focus of this work is the classification of real-world pictures of physical objects, as

this task is perceived as the most widespread one in image classification. The selected

datasets differ in high-level features and statistics, such as image size, backgrounds, and

shapes of the objects, number of classes, and number of samples. The OOD detection spe-

cific metrics, Confusion Log Probability (CLP) and Maximum Mean Discrepancy (MMD)

classify all tasks of the near-OOD part as hard [104, 56, 21]. That means, the inter-class

differences, compared to the intra-class differences, are very small in these tasks.

Regarding the difficulty of OOD detection and the selection of ID/OOD splits, this

work focuses on difficulty metrics rather than on high-level semantic features.

To ensure high similarity in the near-OOD experiments between ID and OOD sam-

ples, the classes of each dataset are randomly divided into 40% ID classes and 60% OOD

classes. All experiments are run ten times with different random ID/OOD splits to miti-

gate the high variance this setup entails. The influence of openness on the OOD detection

performance is well known and not further investigated here, as it is kept high enough to

ensure the tasks are not trivial to solve. All experiments are conducted with openness ≈
24%. The decision to use classes from the same dataset as OOD samples is considered dif-

ficult in related work, with CLP = [−2.486,−0.955] and MMD = [0.001, 0.035] between

ID and OOD samples [56, 104, 21].

The methodology selected in this thesis aims to enhance the comparability with rel-

evant literature in the research area, which currently has limited comparability (as dis-

cussed in Chapter 3). From a practical perspective, it is also reasonable to include more

samples that are similar to in-distribution (ID) data, as image classification tasks may not

encompass all aspects of a particular domain, such as flowers. Meant is, that if a flower

classification system is deployed, it is likely that it does not know every flower that exists,

but will likely be queried with some of the unknown flowers, rather than be queried with

objects that are very dissimilar, e.g. with images of a dog.

This thesis compares and evaluates two published Z-OOD detection methods: ZOC

[21] and MCM [65], which is also used as MSP [36] modified with Clip’s zero-shot clas-

sifier earlier in [21] as a baseline. If not otherwise mentioned, we use the same zero-shot

classification template (see Section 4.3) for all datasets and experiments.

As the baseline, we have added the MSP methodology with Clip as the pre-trained fea-

ture extractor and a logistic regression classifier on top, referred to as Clip-L [74], trained

on the training split of the dataset. The training set here refers to the selected ID classes

per run, and the baseline has no exposure to any out-of-distribution (OOD) samples.
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All methods utilize the small vision transformer backbone, "ViT-B/32", from Clip,

which serves as the foundation for ZOC and is still computable by consumer GPUs. This

is a crucial factor in terms of reproducibility. Ideally, all possible vision backbones should

be utilized, but this is not feasible in this context as it would require the computationally

intensive retraining of the description generator in ZOC (as discussed in Section 4.3).

The experiments and methodologies do not rely on Clip exclusively, and other image-

language foundation models could also be used (see Chapter 3). Clip is selected as the

backbone of all experiments due to its widespread usage as the most prominent vision-

language model for zero-shot classification and its use in related literature [21, 65].

Research Question 2: Where are the boundaries of zero-shot OOD detection methods
with respect to different difficulty metrics for Out-of-Distribution detection?

To answer this question, the baselines for CLP, MMD, and zero-shot accuracy are estab-

lished with the data sets and data splits shown above. The methodology is then expanded

by altering the images with common corruptions (see Section 4.2.2) to increase the diffi-

culty of the task until the Z-OOD detection methods are no longer applicable, which is

defined in this work as not better than randomly guessing.

Five datasets are selected based on their zero-shot closed-world classification accuracy,

as it has been shown to be strongly correlated to the OOD detection performance [96].

These datasets are manually corrupted with increasing severity, following a methodol-

ogy described in prior work [35], which is used there to test the robustness of the clas-

sifier. Overlap in the accuracy of the dataset-corruption combinations is expected and

desired, as it may provide further insight into the reliability of closed-world accuracy as

a predictor for OOD detection scores and the influence of other measurable factors.

The experiments are performed by corrupting all images in a dataset with the same

corruption. The closed-world accuracy, CLP, and MMD for the corrupted image dataset

are reported, and the OOD detection is performed as described earlier. The experiments

are performed using three different corruptions (Gaussian blur, snow, and brightness) at

three different severity levels. The corruptions were selected based on their general and

random nature (Gaussian blur), their occurrence in real-world phenomena (snow), and

their impact on images taken outside of laboratory conditions (brightness).

Research Question. 3:How does the performance of out-of-distribution detection
methods using Clip’s zero-shot classifier compare to traditional State-of-the-Art
Out-of-Distribution Detection methods?

The objective of Research Question 3 is to evaluate the performance of Z-OOD detec-

tion methods against traditional state-of-the-art OOD detection methods and if they can

benefit from Clip domain-adaption methods, similar to regular image classification.
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To compare Z-OOD detection methods with traditional OOD detection methods, a

baseline is established using the Maximum Softmax Probability (MSP) method with a

fine-tuned classifier using Clip vision transformer backbone as feature extractor. This

method is selected as it has shown consistent and competitive results in previous stud-

ies [96, 65]. Instead of the vision backbone used in the other experiments, we here use a

larger Clip model (see Section 4.3) which provides improved closed-world accuracy. Still,

there is no outlier exposure in the training process. The baseline method has access to all

training samples of each dataset. To obtain softmax scores for the images, a closed-world

classifier is trained on the training split of each dataset and hyperparameters are tuned

on a validation set. For further details on the models and training, see Section 4.3.

Additionally, the goal is to improve the Z-OOD detection methods. Temperature scal-

ing is used on the output scores before obtaining the OOD detection scores [65]. the find-

ings of previous studies that show an improvement in closed-world accuracy results in an

improvement in the OOD detection score are considered [96]. We chose to improve clas-

sification accuracy with adapter-based domain adaption. Hence, to further improve the

Z-OOD detection methods, a few-shot domain adaptation method, TIP-Adapters [111],

is used. This method utilizes very few training samples and has the advantage of being

computationally inexpensive and fast to use in real-world scenarios.

It is important to note that all methods that involve the use of training samples from

the data distribution are no longer zero-shot methodologies. The main advantage of

zero-shot methodologies is their independence from training samples, which are often

expensive to obtain. However, if sufficient data is available, methods that involve the

use of training samples are generally superior to few-shot domain adaptation methods

in image classification tasks.

4.2. Datasets

4.2.1. Selected Datasets

Experiments regarding Zero-Shot Out-of-Distribution Detection (Z-OOD detection) are

currently limited to very few datasets [21], thus we try to include many well-known

image datasets, covering a broad range of attributes, such as the number of classes, the

number of images per class, but also different difficulties and metrics, also described in

this section. The datasets are chosen that there is negligible inter-dataset overlap between

classes, images and even high-level features. The majority of datasets thus share no labels

or even concepts e.g kinds of flowers in the Flowers102 dataset [68] and types of cars in

the Stanford Cars dataset [47]. We provide a brief semantic description of each dataset in

this section. A quantitative comparison of the datasets is provided by Table 4.1. To ensure

reproducibility, we selected datasets that are publicly available. All datasets consist of at

least ten different labels with multiple images per class.
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Dataset Name Content Semantic Labels Image Size Classes Samples
CALTECH101 Pictures of objects Describes object 200-300px 101 8,623
Caltech CUB Pictures of birds species Bird species 120-500px 200 11,988
CIFAR10 Pictures of objects from common objects Object 32 x 32 px 10 60,000
CIFAR100 labelled subsets of 80 million tiny images Object 32 x 32 px 100 60,000
DTD collection of textural images Textures 300 - 640 px 47 5,640
Fashion MNIST An MNIST-like fashion product database Article of clothing 28x28 px 10 70,000
Flowers102 Images of flowers Flower species 500-1.200px 120 8,189
GTSRB Images of german road signs Description of roadsigns 25-244px 43 39,270
TinyImageNet Subset of ImageNet Object 64x64 px 200 110,000
MNIST Handwritten digits Digits from 0-9 28x28 px 10 70,000
Stanford Cars Images of cars Make, Model, Year 41-5,616 px 196 16,185
SVHN House numbers Digits from 0-9 32x32 px 10 73,257

Table 4.1.: Overview of the datasets utilized in this work

Caltech101

The Caltech101 dataset [55] consists of 8,623 images belonging to 101 distinct categories.

There are between 40 and 800 images per category, while most categories consist of 50

images. The image sizes are roughly 300 × 200 pixels. The image contents vary a lot,

since many are photos of everyday objects in natural settings, while others are cropped

images with no background at all. Figure 4.1 shows an example for each type of image

from the dataset. The images were taken from the Google Search Engine image search by

entering the respective class name. See Figure 4.1 for samples.

(a) A starfish in its natural habitat. Labelled
as ’starfish’

(b) A cropped image of a camera. Labelled
as ’camera’

Figure 4.1.: Two image samples from the Caltech101 dataset. The samples depict the
background differences in the dataset

Caltech CUB

The Caltech-UCSD Birds-200-2011 dataset [99], also known as Caltech CUB, is described

as a challenging dataset of 200 bird species, the classes. The high-level features in every

image are very similar to each other, e.g. each species has a beach, wings, etc. The dataset

consists of roughly 12,000 images, on average 60 per species. Each image has an edge

length between 120 and 500 pixels and contains a single animal.



44 4. Methods and Datasets

CIFAR10 & CIFAR100

The CIFAR and CIFAR100 datasets [48] each consist of 60,000 colour images, categorized

into 10 (CIFAR10) and 100 (CIFAR100) classes respectively. The images are uniformly

distributed over the classes. Each image is a 32 × 32 pixel colour image. Compared to

other datasets in this work, the classes of both CIFAR datasets are disjunct and share few

semantic features. Classes are e.g. ’airplane’, ’cat’, and ’ship’ in CIFAR10. In CIFAR100

the classes are grouped into 20 superclasses, which are not further utilized in this work

but show, that there is a higher overlap in the classes than in CIFAR10. Classes are e.g.

’dolphin’, ’whale’, ’poppies’, ’sunflowers’, ’lawn-mower’, and ’woman’.

DTD

The Describable Textures Dataset (dtd) [15] consists of 5460 images showing 47 differ-

ent textures. The images are uniformly distributed over all classes, hence 120 images

are present for each category. It is designed to gain insights into how textural informa-

tion is processed by an intelligent system. The DTD differs from the majority of visual

datasets in research and this thesis, which focus on the classification of objects present in

the images, not the textures of the objects in the images. The image size ranges between

300 × 300 and 640 × 640 pixels with at least 90% of the surface representing the texture.

All images were taken from Google Image search and Flickr1 by entering the respective

texture phrase. See Figure 4.2 for samples.

(a) Texture labelled ’fibrous’ (b) Texture labelled ’lined’

Figure 4.2.: Two image samples from the DTD dataset

1https://www.flickr.com/

https://www.flickr.com/
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Fashion-MNIST

Fashion MNIST dataset [106] consists of 70,000 images of fashion products. the images

are split into a training set, consisting of 60,000 images and a testing set, consisting of

10,000 images by the publishers. Each image is a 28×28 greyscale picture and is asso-

ciated with a label from the ten available classes. The images are uniformly distributed

with 6,000 images per class in the train split and 1,000 images per class in the test split.

The dataset is proposed as a more challenging classification task than the well-known

MNIST dataset. [54]. All images were taken from an online shopping platform, sharp-

ened, resized and converted to 8-bit greyscale images.

Flowers102

The Flowers102 dataset [68] consists of 8189 images from 102 different flower classes.

The images are split into training, validation, and test set by the publishers. The training

and validation sets each consist of ten images per flower class, so 1020 images per split.

The test set consists of 6149 images, with between 40 to 250 images per class. The images

are collected from the web, some were taken by the researchers themselves. Each image

is rescaled so that the smallest dimension is 500 pixels and the original aspect ratio is

preserved. The different classes in this dataset have a higher feature similarity between

classes than other datasets presented here, such as the CIFAR datasets [48] as the flowers

share many high-level features, such as flower, stem, and leaves. Originally, the labels are

one-hot-encoded. For this work, we use the semantic labels provided by Radford et al.

[74], which are manually crafted from descriptions in the original publication [68].

GTSRB

The German Traffic Sign Recognition Benchmark (GTSRB) [90] consists of 39270 photos

of 43 different German traffic signs. The dataset is split into a training set, consisting

of 26640 images and a test set, consisting of 12630 images. Each class consists of 210 to

2250 images with a rough average of 900 images per class. The dataset was created from

ten hours of video recorded while driving on different types of German streets during

the daytime. Each physical sign exists only once in the dataset, meaning, every image

of a class is taken with different illumination, background, etc. All images have a reso-

lution of 1360 ×1024 pixels. The traffic signs in the image itself are between 15×15 and

222×193 pixels. This dataset has also a higher inter-class similarity than object classi-

fication datasets such as the CIFAR datasets [48], as traffic signs share many high-level

features and are therefore considered more difficult [74]. Originally, the labels were one-

hot-encoded. To allow for zero-shot classification, we utilize semantic labels provided by

Radford et al. [74].
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MNIST

The MNIST dataset [54] consists of 70,000 samples of images of handwritten digits from

zero to nine. The dataset is split into 60,000 train and 10,000 test samples. The images are

uniformly distributed over all classes. The images were sampled from the NIST dataset,

normalized and centred to 28×28 8-bit greyscale images. The image classification task is

considered solved, with models achieving more than 99% accuracy [100, 3, 10, 39], hence

considered easy. The dataset is still utilized as a benchmark for different algorithms and

image-related tasks, such as OOD detection.

Tiny ImageNet

The Tiny ImageNet dataset [52] consists of 110,000 images of 200 classes of different ob-

jects and is a subset of the Imagenet large scale visual recognition challenge (ILSVRC)

[79]. The dataset is split into 100,000 training images (500 per class), and 10,000 test im-

ages (50 per class). Each image is downsampled to 64×64 pixels.

Stanford Cars

The Stanford Cars dataset [47] consists of 16185 images of 196 different distinct classes.

The classes are fine-grained car fabricates with the oldest model dating from in 1990.

Each semantic label consists of the manufacturer, the model and the model year (e.g.

"Audi RS 4 Convertible 2008"). The dataset is split into a training set (8144 images) and

a testing (8041 images) by randomly dividing each class in half. On average, there are 41

images per class per split. The classes were sampled from a crawled list of all types of

cars made since 1990. The images themselves were taken from the web with these classes

and manually labelled by trained annotators [47]. The images share a high inter-class

similarity for high-level features, such as colours and shapes. Thus, image classification

task is considered very difficult, even for humans [47]. The images have different edge

lengths, ranging from 41 to 7800 pixels.

SVHN

The Street View Housing Numbers (SVHN) dataset [67] consists of 99289 images with

ten different classes. The dataset is split into training (73257 images) and testing (26032

images), nearly uniformly distributed per class. Each image is a 32×32 colour image,

cropped from Google street view images of housing numbers to represent a single digit.

For example, house number 648 is split into three images with labels 6, 4, and 8 similar

to the MNIST dataset [54] regarding image size and classes, but significantly harder to

recognize since the images show vast intra-class variations and photometric distortions

[67].
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4.2.2. Corruptions

In this part, image corruptions [35] are introduced. We briefly explain the reasoning be-

hind using corruptions as well as present the selected corruptions for the methodology

of this work.

Compared to the human visual system, computer vision systems are not robust to

small changes in images querying these systems. While the human system can easily

cope with such small changes and even more abstract changes [35], many computer vi-

sion systems are easily fooled by such changes. But in practice, these changes do occur

very often, due to technical errors or limitations (resolution, motion blur), environmen-

tal influences (rain, snow, illumination) and more. Thus Hendrycks and Dietterich [35]

introduced ImageNet-C, a dataset consisting of 15 different, algorithmically generated

corruptions of five increasing severity levels. The corruptions are selected so that they

resemble many of the naturally occurring image corruptions.

The three corruptions utilized in the methodology of this work and the severity levels

are:

1. Gaussian Noise can appear in low-lighting conditions. It adds a random value,

drawn from a Gaussian distribution with mean = 0, to each pixel of the original

RGB image. The three severity levels define the standard deviation of the distribu-

tion. The severity values are 0.08, 0.18, 0.38.

2. Brightness of an image is varying with daylight and artificial illumination intensity.

The corruption transforms RGB images to HSV images and adds a positive value

to the V-channel. The severity values are 0.1, 0.3, 0.5

3. Snow is a visually obstructive form of precipitation. It adds multiple white stains

with motion blur to the original images and puts a grey veil over the image. The

severity values are presented in Table 4.2

The algorithms and severity level values are identical with the corruptions used in

Imagenet-C [35], only minor adjustments for different image shapes and formats are ap-

plied. Greyscale images, such as samples from MNIST [54] are transformed into RGB

images. Figure 4.3 shows sample images for the used corruptions.

Severity Gaussian - mean Gaussian - std zoom factor min threshhold motion - radius motion - std coluor intensity
1 0.1 0.3 3.0 0.5 10.0 4.0 0.8
2 0.55 0.3 4.0 0.9 12.0 8.0 0.65
3 0.55 0.3 2.5 0.85 12.0 12.0 0.55

Table 4.2.: Corruption values for each severity level of the Snow corruption
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Figure 4.3.: An image of a Wilson’s warbler from the CUB dataset [99] corrupted with
three increasing severities from left to right. Each row presents on corruption.
The title on each image names the corruption and the severity and is here
added for clarity

4.2.3. Metrics

In this part, the most important metrics for this thesis are briefly described, as well as a

brief explanatory statement about why they were chosen.

Accuracy

The accuracy is a measure of observational error and is commonly utilized for classifica-

tion tasks. The accuracy shows, how close a given set of measurements, here the output

of a classifier, are to their true values, here the ground truth or labels. For multiclass

classification, the accuracy is defined as follows:

Accuracy =
correct classifications

all classifications
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The simplicity makes this metric easily comparable and interpretable, even though the

accuracy does not account for heavily imbalanced datasets. As all datasets utilized in this

work are nearly or fully balanced, the accuracy is a reliable indicator of the classification

performance of a model.

AUROC

AUROC is a commonly used metric for evaluating the performance of a binary classifica-

tion model. As we define the task of Out-of-Distribution Detection as binary classification

with the classes In-Distribution (label 0) and OOD (label 1), the AUROC score is the main

metric to compare different models. It is also the standard in related work. The AUROC

provides a single scalar value to evaluate the performance of a OOD detection method.

Confusion Log Probability

In this study, only one Clip zero-shot classifier [74] is used instead of an ensemble of

classifiers, which are traditionally used due to their well-calibrated predictions [50]. An

ensemble of the same classifier is not necessary, as the predictions of the classifier are

identical. The choice of the Clip zero-shot classifier was made because it serves as the

backbone for all Z-OOD detection methodologies, and it is expected that the Clip based

Confusion Log Probability (CLP) will be more predictive than other classifiers. Addi-

tionally, using a single classifier may improve comparability, as this setting is available

to all researchers and can be applied to any image dataset task with consistent results.

Even though an ensemble of classifiers reduces the risk, fine-tuned classifiers still have

the chance of different outcomes, as they rely on many learnable parameters and hyper-

parameters.

Formally, the CLP for two labelled datasets Din and Dout with the corresponding sets

of classes Cin and Cout, the classification is performed on the joint dataset D = Din ∪ Dout

and the extended label set C = Cin ∪ Cout. The expected probability of a test sample x to

be predicted as class k is given by:

ck(x) = p̂j(ŷ = k|X).

The confusion of of OOD samples Dtest with inlier classes Cin, the CLP is then

CLPcin(Dtest) = log

(
1

|Dtest| ∑
x∈Dtest

∑
k∈Cin

ck(x).

)

A high CLP score indicates that test samples are near-OOD, so hard to separate from

the original data for the classifier, a low CLP score indicates far-OOD samples, or an easier
task.
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MMD

The Maximum Mean Discrepancy (MMD) is a measure of statistical distance between two

datasets, here between the ID and the OOD datasets. The MMD is negatively correlated

with the detection performance, and hence can be used to determine the difficulty of a

task in the OODD domain, where there are few standardized benchmarks.

The MMD is calculated using a kernel function on the embeddings of the images, with

a high MMD indicating low intra-class distances (first two sums of Equation 4.1) and

high inter-class distances between in-distribution (ID) and OOD samples. In this study,

the MMD is calculated using the exponential of the squared Euclidean distance between

image embeddings, and the embeddings are obtained using the Clip model.

Formally, given two image sets, V = {v1, . . . , vm} and W = {w1, . . . , wm} and a kernel

function k(., .), the MMD between V and W is defined as:

MMD(V, W) =
1
(m

2 )
∑
i ̸=j

k(vi, vj) +
1
(m

2 )
∑
i ̸=j

k(wi, wj)−
1
(m

2 )
∑
i ̸=j

k(vi, wj) (4.1)

with k(x, x′) = exp
(
− ||x−x′||22

2σ2

)
, as also used in related work [56, 91].

The scores are calculated based on the Clip embeddings of each image. A high MMD in-

dicates that intra-class distances (first two summands of Equation 4.1) are low compared

to the inter-class distance (last summand of Equation 4.1), which means ID and OOD are

harder to distinguish and vice versa in OOD detection.

Openness

The openness measures the difficulty of an OOD detection task by comparing the number

of seen classes in ratio to the unseen classes [84]. In the original formulation, there is a

separation between the number of ID train classes Ntrain and the number of ID target

classes Ntarget when testing. Ntest is the total number of classes. Formally, openness is

defined as follows:

openness = (1 −
√

2 × Ntrain

Ntest + Ntarget
)× 100

As there is no training, so no training classes, in Z-OOD detection and we do not ex-

periment with different openness settings, Ntrain is always equal to Ntarget. The openness

is negatively correlated to the OOD detection performance. A higher openness means

a higher proportion of unseen classes tested against the ID classes, which increases the

likelihood that an OOD sample is similar to an ID class.

The openness does not account for the number of classes in the OOD detection and not

for any other property of a classification task, such as semantic similarity of classes or

similarity of ID and OOD. Also, it is a strictly artificial measure, as in real-world scenar-

ios there cannot be a number of target classes. Thus, it is not reliable as an indicator of

the difficulty of an OOD detection task [104] and kept constant.
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4.3. Model Details

This section describes the model architectures for OOD detection and provides the train-

ing details for selected models and the domain adaption methods used to increase the

performance of these models.

4.3.1. Clip

The Clip model used in this work is a combination of a vision encoder and a text encoder.

The vision encoder is based on the "ViT-B/32" model, which is a base variant of the vision

transformer that can be run on consumer GPUs with 12 GB RAM. The patch size for

tokenizing the images is 32, which balances the trade-off between preserving details and

the number of tokens to process. The images are resized and centre cropped to match

the input resolution specified in Table 4.3. This specific vision encoder is chosen for its

compatibility with hardware restrictions and for comparability to related work.

The text encoder is a Transformer that operates on a vocabulary size of 49,152, using

lower-cased byte pair encoding [85] and a maximum sequence length of 76. The text

sequences are bracketed with a start token "[SOS]" and an end token "[EOS]". The repre-

sentation of the text is obtained from the activation of the highest layer of the Transformer

at the [EOS] token, as described in the original publication [74].

Model Embedding Dimension Input Resolution V - Layers Patch Size Tokens T- Layers T - Heads
ViT-B/32 512 224 12 32 49 12 8

ViT-L/16@336 768 336 24 16 196 12 12

Table 4.3.: Clip-ViT hyperparameters. "V" stands for Vision Encoder [20] model, "T" for
the Text Encoder of Clip [74].

4.3.2. Baseline

As a baseline method, an adapted version of the acrshortmsp [36] is adopted. This ap-

proach involves training a logistic regression classifier on the in-distribution (ID) data

and using the maximum class probability as the prediction. The logistic regression is im-

plemented using the L-BFGS solver from the scikit-learn library [71], with a maximum of

1,000 iterations. The L2 regularization strength is determined by evaluating 96 logarith-

mically spaced values in the range from 10−6 to 106.

We also compared the logistic regression with a fully connected linear classification head

trained with Adam [45] optimizer and multiple hyperparameter settings for 1000 epochs

but we found the performance of the logistic regression is on average better than the lin-

ear classification head, even with many hyperparameter settings. This holds for both,

the classification accuracy on the OOD detection performance. See Appendix A.1 for full

results. This also holds for the benchmark used to compare to the fine-tuned OOD detec-

tion models, where we train the classifier on the features of the ViT-L/14@336px vision

encoder.
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4.3.3. MCM

The methodology for MCM [65] involves the use of a pre-trained Clip model, as described

in Section 4.3.1. The base temperature value τ is set to 1.0, as recommended in the original

publication [65] for the main experiments. An deeper look on the large-scale experiments

on the influence of τ will be provided.

4.3.4. ZOC

For ZOC [21], we also use the pre-trained Clip model described in Section 4.3.1. The text

decoder used is from BERT large [17] with 24 Transformer layers and a hidden size of

1024. During inference, candidate labels are selected from the top 35 levels of annota-

tions, with a maximum of 77 iterations. The seen labels are filtered from the candidate

labels, but stopwords are not removed. In order to ensure comparability with the original

publication [21], the recommended training method for the decoder is followed, although

alternative methods exist. In a recently published work [65], the method is used with

GPT-2 [75] as initial weights, which is not further investigated here. The temperature pa-

rameter for zero-shot classification is set to 0.01, as suggested in the original publication

[21]. Additional insights into the influence of τ on ZOC will also be provided.

From all seen labels Ys and generated labels Yu we generate zero-shot labels with the

recommended template "This is a photo of a {TOKEN}", which is very similar to the zero-

shot template from Clip [74]. We define the OOD detection confidence score as

S(i) = 1 − ∑
y∈Ys

P(y|i),

the accumulative sum of the probability of Yu (see Chapter 2 for further details).

Training Details

The only part of the model that needs to be trained is the DecoderTEXT. Theoretically, this

model can be considered a foundation model [8], as it is not specifically trained for this

task or specific datasets (hence ZOC claimes to be a zero-shot method). Such a model is,

in contrast to Clip not easily online available with training similar to the original publi-

cation [21]. Thus, to ensure comparability, we decide to train it following the described

method.

The text encoder is pre-trained on the BBC extreme dataset [66] and is available on the

Hugging Face platform2 [77].

The fine-tuning process is performed using the MS-COCO 2017 dataset [57], which is

commonly used for training image captions. The ViT-B/32 model is used as the image

feature generator. The training is performed using the teacher-forcing method [103] and

the Adam optimizer [45] with a constant learning rate of 10−5 for 25 epochs. The training

2www.huggingface.org

www.huggingface.org
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and validation sets are based on the officially released data splits for the MS-COCO 2017

release [57]. The model after the iteration with the lowest loss on the validation split is

used as final model the experiments.

4.3.5. Adapter

This subsection explaines the model and training details of the utilized TIP-Adapters

[111].

Model Details

The adapters used in this study, TIP-Adapter, are identical to those used in the publica-

tion by Zhang et al. [111] The adapter stores knowledge from a few-shot training set in

a cache model. The experiments are conducted with two types of cache models: either

a cache model with no trainable parameters constructed from the training data (further

referred to as TIP) or a trainable cache model with weights initialized from the training

data, called TIP-f (TIP-fine-tuned). The fine-tuned version is a fully connected layer with

the size of the cache model and uses the generated features as initial weights for faster

domain adaption [111]. For a more detailed explanation of the cache model (see Chapter

2. The size of the cache model is defined by the number of classes (N), the number of im-

ages per dataset (K), and the dimension of the vision encoder (C) as dimcache = NK × C.

For K = 16 and C = 512, the output size of the ViT-B/32, the number of trainable pa-

rameters per dataset ranges from 16 × 512 × 10 = 81, 920 (for 10 classes, the minimum

number of classes in all datasets) to 16 × 512 × 200 = 1, 638, 400 (for TinyImagenet’s 200

classes), which is relatively small compared to the 87 million parameters in the ViT-B/32

model. The adapter is trained on a maximum of 200 × 16 = 3, 200 images. K = 16 is se-

lected as it is considered few-shot learning [112, 26, 111] and thus still close to the original

zero-shot setting.

Training Details

The cache model is built using the few-shot training data and 10 augmentation epochs.

In each of these epochs, a random part from each image is cropped and resized to the

input shape of the Clip vision encoder. The cropped parts are 50 − 100% of the original

image. Afterwards, each image is randomly flipped.

For the TIP-Adapter-F, AdamW [61] is chosen as the optimizer with a learning rate of

10−3 and the stabilizing parameter ϵ = 10−4. The training runs for 20 epochs, and the

model with the best accuracy on a held-out validation set is selected as the best model. A

hyperparameter search for the α and β is conducted on the same held-out validation set.

All combinations of ten evenly spaced numbers over the interval [0.1, 10] are selected,

resulting in 100 different combinations. Initially, both values are set to 1.0.
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4.3.6. Prompt Engineering

Prompt engineering and prompt tuning play a significant role in closed-world accuracy,

as reported in previous studies [112, 74]. Despite evidence that different prompts can

have a significant impact on closed-world accuracy, the influence of prompts on zero-

shot out-of-distribution detection performance is not as pronounced [65]. This can be

attributed to the possibility that using the same prompt for every image shifts the images

in the same direction, which can alter the prediction of zero-shot classifiers that rely on

distance metrics such as cosine similarity. However, a threshold-based metric, such as

AUROC, is less affected by identical shifts. Further experiments are needed to examine

this hypothesis but are not within the scope of this study. Therefore, the prompt "This is

a photo of a TOKEN" was selected for all experiments.

4.4. Optimization of Zero-Shot Out-of-Distribution Detection

Methods

In this section, we delineate the methodology employed for tailoring the Z-OOD detec-

tion techniques to various domains. Initially, we expound on the utilization of adapters

in Clip image categorization, followed by the integration of the approach into OOD de-

tection mechanisms. To the best of our knowledge, there is no adaptation of the proposed

Z-OOD detection techniques for a few-shot configuration. The premise of this concept is

grounded in the substantiated correlation between enhanced closed-world accuracy and

the OOD detection score [96], as well as the research on few-shot domain adaptation for

Clip [74] image classification [111].

4.4.1. Domain Adaption for Image Classification

For comprehensive information on the construction of the cache model, which serves as a

means to query the TIP-logits, refer to Chapters 2 and 4.3. Moreover, we provide the algo-

rithm for implementing the TIP-Adapter in Figure 2 in the form of pseudocode. Querying

the pre-constructed cache model with a novel, unobserved image essentially generates a

similarity matrix between the query image and the k-shot training set, exhibiting the

same dimensions as the Clip zero-shot predictions. Subsequently, upon acquiring these

cache values and the affinity (hereinafter referred to as TIP knowledge), this knowledge is

combined with the predictions from the pre-trained Clip model (Clip knowledge) through

a residual connection [33]. This approach facilitates the concurrent exploitation of knowl-

edge derived from the few-shot cache model and the pre-trained Clip model [111].
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Algorithm 2 Algorithm used to obtain a class prediction using TIP-Adapter [111]

Require: k-shot cache model (tip_cache_model)
1: # query clip & tip knowledge
2: clip_zeroshot_logits = clip_zeroshot(image, labels)
3: cache_values, affinity = tip_cache_model(image)
4: alpha, beta = 1.0, 1.0
5: # create the tip logits for classification
6: cache_logits = ((-1) * (beta - beta * affinity)).exp() @ cache_values
7: tip_logits = clip_zeroshot_logits + cache_logits * alpha
8: softmax_scores = softmax(tip_logits)
9: score, class_prediction = get_top_one_prediction(softmax_scores)

4.4.2. Domain Adaption for Clip-based Out-of-Distribution Detection

The described Z-OOD detection methodologies share a common trait: the determination

of whether an image is ID or OOD is contingent upon the classifier’s confidence. Theoret-

ically, this confidence, in the context of MCM [65], is the proximity3 of the representation

of the nearest known class to the image in comparison to all other similarities (i.e., the

maximum softmax score). For ZOC, the ratio of the cumulative probabilities of all gen-

erated labels is compared to the known classes, with this accumulation also interpretable

as an additional label.

The unscaled softmax scores procured by Clip’s zero-shot classifier exhibit high simi-

larity and are nearly uniformly distributed. This similarity arises from two factors: the

known outcome of Clip’s Contrastive Training method [102, 101] and the high-dimensional

feature space of the embeddings (512 for ViT-B/32), as uniformly distributed points in a

high-dimensional sphere, tend to be equidistant [98]. In the literature and officially re-

leased code snippets4, temperature scaling with τ = 0.01 is applied, which enhances the

classifier’s confidence, as τ → 0 converges the probability to a point mass. It should be

noted that, firstly, this scaling does not alter classification performance but significantly

impacts Z-OOD detection [65], and secondly, the direct interpretation of softmax scores

as confidence is met with scepticism [36, 32].

The incorporation of adapters amplifies the logit score for similar images from the

constructed cache model, thereby increasing the softmax score of the label corresponding

to these akin training images. No spike in similarity is anticipated if all images from the

training set are approximately equidistant, which is more probable for an OOD sample.

Intuitively, this implies that identifying a threshold for the ID/OOD separation becomes

more feasible, as the closed-world classifier’s confidence is elevated [111].

This effect mirrors the temperature scaling in MCM [65] for far-OOD experiments (i.e.,

reducing the uniformity of zero-shot predictions). However, the distinction lies in the fact

that utilizing adapters not only escalates the softmax scores but also potentially alters the

3Proximity here signifies the cosine similarity between image features and class label features in Clip’s
embedding space

4e.g., www.github.com/openai/CLIP, www.github.com/sesmae/ZOC

www.github.com/openai/CLIP
www.github.com/sesmae/ZOC
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model’s predictions. For OOD detection, this is inconsequential, as all known labels are

ID; thus, we are interested in high confidence scores for known classes when an input

image belongs to one of these classes (i.e., the image is an ID sample). By merging a

well-calibrated classifier with domain knowledge from the cache model, we anticipate

enhanced OOD detection performance. In addition to this rationale, empirical evidence

[96] has demonstrated that increased closed-world accuracy translates to an improved

OOD detection score. We deduce that domain adaptation with TIP-Adapter holds a high

likelihood of augmenting the OOD detection performance in comparison to zero-shot

MSP / MCM.

The explication of this chosen method also accommodates other approaches for few-

shot domain adaptation. However, as demonstrated in Chapter 2 and the training details

in Section 4.3, the caption generator for ZOC is designed to predict captions based on

the output of the original Clip vision encoder. The residual connection in TIP-Adapter

(Line 7 in Algorithm 2) enables the utilization of the original caption generator, as the

output remains unaltered. Employing other domain adaptation techniques necessitates

retraining the caption generator or using a second Clip model to produce unchanged

image features. While both options are viable, they invariably increase the effort required

to implement them, potentially diminishing one of the advantages of Z-OOD detection.

Consequently, further investigation into these alternatives was not pursued.

Incorporating a trained TIP-Adapter in MCM mirrors its use in closed-world classifica-

tion (see Part 4.4.1). However, integrating TIP-Adapter into ZOC, which we designate as

T-ZOC or with "-f" appended to indicate the fine-tuned version of TIP-Adapters, utilizing

the same residual connection is not feasible, as there are no cache values for the gener-

ated labels. As a result, we pad the adapter weights ("tip logits" in Algorithm 2) with the

neutral element in the softmax function. We recognize that appending the non-negative

TIP similarities increases the mass for the ID probability; nevertheless, this alteration is

unlikely to negatively affect the threshold-based AUROC.
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5. Experimental Analysis of Zero-Shot
Out-of-Distribution Detection

This chapter delves into the generalization ability and robustness of Zero-Shot Out-of-

Distribution Detection (Z-OOD detection) methods in detecting images not originating

from the initial image distribution, addressing the first and second research questions.

Given the infinite possibilities of images and classes, proving the general applicability

of OOD detection for images in an open-ended task is impossible. To address this chal-

lenge, we select diverse datasets and create ID / OOD setups to test the applicability of

these methods broadly and at the highest level of difficulty. Image corruptions are also

introduced to further increase the difficulty, a method not yet tested on Z-OOD detection.

The experiments to answer research questions 1 and 2 are divided into three parts:

5.1 Exploratory search for far-OOD: Assessing the performance of Z-OOD detection

methods on a large set of 132 far-OOD combinations for OOD detection.

5.2 Exploratory search for near-OOD: Evaluating the performance of Z-OOD detec-

tion methods on more difficult near-OOD detection setups, comparing the perfor-

mance to a fine-tuned method across 12 different ID/OOD combinations with vary-

ing methods and hyperparameters.

5.3 Exploratory search for the lower bound of Zero-Shot Out-of-Distribution Detec-
tion: Determining the point at which Z-OOD detection methods no longer work1

on 15 different setups by progressively corrupting the image with increasing sever-

ity.

These experiments aim to provide a comprehensive understanding of Z-OOD detec-

tion methods, which is left open since previous publications [21, 65] conduct specific tests

on a smaller scale and focused more on a comparison to other OOD detection methods.

This gap shall be closed. Also, this chapter provides benchmarks for further experiments

in Chapter 6.

The results are compared to a traditional method and metrics used to measure difficulty

in standard OOD detection are assessed for their suitability in determining the difficulty

of Z-OOD detection. Additionally, the experiments will determine if one Z-OOD detec-

tion method is superior to the other. It will also become clear whether one of the two

1No longer works means that it has an AUROC of 0.5, which is achieved by an uninformed guesser
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Z-OOD detection is superior to the other, or whether, as the previous publications [21,

65] suggests, no method is always superior to the other.

Precisely, we test all possible combinations of ID / OOD of the datasets among each

other, which corresponds to a rather easy task (far-OOD), as well as a hard OOD detec-

tion with each dataset, namely by splitting the classes into 40% ID and 60% OOD. Thus

for twelve datasets, we test 12 × 11 = 132 far-OOD combinations, and 12 for near-OOD.

The large number of combinations can be tested due to MCM’s minimal training and

adjustments required, along with its short inference time. However, ZOC’s higher in-

ference time limits the scale of experiments. The focus is on the challenging near-OOD

experiments, where both ZOC and MCM will be tested. For accessing the robustness of

the methods, three corruptions with three severities on 5 selected datasets, so 45 different

combinations will be investigated.

MMD and the CLP are measured for all combinations. In addition, we provide the

Zero-Shot Accuracy (ZSA) of the ID data set. The AUROC score is primarily used as a

performance measure. For MCM, we test the temperature values τ ∈ {0.01, 1.0, 100.0}
where τ = 1.0 corresponds to the recommendation from the paper [65] and τ = 0.01

corresponds to the MCM baseline used in [21], where it is called MSP+Clip. τ = 100 is

used to test a less confident classifier.

Finally, we compare the above methods with a fine-tuned classifier that uses all training

data of the respective dataset to adapt to the distribution. We compare the methods to a

fine-tuned logistic regression classifier using maximum class probability as a confidence

value for the AUROC score, serving as a proxy for supervised methods.

Once the general applicability of the methodology on all combinations has been in-

vestigated, we will look for the lower limit of Z-OOD detection with a smaller number

of data sets. A maximum of five data sets and three corruptions, Gaussian Blur, Snow

and Brightness, are selected and applied to images with increasing severity. The Out-of-

Distribution Detection itself will again be in the near-OOD setting. It will be measured

how hard the task becomes in ZSA, CLP and MMD. MCM and ZOC will be compared in

this setup.

5.1. Exploratory Search for Far-OOD

Setup

In this study, the ViT-B/32 Clip model is employed for the current and subsequent ex-

periments. We examine the MCM methodology, wherein features are generated for each

image using the vision encoder of the Clip model. The last layer’s output, which pro-

duces a 512-dimensional feature vector, is utilized for this purpose. Each known label

(i.e., ID label) is inserted into the chosen template "This is a photo of a TOKEN." For ex-

ample, the label "dog" transforms into "This is a photo of a dog" and serves as the label
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Figure 5.1.: Comparison of different MCM strategies for far-OOD. The y-axis shows mean
AUROC scores over the 11 runs with the ID dataset shown on the x-axis. MSP
with two temperatures is compared to MLS. The dotted line shows the worst
possible outcome, an uninformed guesser. The lines do not indicate a depen-
dency between plots, but are used to improve the comparability between the
methods

representation. The text encoder of the selected Clip model then converts this sentence

into a 512-dimensional vector. The token at the [EOS] position of the last layer is em-

ployed as the feature representation (see Section 4.3.1 for more details of the sentence

representations).

Subsequently, the cosine similarity between an image and each label is calculated. The

output (logits) serves as the basis for determining whether an image is ID or OOD, i.e. the

similarity is over a task-specific threshold or below. This output is utilized directly to as-

certain the maximum AUROC score (Maximum Logit Score (MLS)) and is converted into

probabilities using the softmax function, which is then employed as the prediction (Max-

imum Softmax Probability). The label for OOD samples is 1, while that for ID samples is

0. Temperature scaling is applied to both methodologies, with a scale of 1.0 correspond-

ing to the original score, 0.01 to a classifier that sharpens the softmax distribution (i.e.,

assigns higher probabilities to the most confident prediction), and 100.0, which produces

less certain predictions. All results are reported from experiments conducted on the test

split of the respective datasets.

Results

Figure 5.1 shows the mean AUROCs for different methods and temperatures in MCM

[65]. Each point represents the ID dataset. The AUROC is the average of the scores of this

dataset as ID and each other dataset as OOD. This means that it is not directly observable

how well one dataset works with one another in this graphic. It is used as an indicator
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ID Dataset AUROC >99%
Caltech CUB 11 (100%)
Stanford Cars 11 (100%)
Flowers102 10 (90.9%)
GTSRB 10 (90.9%)
Fashion MNIST 3 (27.3%)
CIFAR10 1 (9.1%)
DTD 1 (9.1%)

(a) Grouped by ID datset

OOD Dataset AUROC >99%
Flowers102 5 (45.5%)
Stanford Cars 5 (45.5%)
Caltech CUB 4 (36.4%)
CIFAR100 4 (36.4%)
DTD 4 (36.4%)
Fashion MNIST 4 (36.4%)
SVHN 4 (36.4%)
Caltech101 3 (27.3%)
CIFAR10 3 (27.3%)
GTSRB 3 (27.3%)

(b) Grouped by OOD Dataset

Table 5.1.: The number of ID / OOD combinations, where the AUROC is >99% which are
in sum 47 of 132 (35%) combinations. In brackets, the share of the total number
of experiments is displayed. MCM is used with MLS and temperature τ = 1.0

to see which of the temperatures and methods performs best. It turns out that MLS has

a higher score on average by over 10 points (0.89 vs < 0.78) than the best MSP setting

with τ = 1.0. Higher temperatures in MCM (τ = 100) do not improve or even change

the results, thus no higher temperatures are included.

Furthermore, there is no data set where the methodology does not work (i.e. is not

better than randomly guessing) on average. A more detailed analysis shows that only

the combination TinyImagenet - Fashion MNIST is very close to random guessing with

AUROC = 0.482. There are also five combinations that are worse than 0.5. There is

no trend for a dataset, the combinations include CIFAR10, Caltech CUB, GTSRB, SVHN,

MNIST and TinyImagenet.

Metric r ↑
MMD 0.383

CLP −0.046

ID ZSA −0.086

OOD ZSA 0.114
Table 5.2.: Pearson correlation ma-

trix for far-OOD

The following statements from now on refer to

MCM with MLS. Table 5.1 shows that 35% of the

combinations achieve over 99% AUROC score. Es-

pecially the ID data sets Caltech CUB and Stanford

Cars always score above 99%. Flowers102 and GT-

SRB still score over 90% of the time (Table 5.1a). Ta-

ble 5.1b highlights the results from the perspective

of the OOD dataset. Flowers102 and Stanford Cars

are perfectly detected as OOD five times. No other

dataset is more often perfectly detected. Over 50%

of the combinations score better than 95% (67/132). Only one combination (SVHN -

Stanford Cars) was perfectly solved. The measured metrics for the experiments are in the

following ranges: MMD ∈ [0.015; 0.680], CLP ∈ [−3.073;−0.049], ZSA ∈ [0.250; 0.898].

Table 5.2 displays the correlations to the AUROC score. Across all experiments, there is

no higher absolute correlation than r = 0.383.
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Interpretation

In this investigation of 12 datasets encompassing 132 different far-OOD combinations,

the methodology demonstrated its ability to perform significantly better than random

guessing in the majority of cases. In fact, it achieved near-perfect results in 35% of the

instances. Based on these experiments, it can be concluded that Z-OOD detection is effec-

tive in most combinations and has minimal limitations (0.008% with no informed guess).

The recommendations from the MCM publication [65] to utilize MLS instead of MSP

and apply τ = 1 appear to be highly beneficial, as they yield the best average results.

This is especially evident for the GTSRB dataset, where the difference exceeds 40% on

average. AUROCs below 0.50 are challenging to interpret, indicating that the classifier

misinterprets the data. In practice, these predictions are often simply reversed, so the

absolute difference to 0.5 is assessed. As there are only four instances, no further analysis

is conducted, and the predictions are reported as they occur.

A detailed examination of the results reveals that the semantic shift datasets [96] are

relatively easy to solve in all combinations. In other words, if all classes in the ID share

high-level features (e.g., only birds, cars, flowers, or street signs), perfect recognition is

practically achieved with this method, provided that the OOD dataset exhibits a semantic

shift.

In conclusion, Z-OOD detection consistently outperforms an uninformed guesser in

far-OOD tasks and virtually solves the tasks when a strong semantic shift is present.

The selected metrics, however, are not suitable for measuring far-OOD difficulty. In this

scenario, a (human) analysis of the semantic classes or contents is likely more effective,

as semantic shifts can be easily detected. For far-OOD detection it can be said that these

methods do generalize well, but not always.

5.2. Exploratory Search for Near-OOD

Setup

The foundational setup remains identical to the one described in Section 5.1. Further-

more, ZOC [21] is incorporated and compared to MCM [65] and a fine-tuned baseline.

ZOC is trained according to the prescribed guidelines and employed for inference as

delineated in Section 4.3. The generated logits are converted into softmax probabilities

using the temperature τ = 0.01, which is the recommended value for ZOC. The sum of

the probabilities of all generated labels will be used as the prediction score.

For training the fine-tuned OOD detection, the training set of the dataset is utilized. The

validation split is employed to search for the optimal hyperparameter settings.

In the near-OOD setup, twelve different datasets are employed: Each dataset is divided

into ID and OOD, establishing a near-OOD scenario. 40% of the classes of a dataset are
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Figure 5.2.: Comparison of different MCM strategies for near-OOD. AUROCs are mean
AUROC score averaged over 10 runs. For each run, the dataset classes are
randomly split into 40% ID and 60% OOD classes. The shadows indicate the
standard deviation. The dotted line shows the worst possible outcome, an
uninformed guesser. The lines do not indicate a dependency between plots
but are used to improve the comparability between the methods

designated as ID, while the remaining 60% are considered OOD. This process is repeated

10 times, and the average values, accompanied by the standard deviation, are reported.

All reported results are derived from experiments conducted with the test split of each

dataset.

Results

First, the comparison of the MCM strategies was carried out. Figure 5.2 displays the re-

sults. The differences between the individual strategies are 0.03 points (0.69 − 0.72) and

have a Pearson correlation coefficient of r > 0.95. The average standard deviation is

nearly identical at 0.037.

The comparison of the methodologies is shown in Figure 5.3. It shows that ZOC per-

forms better on average than MCM with one point. These results also correlate with

r = 0.98. The largest difference is 0.05 points (Fashion MNIST). The methodology has

AUROCs <= 0.55 on the GTSRB, MNIST and SVHN datasets. The CIFAR10 dataset

achieves the best score for the zero-shot methods with AUROC > 0.9 for both method-

ologies.

ZOC has the highest standard deviation of all methodologies with 0.048, the fine-tuned

linear regression 0.033 and MCM 0.032. This is particularly evident in the GTSRB (std

= 0.110) and MNIST (std = 0.133). Thus, there are several runs with those datasets,
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Figure 5.3.: Comparison of OOD detection strategies for near-OOD. AUROCs are mean
AUROC scores averaged over 10 runs. For each run, the dataset classes are
randomly split into 40% ID and 60% OOD classes. The shadows indicate the
standard deviation. The dotted line shows the worst possible outcome, an
uninformed guesser. The lines do not indicate a dependency between plots
but are used to improve the comparability between the methods

AUROC ↑
MCM 0.717 ± 0.032

ZOC 0.727 ± 0.048

Fine-Tuned 0.818 ± 0.033

Table 5.3.: Near-OOD results in
AUROC score with the
standard deviation

where the AUROC is not better than the random

guesser. The fine-tuned baseline has an average

AUROC of 0.818. The two Z-OOD detection score

0.727 (ZOC) and 0.717 (MCM). Per dataset, the AU-

ROC of the baseline is higher or on par on every

dataset except Fashion MNIST. The highest differ-

ence is on the MNIST dataset, with a difference of

0.402. Looking only at the results on which ZOC

performed significantly better than 0.5, the fine-

tuned classifier has a higher AUROC by 0.350.

The correlation of the selected metrics to the AUROC is higher than in Section 5.1. CLP

has a Pearson correlation coefficient r = −0.94, ZSA r = 0.93 and MMD r = 0.71. The

correlations of CLP and ZSA are visualized in Figure 5.4.

Interpretation

In the near-OOD setup, the large disparities observed with temperature scaling in the

far-OOD setup are not present. Instead, all values exhibit nearly identical performance.

Moreover, there is only a minor difference between MLS and MSP. Utilizing the classifier

with τ = 1.0 continues to yield the best average results, corroborating the conclusions

from MCM.

In the near-OOD setting, the two Z-OOD detection methods demonstrate highly sim-
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The lines are fitted using least-mean-square regression and only for orienta-
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ilar performance. Although ZOC performs marginally better on average, it exhibits a

notably higher standard deviation in the results. The findings from MCM, where MSP

outperformed ZOC in specific experiments, are not substantiated in the near-OOD setup.

Barring a few exceptions (Fashion MNIST, CIFAR10), a fine-tuned methodology proves

to be significantly superior and more reliable, as it detects all outliers considerably better

than a random guesser could. The method has also the lowest standard deviation, i.e. it

performs more similar independent of the ID/OOD split. The high standard deviation

of the other methods indicates, that there are some split combinations, where the outlier

detection is harder for them. It is worth noting that up to 110,000 (TinyImagenet) training

samples were used in these cases to achieve these results. Excluding the exceptionally

poor results of ZOC on the three datasets where it fails to reliably detect outliers, the

difference is minimal. The selected metrics exhibit strong (MMD) to very strong (CLP,

ZSA) correlations for the zero-shot methodologies, suggesting their utility for predicting

the difficulty of an OOD detection task.

Additional experiments investigating the influence of temperature are presented in

Appendix A.3. The results indicate that while temperature has a significant impact on

performance in far-OOD experiments [65], its impact is considerably smaller in near-

OOD experiments. For very low-temperature values (τ < 0.01), the performance de-

creases by approximately 2 points but stabilizes thereafter. For ZOC, the default setting

of τ = 0.01 works best. The AUROC declines to 0.5 as the temperature increases.

Besides the temperature scaling insides, the Appendix also shows insights into the usage

of prompts in Figure A.4: Using the default prompt, as stated in Chapter 4 in combination

with MLS achieves the best results for all combinations.
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5.3. Exploratory Search on Robustness of Zero-Shot OOD

detection

Setup

The setup for all models and runs remains consistent with the two previous sections.

ZOC and MCM are evaluated on a selected set of five datasets (Caltech101, Caltech CUB,

Flowers102, GRSRB, Stanford Cars) and three corruptions each (Gaussian Blur, Bright-

ness, Snow). These corruptions are applied at three increasing severity levels (1, 3, 5),

utilizing the severity levels from the original publication [35]. Due to computational con-

straints, ZOC is executed for only five different splits in each setting. In total, 45 distinct

setups are examined and compared to the 12 non-corrupted ZOC baselines from Section

5.2.

Results

Figure 5.6 shows the influence of the corruptions on the difficulty metrics with increasing

severity. All corruptions do increase the difficulty, as evidenced by the metrics moving in

the direction that is considered more challenging in the literature [56, 104, 96].

The ZSA is reduced by 67% on average (0.570 → 0.184) from the normal image to the

highest corruption. The MMD decreases by 55% (0.011 → 0.005), and CLP decreases by

32% (−1.564 → −1.237). The AUROCS of the two MCM strategies are very similar (MLS:

AUROC = 0.670, MSP AUROC = 0.669 and a Pearson correlation r = 0.98). This cor-

relation remains at the same level when comparing both strategies grouping by dataset,

by corruption and by severity. Therefore, only MLS is used for further comparisons.

Figure 5.5 demonstrates the decline in AUROC scores as the severity of corruptions in-

creases, reaching the lowest point at severity level 5 for all combinations. The bottom

graph reveals that the corruptions cause a consistent deterioration of the average AU-

ROC scores across all datasets, with Gaussian Blur having the lowest AUROC value of

0.574. The top graph of Figure 5.5 displays, when grouped by datasets, that the datasets

with poorer performance initially experience smaller declines. In contrast, Caltech101,

which exhibits the highest score without corruption, maintains the highest score at every

level while increasing its distance from other combinations (0.037 to 0.161). GTSRB, the

poorest-performing dataset, does not exhibit significant improvement beyond the ran-

dom guesser (AUROC = 0.5) after the application of any corruption except for Bright-

ness. The AUROC score ranges between 0.515 and 0.567, with a standard deviation of

0.06.

MCM and ZOC are correlated with r = 0.975. ZOC has the lowest scores on the same

9 combinations as MLS. The AUROC scores differ by 0.04 (ZOC: 0.685, MLS: 0.681) and

both have a standard deviation of 0.04.

All metrics continue to show a correlation with the AUROC score. ZSA has the lowest
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Figure 5.5.: The influence of the corruptions on the AUROC scores on the datasets
grouped by dataset (top) and corruption (bottom) (MCM). Both graphs show
the linear decline on the AUROC score with increasing corruption severity

correlation at r = 0.41, MMD has a correlation of r = 0.72, and CLP has the highest

absolute correlation at r = −0.92. When considering only the 9 combinations that do not

work, the ZSA correlation increases to r = 0.57, while the correlations of MMD and CLP

decrease to r = 0.03. There is no clear lower limit at which Z-OOD detection no longer

works. All correlations are almost identical for ZOC (ZSA: r = 0.32, MMD: r = 0.71,

CLP: r = −0.92).

Interpretation

The incorporation of corruptions has heightened the difficulty of the tasks, which is evi-

dent in all assessed metrics. Thus, corruptions were useful to access the robustness of the

methods, as intended to answer the second research question.

On one hand, this reveals that the methodologies, provided they function properly (ex-

cluding the datasets that failed in Section 5.2), exhibit robustness to mild and moderate

corruptions. Gaussian Blur had the most substantial impact, while Brightness had the

least. Upon examining examples of corruptions, these findings align with human per-

ception. Particularly for small images, Gaussian Blur nearly distorts them to the point

of being unrecognizable. In contrast, Brightness corruption generally retains high-level

features, mainly reducing colour and contrast.

With the exception of GTSRB, the majority of the combinations are solvable by the

tested methodologies. This suggests that there is robustness against corruptions. Ad-

ditionally, the ability to handle increased difficulties, as measured by CLP and MMD,

demonstrates robustness in this aspect as well. The results do not provide a clear in-
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Figure 5.6.: The influence of corruption on the difficulty metrics. Each graphic is cap-
tioned with the metric displayed. The arrow indicates, in which direction the
difficulty of a task theoretically increases

dication of which method is more robust or better suited, as the marginally superior

performance of ZOC is counterbalanced by a higher standard deviation.

The gathered metrics maintain a strong correlation, making them appropriate for esti-

mating task difficulty. However, an exact lower threshold at which the Z-OOD detection

methods cease to function could not be determined.

5.4. Discussion

The discussion examines the main findings and critically examines the methodology

used, highlighting potential shortcomings. This section concludes with ideas and sug-

gestions for future work.

5.4.1. Findings

On average, the Z-OOD detection is proficient at reliably detecting far-OOD outliers.

However, there are critical systems where even better detection scores may be required,

thus more sophisticated solutions can be necessary, e.g. for self-driving cars. Particularly

when there is a strong semantic shift, outliers can be detected almost perfectly. This

occurs when the ID images are highly similar, as with the Flowers102 dataset. The results

for TinyImagenet are a notable exception, as it consistently achieves an AUROC of just

0.8 in all experiments, indicating a clear potential for improvement. This dataset consists

of 200 partly disparate classes, which increases the probability of semantic overlaps with

other datasets, e.g it is likely that the dataset contains images of cars, which are also a

class in the Stanford Cars dataset or a bird class from the Caltech CUB class. This can

also influence the results, as these cases can be wrong labelled inliers.

Consequently, many far-OOD methods can be addressed with an untrained method.

It is recommended to perform benchmarks with the TinyImagenet dataset, as there is

significant room for improvement. Nonetheless, the dataset’s diverse classes raise the
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question of whether this is a realistic use-case scenario.

In the chosen near-OOD setting, the results are considerably worse, with no combina-

tion achieving scores above 0.99. The comparison of the two Z-OOD detection methods

reveals minimal differences, prompting the question of whether the overhead of ZOC

(larger architecture, training of the caption generator) is worth it in practice. Training a

caption generator, in particular, is highly resource-intensive.

However, the Z-OOD detection methods can also solve many challenging OOD detec-

tion cases much better than random guessing, but three out of twelve datasets cannot

be solved: MNIST, SVHN, and GTSRB. The first two are highly similar to an OCR task

and also pose significant problems in Clip classification, so it was not unlikely that this

would transfer to OOD detection. For GTSRB, there are no direct indications without

further analysis as to why it does not work, but the classification is already challenging

here. The methods appear to be highly dependent on the Clip classifier, which is also

reflected in the correlation with the ZSA.

The linear baseline is more reliable, as it performs significantly better than random on

every dataset, albeit with training data. It must be acknowledged that Z-OOD detection

is not yet at that level. However, in cases where Z-OOD detection works well, the results

are quite similar.

In the near-OOD setting, the metrics could also be effectively used to determine the dif-

ficulty of the task. Thus, future Z-OOD detection research could utilize these to provide

an estimate of the chosen setting and make the results more interpretable. This aspect

is often overlooked. It has been demonstrated that a carefully calibrated MCM works

almost identically to ZOC, which was not apparent from the two publications, where the

methods are proposed [21, 65].

The limits of Z-OOD detection can be illustrated using corruptions. The correlation of

the metrics with the boundaries once again demonstrates their usefulness in assessing a

task. Unfortunately, it remains unclear how other OOD detection methods perform in

this setting. Nevertheless, both Z-OOD detection methods can still handle many slight

corruptions in images. A strict boundary, when the methods no longer work, was not

found for any of the metrics. CLP appears to be promising, as it has the highest correla-

tion to tasks. The accuracy of the closed-world classifier is also a good indicator, but, as

accuracy is overall more dependent on the number of classes, it is less useful.

5.4.2. Potential Issues and Shortcomings

The chosen near-OOD setting is highly susceptible to chance, as evidenced by the high

standard deviations. This means that the split in which a dataset is divided into ID and

OOD can significantly impact the results, sometimes by over 10%. This reduces the over-
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all significance. Particularly with datasets were outliers are poorly recognized (i.e. close

to an AUROC score 0f 0.5), this means that on some runs, the outliers are not detected

better than by a random guesser. In other words, it cannot be ruled out that datasets close

to the boundary may or may not work after all. This methodology is also very resource-

intensive. For most methods, the entire training must be repeated for each split to avoid

data leakage. For example, training GANs [28], which traditionally takes a long time,

may not be feasible. This was also the reason why there are no comparative values of

fine-tuned methodologies for the far-OOD setting.

Furthermore, both CLP and MMD must be critically examined: First, a direct compar-

ison in related work is only possible if the same Clip model is used. Second, this is only

useful in research, as both MMD and CLP require access to outliers. This is precisely

where the Z-OOD detection methodologies are intended to help. The only metric that

remains is the ZSA, which at least only needs access to training data from the ID distri-

bution.

Regarding the corruptions, it can be argued that the scenario is not directly transferable

to a real world application, as all images were consistently altered with the same corrup-

tions of the same intensity. A mixture of corruptions would better reflect the reality. The

applied temperature scaling can also be viewed as a task-specific adjustment where data

leakage occurs, i.e. instances of the dataset were used to improve the scores, despite

claiming to be a zero-shot method. We have considered them as separate methodologies

and carried them out accordingly. However, a comparison in this context is no longer in

the true zero-shot setting.

The last point pertains more to the methodologies themselves and not to this work: for

ZOC, the term "zero-shot" is interpreted in a way that no specific domain adaptation is

made, which is true. Nevertheless, the caption generator had to be trained with signifi-

cant resource expenditure. It cannot be ruled out that there is data leakage, and the do-

main ends up in the training. This is a general problem with foundation models and will

not be discussed further here. However, to compare both Zero-Shot Out-of-Distribution

Detection methods, we had to conduct training for one.

5.4.3. Future Work

In future work, the methodologies should be tested with images that were not included

in the pre-training of any of the models. Although Foundation Models generalize very

well, there are use cases where, for instance, the classification does not perform effec-

tively. This was evident in this work, such as with the SVHN dataset. Further research

could clarify whether generalization also applies in these cases, shedding light on the

question of data leakage in the methods.



70 5. Experimental Analysis of Zero-Shot Out-of-Distribution Detection

To better assess robustness, a comparison with other methodologies should be con-

ducted in future work. Additionally, mixing corruptions and employing stronger ones

could potentially reveal a limit. This limit could then serve as a benchmark against which

improvements can be measured. The large number of experiments and the comparison

with the original publications highlight that the selection of datasets for ID and OOD

can influence which methodology is considered superior. A set of standard datasets and

setups, as suggested by [96], would address this issue.
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6. Zero-Shot Methods as Basis for Few-Shot
OOD Detection

In this chapter, after examining the generalization capabilities and limits of Zero-Shot

Out-of-Distribution Detection (Z-OOD detection) methodologies, we explore whether

the core idea of these methodologies can be improved to achieve the performance of

methods that have full access to training data. Thus, the third research question is ad-

dressed. The goal is to leverage the Z-OOD detection methods by applying State-of-the-

Art (SOTA) domain adaptation methods to the Clip backbone and investigate if the adap-

tion to a specific domain also transfers to Out-of-Distribution Detection (OOD detection)

performance. This would make these methods more versatile for real-world usage.

The unique selling point of zero-shot methods is that they do not require any data

or domain knowledge in the form of training data or otherwise, apart from semanti-

cally meaningful class names. Therefore, they can achieve impressive results and com-

pete with fine-tuned baselines in many combinations, even in difficult ones. Since the

release of large vision-text models like Clip, there has been significant interest in few-

shot domain adaptation, aiming to improve the performance of a model with as few

data examples as possible, usually for image classification [26, 111, 109, 12]. The TIP-

Adapter architectures [111] stand out, as they have few or no trainable parameters, and

thus bring significant improvements with minimal training effort and very few samples

(<64). The TIP-Adapter methodology is particularly noteworthy because domain knowl-

edge is added to the foundation knowledge of Clip via a residual connection. This means

that the pre-trained Clip model, as used in Section 5, remains unchanged. As a result,

both Z-OOD detection methodologies, MCM and ZOC, can be used with it without ad-

ditional overhead besides the adapter. This would also have been the case for other

adapter architectures for MCM, while the adjustments for ZOC would have been greater

(see Chapter 4.3).

For the adaptations, we follow these steps in this chapter: First, we use TIP-Adapter

[111] to adapt the Clip model to the respective domain (represented by a dataset). We

set the boundary at 16 data points per class of a dataset, which is a number used for

the main results in related works [111, 26]. The adaptability is measured by comparing

the accuracy of the closed-world classifier with and without adaptation. Next, the do-

main adaptation is incorporated into each of the methodologies and tested in a series of

experiments to determine whether this adaptation also transfers to Out-of-Distribution
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Detection. The goal is to improve the results from Section 5.2 using this methodology

and to compare how close it comes to high-performing fine-tuned OODD benchmarks.

In summary, in this chapter, we test domain adaptation with the two adapter models

from TIP-Adapter, TIP and TIP-f. Then, we integrate these adapters into MCM (T-MCM)

and ZOC (T-ZOC) and test their performance on the 12 near-OOD settings from Sec-

tion 5.2. Finally, we compare them with a fine-tuned benchmark. For this purpose, the

methodology of the baseline from Section 5.2 is used, but with the Clip ViT-L/16@336,

the largest and best-performing Clip model [75].

6.1. Few-Shot Domain Adaption

In the following section, few-shot domain adaption for the Clip-based OOD detection

method is investigated. First, domain adaption using TIP-Adapters [111] is applied and

then it will be investigated, whether the adaption transfers and improves the OOD de-

tection.

Setup

As the foundation for all experiments, the ViT-B/32 vision encoder serves as the base

model. Both MCM and ZOC employ the same models and hyperparameters as described

in Chapter 5.

Regarding the TIP and TIP-f approaches, adapters are trained utilizing up to 16 in-

stances from the respective ID training dataset splits, maintaining equal numbers per

class, up to a maximum of 16 instances. In exceptional cases (e.g., Caltech101), fewer

than 16 instances may be used, when there is a class with less than 16 images. For each

class then, the minimum number of instances per class is used. No outlier exposure

is implemented. To generate TIP cache models, 10 iterations of random augmentations

are applied. The TIP-f method trains the cache model weights for 20 epochs, using the

AdamW optimizer [61] with a learning rate of 0.001 and an epsilon value of 10−4. Op-

timal alpha and beta values are determined through a hyperparameter search ranging

from 0.1 to 5. The Out-of-Distribution Detection (OOD detection) results are reported as

AUROC scores. For TIP-adapted ZOC (T-ZOC), besides the summation of OOD label

probabilities, the maximum softmax probability is also examined as a prediction. Each

experimental setup is executed ten times with random ID/OOD splits, and the reported

values represent the averages of these iterations. All 12 datasets are utilized in these

experiments.
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6.1.1. Results

Table 6.1.: Accuracy comparison of different classifying methods, averaged over all
datasets. The Accuracy is displayed in percent. Accuracy is shown in per-
cent. The best method result is highlighted.

Accuracy ↑ Diff to baseline

Zero-Shot 57.4 -
TIP 66.9 9.57
TIP-f 66.7 9.38

Table 6.1 presents the classification outcomes for the 12 datasets utilizing pure zero-

shot learning and two domain adaptation techniques. The highest accuracy is achieved

by TIP at 66.9%, whereas TIP-f demonstrates an accuracy of 66.7%, surpassing the zero-

shot baseline by more than 9 percentage points. The average values for the two adapter

models are quite similar; however, disparities emerge when examining individual re-

sults. TIP without fine-tuning exhibits 11% higher accuracy on Flowers102 and 5.5%

on MNIST. Conversely, the fine-tuned model displays an increase of 6.3 points on GTRSB

and 7.9 on SVHN. The most significant differences are observed between the baseline and

TIP on the MNIST dataset, with a 21.4-point increase (+45%). The largest discrepancy for

TIP-F is evident on GTRSB, with an 18.9-point improvement (+58.4%). The smallest dif-

ferences for the adapters are found on CIFAR10 (TIP-F+0.89 points, 0.9%) and SVHN

(TIP +0.5 points, 0.2%). Comprehensive results are supplied in Appendix A.4.

Applying domain adaption to MCM

Table 6.2 displays the results averaged over datasets. Part 6.2a shows an improvement

of 2.1 points compared to the baseline MCM using T-MCM and 1.2 using T-ZOC-f. In

Table 6.2b, only the results of the datasets with an accuracy improvement of more than

10% due to the adapters are shown. This threshold is selected because it represents a sig-

nificant improvement attributed to domain adaptation, which indicates effective domain

adaptation. The aim is to measure the transfer of successful domain adaptation. There-

fore, minor and negligible improvements are excluded, as no transfer can be concluded

from these results. Here, the difference between the baseline and T-MCM is 6.2 points.

The finetuned adapter version, T-MCM-f is +2.3 compared to the baseline.
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Table 6.2.: Mean AUROC scores for different MCM based OOD detection methods. The
standard deviation notes the mean over the standard deviation from the ten
runs per dataset

AUROC ↑

MCM 0.69 ± 0.0415
T-MCM 0.722 ± 0.035
T-MCM-f 0.713 ± 0.035

(a) All 12 datasets

AUROC ↑

MCM 0.649 ± 0.060
T-MCM 0.711 ± 0.049
T-MCM-f 0.672 ± 0.060

(b) The five datasets with +10% accuracy with
domain adaption

Table 6.3.: Mean AUROC scores for different ZOC based OOD detection methods. The
standard deviation notes the mean over the standard deviations from the ten
runs per dataset

AUROC ↑

ZOC 0.727 ± 0.044
T-ZOC 0.737 ± 0.031
T-ZOC-f 0.733 ± 0.042

(a) All 12 datasets

AUROC ↑

ZOC 0.675 ± 0.071
T-ZOC 0.719 ± 0.038
T-ZOC-f 0.681 ± 0.069

(b) The five datasets with +10% accuracy with
domain adaption

Applying domain adaption to ZOC

T-ZOC and T-ZOC-f both achieve a higher AUROC score than the standard ZOC archi-

tecture. Table 6.3a displays these values. T-ZOC (+1.0) has the highest AUROC. The

finetuned adapter strategies show less improvement (+0.6) but are still higher than the

baseline ZOC. Looking only at the datasets with good domain adaption, the difference

between ZOC and both T-ZOC (+4.4) and T-ZOC-f (+1.6) is higher.

Comparison of different strategies

Figure 6.1 juxtaposes various approaches on datasets that demonstrate notable enhance-

ments (+9.9%) in accuracy attributable to adapters. The comparison reveals that no sin-

gle method consistently outperforms the others. In only one of the five cases (MNIST), the

MCM baseline surpasses one of the adapted variants. For the GTSRB dataset, both tech-

niques yield superior OOD detection performance compared to the uninformed guesser,

with a 10% improvement for T-ZOC. In Figure 6.2, we present a comparative analysis of
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Figure 6.1.: Bar chart showing the baseline (MCM) to both adapted strategies for datasets
with good domain adaption

the methods with the highest AUROC values and the fine-tuning benchmark. The re-

sults reveal that in the context of Fashion MNIST dataset, one of the evaluated methods,

namely T-ZOC, demonstrates better performance with a +5.7% improvement over the

fine-tuned model. However, for all other datasets, the fine-tuned model outperforms all

the other evaluated methods, with the maximum improvement of +29.1 observed for the

MNIST dataset. Full results are in Appendix A.2.

The few-shot domain adaption also significantly outperforms a fine-tuned linear base-

line. The linear probe method is not able to detect outlier until at least 16 images per

class are available, while both adapted strategies perfrom at least on par with the zero-

shot baseline and improve with more available training data. See Appendix A.6 for the

results on selected datasets.

6.1.2. Interpretation

On average, domain adaptation significantly outperforms the zero-shot baseline in terms

of accuracy. However, the extent of improvement varies across datasets, with SVHN

and CIFAR10 exhibiting almost no improvement while Flowers102 demonstrates strong

adaptation. The performance of OOD detection also varies depending on the quality

of domain adaptation. When domain adaptation is effective, with a noticeable improve-

ment of at least 10%, the resulting performance gains tend to transfer to OOD detection as

well. Specifically, on average, the improvements in OOD detection accuracy can increase

by up to 4.4% with only 16 training images per ID class. Nevertheless, compared to a

benchmark, there remains a significant difference for most datasets, with only Fashion

MNIST surpassing the baseline. A linear probe method trained on 16 instances is worse

on each dataset compared to both, the zero-shot baseline and the adapted methods.



76 6. Zero-Shot Methods as Basis for Few-Shot OOD Detection

D
TD

Fas
hio

n
M

NIS
T

Flow
er

s1
02

GTSRB

M
NIS

T

DATASET

0.00

0.25

0.50

0.75

A
U

R
O

C
Uninformed Guesser

T-MCM (Ours)

T-ZOC (Ours)

Fine-tuned

Figure 6.2.: Bar chart showing the finetuned benchmark OOD detection (MCM) to both
adapted strategies for datasets with working domain adaption

In other cases, few-shot adaptations show significantly higher performance and thus

emerge as superior alternatives to the zero-shot baseline.

6.2. Discussion

This section discusses the results from the conducted experiments on few-shot domain

adaption.

6.2.1. Findings

The findings of this study suggest that Clip domain adaptation can enhance the perfor-

mance of zero-shot methodologies, but only when the adaptation is highly effective and

significantly improves accuracy. The effectiveness and reasons, when and why this is

the case, are not further investigated. When this is the case, the benefits also extend to

OOD detection methodologies. Notably, both ZOC and MCM approaches are sensitive

to the quality of Clip embeddings. If the embeddings are distinguishable and accurately

classified, this improvement also transfers to OOD detection methodologies.

However, the study also highlights that in most cases, this method falls short of the

benchmark performance, with the exception of Fashion MNIST and, to a lesser extent,

CIFAR10. Nevertheless, when only a few data points per class are available, these meth-

ods can still be improved using Clip domain adaptation. These results are in line with

recent research showing a close relationship between zero-shot accuracy and OOD detec-

tion performance [96].
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6.2.2. Potential Issues and Shortcomings

This study covers several research areas, including Z-OOD detection, OOD detection,

few-shot learning, and Clip domain adaptation. As such, there may be some thematic

overlaps and challenges in appropriately comparing the results. The extension of Z-OOD

detection methodologies is a new research area, making it challenging to compare with

related work. In this study, the comparison was made with fully supervised methods

in the OOD detection research area, with a focus on fast and reliable methods that de-

liver good results without high complexity. However, there may be other benchmarks or

research areas that could be explored further, such as few-shot learning.

One potential issue with few-shot domain adaptation is that the results of TIP adapters

depend on hyperparameters and an optimization process, which assumes additional data

on which the methodology is tested. This may not be the case in practice and can affect

the few-shot nature of the approach.

Another point to consider is that all of the methodologies mentioned in this study

rely on Clip and are highly dependent on the extracted features. Therefore, there may

be a limited perspective on the OOD detection research area if further methodologies

without Clip are not included. To address this, a different Clip backbone was used in

the benchmark comparison in this study, which has significantly different classification

results on the datasets. These results can be found in Appendix A.5, where the closed-

world classification results of all methods used in this thesis are presented.

6.2.3. Future Work

Future work should address the issues and shortcomings identified in this study. Specif-

ically, a comparison with other few-shot OOD detection methods should be conducted

to evaluate the performance of the proposed approaches in comparison to other SOTA

methodologies. Additionally, the effectiveness of fine-tuning in few-shot learning should

be explored further to understand whether it is a suitable approach for this task.

Further methods beyond TIP adapters should be explored to improve domain adapta-

tion. This study highlights that the proposed methodologies are suitable for enhancing

domain adaptation, and exploring additional methods could lead to further improve-

ments.

To enhance the ZOC approach, improvements could be made to the caption generator,

which has not been further adapted for the task. Optimizing the caption generator for

the few-shot setting could potentially improve its performance on this task. Additionally,

since the caption generator is based on transformers, adapter types could also be used to

improve its performance, as demonstrated in recent work [73, 65].



78 6. Zero-Shot Methods as Basis for Few-Shot OOD Detection



79

7. Conclusion

This thesis delved into the potential and limits of Zero-Shot Out-of-Distribution Detec-

tion (Z-OOD detection) for image classification, using novel approaches that leverage the

zero-shot classification capabilities of recent multi-modal architectures. The work starts

with large-scale far-OOD experiments using MCM, followed by a challenging near-OOD

comparison of ZOC and MCM. Throughout the investigation, various hyperparameters

were examined and assessed for all setups. In Section 5.3, the robustness of the proposed

method was tested under different conditions, such as image corruption, and attempts

were made to determine the lower bound of the method. Additionally, this study ex-

plored correlations with difficulty metrics from Out-of-Distribution Detection (OOD de-

tection) and assessed their predictive power.

Furthermore, the thesis aimed to understand whether advancements in domain adap-

tation methods could be transferred to OOD detection. The methodology was tested in a

few-shot setup and compared against benchmark results to accomplish this. The follow-

ing sections detail the key findings by addressing the research questions and elaborating

on additional contributions made by this work. In the concluding section, recommenda-

tions for future research are provided, drawing on the insights gained from the experi-

mental chapters in this thesis.

7.1. Contributions

Research Questions Answered

A brief discussion of the research questions will be presented, followed by their respec-

tive answers in the context of this thesis.

RQ. 1 Is the performance of current Z-OOD detection methodologies generalizable,
i.e., transferable to other datasets and use-cases?
The results demonstrate that Z-OOD detection is generally effective, particularly in

far-OOD scenarios. In near-OOD cases, certain challenges arise where the underly-

ing Clip model has difficulties in classification, leading to inherited problems in the

methods. Apart from written number datasets, the methods were successful in all

other dataset combinations.
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RQ. 2 Where are the boundaries of Z-OOD detection methods with respect to different
difficulty metrics for good detection?
The methods were found to be quite robust, handling mild to medium corrup-

tions and consistently performing significantly better than random guessing. How-

ever, severe corruptions led to method failures. No other meaningful metric-based

threshold was identified beyond which the methods ceased to work.

RQ. 3 How do the Z-OOD detection methods compare against traditional State-of-the-
Art OOD detection methods?
A fully fine-tuned linear probe on top of a pre-trained Clip model on full datasets

proved superior, primarily due to the absence of blind spots associated with Z-OOD

detection when dealing with images of digits. When Z-OOD detection performed

well, it was comparable to traditional methods. Additionally, by incorporating do-

main adaptation for few-shot OOD scenarios, the methods demonstrated potential

for improvement with successful domain adaptation.

Further Contributions

Alongside the research questions, this thesis made other contributions:

• As the results showed, that far-OOD is a task which is solved for many combina-

tions without any fine-tuning, we showed that the focus of research should be on

hard near-OOD and robustness, as zero-shot methods can already effectively detect

far-OOD instances.

• A large-scale comparison of both Z-OOD detection methods revealed that ZOC

performed better on average but with higher variance. MCM with Maximum Logit

Score was found to be superior, which is consistent with existing literature.

• The influence of temperature scaling was tested, revealing that no scaling (scaling

with τ = 1.0) was optimal for MCM and a scaling of τ = 0.01 was best for ZOC

across all scenarios.

• This thesis proposed T-MCM and T-ZOC as domain-adapted few-shot OOD detec-

tion methodologies. T-MCM, in particular, is a lightweight method with fast adapt-

ing speed. If domain adaptation to a specific domain is successful, the adaption

showed to transfer to OOD detection.

Lastly, this thesis identified a strong correlation between the CLP with Clip’s zero-

shot classifier and all methods, including the baseline linear probe classifiers. The model

and classifier are universally available, easily implementable, and only require semantic

labels. These labels are accessible for the majority of research datasets or can be crafted as

demonstrated by Radford et al. [74]. Consequently, we propose the Universal Clip-based

Confusion Log Probability (UC-CLP) as a universal indicator of the difficulty of selected
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ID / OOD splits. The introduction of UC-CLP is expected to serve as a valuable indicator

of the difficulty of various ID/OOD settings, thereby enhancing comparability within the

field, which has hitherto remained limited.

7.2. Future Work

In conclusion, a thorough comparison of the robustness of the proposed approach with

other contemporary methods would enhance the evaluability of the results, providing

deeper insights into the validity of the metrics, particularly the CLP as universal difficulty

estimators. Although we have examined the approach for different methods, including

Z-OOD detection and linear probe classifiers, it is important to note that all these methods

are based on Clip features, creating a strong association between the UC-CLP and these

techniques.

Future work should also focus on comparing the proposed few-shot OOD detection

methods with other few-shot OOD detection approaches to ensure seamless integration

into the broader context. While the demonstrated efficacy of the proposed approach is

promising, surpassing Z-OOD detection and performing better than a fine-tuned method,

it is important to acknowledge that the chosen method also relies on Clip features, thereby

sharing the same limitation addressed by domain adaptation. Consequently, future re-

search should incorporate comparisons with non-Clip-based methods.

Furthermore, domain adaptation to more distinct distributions needs to be explored.

Although the observed performance improvement is a valuable and intriguing finding,

the transition from tasks that were previously unachievable to those that are now feasi-

ble is of greater interest and represents the true advancement. By pursuing this line of

inquiry, the limitations of Clip-based OOD detection can be surmounted.
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Appendix A.

Supplementary Material

A.1. Near-OOD with different Linear Probes

In the following, we present a classification comparison for selecting the baseline in the

experiments for Chapter 5. Table A.1 shows the results. The logistic regression performs

slightly better on average. Figure A.1 shows that the logistic regression classifier per-

forms clearly better on Out-of-Distribution Detection (OOD detection) and is therefor

used as baseline in the experiments.

Table A.1.: Accuracies for each dataset using the named strategy on top of image features
from Clip’s ViT-B/32 image encoder. Values are in %

Linear Acc ↑ Logistic Acc ↑

Caltech101 95.5 95.07
Caltech CUB 72.17 71.14
CIFAR10 94.7 94.74
CIFAR100 78.7 79.09
DTD 72.8 72.87
Fashion MNIST 88.85 90.41
Flowers102 94.49 94.1
GTSRB 85.84 86.44
TinyImagenet 73.99 74.82
MNIST 97.71 98.6
Stanford Cars 78.48 77.88
SVHN 59.44 65.14

Table A.1 shows the accuracies for each dataset for different linear probe settings. The

means are nearly identical (Linear: 82.72, Logistic: 83.36).
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Figure A.1.: Logistic Regression and fully connected linear layer on top of Clip features
for each dataset. AUROCs are the mean averaged over 10 runs. The shadows
indicate the standard deviation. All experiments are conducted with the ViT-
B/32 vision encoder

A.2. Training Details Text Decoder
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Figure A.2.: Mean batch loss in each epoch in the Decoder Training

This section provides the training details for the image decoder used in the ZOC ap-

proach for all experiments. The progression of the loss over the training epochs is shown

in Figure A.2. The train loss decreases consistently, while the validation loss increases

after epoch 14. This could be due to overtraining, however, no further experiments were

conducted to confirm this hypothesis. The training was conducted using the teacher-

forcing method [103] and the Adam optimizer [45] with a constant learning rate of 10−5

for 25 epochs. The training and validation sets were based on the officially released data
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splits for the MS-COCO 2017 release [57], which are consistent with the methodology

used in [21]. The model after 14 iterations is selected, as it had the lowest validation loss,

which suggests it may have the best generalization to unseen data.

A.3. Temperature & Prompt Ablation
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Figure A.3.: ZOC temperature scaling ablation for a subset of the datasets. The shadow
indicates standard deviation

This section shows the influence of temperature scaling in the softmax scores on the

OOD detection performance. Figure A.3 shows, that ZOC performs best with very small

temperatures (τ < 1.0) is at τ = 1.0 already close to the performance of an uninformed

guesser. For MCM Figure A.4 shows that it is exactly the other way round: The best

worst performance is for temperaturs τ < 1.0 and stabilizes afterwards.

Figure A.4 also shows results for different prompts: The best and most stable combination

is using MLS with the default prompt "A photo of TOKEN".
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Figure A.4.: MCM temperature scaling and prompt ablation. The values are means over
all datasets. Custom prompts origin from the respective publication, or are
manually crafted by Radford et al. [74] , default prompt as stated in Chapter
4.1

A.4. Zero-Shot Methods as Basis for Few-Shot OOD Detection

1 This section provides further insights into domain adaption with TIP-Adapter [111]. Ta-

ble A.3 shows the classification results, which are the indicator of good domain adaption.

The fully fine-tuned logistic regression, especially with the ViT-L model has the highest

accuracy overall, which is also visualized in Figure A.5.

MCM T-MCM T-MCM-f ZOC T-ZOC T-ZOC-f Log ViT-L/16@336px

MNIST 0.591 0.661 0.622 0.603 0.577 0.604 0.952
CIFAR100 0.735 0.717 0.77 0.76 0.718 0.774 0.791
SVHN 0.533 0.547 0.555 0.533 0.514 0.53 0.668
GTSRB 0.515 0.578 0.549 0.525 0.614 0.548 0.809
Caltech CUB 0.639 0.665 0.643 0.724 0.719 0.725 0.753
Fashion MNIST 0.701 0.73 0.706 0.785 0.798 0.77 0.742
Stanford Cars 0.645 0.678 0.65 0.739 0.749 0.737 0.776
TinyImagenet 0.75 0.725 0.774 0.759 0.727 0.773 0.791
Flowers102 0.773 0.856 0.775 0.816 0.891 0.807 0.924
DTD 0.664 0.731 0.71 0.648 0.712 0.674 0.807
Caltech101 0.87 0.897 0.897 0.879 0.906 0.901 0.94
CIFAR10 0.9 0.881 0.907 0.956 0.912 0.954 0.913

Table A.2.: Full OOD Detection results with domain adaption and linear benchmark.
Bold indicates best results

The Full AUROCS are displayed in Table A.2, the accuracies of all classification ap-

proaches in Table A.3.

Figure A.6 shows, that both, MCM and T-MCM are better than the linear probe for all

setups with less than 65 samples per class.
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Figure A.5.: Full AUROCS for all methods in near-OOD setup. All adapted methods are
trained according to Chapter 4. The best results are in bold.

ZEROSHOT TIP-F TIP Log ViT-B/32 Log ViT-L/16@336px

Fashion MNIST 59.56 70.502 73.229 90.41 91.0
DTD 44.415 61.218 59.106 73.298 79.202
SVHN 24.946 33.382 25.455 64.932 77.977
TinyImagenet 62.88 67.481 65.868 74.27 84.42
Stanford Cars 59.657 68.45 68.504 77.553 89.69
CIFAR10 89.83 90.72 91.367 94.74 97.65
Caltech CUB 52.14 59.598 61.836 71.004 85.088
GTSRB 32.32 51.199 44.921 86.5 92.898
CIFAR100 64.23 69.061 67.483 79.09 86.09
MNIST 48.22 64.17 69.657 98.62 98.99
Flowers102 66.287 75.575 86.609 93.853 98.52
Caltech101 83.722 89.404 89.038 95.16 97.753

Table A.3.: Full classification results with all methods used in this thesis. Log is short for
logistic regression
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Figure A.6.: K-shot ablation on datasets with 2 to 64 samples per class. The linear probe
is only able to detect outliers better than an uninformed guesser with at least
32 samples per class, while all other methods also perform with 2 samples.
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