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Abstract

Text corpora are large collections of written or spoken language and have become widely
available since the beginning of the era of digital information processing. Large text corpora
find extensive use in both scientific research and the business world, providing valuable insights
and enabling advancements in various domains. While they are historically rooted in linguistics,
nowadays text corpora play a key role in various kinds of fields, especially since collecting and
processing large amounts of text data is easy to do with today’s computational resources. In
most fields, the true potential of large text corpora is only fully realized when an interpretative
value in the form of annotations is added to them. However, annotating text data by hand is
often infeasible in terms of time and/or in terms of money. This thesis, therefore, explores the
possibilities regarding a semi-automatic annotation system, where the user only annotates a few
examples of the corpus by hand in order for the system to learn the annotation semantics of
the specific labels and extend the annotations automatically to the whole corpus. In order to
address this, as a first step, extensive research in the field of few-shot named entity recognition
has been conducted to determine which state-of-the-art models are best suited for such a
system. Subsequently, experiments on five state-of-the-art named entity recognition models
have been conducted that resemble the few-shot setting and the fine-grained label characteristics
of a semi-automatic annotation system, where the user can define arbitrary label categories
beforehand. The results of the experiments confirm that few-shot named entity recognition is a
challenging task, even for state-of-the-art models. Additionally, this thesis describes the design
and development of a prototype for a semi-automatic annotation system.
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1 Introduction

This chapter introduces the topic of this thesis by giving a motivation for the research, formalizing
the problem statement, and relating it to the corresponding field of natural language processing.
The overall research approach of this thesis is given and three questions to guide this research
are defined.

1.1 Motivation

Venkat N. Gudivada (2018) defines a corpus as "a large collection of texts of written or spoken
language, stored in a machine-readable format". Corpora enable several useful applications.
Being historically rooted in linguistics, they offer insights into how language is used in different
situations depending on the corpus origin and time of creation. Especially with the rapid rise of
machine learning and data science, such corpora play an important role in science fields other
than plain linguistics, as well as in the industry given the fact that the availability of textual
data and the resources to process such data aren’t obstacles anymore. Companies might be for
example interested in transcriptions of meetings, customer e-mails, or analysis of technical logs.
To add interpretative value to the unstructured text data, text corpora are often annotated, for
example, with labels that indicate the assignment of a certain word to a word class or paragraphs
to a certain textual or semantic category. However, annotating text data by hand is often too
time-consuming and crowdsourcing is expensive. This thesis, therefore, explores the possibilities
regarding a flexible semi-automated annotation system for large text corpora. Such a system
takes as input only a few manually-made annotations by the user or a domain expert, tries to
find semantically similar spans, and annotates them according to the examples provided by the
user.

1.2 Problem Statement

For this thesis, the problem of automatically annotating text is reduced to the well-known but
still heavily researched natural language processing problem of named entity recognition (NER).
The goal of NER is to locate and classify named entities that occur in a text document into
pre-defined categories. While early approaches to NER mainly used rule-based systems and
heuristics to detect and classify named entities, the advent of machine learning and especially
deep learning techniques - the latest and most successful being transformer models - has led to
great progress in that research field, especially since named entity recognition is a subtask of
other natural language processing problems like information extraction or question answering.
However, a semi-automatic annotation system adds a variety of additional challenges to the
standard named entity recognition task: First, usually, most NER models are trained on a lot of
labeled data beforehand. However, a semi-automatic annotation system is expected to be able
to annotate textual data based on only a few annotations that were done manually by the user.
The underlying model, therefore, is required to achieve adequate labeling accuracy while only
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being provided with a few labeled examples. This problem is commonly referred to as few-shot
learning.

Furthermore, a semi-automatic annotation system is expected to be able to annotate textual
data based on categories defined by the user. While standard NER datasets often differentiate
only between coarse-grained categories, for example, "Location", "Person" or "Organization",
the labels that the user would want the system to annotate might include more finer-grained,
semantically more similar categories which are possibly even technical or domain-specific terms.
This task is usually denoted as fine-grained named entity recognition and poses an additional
challenge to the underlying model.

Lastly, the user of the annotation system will likely often switch annotation tasks (and therefore
the labels they want the system to annotate). This requires the system to be able to save
and switch between corresponding models more often. The underlying NER model should
therefore allow for annotation tasks to be switched quickly and without a large computational or
storage-specific overhead.

1.3 Approach

In order to address the above challenges that a semi-automatic annotation system imposes on
its underlying models, first, comprehensive research is done on current state-of-the-art named
entity recognition systems. This research will focus on systems explicitly developed for the
purpose of few-shot and/or fine-grained named entity recognition. For the experiments, currently
available datasets will be researched and compared against each other in terms of their suitability
regarding the training of a model for a semi-automatic annotation system. Here, a special
focus will be placed on the number and the granularity of the labels the dataset provides. After
researching suitable models and datasets, experiments are designed that best represent a realistic
setting of an annotation system. The designed experiments will be conducted on all chosen
models, and their results will be compared to further determine how well different models deal
with the various challenges an annotation system imposes on them. Finally, a prototype of a
semi-automatic annotation system shall be designed and developed.

1.4 Research Questions

Three research questions can be inferred from the problem statement:

RQ1: What state-of-the-art methods exist for few-shot (fine-grained) named entity
recognition?

Current state-of-the-art methods for few-shot and fine-grained NER are to be researched and
compared against each other. They shall also be analyzed concerning the requirements of a
semi-automatic annotation system.
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RQ2: How many support samples are needed to achieve adequate results on an
automatic annotation task based on entity classes and how does the number of classes
relate to the number of required support samples?

The minimum number of support samples per class that yield adequate results shall be determined
empirically.

RQ3: How does the presence of semantically more similar labels affect the overall
performance of NER models?

A semi-automatic annotation system will likely deal with many finer-grained labels. Experiments
shall determine the ability of NER models to differentiate between labels that are semantically
more similar.

1.5 Structure of this Thesis

State-of-the-art natural language processing systems heavily utilize deep learning techniques. In
order for the reader to understand the systems presented in this thesis, Chapter 2 introduces and
explains the most important technical details. The concept of deep learning is introduced and
neural networks and related concepts are explained briefly. Then, the history of deep learning
techniques used in the field of natural language processing is outlined and core concepts are
explained, starting at recurrent neural networks and sequence-to-sequence models and ending at
the currently best and most widely used models - transformer. As transformers play a key role
in all analyzed systems of this thesis, core concepts, building blocks, and their functionality are
explained in a more detailed manner. Chapter 2 also briefly defines named entity recognition,
its history, and related concepts. Chapter 3 first offers an overview of current state-of-the-art
few-shot NER systems. It then explains the five systems that were chosen for the experiments
in more detail. Chapter 4 then first describes the dataset that was used for the experiments as
well as the metrics that were used for the evaluation of the experiments. Then, for each analyzed
system, implementation details are described and the results of the experiments are presented. A
final section compares all the experiments performed and presents conclusions regarding their
suitability in a semi-automatic annotation system. Chapter 5 describes the prototype of such a
system that was developed during the course of this thesis. Here, the first section explains the
functionality of the system and the second section explains the implementation details of both
front and back end. Chapter 6 briefly explains possible future research. Finally, Chapter 7 offers
an overall conclusion, summarizing the findings of this thesis.
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2 Background

This chapter aims to introduce fundamental background knowledge in order for the reader to
understand the different technologies and model architectures on which the experiments were
conducted. Section 1 will give an overview of deep learning in general, its recent advancements,
and its relevance in the context of natural language processing (NLP). Building on Section 1,
Section 2 will introduce transformer, which played a big role in the recent success of NLP
applications, such as Chat-GPT1 and others and will also be used for the experiments of this
thesis. Section 2 first explains the general transformer architecture and then explains the two
transformer models BERT and BART in more detail. Section 3 will explain some fundamental
terms of natural language processing, that are relevant for this thesis.

2.1 Deep Learning

In recent years, deep learning has emerged as a powerful subfield of machine learning and has
revolutionized many scientific fields. This section aims to provide a brief overview of what
deep learning is and how deep learning changed the way we can approach problems in the
field of natural language processing. Unlike traditional machine learning methods that rely on
handcrafted features, deep learning algorithms have the capacity to automatically learn and
extract patterns and representations from the data itself, thus shifting the focus from carefully
designing features and algorithms to using large amounts of data and computational resources
while letting the algorithm itself build up useful representations of the data.

2.1.1 Neural Networks

At the core of all deep learning approaches are neural networks, which are briefly explained in
the following. A neural network is a computational model which is inspired by the structure
and functioning of the human brain. Figure 2.1 shows the basic structure of an artificial neuron.
It is composed of interconnected modules called artificial neurons. In its most basic form,
artificial neurons are parametrized by learnable weights w1, ...,wn, receive input signals x1, ...,xn,
compute a weighted sum x1w1+x2w2, ...,+xnwn, and generate output y by passing the weighted
sum through an activation function f. Typically, a scalar, learnable bias term b is also added to
the weighted sum before passing it through the activation function, allowing the model to shift
the result of the activation function regardless of the input. Formally, the output yk of a given
neuron with n input signals x j and weights wk j can be computed as:

yk = f(
n

Â
j=0

wk jx j +b). (2.1)

1. https://chat.openai.com/
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Figure 2.1: A simple artificial neuron with inputs x1, x2, x3

Neural networks typically consist of millions or even billions of artificial neurons that are
arranged in layers. The input for each artificial neuron in all layers but the first are the outputs of
all neurons of the previous layers. The goal of the network is now for an input vector x to output
a desired output vector y. The network learns by adjusting its weight matrix W in a process
called backpropagation: A loss function L computes the discrepancy between the desired output
y0 and the output of the network y. The choice of L is task-dependent. The goal is to minimize
the discrepancy between y and y0 as much as possible. To achieve this, the gradient - the vector
that indicates the direction of the steepest ascent - of the loss function with respect to the weights
is calculated and each weight is updated by a negative fraction of it. For classification tasks,
usually, the output y of the last layer needs to be interpreted as a probability distribution, where
each value yi represents the probability that input x belongs to class Ci. This is achieved by the
softmax function (Equation 2.2), which takes a real-numbered input vector z and normalizes
it such that its values sum up to 1 and therefore allows for it to be interpreted as a probability
distribution.

s(zi) =
ezi

Ân
j=1 ez j

. (2.2)

A typical loss function for classification tasks is for example the cross-entropy loss, which
measures the similarity between a predicted distribution q(x) and a true distribution p(x):

H(p,q) =�Â
x

p(x)log(q(x)). (2.3)

2.1.2 Supervised & Unsupervised Learning

Two commonly occurring categories of learning algorithms are supervised learning and unsuper-
vised learning. Supervised learning, in general, deals with n training samples (x1,y1), ...,(xn,yn)
where xi represents the input vector of the ith training example and yi the respective output
vector. The assumption in supervised learning is that the training samples are produced by a
function f : X ! Y , and the training objective of the learning algorithm is now to approximate
this function as closely as possible, with the goal of it being able to generalize this knowledge to
instances (x j,y j) not seen during training. Unsupervised learning, in contrast, denotes learning
algorithms that learn from unlabeled data. The main goal of unsupervised learning is to learn
representations of the input data. Unsupervised algorithms can, for example, be used for classi-
fication (clustering approaches, where the model learns cluster centroids from the input data)
or data exploration and outlier detection. In the world of natural language processing, often
unsupervised pre-training is mentioned in the context of large transformer models. Such models
are pre-trained by feeding them large amounts of unlabeled text data, corrupting a portion of
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it, and giving the model the task to repair the corrupted input in some way. While this is not
exactly unsupervised learning in the classic sense (because in practice, there are labels, which
are created automatically from the language data during training), it certainly relates to it, since
the data itself is unlabeled and the model learns structure in this unlabeled data.

2.1.3 Few-Shot Learning

Usually, machine learning systems and especially deep learning systems are trained on large
amounts of training data. This need for training data, however, is a non-trivial hurdle to overcome.
First, labeled training data is expensive. To achieve a high-quality data standard, data labeling
needs to be done manually by domain experts, who are expensive. Furthermore, annotating
large amounts of data can take a long time. Secondly, even large amounts of unlabeled data
might not be available in every case, for example in very specific or new domains. Few-shot
learning is a branch of machine learning that explicitly deals with the scenario where only a
small amount of training data is available and the model needs to make predictions based on this
small number of samples. A few-shot classification task is usually described by two variables N
and K: In an N-way K-shot classification task, the model needs to learn to classify N classes
while being provided K training samples per class.

2.1.4 Meta-Learning

Meta-learning is a commonly used approach to learning in a few-shot setting. Meta-learning
approaches train the model on episodes, where each episode resembles one few-shot learning
task. Formally, in an episodic N-way K-shot learning setting, N is the number of classes the
model needs to differentiate between and K is the number of examples that are given per class.
Now, for each training episode, N classes and K examples per class are randomly sampled in
order to build a support set Strain = {x

(i),y(i)
N·K
i=1 } and K0 examples for every of the N classes

are sampled in order to construct a query set Qtrain = {x
(i),y(i)

N·K0
i=1 } and S \Q= /0 (Ding et al.,

2021). The system is then trained by predicting labels of the query set Qtrain with the information
of Strain. The more different tasks (episodes) the model sees, the more it "learns to learn" better
from each episode. Thus during inference, it has learned to gather information from S to
correctly classify the samples in Q on the basis of the support set S . Generic meta-learning can
be described as the following:

q ⇤ = argmin
q

n

Â
i=1

L(fi,Qi) (2.4)

(Levine, 2021), where n is the number of episodes and fi = fq (Si) is a learned representation
that can be used to classify the specific samples in Q. This abstract concept can be concretely
implemented in different ways. Snell et al. (2017), for example, do meta-learning by building
up representations of the samples in S , and classify examples in Q based on the distance to each
class representation (this approach will be explained further in Chapter 3). Other approaches
utilize gradient-based meta-learning, where each task in itself involves a gradient step on the
parameters of the model such that for each task Ti, the model’s parameters q become qi (Finn
et al., 2017).
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2.1.5 Deep Learning in Natural Language Processing

Deep learning had a transformative impact on many scientific fields, including natural language
processing. While traditional NLP methods relied heavily on handcrafted features and rule-based
approaches, deep learning allows models to learn directly from raw text data, omitting the often
complex feature and rule engineering part of traditional methods. Over the years, a lot of neural
models have been employed in the field of NLP.

Recurrent Neural Networks

One neural architecture that had a big impact on NLP are Recurrent Neural Networks (RNNs).
RNNs, as described in Elman, 1990, are, at their essence, layers of neurons, in which the output of
one neuron partially depends on its previous output, thus representing a mechanism of capturing
relationships between sequential pieces of input. As natural language is an inherently sequential
construct, RNNs naturally are a good fit for all kinds of language-related computational tasks.
Given a sequence x = x1,x2, ...,xn, at timestep t, RNNs compute a hidden state ht based on the
previous hidden state ht�1 and the current input xt . At each timestep, also an output is generated
that is based on ht :

ht = s(W2ht�1 +W1xt +b1) (2.5)

and
yt =W3ht +b2, (2.6)

Figure 2.2: Schematic illustration of an RNN (left) and how it unfolds over time (right)

where s is an activation function, b1 and b2 are bias vectors, and W1,W2,W3 are weight matrices
for input to hidden state, hidden state to hidden state, and hidden state to output, respectively.
Note that the three weight matrices are shared across all timesteps tn. This process can be seen
in Figure 2.2. RNNs learn by utilizing backpropagation-through-time (BPTT), a variant of the
standard backpropagation algorithm, where the gradient is computed after the RNN has been
unfolded into a series of connected networks, one for each step of the input. This, however, leads
to two problems known as the vanishing gradient problem and the exploding gradient problem.
The vanishing gradient problem describes a scenario during backpropagation, in which gradients
become extremely small, due to the large amount of layers they are propagated through. Its
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inverse, the exploding gradient problem, occurs when gradients become exponentially large
during backpropagation-through-time. This complicates the learning process immensely. More
sophisticated network architectures like LSTM (Long-Short-Term Memory, Hochreiter and
Schmidhuber (1997)) and GRU (Gated Recurrent Unit, Cho et al. (2014)) have been introduced
to enhance RNNs, minimizing the vanishing (and exploding) gradient problem and improving
their capability to capture long-term dependencies. Furthermore, Schuster and Paliwal (1997)
introduced bidirectional RNNs, enabling RNNs to also take into account future timesteps xt+i.
This improves the contextual understanding of RNNs further since tokens ahead of the current
timestep t often also carry important semantic information.

Sequence-to-Sequence Models

It is also notable that, depending on the application, not all outputs yi of the RNN are needed. A
sentiment classification task, for example, will only need the last hidden state of the RNN to
classify the sequence. Other tasks, like named entity recognition, need all intermediate outputs.
More sophisticated NLP tasks like machine translation or text summarization, however, involve
the generation of output sequences using input sequences where the length of the sequences
often doesn’t match. To gain more flexibility with regard to the sequence structure, Sutskever
et al. (2014) suggested sequence-to-sequence (seq2seq) models. Seq2seq models consist of
an encoder and a decoder component, both of which typically are RNNs with LSTM cells.
The encoder component takes the input sequence and produces a fixed-length vector, capturing
semantic information of the input sequence. That fixed-length vector is fed into the decoder
network, generating the desired output sequence (cf. Figure 2.3). During training, both models
are trained jointly on pairs of (X ,Y ), where X is the input sequence and Y is the desired output
sequence. In the decoder, instead of building the sequence on its own predicted words y0i (as is
the case during inference), at each timestep t, the decoder is provided the corresponding desired
word yt�1 as its input. This approach allows for varying input and output sequence lengths and
also improves the flexibility of the overall model as the encoder and decoder are, although jointly
trained, different models and can therefore be subject to different architectural design choices.

Figure 2.3: Seq2Seq Model

Attention

Although seq2seq models solved a lot of problems of vanilla RNNs, they still exhibit problems
with increasing sequence length. According to Bahdanau et al. (2014), the reason for this is
that the fixed-length context vector that is produced by the encoder poses a bottleneck that
becomes increasingly more significant the longer the input sequence is. Bahdanau et al. (2014)
proposed a solution to eliminating this bottleneck by allowing the model to glance back at
the input sequence at each decoding step. This technique is called attention. Using attention
mechanisms, each decoder output depends not only on the last decoder state but on a weighted
combination of all the input states as well. Thus, a sequence-to-sequence model with attention
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is capable of quantifying the relevancy of each input symbol xi to the current output yt . This is
achieved in the following way: Instead of one context vector c being handed over to the decoder,
a distinct context vector ci is computed at each time step i. Each ci is a weighted combination
of vectors hi called annotations (Bahdanau et al., 2014) and each annotation hk summarizes
the input sequence until timestep k. Due to the property of RNNs to represent the more recent
inputs better than inputs longer ago, each annotation automatically focuses on the more recent
inputs. To also capture future inputs, such that each annotation hk represents the input sequence
around timestep k (shortly before and shortly after), Bahdanau et al. (2014) uses a Bidirectional
RNN. Let (

�!
h1, ...,

�!
ht ) be the sequence of forward hidden states and (

 �
h1, ...,

 �
ht ) the sequence

of backward hidden states produced by the Bidirectional RNN. Now, for each input symbol
xk, the corresponding annotation is obtained by concatenating the forward hidden state

�!
hk and

the backward hidden state
 �
hk such that hk = [

�!
hk ;
 �
hk ]. The context vector at each time step ci is

computed like this:

ci =
n

Â
j=1

ai jh j. (2.7)

Here, the a are the weights of each annotation which are computed using an alignment model
ei j, describing how well the inputs around position j and output at position i match:

ai j =
exp(ei j)

Ân
k=1 exp(eik)

(2.8)

ei j = f(si�1,h j) is calculated based on the decoder hidden state si�1 and the j-th annotation h j of
the input sentence. To calculate ei j, a feed-forward neural network is used that is jointly trained
with the rest of the model (Bahdanau et al., 2014). A larger alignment ei j means that si�1 and h j
match well. This will lead to a larger a which will in turn lead to the corresponding annotation
being of more importance for the decoder when generating ci and therefore yt . This alignment
model ensures that the encoder does not need to capture the whole input sequence in a single
vector. Instead, the decoder learns to attend to certain parts of the input that are more important
for the generation of the output sequence. Figure 2.4 illustrates this process.

2.2 Transformer

While the attention mechanism by Bahdanau et al. (2014) improved seq2seq models by enabling
the decoder to attend to certain parts of the input, it still brought some limitations because of
its sequential processing of input tokens. The biggest limitation is that it precludes parallel
processing within training examples (Vaswani et al., 2017) leading to inefficiencies with longer
input sequences. With Vaswani et al. (2017) a groundbreaking approach to sequence-to-sequence
tasks was introduced: Transformer. Unlike traditional seq2seq models which rely on recurrent
connections to capture sequential dependencies, transformer employ a so-called self-attention
mechanism that allows them to capture global dependencies in an input sequence without
sequentially processing the input. Transformer models quickly established themselves as state-
of-the-art for many NLP tasks including machine translation, question answering, sentiment
analysis, speech recognition, or named entity recognition. Figure 2.5 shows the architecture of
transformer as described in Vaswani et al. (2017). On a high level, a transformer as suggested
by Vaswani et al. (2017) consists of 6 encoder components stacked on top of each other and 6
decoder components stacked on top of each other. Each encoder component has two sub-layers:
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Figure 2.4: Illustration of how Bahdanau et al. (2014) utilize annotation vectors hi to generate
context vectors ci, Source: Bahdanau et al., 2014

One multi-head self-attention layer and one fully connected feed-forward network. The decoder
component also has a multi-head self-attention layer and a feed-forward layer. To attend to parts
of the encoder, the decoder also has another multi-head attention layer that receives the input
from the encoder. For training stability, residual connections are added between sub-layers, and
each sub-layer is followed by a normalization layer both in the encoder and the decoder.

In the following, the core components of transformer models are explained in more detail.

Scaled Dot-Product Attention

Attention is a general concept that allows a system to focus on specific elements of the input.
However, the specific implementation of attention used in Vaswani et al. (2017) is slightly
different than the one from Bahdanau et al. (2014) that was described above. Vaswani et
al. (2017) use a concept that is called dot-product attention, in contrast to Bahdanau et al. (2014)
who use additive attention. Let X be an input sequence given to the first layer of the transformer
encoder, the embedding layer (as seen in Figure 2.5). The embedding layer transforms each
token xi into a learned embedding vi of dimension dk. By multiplying the input embedding
matrix with each of the three trainable weight matrices WQ,WV ,WK , the three matrices Q,K,V
are computed. The attention itself is now computed as follows:

Attention(Q,K,V ) = so f tmax(
QKT
p

dk
)V. (2.9)

This equation is illustrated in Figure 2.6. Each entry (QKT )i j represents the dot-product
similarity of query vector qi with key vector k j (effectively quantizing, how much input i and
input j relate to each other ). QKT is now scaled with

p
dk. According to the authors, this
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Figure 2.5: The general architecture of transformer as described in the original publication
(Source: Vaswani et al. (2017))
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Figure 2.6: Illustration of the scaled dot-product attention (Source: Vaswani et al. (2017))

down-scaling ensures that the magnitude of the softmax does not become too large, which in turn
would lead to very small gradients (Vaswani et al., 2017). so f tmax(QKT

p
dk
) in the equation is used

to squash the similarity values between 0 and 1, effectively producing a pseudo-probability over
values QKT , which are then used as weights. This compatability weight matrix is now multiplied
with the value matrix V . This matrix multiplication produces a sum of the values vi that is
weighted by the entries of QKT . The output yi of the attention layer then effectively represents a
summary of how each token in the input relates to token vi, because more important tokens have
a higher score in QKT and thus influence the weighted sum more substantially. It is important to
note that in the encoder, in the first layer the vi are the input embeddings and in subsequent layers
the vi are the outputs of the previous attention layer. This concept is often called self-attention
because instead of the classic seq2seq attention, where the attention mechanism was only built
into the decoder to attend to certain encoder steps during decoding, here, the attention is built
also into the learning process of the encoder itself, allowing the model to weigh the significance
of different input tokens against each other and adjusting their influence on the next layer.

Multi-head attention

Vaswani et al. (2017) suggest not only using one attention mechanism, but multiple attention
"heads" in parallel, which allows the model to simultaneously attend to different parts of the
sequence, providing it with an even richer capacity for modeling complex relationships between
tokens. This concept is called multi-head attention and it is computed as follows:

MultiHead(Q,K,V ) =Concat(head1, ...,headn)WO. (2.10)

Vaswani et al. (2017) set the number of heads h to 8, so instead of having only weight matrices
WQ,WK,WV per attention layer, one attention layer now has WQ1 ,WK1 ,WV1 to WQ8 ,WK8 ,WV8 . Let
the input dimensionality be dmodel. The dimensionality of the weight matrices is set to Rdmodel⇥dk
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for WQi and WKi and Rdmodel⇥dv for WVi , where dk = dv = dmodel/h. The authors used dmodel = 512.
The reduced dimensionality of Q,K,V leads to the computational cost being similar to the cost
of one single attention head with full dimensionality dmodel. After the scaled dot-product of each
attention head is computed, the h results of each head are concatenated, resulting in the original
output dimension of dmodel. After concatenating, the result is once again projected by a linear
layer WO, delivering the final output of the multi-head attention layer. Figure 2.7 illustrates the
concept of multi-head attention.

Positional Encodings

The order of input is essential for language problems, as the same word in different positions
can change semantics drastically. Recurrence in standard seq2seq models - as described in this
chapter - provides a natural way for the model to retain input order, since the input is processed
token by token. In contrast to this, transformer models perform their computations on the whole
input sequence at once and therefore require a mechanism to receive information about the input
order. Vaswani et al. (2017) solve this issue by providing the initial word embeddings with
positional encodings that are added on top of them. The positional encodings are calculated as
follows:

PE(pos,2i) = sin(pos/100002i/dmodel) (2.11)

and
PE(pos,2i+1) = cos(pos/100002i/dmodel). (2.12)

In this equation, pos is the position of the token and i is the specific dimension index of the
embedding. Intuitively, positional encodings shift word embeddings slightly into groups that
correspond to their respective position, allowing the model to incorporate positional aspects
into its computation. The choice of sinusoidal functions with large wavelengths as positional
encodings offers the advantage that the values of the encodings are between 0 and 1, not changing
the word embedding too much. Furthermore, the authors hypothesize, that this representation of
positional information will enable the model to attend to relative positions, since for every k,
PEpos+k can be represented by a linear transformation of PEpos. Other approaches for injecting
positional information are for example found in Gehring et al. (2017), where during training
positional embeddings are trained alongside the rest of the model. However, Vaswani et al. (2017)
found that fixed positional encodings do not influence the performance of the model negatively
compared to learned positional encodings, while they, due to their periodic nature, also allow
the model to generalize over possible longer sequence lengths than seen during training.

Position-wise Feed-Forward Layer

The position-wise feed-forward layer is another building block of transformer components and
is placed after the multi-head attention layer. It is simply a fully connected layer that applies
two linear transformations to the output of the previous layer. After the first transformation, a
ReLU activation function is computed. The computation of the position-wise feed-forward layer
is as follows:

FFN(x) = max(0,xW1 +b1)W2 +b2. (2.13)

Here, max(0,xW1 +b1) stands for the ReLU function f (x) = max(0,x) being applied to the first
feed-forward layer. It can be seen that the same weight matrices W1,W2 are applied along all
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Figure 2.7: Multi-head attention. Q,K,V are projected in their smaller subspaces and each
scaled dot-product attention is computed independently. After, the results are
concatenated and once again projected (Source: Vaswani et al. (2017))

positions (hence position-wise). In the original paper, internally, the layer has a dimensionality of
2048 (4 ·dmodel), so W1 has dimensionality 512⇥2048 and W2 has dimensionality 2048⇥512.

Add & Norm Layer

In Figure 2.5 it can be seen, that after each multi-head attention layer, as well as after each
feed-forward layer there are Add & Norm layers. Those layers are related to two concepts of
deep neural networks, layer normalization and residual connections. Generally, normalization
in deep learning has the purpose to scale input data to a more practical range, usually centered
around zero, in order to stabilize the training of the network during gradient descent. While
multiple approaches to normalization exist, two of the most popular are batch normalization
(Ioffe and Szegedy, 2015) and layer normalization (Ba et al., 2016). The main difference between
batch normalization and layer normalization is that batch normalization performs normalization
over each batch dimension, i.e. given batch x = {x1, ...,xn} each x(k)i

of batch dimension k is
normalized using the associated per-dimension mean and variance. Layer normalization, on the
other hand, is calculated per sample, i.e. each sample xi is normalized by using the associated
in-sample mean and variance. It is notable that the actual calculation process of normalization is
more nuanced and is explained in more detail in the corresponding publications Ba et al. (2016)
and Ioffe and Szegedy (2015), respectively. In their implementation, Vaswani et al. (2017) use
layer normalization.

Before the normalizing step, however, residual connections are added to the output of the
corresponding transformer sublayer. Residual connections were first introduced by He et
al. (2016). They discovered a degradation problem, where deep networks, at a certain number
of layers, were outperformed by their shallower counterparts, even though in theory, the deep
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networks would only need to learn an identity function in layers that are not present in their
shallower counterpart. To counteract this degradation problem, they introduced a mechanism
in which identity skip connections are introduced to the network and empirically showed that
residual connections improve the performance of deep neural networks. Let x be the input of a
layer F in a deep neural network. The output of F , F(x) is then added to x, representing the
new output that flows through subsequent layers. This process is depicted in Figure 2.8. The
common hypothesis as to why residual connections improve training stability in deep neural
networks is that they, during training, represent shortcuts for the gradient to flow through, thus
minimizing the vanishing gradient problem. They also ensure that deep networks do not suffer
from the degradation problem, as learning the identity function for sublayers with residual
connections can now be done by setting all outputs of F to zero which is easier for the network
than approximating it through weight combinations.

Figure 2.8: The residual connection. The input x flows through the layer F and is additionally
passed around it and added to its output afterwards (Source: He et al. (2016))

Decoder

The encoder and decoder components in transformer, as described in Vaswani et al. (2017)
have a lot in common, as can be seen in Figure 2.5: Both use multi-head attention layers
followed by position-wise feed forwards layers, where after each of them, the sum of the
residual connection and the output is normalized and fed into the next layer. However, there are
some differences between the encoder and the decoder. Like in classic seq2seq processing, the
encoder is in charge of finding good vector representations of the input tokens (using multi-head
attention as described earlier) and handing them to the decoder. The decoder, in turn, takes
these representations and is in charge of generating an output sequence with them. For this,
the decoder needs its previous output at every step (as can be seen in Figure 2.5). Formally, at
every step t, the decoder computes pqdec(yt |y0:t�1,x1:n), where yt is the output of the decoder
at the t-th step and x1:n is the representation of the input sequence as computed by the encoder
component. For this, the decoder has two types of multi-head attention layers. The first one
processes its previous outputs in a self-attention manner, similar to the encoder. The output
of this attention layer then represents the V of the next attention layer. However, the Q and K
of the next attention layer are computed from the output of the last encoder layer. This step
is therefore commonly not called self-attention, but encoder-decoder attention because in this
step, essentially, the decoder attends to its previous outputs given the encoder representations.
The final linear layer and the softmax layer in the decoder component are used to actually
transform the output of the last decoder in the decoder stack into words. For this, the linear
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layer projects the last decoder output into a |V|-dimensional space, where |V| is the size of
the vocabulary and by taking the softmax over the output of the linear layer, its output can be
interpreted as a probability distribution over all words known by the transformer. As explained,
the transformer computes sequences in a parallel manner in contrast to standard encoder-decoder
seq2seq models, which compute the output in a sequential manner. Because of this, a special
mechanism called masked attention is necessary. Masked self-attention, essentially, simulates
sequential processing in the first decoder layer, where the decoder only has access to its past
predicted tokens yi� j, j  1. Because the process, in reality, happens in parallel, future tokens
are masked, essentially putting them to �in f such that the softmax of such future tokens will
always be zero, hence effectively preventing the decoder from deriving useful information from
future tokens. Figure 2.9 illustrates the concept of masked attention.

Figure 2.9: Illustrated concept of masked attention. At timestep t, the decoder only has access
to words at timestep t or before. Other values are set to �in f , which leads to them
being zeros after the softmax layer.

2.3 Transformer-Based Language Models

The section above explained all core components of transformer, as they were introduced by
Vaswani et al. (2017). While the core principles, mainly parallel computation of multi-head
attention followed by position-wise feed-forward layers, are fundamental across all actual
transformer implementations, different concrete transformer implementations have arisen over
the years. While the original transformer was developed with the task of machine translation in
mind, other approaches use the parallel power of self-attention to construct powerful language
models which offer a general language understanding and which can be fine-tuned to all kinds of
NLP-related tasks. The following section explains two transformer implementations, that have
been very impactful in the world of natural language processing, BERT (Devlin et al., 2019) and
BART (Lewis et al., 2020) in more detail.
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BERT

BERT stands for Bidirectional Encoder Representations from Transformers and has been
introduced by Devlin et al., 2019. At that time, it achieved state-of-the-art results on many
common NLP tasks such as sentiment analysis, text prediction, or named entity recognition.
In contrast to the original transformer that used a decoder component for generating an output
sequence, BERT only makes use of the transformer encoder components, stacked up to 12 (for
the bert-base model), or 24 (for the bert-large model) times. BERT introduces two pre-training
objectives, the masked language model objective, and the next sentence prediction objective.
The goal of those pre-training objectives is to teach BERT a general language understanding
by training it on large amounts of unlabeled unilingual text data. More specifically, the authors
used the English Wikipedia (⇠2.500 M words) and the BooksCorpus (Yukun Zhu et al., 2015)
to pre-train the BERT model on the two pre-training tasks.

Pre-training task Masked Language Modelling (MLM): In order to achieve a bidirectional
representation of words (i.e each word representation is influenced by left and right context),
the authors corrupt original sentences by choosing a random token at the ith position at 15%
probability and replace that token with either a [MASK] token (80% of the time ), a random
token (10% of the time) or they leave the token unchanged (10% of the time). The task for
the model is now to predict the correct token of the sentence. Not always actually using the
[MASK] token for masked words but instead also using random words and the actual word at
masked positions reduces the mismatch between pre-training and fine-tuning, because usually
in fine-tuning, no [MASK] tokens are observed. The MLM objective effectively leads to the
model being trained in a bidirectional fashion because for every [MASK] token it predicts its
context both from the left and the right side of the sequence available. While masking 15% of
all tokens yields very good results on a lot of tasks, a recent study showed that this number is
not optimal in all cases and that other masking ratios and more sophisticated masking strategies
can improve the model performance further (Wettig et al., 2023).

The second pre-training task is Next Sentence Prediction (NSP). In order for BERT to better
learn relationships between sentences and not just between words, BERT is also trained on a
binary classification task where it is given two sentences A and B with the task to determine
whether or not these sentences follow each other. Here, 50% of the time, this holds true, and
50% of the time B is just a random sentence of the corpus.

After pre-training the model to equip it with a strong general language understanding, it can
now be trained in a supervised manner on various downstream tasks, utilizing the language
understanding it gained in the pre-training stage. This concept of training a previously trained
language model on a specific task is called fine-tuning. To fine-tune a BERT model on any
language-related downstream task, a task-specific layer is simply added to the last encoder of
the BERT model and either trained together with the whole model or trained alone while the
parameters of the pre-trained model are frozen. The most important upside of this approach is
that the pre-trained model can be shared (for example on platforms like huggingface2) and only
the fine-tuning for any downstream tasks needs to be done, saving time (BERTs pre-training time
was around 4 days (Devlin et al., 2019), while most often the fine-tuning process doesn’t take up
more than an hour), money (fine-tuning can be done on conventional GPUs rather quickly) and
minimizing the large carbon footprint that pre-training causes.

2. https://huggingface.co/models
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Figure 2.10: BERT pre-training and fine-tuning. During fine-tuning, a task-specific output
layer is added and all parameters are fine-tuned. This leverages the language
understanding acquired during pre-training for several (possibly low-resource)
downstream tasks. (Source: Devlin et al. (2019))

BART

BART (Lewis et al., 2020) (Bidirectional Auto-Regressive Transformer) is a transformer-based
encoder-decoder architecture that brings the pre-training paradigm to seq2seq models while
also using the bidirectional encoder in a BERT-like fashion. While BERT uses only the encoder
components of the original transformer architecture, BART uses the encoder as well as the
decoder components, as originally suggested by Vaswani et al. (2017). In order to leverage
unsupervised language data, the model is pre-trained using corrupted documents with the task to
reconstruct these documents. Unlike BERT, which is trained by predicting tokens at positions,
BART’s objective is to generate the output sequence in an auto-regressive fashion, where the
decoder generates each token based on its previously generated output. For pre-training, the
authors introduce 5 sequence-based pre-training tasks:

1. Token Masking

This objective is similar to BERT’s pre-training task, where random tokens are replaced
with the [MASK] token.

2. Token Deletion

This objective deletes random tokens from the input and the model has to also decide
which positions are missing.

3. Text Infilling

This objective is related to the Token Masking objective but instead of a single word, a
span is replaced with a single [MASK] token. This introduces the additional difficulty
for the model to predict how many tokens are missing. The span length is drawn from
a Poisson distribution with l = 3, where 0-length spans correspond to the insertion of
[MASK] tokens.
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4. Sentence Permutation

For this training objective, a document of shuffled sentences is given to the model and it
has to predict the right sequence of sentences.

5. Document Rotation

This objective rotates a randomly chosen token at the beginning of the document. Accord-
ing to the authors, this teaches the model to identify the start of a document.

Even though BART was trained on sequence generation pre-training objectives, it can also be
fine-tuned for sequence or token classification tasks. For classification tasks, it receives the
same input at the encoder and the decoder, and the final hidden state is classified by a linear
classifier. The authors report, that BART performs on par with (at the time) state-of-the-art
language classification approaches. However, due to its generative nature, BART is used more
often for tasks that involve sequence generation.

Figure 2.11: The pre-training objectives used for training BART. The authors suggest five
ways of corrupting an input sequence and the goal is always to predict the
original sequence (Source: Lewis et al. (2020))

2.4 Named Entity Recognition

Named entity recognition (NER) is a research field of natural language processing. The goal
of NER is to locate and classify named entities that occur in a text document into pre-defined
categories. The term "Named Entity" was first coined in 1996 in the context of Information
Extraction tasks (Grishman and Sundheim, 1996). Roughly speaking, named entities are any
words that can be referred to with a proper name (Jurafsky and Martin, 2008). Typical examples
of named entities are for example "person", "location", or "organization". However, this
definition is not rigid and in practice, some datasets include words that exceed this definition, for
example, categories for time or money value (Weischedel et al., 2013). Named entity recognition
is oftentimes used as a first step in NLP-based problems like question answering or information
extraction. In contrast to part-of-speech tagging, where each token is assigned one tag, named
entities are usually more sparsely distributed over the sentence and oftentimes span multiple
tokens, making the problem more difficult because it basically requires the two sub-tasks of
entity detection and entity naming. Most of the time those subtasks are only implicitly learned by
models, however, there exist approaches that explicitly divide the NER problem into those two
subtasks, for example in Ma et al. (2022). Formally, the problem of named entity recognition
can be defined as follows: Given an input sentence of n tokens, X = x1,x2, ...,xn the goal is to
obtain a triplet (l,r, t) for each entity occurring in X where l and r indicate the left and right
inclusive boundary word indices of the entity in X and t 2 T indicates the type of the entity,
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where T is the set of entity types (Wang et al., 2022). The special type O is usually used for
tokens that don‘t belong to any entity. For example, given the sentence, X = {"The Eiffel
tower is located in Paris."}, a NER system might identify the entities e1 = (1,2,”building”) and
e2 = (6,6,”location”).

A tagging scheme in the context of NER denotes, how entities are marked in a NER data set.
The most popular tagging scheme is BIO tagging, where the beginning and the inside of an
entity are marked, as well as the outside token. Another scheme is the BIOES tagging scheme,
which differentiates between single-token entities (S) and entities that span multiple tokens. It
also introduces a tag that explicitly denotes the last token of an entity span. A simpler approach
is the IO scheme, which only decides whether a token is part of an entity or not. In practice, the
choice of a tagging scheme matters and is very task and dataset dependent. Ding et al. (2021),
for example, found that the IO scheme is working best for their dataset. Alshammari and Alanazi
(2021) analyzed the impact of different annotation schemes on the NER task and also empirically
found, that the IO scheme works best. However, the drawback of the IO scheme is that it is
unable to mark entities that directly follow each other.

Figure 2.12: Visualization of popular tagging schemes BIO, IO and BIOES

In early NER research, a common approach to the problem was the use of hand-crafted rules
and heuristics that were applied to a text. Such rules could for example involve looking
at the capitalization of a word, using word lists of known entities, preceding or subsequent
words, or parsing regular expressions to capture frequently occurring patterns. The obvious
disadvantages of rule-based approaches are that those rules are very scenario specific and
crafting a well-performing rule set for a different domain might be a very time-consuming task.
Later, supervised machine-learning techniques for NER replaced strictly rule-based models. A
popular choice to approach NER was to train a Conditional Random Field (CRF) (Lafferty et al.,
2001) in a supervised manner, but this approach also required extensive feature engineering to
incorporate expert knowledge into the model, basically yielding similar disadvantages as the
rule-based approaches. While those approaches can achieve satisfactory results, the resulting
models are highly associated with the categories it was trained on, and adding new categories
or switching domains is a hard and often infeasible problem making this approach unfit for a
semi-automated annotation system where different people work on different domains frequently.
Since the advent of large language models such as BERT (Devlin et al., 2019), it is common
practice to use a large pre-trained model and fine-tune it on the downstream task NER. While
this solution does achieve very high results on the NER task, its success is highly dependent on
the availability of a large enough entity corpus. For the purpose of a semi-automated annotation
system, however, this is clearly a non-satisfying option because, in practice, a semi-automated
annotation system deals with a lot of custom tags and cannot provide enough training data for
each tag to employ a simple label-oriented supervised approach.

There exist various datasets for the NER task, for example, CoNLL2003 (Tjong Kim Sang and
De Meulder, 2003) based on News articles, I2B2 (Stubbs and Uzuner, 2015) based on medical
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data, WNUT2017 (Derczynski et al., 2017) based on social data or OntoNotes 5.0 (Weischedel
et al., 2013) based on various genres of text.

2.4.1 Few-Shot NER

Realistically, a system for semi-automatic annotation of text documents needs to be able to
predict annotations while only being given a small number of annotations by a human annotator.
This problem is commonly known as few-shot named entity recognition. Few-shot NER focusses
on the NER scenario where a system is trained on annotations of one or more source domains
DS and is then tested on a target domain DT being only provided with a few labeled support
samples per entity class. Yang and Katiyar (2020) formalize the problem of K-shot NER as
follows: Given an input sentence, x = xt

T
t=1 and a support set S for the target tag set CT that

includes K example samples for each entity in CT find the best tag sequence y = yt
T
t=1 for x.

Since it is often a hard problem to sample exactly K examples per class, Ding et al. (2021)
proposed a greedy sampling algorithm that guarantees no more than 2K example samples per
class. Ding et al. (2021) therefore define the few-shot task as N-way K ⇠ 2K-shot. While a lot
of few-shot learning problems are approached in a setting of episodic learning, recent studies
have also used prompt-based learning for few-shot NER. Prompt-based learning is a paradigm in
natural language processing, where the particular task at hand is reformulated in such a way, that
the pre-trained language model can be used to solve it directly (Liu et al., 2022). The aim of such
approaches is to better leverage the language understanding of the model in a more direct manner
without the need for additional task-specific layers. While this approach is more straightforward
for tasks that don’t operate on token level, recent research also studied prompt-based approaches
for token-based tasks like named entity recognition. Chapter 3 explores different state-of-the-art
techniques of few-shot NER in more detail.

2.4.2 Fine-Grained NER

Most annotated NER datasets only differentiate between entity types of a few coarse categories.
The popular CoNLL2003 data set (Tjong Kim Sang and De Meulder, 2003) for example only
differentiates between the types PER (person), LOC (location), ORG (organization and MISC
(miscellaneous). Most NER datasets usually differentiate between 4 (e.g. CoNNLL2003) and
18 (OntoNotes 5.0) entity types. However, a system for automatic text annotation should be
able to differentiate between more fine-grained entity types, depending on the task at hand. For
example, a user might not only want to extract all entities of the type Organization but might also
want to differentiate between cultural, political, or educational organizations. Depending on the
target domain, almost any level of fine-grained entity representation could potentially be desired
by the user. A step towards a fine-grained dataset is Few-NERD (Ding et al., 2021), which
differentiates between eight coarse- and 66 fine-grained entity classes using a manually annotated
Wikipedia corpus. Few-NERD aims to be the de-facto standard data set for fine-grained NER
and has already been adopted by recent works such as Das et al. (2022), Ma et al. (2022) or
Chen et al. (2022). This thesis also adopts the Few-NERD dataset for the experiments that are
described in Chapter 4.
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3 Related work

This chapter aims to provide an overview of recent research regarding techniques for few-shot
NER. First, a general overview of recently published approaches to few-shot NER is given.
Then, the five techniques that are used for the experiments in this thesis are explained in a more
detailed manner.

3.1 Metric-Based Approaches

Metric-based approaches typically make use of episodic training, where each episode resembles
one few-shot learning task (as explained in Chapter 2). The core idea of these approaches is for
the model to compute representations of each class using a support set and then perform some
kind of similarity calculation of the examples in the query set to those representations.

Fritzler et al. (2019) tackled the task of few-shot named entity recognition using Prototypical
Networks (Snell et al., 2017) to learn intermediate representations of words that cluster well
into named entity classes. The model learns a prototype for unseen classes by averaging the
representations of the support samples for that class. Wiseman and Stratos (2019) applied few-
shot classification to NER by proposing a label-based nearest-neighbor approach: Considering
an example (support) sentence x0 and a corresponding tag sequence y0. For a token xi in sequence
x and x0i in sequence x0, the probability yi = y0i depends on the similarity of the trained word
embeddings of xi and x0i. Ziyadi et al. (2020) proposed an approach they call example-based,
also modeling the correlation between a set of support samples and a query sentence for which
the entities need to be determined. They obtain BERT representations of each token in the
query and support set and measure the similarity between the query sentence and each of the
entities in the support set. Additionally, they combine this token-level-similarity approach with
a sentence-level similarity measure. Yang and Katiyar (2020) identified a problem in previous
prototypical-based approaches which is that the outside class O does not represent any unified
semantic meaning. For models that are solely based on prototypes, this leads to them learning
noisy prototypes for O. Instead of only learning prototypes for each entity class, they represent
each token by its contextual BERT representation in the sentence. Additionally, their model
StructShot makes use of abstract tag transitions distribution (Hou et al., 2020) thus being able to
transfer some knowledge about tag transitions from the source to the target domain using a Viterbi
(Forney, 1973) decoder component. Yamada et al. (2020) proposed a new contextualized entity
representation based on BERT. They achieve this by applying a new pre-training task to BERT
which involves predicting randomly masked words and entities in an entity-annotated corpus (in
contrast to only predicting masked words) and obtaining contextualized entity representations.
They also introduced an entity-aware self-attention mechanism that is able to differentiate
between words and entities while computing attention scores.Yu et al. (2021) employ a retrieval-
based method, matching token spans in the input to the most similar labeled spans in a retrieval
index. Huang et al. (2021) explored among other things, how leveraging freely available data
(such as web data) as supervised pre-training data can be beneficial for the few-shot NER
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setting and conducted experiments using WiFiNE (Ghaddar and Langlais, 2018), a heuristically
annotated Wikipedia corpus as noisy supervised pre-training data. They concluded that it can
significantly boost accuracy in the few-shot setting. Ding et al. (2021) proposed the first large
fine-grained NER data set with eight coarse- and 66 fine-grained entity types consisting of
188,238 manually annotated sentences from Wikipedia. They also implemented ProtoBERT,
a Prototypical Network based on BERT representations and the approach mentioned above
by Yang and Katiyar (2020), and concluded that few-shot fine-grained NER is a challenging
task that is far from being solved. Additionally, they provided three different benchmark
tasks (SUP, INTER, INTRA) in order to better compare the knowledge transfer capability of
different models on their data set. Das et al. (2022) proposed entity representations based on
Gaussian Embeddings (Vilnis and McCallum, 2014) instead of fixed vectors. This is supposedly
increasing the generalizability of tags with a low number of support samples. It is trained by
using contrastive learning: Decreasing the distance of the Gaussian token embeddings of similar
entities while increasing it for dissimilar ones. Classification is performed via nearest neighbor
inference on the Gaussian Embeddings. They also combine the nearest neighbor classification
with Viterbi decoding like Yang and Katiyar (2020). J Ma et al. (2022) also use a similarity
measure, but incorporate label semantics into the measure by using two BERT encoders - one
for the document and one for the labels. The model then learns to match token representations
to label representations. This approach allows leveraging the semantics of a label class into
the decision process. Ma et al. (2022) approach the problem of few-shot NER by training a
label-agnostic span detection network and an entity-typing network independently. At inference
time the two modules first are fine-tuned on the support set. Then the span-detection network
outputs spans of the query sentence which are sent to the entity typing network.

3.2 Prompt-Based Approaches

Over the last few years, a new paradigm emerged in the world of natural language processing:
Prompt-based learning. This paradigm is all about reformulating the task in such a way that a
language model like BERT (Devlin et al., 2019) or BART (Lewis et al., 2020) can understand it
because it is similar to its pre-training task. (Liu et al., 2022). For example, a model with the
task of detecting emotions of a social-media post would get the input sentence "I missed the
bus today" and in addition, the prompt "I felt so __". The language model is then supposed to
fill in the blank, just like it does during the pre-training task. R Ma et al. (2022) formalize a
prompt as consisting of a template function Tprompt(·) that converts the input x to a prompt input
xprompt = Tprompt(x) and a set of label words V which are connected with the label space through
a mapping function M : Y 7! V . The template then is a string with two unfilled slots, one slot
X to fill the input and one answer slot Z for the model. For a sentiment classification task, the
template might look like this: "[X] It was [Z]". For a named entity recognition task, another slot
[S] is needed to specify the token which is labeled. A template for a NER task could look like
this: "[X] [S] is a [Z] entity". This approach takes away the fine-tuning to downstream tasks
via objective engineering and, in theory, offers a flexible solution to leverage the raw language
understanding of the pre-trained model. However, it shifts the engineering work to be done to
the prompts since finding a good and effective prompt depends a lot on the task at hand, and
finding an adequate one is often simply a trial-and-error process.

Schick and Schütze (2021) proposed to reformulate the input to a cloze-style question effectively
trying to provide task descriptions for the model and utilizing it for supervised tasks in a few-shot
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setting. They do this by employing a technique called pattern-exploiting-training, where first,
an ensemble of models is fine-tuned on the cloze-style patterns and is then used on a larger
unlabelled dataset to infer soft labels. Finally, the resulting labeled dataset is used to train a
classifier. Gao et al. (2021) improved upon their approach using automatically generated prompts
and showed that leveraging automatically generated prompts together with task demonstrations
as part of the input context enables language models to be used for text classification tasks. Cui
et al. (2021) trained a BART encoder-decoder network on templates, leveraging the generative
output of such models. During training, if a token c belongs to entity e, the template t ="c is a e
entity" is generated and given to the decoder as the desired output. During inference, first, all
possible n-grams in the sentence are generated (up to n = 8), then for each template T , a score is
generated and c is assigned to the entity of the highest scoring entity template. Lee et al. (2022)
also augment the original input by appending automatically created task demonstrations and
feeding them alongside the tokens to the language model. Wang et al. (2022) also inject the
task instruction directly at the input, together with the input sentence and labeling options.
To boost performance they additionally define two auxiliary tasks entity extraction and entity
typing that together make up the named-entity recognition task. R Ma et al. (2022) identify two
main disadvantages of manual template crafting for prompt-based learning in the context of
named entity recognition: It is inefficient as the search space can grow quite large and obtaining
the label of each token requires enumerating all possible spans (as seen, for example, in Cui
et al. (2021)). Instead of templates, they propose the EntLM fine-tune objective where they
train a BERT model to replace an entity name with a label word, which is a representative of
the corresponding entity class. For example, the input sentence "Obama was born in America"
will generate "John was born in Australia", with "John" and "Australia" being label words for
the classes "Person" and "Location". An advantage of this approach is that all entities can be
determined in one pass through the model (in contrast, for example, to Cui et al. (2021)). They
also propose methods for finding appropriate label words.

3.3 Model Architectures

After general research with regard to few-shot named entity recognition, five state-of-the-art
systems have been chosen to run further experiments on. The systems have been picked
according to their reported results on the few-shot NER task. To achieve a balanced overview
of current approaches to few-shot NER, two meta-learning models (ProtoBERT (Ding et al.,
2021) and StructShot (Yang and Katiyar, 2020)) and two prompt-based models (TemplateNER
(Cui et al., 2021) and EntLM (R Ma et al., 2022)) have been chosen for further experiments.
Furthermore, experiments have been done using adapter-transformer (Pfeiffer, Rücklé, et al.,
2020), as their design naturally makes them a good fit for quickly switching annotation task
contexts without much storage overhead. This section describes the chosen approaches in a
more detailed manner.

3.3.1 ProtoBERT

ProtoBERT is one of the models that were implemented in the original Few-NERD publication
(Ding et al., 2021). It is based on Prototypical Networks, which were first described by Snell
et al. (2017). Like many solutions for few-shot learning, they are based on an episodic learning
approach. The core assumption of Prototypical Networks is, that there exists an embedding

28



representing a class, around which all examples of that class cluster. To receive these cluster
centroids, they internally build up prototype representations of each class of the support set.
An example is then classified by computing some distance of that example to the prototype.
The authors report squared Euclidian distance to work best but state that any distance metric
is permissible (Snell et al., 2017). To classify examples, a non-linear mapping of the input
space to an embedding space is learned using an embedding function ff : RD ! RM. The
prototype of a class C simply is computed as the mean of all classes xi in the support set, where
yi = C. Classification is performed by computing a softmax function over distances to class
prototypes.

More formally: Prototypical Networks compute an M-dimensional representation ck 2 RM for
each training example through an embedding function ff : RD! RM with learnable parameters
f . A prototype for a class is the mean vector of all the support points that belong to this class:

ck =
1
|Sk| Â

(xi,yi)2Sk

ff (xi). (3.1)

A distance function d : RM⇥RM! [0,+ inf) is used to find the prototype for a specific class by
computing a softmax function over the distances to the prototypes in the embedding space:

pf (y = k|x) =
exp(�d(ff (x),ck))

Âk0 exp(�d(ff (x,ck0)))
. (3.2)

During the training phase, the negative log-likelihood is used as a loss function:

J(f) =�logpf (y = k|x). (3.3)

ProtoBERT (Ding et al., 2021) implements this concept by using BERT (Devlin et al., 2019) as
an encoder model for class representations.

Figure 3.1: The classification process in a Prototypical Network. c1,c2,c3 are the centroids of
the prototype clusters and x is the example to classify (Source: Snell et al. (2017)).

3.3.2 StructShot

StructShot is the second model that the authors of Few-NERD implemented in their original
publication. It was first proposed by Yang and Katiyar (2020). The core idea of StructShot is
that, instead of employing class representations to classify samples by calculating a mean of
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the classes in the support sample and then calculating distances to the class representatives (as
ProtoBERT does), it simply makes use of a token-level nearest neighbor classification. Given a
sentence xt

T
1 and a support set S = (xn,yn)

N
n=1 of N sentences, the model uses a token embedder

ff (x) to obtain contextual representations for all tokens in the sentence. The model employed
in Ding et al. (2021) uses a BERT encoder (Devlin et al., 2019) trained on a source domain as
token embedders. A similarity score between each token of the sentence in question and each
token in the support set is calculated and the token x is assigned the tag c that corresponds to the
most similar token in the support set:

y⇤ = arg min
c21,...,C

dc(x̂) (3.4)

and
dc(x̂) = min

x02Sc
d(x̂, x̂0). (3.5)

To compute the distance, the squared Euclidian distance d(x̂, x̂0) = ||x̂� x̂0||22 is used.

According to the authors, this token-level similarity measure solves a problem of prototype-
based approaches: Prototype-based approaches learn prototypes even for the outside class O.
However, in contrast to entity types, the prototypes for the outside class are noisy because they
do not carry any semantic meaning whatsoever. In certain cases, noisy O prototypes may lead to
inaccuracies during classification, causing an outside sample to be falsely classified as an inside
sample because, accidentally, its embedding is more similar to some class prototype than to the
O prototype.

Figure 3.2: The token-level based inference as described in Yang and Katiyar (2020)

Additionally, during inference an optimization step is included in StrutShot, using a Viterbi (For-
ney, 1973) decoder component. During training on the source domain, a transition probability
is computed by counting the number of times each transition occurred. Since the tags during
on-domain training might differ from the tags that are used during the actual few-shot training,
only abstract transition probabilities between O, I, and I-other - for the case that two different
entity types directly follow each other - are counted. With the emission probabilities given as

p(y = c|x) = e�dc(x̂)

Âc0 e�dc0 x̂
(3.6)

and the abstract transition distribution p(y0|y), the Viterbi decoder is used to solve the following
problem:

y⇤= argmax
y

PT
t=1 p(yt |x) · p(yt |yt�1). (3.7)
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Finally, they introduce a hyper-parameter t to normalize the transition probabilities to a similar
scale.

3.3.3 TemplateNER

TemplateNER is a prompt-based approach to few-shot named entity recognition. As presented
above, the underlying assumption of those approaches is that the model already learned a
sufficient understanding of natural language in the pre-training stage and that this knowledge
can be used in a more direct fashion than fine-tuning it on supervised training data, leading to a
more efficient and direct way of classification. Cui et al. (2021) introduced a template-based
method to better exploit the language understanding of pre-trained language models for the task
of NER. They fine-tune a BART model on pre-defined templates, filled with words from the
training set. For example, a common template for named entity classification would have the
form of

<sentence>. X is a Y entity.

Another example of a possible template would be:

<sentence>. X belongs to the Y category.

For example, given the sentence X = This year, we traveled to Spain, where "Spain" is labeled
"Location" and the other words are labeled Outside ("O"), using the first template T above we
would derive the following pair (X,T):

This year, we traveled to Spain. Spain is a location entity.

A BART model would then be fine-tuned to predict "Spain is a location entity" when it encounters
that sentence. To balance the model out, in order for it to not predict too many entities, a template
for non-entities is needed as well. A template for non-entity spans might, for example, look like
this:

<sentence>. X is not a named entity.

Applying the negative template to the example sentence above, would, for example, look like
this:

This year, we traveled to Spain. we is not a named entity.

Formally: First, given a label set L = l1, ..., ln, a mapping function transforms L to a set
Y = y1, ...,yn of natural words (e.g. "LOC" becomes "location"). This step is important because
in order to leverage the language understanding of generative models, the generated classification
sentences need to carry a semantic meaning, whereas "LOC" only has a symbolic meaning. For
datasets like Few-NERD, this step is not necessary, because it already uses natural language
labels. Then, for each yi 2 Y, a positive Template T

+
yi

is created (e.g. <sentence>. X is a yi
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entity.). Additionally, a negative template (as seen above) T
� is created. The ratio of negative to

positive templates is a hyperparameter and was set to 1.5 in the original paper.

For inference, given a sentence X = x1, ..,xn all possible candidate spans are generated and
corresponding templates are filled. The candidate spans are all 1-grams, 2-grams, ..., n-grams
of the sentence (given the example sentence above, they would be: "This", "year", ..., "Spain",
"This year", ..., "to Spain", ... "This year, we", ..., "traveled to Spain", and so forth). In order to
avoid unnecessary complexity, the original authors capped n at 8. Then, using BART, a score
f(T+

yk,xi: j
) is calculated for each template and for each generated span. For each span, the entity

type with the largest scoring template is assigned to the span. The detection of nested entities is
not provided. For overlapping spans, that predict different entities, a scoring function is used to
predict the entity whose template has a larger score (Cui et al., 2021). The inference process of
TemplateNER is depicted in Figure 3.3.

For training, first, the dataset is transformed into templates. Given a gold sentence X, where a
span xi: j has entity type yk, a corresponding sentence T

+
yk,xi: j

"X. xi: j is a yk entity." is created. In
a similar fashion, negative templates T

� are filled. Negative entity spans are sampled randomly
(Cui et al., 2021). Then, given a pair of sentences and template (X,T), X is fed into the encoder
component of the BART model and a hidden representation of the sentence

h
enc = Encoder(x1:n) (3.8)

is obtained. The output of the decoder at the cth step depends on h
enc and previous output tokens

t1:c�1:
h

dec
c = Decoder(henc, t1:c�1). (3.9)

The probability of the next generated word is then defined as

p(tc|t1:c�1,X) = so f tmax(hdec
c Wlm +blm) (3.10)

with Wlm and blm being the weights and the bias of the decoder model with Wlm 2 Rdh⇥|V| and
blm 2 R|V|. |V| represents the size of BART’s vocabulary and dh the dimension of the hidden
representation. The training objective is to minimize the cross-entropy between the decoder’s
output and the original template.

Figure 3.3: The inference process of TemplateNER (Source: Cui et al. (2021))
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3.3.4 EntLM

EntLM (R Ma et al., 2022) is another prompt-based approach to few-shot NER. This approach
solves the problem of the impracticability of template-based approaches for few-shot NER like
Cui et al. (2021), which have to iterate over all possible spans to classify entities, resulting
in very long inference times. Instead, they utilize the language understanding of pre-trained
language models by specifying an entity-oriented masked LM objective, in which a pre-trained
model is fine-tuned to predict class-related label words instead of the original words at the entity
positions, while still predicting the original word at none-entity positions (R Ma et al., 2022).
With this training objective, the advantage of prompt-based learning, which is that the output of
the language model is used directly, without the need for additional layers, is kept, without the
problems that template-based approaches like Cui et al. (2021) entail.

Formally: Given an input sentence X = x1, ...,xn and a label sequence Y = y1, ...,yn, a target
sequence X

Ent = x1, ...,M(yi), ...,xn is constructed, in which the token at the position of the
entity at position i is replaced with the corresponding label word M(yi). The language model is
then trained to maximize the probability of the modified sentence X

Ent given the source sentence
X:

LEntLM =�
n

Â
i=1

logP(xi = xEnt
i |X), (3.11)

where P(xi = xEnt
i |X)= so f tmax(Wlm ·hi). During inference, given a sentence X, the probability

of labeling a token xi with class y is given by:

p(yi = y|X) = p(xi =M(y)|X), (3.12)

where M is the function that maps label words to specific classes (R Ma et al., 2022). The
inference process is depicted in Figure 3.4

Figure 3.4: The inference process of EntLM (Source: R Ma et al. (2022))

Naturally, this approach implies the need for label words, that appropriately represent the class
they stand for, to function well. The authors name three approaches for deriving the most
appropriate label words: Searching with data distribution, searching with LM output distribution
(R Ma et al., 2022), and a combination of those.
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Searching Label Words using Data Distribution

Searching for label words using data distribution is the most intuitive approach to label word
searching. When searching for a suitable label word for a class C, f(x = w,y =C) describes the
frequency of word w belonging to class C. The label word is then the most frequently occurring
word w with the label C:

M(C) = argmax
w

f(x = w,y =C). (3.13)

Searching Label Words using LM Output Distribution

The second approach for label word searching suggested by the authors leverages the pre-trained
language model for label word searching. For this, each sample (X ,Y ) of the data is fed into
the language model to receive the probability distribution p(xi = w|X) of predicting each word
w 2 V at each sentence position j, where V is the vocabulary of the language model. The label
word for a class C is then the word that is most frequently predicted for words that belong to
class C. More Formally:

M(C) = argmax
w Â

(X ,Y )

|X |

Â
i

ftopk(xi = w,yi =C), (3.14)

where ftopk(xi = w,y =C) returns 1, if w belongs to the top k predictions for xi in sample (X ,Y )
and yi is C (R Ma et al., 2022). k is a hyperparameter and the authors state k = 6 achieves good
results throughout all experiments.

Combining label counting in the data and LM output distribution

The authors suggest a third approach for finding appropriate label words, combining the naive
counting method with the method that considers LM output distribution:

M(C) = argmax
w

{ Â
(X ,Y )

|X |

Â
i

f(xi = w,yi =C) · Â
(X ,Y )

|X |

Â
i

ftopk(xi = w,y =C)}. (3.15)

Label Word Search using Distantly Matched Labels

In most cases, deriving label representatives from the (few-shot) training corpus won’t deliver
good results though, as the sample size of words and their labels is too small and the above
approaches will not lead to sufficient results. To counteract this problem, the authors suggest
making use of larger, unlabeled domain data and employing distant supervised techniques. They
specifically recommend BOND (Liang et al., 2020) for this approach. BOND is a RoBERTa-
based (Y Liu et al., 2019), two-stage approach for labeling an unlabeled corpus with the help of
a knowledge base. First, distantly matched labels of the target domain are generated with the
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help of the knowledge base, in this case wikidata1, using string matching, regular expressions,
and handcrafted rules (Liang et al., 2020) and a RoBERTa model is trained on those generated
labels. They then employ a teacher-student approach, in which the student model is trained using
the pseudo-labels generated by the teacher model, and the teacher is updated by the student
accordingly. According to the authors, this additional teacher-student step adds a significant edge
to performance compared to the standard distant supervised algorithms (Liang et al., 2020)

3.3.5 Adapter

Adapters for NLP tasks have first been introduced in Houlsby et al. (2019) with the goal of
making the process of fine-tuning large language models (like BERT or GPT) more parameter-
efficient. Traditionally, when fine-tuning a transformer model for an NLP task, the entire
model is fine-tuned by modifying its parameters. Depending on the size of the pre-trained
model, this is computationally expensive and time-consuming (GPT-3 (Brown et al., 2020) for
example has 175 billion parameters). Additionally, this approach naturally requires saving all
the parameters of the fine-tuned model for each task at hand, making it impractical in a scenario
where different tasks arise frequently. Houlsby et al. (2019) solve these issues by adding new
modules between the layers of a pre-trained transformer. Formally, traditional fine-tuning of
a transformer neural network fw(x) is done by adjusting the parameters w of the pre-trained
model. Adapter-transformer introduce a new set of parameters v to the model resulting in a
function yw,v(x), where only the parameters v are modified during training. The newly added
parameters v make up 0.5% - 8% of the parameters of the original model (Houlsby et al., 2019).
This technique makes the training of a pre-trained language model faster while at the same
being parameter efficient since the weights of the original model are shared through all tasks.
Additionally, Houlsby et al. (2019) show that their approach does not substantially degrade
the accuracy of the model. A downside of this approach is that the inference time is slightly
increased due to the newly introduced parameters. However, in practice, the advantages of this
approach often outweigh this disadvantage.

Adapter Architectures

The approach of adding trainable parameters between transformer layers is in itself a theoretical
approach, leaving room for many different architectural choices and configurations. Furthermore,
integrating additional layers is not straightforward. In an attempt to make the creation of adapter
modules and their different practical implementations, their usage, and the sharing of adapter
modules more accessible, Pfeiffer, Rücklé, et al. (2020) released a framework that enables the
user to easily plug in adapter layers into an existing huggingface transformer model. They also
provide a variety of different adapter architectures and configurations and provide a website,
where trained task adapters can be uploaded and shared2. The following section will briefly
describe different possible adapter configurations provided by Pfeiffer, Rücklé, et al. (2020)

Houlsby et al. (2019) suggest placing the adapter layers after both the multi-head attention layer
and after the feed-forward layer of the transformer encoder. The adapter layers are injected
directly behind the output of the multi-head attention and the feed-forward layer, respectively.

1. https://www.wikidata.org/
2. adapterhub.ml
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Figure 3.5: Illustration of a basic Bottleneck Adapter module. Adapter layers can be inserted
after the multi-head attention layer as well as after the feed-forward layer of a
transformer network (left). To save parameters, internally, they project their input
down to a lower dimension m, compute a non-linearity function on it, and project
it up to dimension d (right) (Source: Houlsby et al. (2019)).
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In order to keep the number of parameters small, each adapter layer projects the original d-
dimensional input from the layer it is adapted to into a smaller dimension m. After that, a
non-linearity is applied and the input is projected up to d dimensions again. Configurations
that utilize a down-and-up projection inside the adapter layers are called Bottleneck Adapters.
A basic bottleneck adapter configuration is depicted in Figure 3.5. On adapterhub.ml, this
configuration is represented by the HoulsbyConfig class.

Pfeiffer, Vulić, et al. (2020) proposed a slightly different adapter configuration in an attempt to
study how adapters can be utilized to transfer knowledge between a multilingual transformer
model and a target language. To transfer knowledge between languages, they first train language
adapters on unlabelled data of a source as well as the target language using the masked language
model training objective on a Wikipedia corpus (Pfeiffer, Vulić, et al., 2020). They then train
a language-agnostic task-specific adapter (for example for the NER task) that is stacked on
top of the source language adapter. Stacking adapters first has been introduced by Pfeiffer,
Kamath, et al. (2020) who showed that stacking adapters can effectively combine the knowledge
of each individual adapter to a certain extent, without leading to catastrophic forgetting. During
the training of the task adapter, the weights of the language adapter, as well as the weights
of the transformer model, are frozen. In a third step, to apply zero-shot transfer to the target
language, the source language adapter is switched out with the target language adapter, effectively
combining the general knowledge of the target language adapter with the knowledge of the
fine-tuned task adapter, without the need for actually having seen labeled examples of the
target language. The adapters used in this approach are bottleneck adapters as described by
Houlsby et al. (2019). However, Pfeiffer, Vulić, et al. (2020) only use the adapters after the
feed-forward layer and not, like Houlsby et al. (2019), also after the multi-head attention layer.
On adapterhub.ml, this arrangement of adapter layers is represented by the PfeifferConfig
class. To capture language-specific token-level transformations, they also introduce invertible
adapters, which are stacked after the embedding layers, with their respective inverse being
stacked after the output embedding layer. Invertible adapters are provided on adapterhub.ml via
the inv_adapter attribute of the AdapterConfig class.

Figure 3.6: Sequential adapter configuration (left) and parallel adapter configuration (right)
(Source: J He et al. (2021))

J He et al. (2021) systematically analyzed state-of-the-art design choices regarding parameter-
efficient fine-tuning of language models and introduced a novel framework that describes the
injection of additional parameters into the model across four dimensions. They also proposed
a new form of inserting additional layers into the pre-trained transformer model in a parallel
fashion. Let x be the input to a certain sublayer of a pre-trained transformer model, h the

37

adapterhub.ml
adapterhub.ml
adapterhub.ml


output of that sublayer, and T the adapter transformation f(hWdown)Wup where f is a non-linear
function like ReLu. Traditional adapter (Houlsby et al., 2019) compute the transformation
after x has passed through the sublayer and add the output of T to the original output h. The
parallel approach suggested by J He et al. (2021) - which was also independently suggested
by Yaoming Zhu et al. (2021) - computes T (x) directly and adds T (x) to h afterwards. This
is illustrated in Figure 3.6. Yaoming Zhu et al. (2021) performed extensive empirical research
on parallel adapter configurations in the context of neural machine translation and concluded
that they can improve the performance of transformer models on various translation tasks. On
adapterhub.ml, this configuration can be achieved by using the ParallelConfig class.

Figure 3.7: Decomposing DW into two low-rank matrices A and B (Source: Hu et al. (2021))

A different approach of injecting trainable layers into a pre-trained transformer model is de-
scribed by Hu et al. (2021). This approach, called LoRA for "Low-Rank Adaption, is inspired
by Aghajanyan et al. (2021), who empirically showed that the intrinsic dimensionality of large
pre-trained language models is a lot lower than the number of parameters they actually have. Hu
et al. (2021) take this assumption a step further and also assume that change in weights during
training also has a low intrinsic rank. Let W0 2 Rd⇥k be the pre-trained weight matrix of a trans-
former model and DW be the update to this matrix during training. To restrict possible updates
of this potentially very large weight matrix, LoRA decomposes DW by representing it with the
help of two lower-rank matrices A and B, where A 2 Rr⇥k and B 2 Rd⇥r and r⌧ min(d,k). Just
like in other adapter configurations, during training, W0 is frozen and only parameters in A and
B are trained:

h =W0x+DWx =W0x+BAx. (3.16)

An important advantage this approach has over adapter like Houlsby et al. (2019), or Pfeiffer,
Vulić, et al. (2020) is that A and B can be merged into W at inference time by adding W =W0+BA
which eliminates the overhead in inference time the other approaches suffer from. Additionally,
task switching also demands very little computational overhead: If A0 and B0 are decomposed
matrices for a second task, then switching to that task simply means subtracting AB from W0
and adding A0B0 to it. (Hu et al., 2021).
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4 Experiment and Dataset

4.1 Dataset

Named entity recognition datasets are crucial resources in the field of natural language processing
and machine learning and typically contain annotated text data, where each named entity is
labeled and categorized for training purposes. Over the years, several NER datasets have
emerged and established themselves as popular, the most popular datasets being the CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003) dataset and the OntoNotes5 (Weischedel et
al., 2013) dataset, providing annotations for four (CoNNL) and 18 (OntoNotes5) different
entity types, respectively. However, CoNLL-2003 as well as OntoNotes provide only rough-
grained entities: CoNLL-2003 differentiates between Person, Organization, Location, and
Miscellaneous entities and OntoNotes differentiates between Person, Organization, Location,
Date, Time, Money, Percent, Facility, GPE, Vehicle, Weapon, Event, Product, Work of Art,
Language, Law, NORP (Nationality, Religious or Political Group) and Miscellaneous types. In
the practical setting of an automated annotation system, however, even more fine-grained entity
types might occur. For example, while OntoNotes provides the entity type "Event", there might
be cases in which an annotator wants to differentiate between the event of a war, the event of a
catastrophe, or a protest. The same holds for example for the type of "Organization", where it’s
more likely that an annotator may want to differentiate between a political party or, for example,
a company, instead of both being labeled Organization. 2021, the Few-NERD dataset (Ding
et al., 2021) was released with the goal of providing a higher differentiation factor, making it
useful for research that aims at working with more fine-grained entities. Few-NERD provides 66
fine-grained entity types, each type being assigned to one of eight parent entities (for example the
parent entity "Person" has child entities like "Actor", "Athlete" or "Artist"). Few-NERD consists
of 188,238 sentences from the English Wikipedia and provides a total of 4,601,160 annotated
words which makes it the largest NER dataset to the point of writing this (CoNLL includes
around 20,000 sentences and OntoNotes includes around 100,000 sentences). The dataset has
been annotated by 70 annotators with linguistic knowledge, as well as 10 experienced experts.
Each paragraph was annotated by two annotators. After, an experienced expert overlooked the
annotated paragraph and made the final decision. Figure 4.1 shows an overview of all the classes
that are included in the dataset.

Important to note is, that the authors define the few-shot NER setting as a setting of episodic
learning, in which a model is trained on episodes. Each episode contains a query set and a
support set and for each episode, the goal of the model is to predict the labels contained in the
query set with the help of the support set (as explained in Chapter 2). For example, in a 4-way
5-shot setting, one episode may contain the classes "Person", "Location", "Event", and "MISC",
with the support set containing 5 examples of each of those classes. In this case, the query set
contains sentences where only those 4 classes occur, and the task of the model is to predict the
classes correctly after having seen the classes in the support set. Depending on episode size
and training corpus, it is often not possible to sample sentences in such a way that they include
exactly K samples for each of the N classes. Ding et al. (2021) tackle this issue by relaxing the

39



Figure 4.1: Overview of all classes present in the Few-NERD dataset. The inner circle repre-
sents the parent classes, the outer circle represents the child classes (Source: Ding
et al. (2021))

N-way K-shot setting to an N-way K ⇠ 2K-shot setting, ensuring that each class occurs at least
K times but no more than 2K times.

Few-NERD provides three different data splits, SUP, INTER, and INTRA. SUP is the standard
supervised split, in which the available data is randomly split into training data (70%), testing
data (20%), and validation data (10%). In order to better assess the ability of the model to
generalize and transfer knowledge between episodes, the INTER and INTRA split have been
developed. In the INTRA split, all entities in different sets (train, test, and development)
belong to different coarse-grained entities (e.g. entities that have different parent entities).
More specifically, the train set includes the types "People", "MISC", "Art" and "Product", the
development set includes the types "Event" and "Building" and the test set includes the types
"Organization" and "Location". In the INTER split, only the fine-grained entity types are
mutually disjoint, while coarse-grained types are shared, leading to roughly 60% fine-grained
types being in the training set, 20% in the test set, and 20% in the validation set. In contrast to
other popular NER datasets which most often use the BIO Tagging scheme, Few-NERD makes
use of the IO tagging scheme, as the authors achieved slightly better results with it.

For the experiments conducted in this thesis, the Few-NERD dataset was used. Having up to
66 classes is helpful in determining how well a classifier is able to handle more than 18 classes
- which was the highest number of classes a NER dataset provided before Few-NERD was
released. Its class richness also allows the creation of several sub-datasets, for example, datasets
that only contain one or two coarse-grained types, in order to assess how well the model is able
to differentiate between the corresponding fine-grained classes without giving it the challenging
task of differentiating between 66 fine-grained classes. The hierarchical division into parent
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types also allows for experiments in which the model is pre-trained on only the coarse-grained
types and is then given a few examples of different fine-grained types.

4.2 Evaluation Metrics

The most basic metric for evaluating classification tasks would be to compute the percentage
of correctly classified instances over all instances (accuracy). However, in unbalanced datasets
like NER datasets, this metric is not ideal. In order to get a deeper understanding of what the
classifier can and cannot do, it is more common to take into account the number of true positives,
false positives, false negatives, and true negatives and use them to compute the metrics precision,
recall, and F1. Given an entity class C, the true positives of class C are all tokens that belong to
C and are labeled as C, the false positives are all tokens that don’t belong to C, but are labeled
as C, the false negatives are all tokens that belong to C but are not labeled as C and the true
negatives are all tokens that don’t belong to C and are not labeled as C. Figure 4.2 visualizes
those terms using a 2-class scenario.

Figure 4.2: Visualisation of true positives, false positives, true negatives, and false negatives in
a 2-class setting. The circle represents the classifier.

4.2.1 Precision

Precision measures the fraction of correctly predicted entities over all predicted entities. A
high precision score indicates that, if the model did predict an entity, that prediction is most
likely reliable and the number of erroneously predicted entities is low. On the other hand, a low
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precision score suggests that the system tends to overpredict certain classes (larger number of
false positives).

Precision =
TruePositives

TruePositives+FalsePositives

4.2.2 Recall

Recall specifies the fraction of correctly predicted entities over the total number of entities. A
high recall indicates that the system is capable of identifying most of the entities that are present
in the sample, whereas a low recall score indicates that the system tends to miss a significant
number of entities it should have predicted.

Recall =
TruePositives

TruePositives+FalseNegatives

4.2.3 F1

As both precision and recall are very important metrics for evaluating a classification task, the
F1 score combines both of them into a single metric and therefore represents the most important
metric when evaluating classification models. A high F1 score indicates that the model has a
high precision in classified samples, while also keeping the number of misclassified samples
low. The F1 score is the harmonic mean of precision and recall.

F1 =
2 ·Precision ·Recall
Precision+Recall

4.3 Experiments

After researching different state-of-the-art methods for few-shot named entity recognition, it
was decided to conduct experiments with ProtoBERT (Ding et al., 2021), StructShot (Yang
and Katiyar, 2020), TemplateNER (Cui et al., 2021) and EntLM (R Ma et al., 2022) as all of
those systems were reported to produce state-of-the-art few-shot NER results. Furthermore, this
selection of systems contains meta-learning approaches and prompt-based approaches and thus
delivers the broadest possible insights on what state-of-the-art few-shot NER models are capable
of. Experiments were also conducted using adapter-transformer (Pfeiffer, Rücklé, et al., 2020).
While they, in their basic form, are not built specifically for few-shot learning, adapters naturally
support quick task switching while at the same time being very resource efficient, making them
a good fit for a semi-automated annotation system.

As described in Chapter 3, ProtoBERT and StructShot use meta-learning approaches with
episodic training. The conducted experiments follow the experiments done by the authors of the
Few-NERD dataset and aim to test how well meta-learning approaches perform in a fine-grained
few-shot setting. As described in Section 4.1, the authors define two data splits, INTER and
INTRA, where each data split is defined by how much knowledge is shared between training
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Parent Class Child Classes
Art Broadcastprogram Film
Building Hospital Airport
Event Battle Disaster
Location Bodies of water GPE
Organization Company Education
Other Astronomything Award
Person Actor Artist/Author
Product Airplane Car

Table 4.1: The 16 classes of the Few-NERD dataset that were used in all experiments along
with their parent classes

Building
Hospital Hotel Library Airport Restaurant Sportsfacility Theater

Table 4.2: The 7 classes of the Few-NERD dataset that were used for a fine-grained analysis

and testing episodes. Experiments have been carried out on both the INTER and the INTRA
split.

For the two prompt-based systems, as well as for the Adapter setup, two experiments have been
designed: a first experiment differentiates between 16 classes in which two of each belong to
one coarse-grained category of the Few-NERD dataset. The classes used in this experiment
are depicted in Table 4.1. Additionally, to determine the ability of the model to differentiate
between fine-grained classes of the same parent category, another experiment was conducted
using classes of the parent category "building". The classes used in this experiment are depicted
in Table 4.2. To examine the number of samples needed to achieve adequate results, those
experiments were done with N = 10, 20, 50, 100, 500. For those experiments, the SUP split
from the Few-NERD dataset was used (filtered for relevant classes).

4.3.1 Baseline Experiment

A preliminary baseline experiment was conducted using the transformer library by huggingface
1 and the Few-NERD data set (Ding et al., 2021). This experiment was performed to investigate
how well a simple fine-tuned BERT model performs on the named entity recognition task
with all fine-grained classes of the Few-NERD dataset. For comparison, the model was also
tested on the standard coarse-grained NER task. For this, all 66 fine-grained classes in the data
set were mapped to their coarse-grained base class, leaving the eight classes "Person", "Art",
"Organization", "Product", "Event", "Other", "Location" and "Building". The pre-trained model
used was DistillBERT (Sanh et al., 2019). For both experiments, the learning rate was set to
5e-05 and the batch size was set to 32. The result after three epochs of training are reported
in Table 4.3. On the eight parent classes, it achieved an F1 score of 84.5%. In contrast, the
DistillBERT that was trained on all 66 fine-grained classes achieved an F1-score of 66.7% (Table
4.3) indicating that the presence of many fine-grained classes poses severe problems to the model
in the standard supervised setting.

1. https://huggingface.co/
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Precision Recall F1

Coarse-grained (8 Classes) 0.84 0.85 0.85
Fine-grained (66 Classes) 0.65 0.69 0.67

Table 4.3: The results of training DistilBERT on the coarse-grained (eight different classes)
and on the fine-grained (66 different classes) Few-NERD data set.

4.3.2 ProtoBERT & StructShot

As described in Chapter 3, ProtoBERT and StructShot are trained and tested on episodes, where
each episode resembles one few-shot learning task. Following the notation by Ding et al. (2021),
in an N way K ⇠ 2K shot experiment, each episode shows the model N classes, where for each
class there are a minimum of K and a maximum of 2K examples. The task of the model is
then to correctly label the sentences in the query set. The following episodic experiments were
conducted: 5-way 1 ⇠ 2 shot, 5-way 5⇠10 shot, and 10-way 1⇠2 shot, each in the INTER as
well as in the INTRA setting. Since episode size scales with N ·K, experiments with higher
N and K resulted in an out-of-memory error, even for batchsize=1, and could therefore not be
conducted.

Implementation Details

For the experiments, the code that was published by Ding et al. (2021) was used.2 All models
use uncased BERT (Devlin et al., 2019) as the backbone encoder. The hidden size is 768, and
the number of layers and heads is 12 (Ding et al., 2021). The models were implemented using
huggingface transformer3 and PyTorch4. The implementation uses AdamW optimizer5, the
learning rate was 1e-4 for all experiments. As the episodes can be large, especially for larger N
and K, to avoid memory issues during training, the batchsize for all experiments has been set to
1. For all N, K combinations, 10000 episodes were used for training, and 5000 episodes were
used for testing. The hyperparameter t for the Viterbi decoding in StructShot was taken from
the original authors who set it to 0.434 for 5⇠10 shot setting and 0.32 for 1⇠2 shot setting. The
labeling schema used was IO as the original authors found it to perform better than BIO.

Results

The results reported in Ding et al. (2021) could be reproduced approximately. They are reported
in Table 4.4 and 4.5: For lower K (numbers of examples per class), both ProtoBERT and
StructShot achieved comparably good results and the inference and training time is quite fast
because of the simplicity of the algorithms. As expected, the INTER episode split performs
better than the INTRA episode split, because of the knowledge of the parent classes being shared
through all splits. However, the episodic learning nature of these models limits the possibility
to assess how well they deal with larger K and larger N, and therefore comparability with the

2. https://github.com/thunlp/Few-NERD
3. https://github.com/huggingface/transformer
4. https://pytorch.org
5. https://www.fast.ai/2018/07/02/adam-weight-decay/adamw
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INTER
Model 5 way 1⇠2 shot 5 way 5⇠10 shot 10 way 1⇠2 shot

P R F1 P R F1 P R F1
ProtoBERT 0.32 0.48 0.38 0.49 0.63 0.55 0.26 0.42 0.32
Structshot 0.53 0.51 0.52 0.46 0.32 0.38 0.45 0.4 0.42

Table 4.4: Results of ProtoBERT and Structshot experiments using INTER setting

INTRA
Model 5 way 1⇠2 shot 5 way 5⇠10 shot 10 way 1⇠2 shot

P R F1 P R F1 P R F1
ProtoBERT 0.12 0.25 0.16 0.36 0.50 0.42 0.10 0.19 0.13
Structshot 0.30 0.25 0.27 0.46 0.32 0.38 0.26 0.17 0.21

Table 4.5: Results of ProtoBERT and Structshot experiments using INTRA setting

following experiments is only partially given. The experiments showed, though, that ProtoBERT
and StructShot are able to perform comparably well for low K while at the same time being very
efficient both in training and inference.

4.3.3 TemplateNER

As described in Chapter 3, TemplateNER (Cui et al., 2021) represents a prompt-based approach
to named entity recognition. The original authors conducted experiments using the MIT Movie
(J Liu et al., 2013), MIT Restaurant (J Liu et al., 2013), and ATIS dataset (Hemphill et al.,
1990), both in a resource transfer setting in which the BART model was first fine-tuned on
CoNNL2003 and without prior fine-tuning. In order to explore the capabilities of TemplateNER
in a more fine-grained few-shot setting and in order to compare the results to the other systems,
experiments were conducted using the Few-NERD dataset (Ding et al., 2021).

Implementation Details

For the experiments with TemplateNER, the code6 that was published by Cui et al. (2021)
was used and modified in order for the experiments to be done on the Few-NERD dataset. As
described in Chapter 3, TemplateNER is based on a generative model (BART), that is trained on
sentences in the form of

<sentence>. X is a Y entity

As stated in the original paper, other templates performed comparably or worse so the experi-
ments on TemplateNER were only conducted with the template above. To run the experiments
with the Few-NERD dataset, the dataset first had to be transformed to the required input scheme.
Additionally, parts of the code for inference had to be modified, since the corresponding tem-
plates have to be hardcoded in order to evaluate the output. The authors implemented their

6. https://github.com/thunlp/Few-NERD
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model using PyTorch and huggingface transformer. As generative model, the bart-large7 model
was loaded from the huggingface hub. For the learning rate, 4e-5 was used, with a warmup ratio
of 0.06. To avoid overfitting, early stopping was used with an early stopping delta set to 0 and
early stopping patience set to 3. The batch size in training was set to 32. The evaluation was
done on 10000 sentences taken from the Few-NERD test split.

Table 4.6: Experiments on TemplateNER with and without prior fine-tuning

K= P R F1
10 0.42 0.62 0.47
20 0.48 0.7 0.55
50 0.51 0.78 0.60
500 0.51 0.81 0.61

(a) The results of TemplateNER on the 16-class
experiment without prior fine-tuning

K= P R F1
10 0.45 0.83 0.58
500 0.53 0.83 0.62

(b) The results of running the 16-class experiment
on a BART model that has been fine-tuned on
the eight parent categories of the Few-NERD
dataset for K = 10 and K = 500

Results

Using TemplateNER (Cui et al., 2021), the 16-class experiment, as well as the 7-class fine-
grained experiment were conducted as described at the beginning of this chapter. The results
can be seen in Table 4.6a, Table 4.7, and Figure 4.3. It can be observed that the average F1 score
starts for K = 10 at 0.47 but then improves only by 14% to 0.61 when using K = 500 samples,
indicating that more samples will likely not lead to a substantial improvement in F1 score. For
the 7-class fine-grained experiment, the results are similar to the 16-class experiment. The F1
score starts at 0.53 for K = 10 and improves by 7% for K = 500.

As the authors in the original paper suggested, prior fine-tuning on a larger dataset can improve
the predictions of the model. To confirm this, the 16-class experiment was also executed on a
BART model that has been finetuned on the eight parent classes of Few-NERD before the actual
few-shot task. The dataset used for fine-tuning was derived from the training split of the original
Few-NERD dataset, where all classes were mapped to their respective parent classes and the
sentences used for few-shot learning were removed. As shown in Table 4.6b the prior fine-tuning
achieved an improvement of 11% for K = 10. However, for K = 500 the prior fine-tuning only
led to an improvement of 1%, indicating again that the F1 score for 16 classes might converge
in the F1 = 0.6 region.

7. https://huggingface.co/facebook/bart-large

K= P R F1
10 0.39 0.82 0.53
20 0.44 0.86 0.58
50 0.44 0.9 0.59
500 0.5 0.9 0.6

Table 4.7: Results for the 7-class fine-grained experiment on TemplateNER
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Figure 4.3: Class-specific F1 scores for the fine-grained experiments on TemplateNER.

It is interesting to note that all models achieved a comparably high recall score, while delivering
a fairly low precision score, indicating that the model tends to overpredict certain classes. A
factor that might influence this is the number of available "non-entities" in the training sentences.
Following the original paper, the number of non-entity-type sentences, e.g. templates of the
form of

<sentence>. X is not a named entity

was chosen to be 1.5 times the number of entity-type sentences. However, the high recall
score indicates that the model tends to predict more entities than present in the actual text.
To counteract this behavior, future experiments could choose the number of non-entity-type
sentences to be larger.

An additional observation is, that experiments that used the original Few-NERD label structure
of <parentclass-childclass> delivered worse results than experiments that were conducted using
only the child class as the label.

While the results, especially for lower K look quite promising, a big disadvantage of this system
is the time that is needed for inference. The reason for this is that at inference time, it has to
iterate over every n-gram of the sentence in question to get the corresponding probabilities. For
example, if we want the model to annotate entities in the sentence "I traveled to Japan last fall to
see a jazz concert", for every possible n-gram in the sentence (i.e "I", "I traveled", "I traveled
to", ..., "traveled", "traveled to", ..., "to", "to Japan",..."Japan", "Japan last", ..."I traveled to",
"traveled to Japan", "to Japan last", ..., and so forth) the corresponding template needs to be
filled out for every class. This means, that for inference of this sentence (which has 66 n-grams,
n = 1, ...,T , where T is the number of words), the model needs to calculate the possibility for
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66⇤N templates, where N is the number of classes, which especially means that the inference
time increases significantly with the number of classes. Even though the authors capped n at
8, predicting entities in 10000 sample sentences took over three hours, making this system not
very scalable with regard to annotating large text corpora.

4.3.4 EntLM

The second prompt-based approach with which experiments were conducted was EntLM (R
Ma et al., 2022). As described in Chapter 3, EntLM utilizes the BERT pre-training task for
predicting label representatives at entity positions, thus omitting the need for costly n-gram
iterations during inference. Similar to TemplateNER, the original authors conducted experiments
with ConNNL2003, OntoNotes5, and MIT Movie. To compare the few-shot capabilities of
EntLM to the other systems mentioned in this thesis, both the 16-class experiment and the 7-class
fine-grained experiment (as described above) were conducted on the Few-NERD dataset.

Implementation Details

R Ma et al. (2022) published the code for executing experiments with EntLM github8. However,
the original authors only conducted experiments using the CoNNL2003 and OntoNotes5 datasets,
which primarily means that the label representatives (as described in Chapter 4) for the Few-
NERD dataset are not available in the original repository. To receive the label representatives,
the original authors adopted BOND (Liang et al., 2020), an algorithm for distantly annotating
large datasets with the help of a knowledge base. Instead of adopting the BOND algorithm on
the Few-NERD dataset, for this experiment, the test split of the Few-NERD dataset was used to
receive the label map for Few-NERD labels, using the provided scripts of the original authors.
While this approach is obviously less noisy than a distantly supervised algorithm and doesn’t
mimic a practical setting, for the scope of this series of experiments it was seen as sufficient,
especially since the authors stated in their paper that the quality of the distantly annotated corpus
doesn’t affect the outcome of their algorithm in a serious manner. This is mainly because the
distantly annotated data is only used as an indicator of the data distribution and the model is
not trained directly on it (R Ma et al., 2022). The model was implemented using huggingface
transformer and PyTorch, the learning rate was set to 1e-4 for all experiments. The batch size
was set to 4. The model was trained for 20 epochs for K up to 50 and for 50 epochs for K larger
than 50, using AdamW optimizer. The labeling scheme adopted was the IO scheme. For the
label word selection algorithms, the hyperparameter k for selecting the top k high-frequency
words was set to k = 6, as suggested by the authors (R Ma et al., 2022).

Results

The results of the experiments can be seen in Table 4.8a and 4.8b. For the 16-class experiment,
the results start at a F1 value of 0.24 for K=10 and go up to F1=0.56 for K=500. The results for
the fine-grained experiment on the parent class BUILDING start at an F1 of 0.045 for K=10
and build up to an F1 of 0.21 for K=500. It is conspicuous that for the fine-grained experiment,
the precision score only grows by ⇠10% from K=10 to K=500, while the recall score grows by
⇠63%, indicating that the model tends to predict too many entities. Furthermore, in Figure 4.4
it can be seen that some fine-grained classes generally perform better than others. For example,

8. https://github.com/rtmaww/EntLM
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Figure 4.4: The F1 values of the BUILDING classes for different K for EntLM.

the classes "Theater" and "Sportsfacility" perform well for K = 20 to K = 500 while the class
Restaurant performs comparably poorly, even for K = 500. To counter this, further engineering
of the label words might prove useful.

In contrast to TemplateNER, EntLM has a big advantage regarding the inference time. Because
the model only predicts a label word at the entity position, the whole sentence can be processed
at one time and iterating over all potential entities is not needed. However, the results of the
original paper could not be reproduced for the Few-NERD dataset. Especially at lower K
EntLM gets outperformed by other few-shot techniques such as ProtoBERT or TemplateNER.
Furthermore, EntLM requires sophisticated methods to gather adequate label words that the
model predicts for each entity type, making it unfit for an annotation system, in which classes to
annotate might change in a more rapid fashion.

Table 4.8: The results for both experiments on EntLM
K= P R F1
10 0.3 0.2 0.24
20 0.3 0.3 0.3
50 0.39 0.34 0.36
100 0.46 0.52 0.49
500 0.51 0.61 0.56

(a) The results of the 16-class experiments on
EntLM

K= P R F1
10 0.025 0.105 0.045
20 0.047 0.366 0.084
50 0.123 0.524 0.199
100 0.171 0.536 0.260
500 0.122 0.730 0.21

(b) The results of the fine-grained Few-NERD
BUILDING experiment on EntLM
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4.3.5 Adapter

The last system that was explored for the few-shot NER setting are adapter-transformer. Adapter-
transformer are a modification of the standard transformer architecture, aiming to make fine-
tuning of large transformer models more efficient and flexible. With the goal of an automated
annotation system in mind, adapters have the advantage of providing task-specific layers that
adapt to one shared pre-trained model, allowing for efficiently storing different adapters for
different annotation tasks, without having to store whole fine-tuned transformer models for
every task. Experiments were conducted using the Few-NERD dataset. For comparability with
the other systems, the 16-class experiment and the fine-grained experiment were conducted.
Additionally, because of the good overall performance of adapter-transformer, experiments
were conducted with 32-classes, 48-classes and 66-classes from Few-NERD, each for K =
10,20,50,100,500. Besides that, experiments were also conducted using K = 1000. In this
setting, however, it could not be guaranteed to have exactly 1000 examples of every class. This
results from the fact that samples are always sentence-based and a sentence usually includes
more than one entity, which makes the sampling of exactly 1000 examples per class not feasible,
especially for a larger number of classes N. To determine the ability to transfer knowledge
from prior fine-tuning, in an additional experiment, a BERT model that was trained on the eight
coarse-grained classes of Few-NERD was used as the base model of the adapter.

Implementation Details

The code for the Adapter experiments was written using huggingface transformer, adapter-
transformer9, and PyTorch. As pre-trained transformer model, huggingfaces’ bert-base-cased10

was used. For all experiments, the learning rate was set to 1e-4 and the batch size was set to 8.
The number of epochs was set to 20. No overfitting could be observed at this number of epochs.
For adapter configurations, the configuration modes pfeiffer, parallel and lora were
tested, where parallel seemed to perform slightly better than the other configurations and
therefore was set as the configuration for all reported experiments. The models were tested on
the test split of the Few-NERD dataset (edited to include only the classes that it was trained on).
As labeling scheme, BIO was used as it produced slightly better results in most cases, in contrast
to the findings of Ding et al. (2021).

Table 4.9: The results of both experiments for adapter-transformer
K= P R F1
10 0.19 0.21 0.20
20 0.32 0.26 0.28
50 0.59 0.54 0.57
100 0.61 0.62 0.62
500 0.68 0.7 0.69
>500 0.72 0.7 0.71

(a) The results of the 16-class experiments on
adapter-transformer

K= P R F1
10 0.26 0.29 0.27
20 0.36 0.39 0.37
50 0.57 0.58 0.57
100 0.59 0.62 0.61
500 0.67 0.68 0.67

(b) The results of the fine-grained Few-NERD
BUILDING experiment on adapter-transformer

9. https://docs.adapterhub.ml/
10. https://huggingface.co/bert-base-cased
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Figure 4.5: The F1 values of the BUILDING classes for different K for adapter-transformer

Results

The results of the experiment on adapter-transformer can be seen in Table 4.9a and 4.9b. For the
16-class experiment, the F1 score starts at 0.2 for K = 10 and moves up to 0.7 for K = 500. For
K > 500 (with the limitations described above), the average F1 score improves only by 4 points,
indicating that it will converge somewhere around 0.7. For the fine-grained experiment, the F1
score for K = 10 starts at 0.26 and moves to 0.67 for K = 500. The biggest improvement in F1
score can be observed going from K = 20 to K = 50, with a jump from 0.28 to 0.57 with only
30 additional samples per class, while adding another 450 samples per class leads only to an
increase of 10 points. This holds true for the 16-class experiment, as well as for the fine-grained
experiment. Looking at the per-class F1 score for the experiments done with adapter-transformer
(Figure 4.5), it can be seen that for K = 10, some classes already achieve comparably high F1
scores, while some classes do not. However, for larger K, those imbalances start to diminish.
Table 4.12 shows the results of further experiments with adapter-transformer, in which the model
should gradually differentiate between more classes. It can be seen that the results of those
experiments look approximately the same for all N, indicating that the number of classes is not
the bottleneck for those models. The model performs only 14% worse when it differentiates
between 66 classes than when it differentiates between 16 classes. A last experiment was
conducted in order to determine the effect of prior fine-tuning of the adapter base model. For
this, the BERT model used as the base for the Adapter experiments was trained on the eight
parent classes of the Few-NERD dataset before conducting the few-shot experiments with the
fine-grained classes using adapters. In order to avoid the model observing the same sentences
during prior fine-tuning and few-shot training, sentences that were used for sampling few-shot
data have been removed. Figure 4.6 shows the results of this experiment. It can be seen that
using a transformer model that has been fine-tuned on NER data of the same domain as the base
model can improve the performance of the adapter, especially for lower K.
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Figure 4.6: F1 values of the 16-class adapter experiments, both for the base model and prior
fine-tuned model

4.4 Summary

This chapter described the named entity recognition experiments that were done on ProtoBERT
& Structshot (Ding et al., 2021), TemplateNER (R Ma et al., 2022), EntLM (R Ma et al., 2022)
and adapter-transformer (Pfeiffer, Rücklé, et al., 2020). All experiments were conducted using
the Few-NERD dataset (Ding et al., 2021). For ProtoBERT & Structshot episodic learning
was conducted using the training episodes of the original authors. For the other systems,
two experiments were designed using the Few-NERD dataset. The first experiment includes
16 classes, where each of the two classes belongs to one parent category of Few-NERD. To
determine the ability of the model to differentiate between labels that are semantically closer
together, the second experiment includes 7 classes, where all classes belong to the same parent
category. The results of the experiments on TemplateNER, EntLM, and Adapters are summarized
in Table 4.10 and 4.11.

4.4.1 ProtoBERT & StructShot

On ProtoBERT and StructShot, episodic learning experiments were conducted, following the
original implementation of Ding et al. (2021). For ProtoBERT and StructShot, the results of
the original paper could be reproduced approximately. The experiments demonstrated, that,
by using meta-learning, both models were able to predict new classes based on only up to ten
examples per class. On the INTER split (where some knowledge is shared between training and
testing), StructShot, for example, achieved an F1 score of 52% in a 5-class setting using only up
to 2 examples per class. As expected, on the INTRA split (that shares little to no knowledge
between train and test data), both models performed worse. However, while the results were
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good, it is not clear how both models perform for gradually larger N and K, because evaluation
on larger N and K was not possible in a straightforward manner due to memory issues.

4.4.2 TemplateNER

The first prompt-based system, TemplateNER, performed comparably well on both 16 classes
and 7 fine-grained classes, with an F1 score of around 50% for K = 10 examples per class.
However, the score only improved for another 10% for K = 500 examples per class, indicating
that this system is usable in the few-shot setting but does not benefit much from more training
data. An additional experiment confirmed the findings of Cui et al. (2021), that the few-shot
ability of TemplateNER does benefit from prior fine-tuning on a resource-rich NER dataset (in
this case the eight parent classes of Few-NERD). Throughout all experiments, TemplateNER
showed imbalances between precision and recall with the recall being much higher in all
cases. To counteract this, the ratio of entity vs. non-entity samples in the training data could be
adjusted. TemplateNER achieved good results, especially for lower examples per class. However,
at inference time, the system requires to iterate over all possible n-grams of the sentence, which
results in high inference time. Using such a model in a semi-automatic annotation system
therefore might prove impractical for larger text corpora.

4.4.3 EntLM

The second prompt-based system, EntLM, achieved comparable results to TemplateNER for
K = 500 examples per class on the 16-class experiment. However, for lower K the results are
much worse (TemplateNER achieved around 50% F1 score, while EntLM achieved around 25%
F1 score for K = 10 examples per class). This tendency continues for the 7-class fine-grained
experiment, where EntLM achieved only 0.4% F1 score for K = 10 examples per class and 21%
for K = 500 examples per class, indicating that classes that are semantically closer together pose
severe problems for the system. This and the fact that EntLM requires an additional algorithm for
finding representative label words makes this system unfit for the purpose of a semi-automated
annotation system, where different, finer-grained classes can be expected to occur frequently.

4.4.4 Adapter

The last analyzed system were adapter-transformer (as described in Chapter 3). In the 16-class
experiment, adapter achieved an F1 score of 20% for K = 10 examples per class. However, it
could be shown that prior fine-tuning of the base transformer model on a resource-rich NER
dataset improves the few-shot capability of adapters for lower K from 20 to 40% F1 score,
almost putting them on par with the good results of TemplateNER. The results of the 7-class
fine-grained experiments are comparable to the results of the 16-class experiment in terms
of F1 score, both achieved around 20% for K = 10 examples per class and around 70% for
K = 500 examples per class. To determine if more examples per class will lead to a higher F1
score, additional experiments were conducted using up to 1000 examples per class. It could
be shown that a larger K only improves the performance marginally. Moreover, the effect of
prior fine-tuning of the base model diminishes with a larger K. While for K = 10 examples,
prior fine-tuning leads to double the F1 score compared to no prior fine-tuning, for K > 500
examples the effect of prior fine-tuning is not noticeable at all, indicating that for the 16-class
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Model K=
10 20 50 100 500

TemplateNER 0.47 (0.58) 0.55 0.6 - 0.61 (0.62)
EntLM 0.24 0.3 0.36 0.49 0.56
Adapter 0.2 (0.39) 0.28 (0.49) 0.57 (0.60) 0.61 (0.63) 0.69 (0.69)

Table 4.10: Results (F1) of TemplateNER, EntLM, and Adapter models on the 16-class experi-
ment. Results in brackets denote the results for the same experiment with a prior
fine-tuned base model

Model K=
10 20 50 100 500

TemplateNER 0.53 0.58 0.59 - 0.6
EntLM 0.05 0.08 0.20 0.26 0.21
Adapter 0.27 0.37 0.57 0.61 0.67

Table 4.11: Results (F1) of TemplateNER, EntLM, and Adapter models on the fine-grained
experiment

experiment, 70% F1 score represents indeed a limit for adapters. Finally, experiments were
conducted with 32 classes, 48 classes, and 66 classes for the adapter to differentiate between.
The results of those experiments are comparable to the results of the initial 16-class experiment.
Out of the five experiments done, adapter-transformer seem to be the most flexible option for
the purpose of a semi-automatic annotation system: They are fast at inference and training and
are inherently built for efficiently switching task contexts without the need of saving a whole
transformer model for each task. Furthermore, they are able to achieve comparably good results
while differentiating between a large number of classes. Since they are not specifically built for
a few-shot learning setting, adapter-transformer fall behind in performance for lower K when
being compared, for example, to ProtoBERT or TemplateNER. However, it has been shown, that
prior fine-tuning of the adapter base model on a resource-rich domain can alleviate this issue.

K= P R F1
10 0.24 0.20 0.22
20 0.35 0.32 0.33
50 0.54 0.52 0.53
100 0.57 0.58 0.57
500 0.64 0.65 0.64

(a) 32-class experiment

K= P R F1
10 0.20 0.25 0.22
20 0.29 0.33 0.31
50 0.45 0.49 0.47
100 0.49 0.51 0.5
500 0.56 0.57 0.57

(b) 48-class experiment

K= P R F1
10 0.24 0.30 0.27
20 0.31 0.37 0.34
50 0.45 0.49 0.47
100 0.47 0.51 0.49
500 0.54 0.57 0.57

(c) 66-class experiment

Table 4.12: Additional experiments with adapter-transformer
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5 Implementation

During the course of this thesis, a functional prototype of an automatic annotation system has
been implemented. This chapter describes the functionality of the implemented application, as
well as implementation and architectural details.

5.1 Functional Overview

Figure 5.1: Overview of the annotation system. The Interface consists of the Upload Doc-
ument Button (1), Choose Model Dropdown (2), Choose Tag Dropdown (3),
Annotate Button (4), Train Button (5), Get Training Status Button (6), as well as
the Annotation Area (7) and the Training Data Staging Area (8)

Figure 5.1 shows an overview of the implemented application. The application is a web-based
annotation tool, that lets the user upload a text document and annotate it using pre-defined
categories. The annotated sentences are collected as training data for a NER model that runs
on the backend and can be used to train that model. The trained model can then be used for
inference, effectively extending the user-made annotations to the whole document. When the
automatic annotation process is finished, the user has the possibility to correct the annotations
that were wrong and send the corrected sentences as training data to the model again. In the
following, the core features of the application are described from a user’s perspective.
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5.1.1 Upload a Document

At startup, the only available button is the Upload Document Button (1 in Figure 5.1). A click
opens a prompt for the user to select the document to annotate (Figure 5.2).

Figure 5.2: The Upload Document dialogue

After selecting the document to annotate, the main application screen opens. The main applica-
tion screen consists of the Annotation Area (7), the buttons Annotate (4), Train (5), Get Training
Status (6), two dropdown menus (2 and 3) and the Training Data Staging Area (8)

5.1.2 Selecting a Model

The dropdown menu Select a Model (2) offers the user the choice to select a trained model that
will be used for the annotation task or to create a new model from scratch (Figure 5.3)

Figure 5.3: The Select Model dropdown, where the user can pick a saved model to use for
annotation
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5.1.3 Creating a new Task

If the user wants to create a model for a new task, she can click the Create New Task option. This
will trigger a dialogue to open, in which the user can enter a name for the new task. Furthermore,
the user can enter the tags which they want the model to differentiate (Figure 5.5)

Figure 5.4: Dialogue for creating a new model;The user can enter the desired tags as well as
the task name

5.1.4 Selecting Tags

After selecting the desired model, or after creating a new model with a new set of tags, the
second dropdown menu becomes clickable. Here, the user can select specific tags in order to
annotate the document. The selectable tags reflect the tags that the model was trained on (in case
the user picked a previously saved model) or the tags that the user entered during the Create New
Task dialogue. The user can select portions of the text to annotate by just clicking, holding the
left mouse button and dragging over the desired area. The system then marks this portion of the
text in a predefined color and writes the corresponding label name next to the annotated word.
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Figure 5.5: The Select Tag dropdown menu;Here, the user can select specific tags to annotate
the document with

5.1.5 Annotation

The button Annotate (4) will trigger the selected model to annotate the text in the Annotation
Area (7) (Figure 5.6).

Figure 5.6: The Annotation Area, after a click on the Annotate Button

5.1.6 Training

The button Train will send training data - which the user has collected by manually annotating
the text - to the model in order to train it on the new data. By looking at the annotation area only,
it is not clear to the user, what annotations were made by the model during the last iteration and
what annotations were made by the user in order to collect training data for the next iteration.
Several solutions to overcome this mismatch are imaginable: System annotations could, for
example, be identified using a different color scheme, a different font, or be marked with some
other kind of symbol. In the spirit of a simple and functional prototype, this issue was solved
with the Training Data Staging Area at the bottom of the page that just shows the currently
collected training data in a verbatim-style manner (Figure 5.8). Each entry in the Training Data
Staging Area refers to one training sample that is sent to the model in the next iteration. The user
can add data to the Training Data Staging Area by annotating some text in the Annotation Area.
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If a sentence contains multiple annotations, the software recognizes this and merges them into
one training sample. Similarly, if the user removes one annotation in the Annotation Area but
the sentence has more annotations, then the affected training sample is updated. The user can
un-stage training samples by removing all annotations of that specific sentence in the Annotation
Area, or by clicking on the "X" to the left of each entry in the Training Data Staging Area.

Figure 5.7: The Training Data Staging Area

5.1.7 Get Training Status

Finally, it is important for the user to be able to query the current training status in order to
see if the next training iteration can be started, or if any errors occurred during training. This
functionality is implemented with the button Get Training Status. This button will become active
after initializing the first training iteration. It will query the current training status and displays a
corresponding message to the user in the form of a simple alert window.
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Figure 5.8: A click on the button Get Training Status queries the current training status and
informs the user via an alert box

5.2 Implementation Details

To provide the reader with a basic understanding of how the application works internally, this
section introduces some implementational details of both front end and back end. For the
front end, the used library, its interface, and the most important components and functions are
explained. The section about the back end explains how the model is managed and how training
can be initiated in an asynchronous manner. Also, the API is outlined.

5.2.1 Front End

The front end was created using React 18.21. For the Annotation Area, the library react-text-
annotate2 was used. Next to providing the user interface, the most important job of the front end
is to provide the annotation functionality via the component offered by the library. This includes
keeping track of what annotations are currently active, processing them, and mapping them to
correct training data that can be sent to the back end. Similarly, it also includes mapping the
received annotation data from the back end (during inference) to an annotation representation.
In the following, the most important components of the front end are introduced.

1. https://react.dev/
2. https://mcamac.github.io/react-text-annotate/
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React-Text-Annotate Library

The library react-text-annotate provides an interface for basic text annotation via the TextAnnotate
component and is initialized with the actual text object to be annotated. It represents tags of a doc-
ument as a list of AnnotateTag objects. Each AnnotateTag object has the fields start,
end, text, tag and color, where start and end denote the start and end (character-level)
indices of the specific tag, text denotes the word(s) being annotated, tag denotes the actual
label word, and color denotes the hexadecimal background color value of the annotation. A
callback function handleChange(value: AnnotateTag[]) is passed to the TextAnnotate com-
ponent which is invoked each time the user annotates a text portion (i.e the AnnotateTag[]
list is modified). The parameter of this callback function is the new list of tags.

Figure 5.9: Example of how tags for a document are stored internally; start and end denote
the character-level beginning and end indices of the corresponding tag, respec-
tively

Important Components

The front end consists of two main components, the MainPage and the AnnoDocument.

The MainPage is the main component and includes most state variables of the application, like
chosen labels, chosen models, training data, tag objects, and different flags. It also implements
the user interface and handles all communication with the back end. Notable functions are:

• handleFileUpload()

This function is invoked when the user has selected a document. Because training and
inference are carried out on a sentence basis, it sends the whole document as a string to
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the back end, where it is split into sentences and sent back. The sentences then are passed
to the AnnoDocument component for further processing.

• handleInference()

A call of this function triggers the actual annotation process. It sends the sentences to
the back end, where they are handed to the model for inference. The annotated sentences
are, once received, converted back into the AnnotateTag format and given to the
AnnoDocument component which then displays the newly received annotations to the
user.

The AnnoDocument component provides the actual annotation logic of the application, as well
as the conversion of the list of AnnotateTag objects into actual training data. It manages two
state variables: The current list of document sentences and the current annotation state in the
form of an AnnotateTag list. Notable functions are:

• handleChange(value: AnnotateTag[])

This is the callback function of the TextAnnotate component. It is invoked every time
the user manually annotates the document or deletes an annotation, resulting in a change
of the list of AnnotateTag objects. It extracts the newly added or removed tag object by
computing a delta between the old value of the list of AnnotateTag objects and the new
one. The extracted tag object is then either added to the list of training data or removed
from it.

• addAnnotation(newValue: AnnotatedSentence)

This function handles adding a newly annotated sentence to the training data. Its main job
is to determine whether the new training sample is already present in the training data (i.e.
if that sentence already has an annotation at a different position). If so, it merges the new
sentence with the already present sample. If not, it creates a new sample.

• removeAnnotation(toBeRemoved: AnnotatedSentence)

This function is the inverse of the addAnnotation function. It checks if the sentence we
want to remove the annotation from is present in the training data and if yes, if it has
more than one annotation. If it has more than one annotation, only the desired tag is
removed (i.e. replaced with O), while the training sample itself stays. If the annotation to
be removed is the only one in that sentence, the training sample is removed.

• annotateEntity(sentence:string, startIndex:number, endIndex:number, tag:string)

This function does the actual conversion of AnnotateTag objects into usable training data
samples. It extracts the annotated substring that is specified in the [startIndex, endIndex]
interval and builds a list of strings and a list of tags, where the list of tags corre-
sponds to the tag parameter (for the parts of the sentence that are in the interval
[startIndex, endIndex]) or to the O tag (for parts of the sentence that are outside
the interval). For the substrings within the interval, the BIO tagging scheme is applied.
In a second step, it removes all punctuation marks that are part of a token and makes
them their own token. Their corresponding entry in the list of tags is either the specified
tag (if the punctuation mark was part of an entity annotation, i.e part of the interval
[startIndex, endIndex]), or O (if they were not part of an annotation).
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Figure 5.10: Simplified illustration of the conversion of AnnotateTag objects into training data

5.2.2 Back End

The back end of the annotation system was implemented using Python 3.9. Its main job is to
manage everything that is related to the actual NER model and to provide an API for client
communication. This includes initializing the model, loading and saving the model, using the
model for inference, and training the model. Currently, only one model type is available, which
is an adapter-transformer model. The model is implemented using the huggingface-transformer
library3 and its extension for adapters4. To allow asynchronous training of the model, a task
queue was implemented using the library Redis Queue5, which uses a Redis6 event queue
for queueing jobs and processing them in the background. The API was implemented using
FastApi7 0.95.1.

Task Queue

Training a model might take some time, depending on the available hardware and the number of
training samples. Because of this, it is necessary to introduce asynchronous processing into the
back end, in order to avoid timed-out HTTP requests and a bad user experience. The described
annotation system realizes asynchronous processing using the library Redis Queue. Redis Queue
(RQ) requires Redis and offers an easy-to-use interface for job queueing and background job

3. https://huggingface.co/
4. https://adapterhub.ml/
5. https://python-rq.org/
6. https://redis.com/
7. https://fastapi.tiangolo.com/
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processing building on top of the Redis queue data structure. At initialization, RQ requires a
Redis connection object. To queue a job, RQ offers the function enqueue(ref, params), which
receives a reference of the function that is supposed to be scheduled along with its parameters
and handled asynchronously. To process scheduled tasks, a worker is needed. A worker is a
Python process that is started separately in the work directory and waits for new tasks to arrive.
A worker can be started with

$ rq worker −−url redis : / / rq_redis : 6379

where --url specifies the redis connection. The number of tasks that can be executed asyn-
chronously is limited by the number of available workers. Once a task arrives in the queue, the
worker copies the relevant context and starts executing the function. Upon the beginning of
execution, RQ returns a Job object that can be used by the client to query the current execution
state of jobs. If the job is finished, the return value of the executed function is written to Redis
under the key job_id. If the job has failed, the thrown exception is saved instead.

Figure 5.11: Sequence diagram of the processes in the back end after receiving a TrainingRequest

Model

To allow for extensibility, the class Model represents an abstraction layer over the actual model.
Concrete models need to implement the functions train and infer. The class ModelManager
then provides a function getModel(), which returns the actual implemented model. Currently,
the class AdapterModel is the only model implemented. It contains all functionality needed to
train an adapter-transformer and to do predictions with it. Internally, it manages a huggingface
transformer model, which is currently set to be a BERT model (bert-base-cased) and the
necessary tokenizer. It also provides the functionality to add different adapters to the model (via
the adapter-transformer library) and to remove or modify them.
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API

The API enables the client to communicate with the backend via various endpoints. In the
following, the most important endpoints are described.

POST /inference

This endpoint is used by the client to start the inference process (i.e. the Annotate button has
been pressed). The payload of an inference request is the list of strings that the client wants the
model to run inference on:

# I n f e r e n c e R e q u e s t
c l a s s PredictionRequest (BaseModel ) :

sentences : List [string ]

After successful inference, the model sends back the results as a list of ClassifiedSentence
objects, where each ClassifiedSentence refers to an object with the fields sentence and tags,
where sentence is the list of words of the sentence and tags is the list of corresponding tags:

# I n f e r e n c e Response
c l a s s PredictionResponse (BaseModel ) :

sentences : List [ClassifiedSentence ]

c l a s s ClassifiedSentence (BaseModel ) :
sentence : List [ s t r ]
tags : List [ s t r ]

POST /training

This endpoint is used by the client to initiate training and send the training data. It also expects a
list of ClassifiedSentence objects as the payload, where the ClassifiedSentence objects are used
as training samples:

# T r a i n i n g R e q u e s t
c l a s s TrainingRequest (BaseModel ) :

data :List [ClassifiedSentence ]

Figure 5.11 depicts the entire process in the back end after a training request.

After successfully starting the training, it sends back an ID, which can be used by the client to
query the current training status:

GET /training/{training_id}

This endpoint accepts the training ID that the client wants to query the status of and sends back
the current training status, where the status can be "started", "finished", or "failed".

POST /settings/loadmodel

This endpoint is used for loading a model by specifying a path in the payload.

POST /settings/createmodel

This endpoint is used for creating a new model. It receives the name of the new model, the label
list of the new task, and the path to save the model after training.
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# C re a t e a new Model
c l a s s CreateModelRequest (BaseModel ) :

model_name : s t r

label_list : List [ s t r ]
path : s t r

GET /settings/availablemodels

This endpoint returns a list of all usable models that are stored on the back end side.

GET /settings/labelmap

This endpoint returns a list of the labels that the currently loaded model was trained on.

GET /split

This endpoint is used by the client to split the document into sentences for further processing. It
expects a document and returns the sentences of the document in a list. For sentence splitting,
the library spacy8 is used.

POST /trainingparameters

This endpoint allows to set training parameters of the model.
# S e t T r a i n i n g Parame te r s R e q u e s t
c l a s s SetTrainingParameterRequest (BaseModel ) :

params : TrainingArgs

c l a s s TrainingArgs (BaseModel ) :
overwrite_output_dir : bool = True
learning_rate : f l o a t = 1e−5
batch_size : i n t = 32
num_train_epochs : i n t = 10
weight_decay : f l o a t = 0 . 0 1
evaluation_strategy : s t r = " no "
save_strategy : s t r = " no "

8. https://spacy.io/
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6 Future Work

The research presented in this thesis showed that state-of-the-art NER systems pose a multitude
of shortcomings when it comes to using them for an automatic annotation system. This affects
inference efficiency (Cui et al., 2021), rapid task switching (R Ma et al., 2022) or handling a
gradually larger number of N and K (episodic learning approaches). Furthermore, while the
results are quite good and roughly represent the results of state-of-the-art few-shot NER research,
the accuracy of such models is most likely not high enough for a real production use of an
automated annotation system, where it is expected to annotate text using a varying number
of labels and a varying number of examples while also maintaining satisfying accuracy most
of the time. The following describes some approaches to improve the overall efficiency of a
semi-automatic annotation system that could be analyzed in future work

6.1 Multiple Models

Metric-based models like ProtoBERT achieve very good results for lower K. Unfortunately,
memory restraints hindered the evaluation of those methods on larger episode sizes. However,
to increase the accuracy of the annotation system in the lower sample range, a model-switching
mechanism could be implemented, where inference is done for example with a ProtoBERT
model up to a specified number of samples, and after that, a second model, which is trained on
all previous data, takes over.

6.2 Expansion of Possible Annotations

The work presented in this thesis researched automatic annotation mainly in the context of
named entity recognition. However, it is imaginable to expand the functionality of the system
from annotating named entities to arbitrary token classification tasks like part-of-speech tagging.
Also in some cases, users might want to annotate not only words or entities but also, for example,
whole sentences or even paragraphs that share some pre-defined semantic similarities. Future
work could research the possibilities regarding the expansion of annotations to more broad
classification tasks.

6.3 Prompt-Based Few-shot NER

This thesis analyzed two prompt-based methods, one based on BERT (EntLM (R Ma et al.,
2022)) and one based on BART (TemplateNER, (Cui et al., 2021)). Both methods performed
comparably well in the few-shot setting, as well as on the task of differentiating finer-grained
labels. However, in a realistic setting, it is not enough for an annotation system to get a label right
roughly 50 % of the time. Given that the power of prompt-based few-shot NER methods strictly
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stems from the language understanding of the model that it inherited during its pre-training
phase, it is logical to assume that a better language understanding will substantially improve the
model’s performance in a few-shot setting. In recent years, a trend in natural language processing
developed, where larger and larger language models are released frequently (cf. Figure 6.1).
While, for example, the largest BERT model has 340 million parameters, the largest GPT-3
(Brown et al., 2020) model has 175 billion parameters. The GPT-3 researchers showed that
their model achieved state-of-the-art results on several NLP tasks without fine-tuning, simply by
utilizing prompts and the sheer size of the model. Their research indicated that an increase in
parameters alone will increase model performance on most few-shot learning tasks, canceling
out the need for sophisticated task-specific fine-tuning altogether. This parameter race is ongoing
and companies release new models that achieve new state-of-the-art results frequently.

Figure 6.1: Visualisation of how the number of parameters of large language models grew in
recent years. Not shown: GPT-4, which, according to a recent leak, has 1.8 trillion
parameters. Source: Hisamoto (2023)

Moreover, while the largest models at the point of writing this (like GPT-3, PaLM (Chowdhery
et al., 2022), PaLM2 (Google, 2023), GPT-4 (OpenAI, 2023) among others) are proprietary
and not open for researchers, recently, open source language models (LLaMa (Touvron et al.,
2023), Falcon (TII, 2023)) have been released that - according to their publishers - can be seen as
serious alternatives to their proprietary counterparts (LLaMA-13B, for example, outperformed
GPT-3 on most benchmarks while using only a fraction of the parameters and LLaMA-65B is
competitive to PaLM-540B (Touvron et al., 2023)). With the help of these open-source models,
future work could try to further leverage the language modeling skills of large language models
for the purpose of few-shot named entity recognition.
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7 Conclusion

7.1 Research Questions Revisited

At the beginning of this thesis, three questions have been defined, on the basis of which the
research done in this thesis was conducted. The questions were:

RQ1: What state-of-the-art methods exist for few-shot (fine-grained) named entity recogni-
tion?

After a comprehensive literature study of current state-of-the-art NER models, it became apparent
that there are essentially two broad categories of few-shot NER systems: The first category are
meta-learning-based systems that are trained episodically and do classification based on some
metric calculated using the support set. Meta-learning-based systems are very effective for lower
numbers of examples per class and flourish in the setting where the model needs to differentiate
between sets of labels frequently given only a small amount of examples. However, episodic
learning approaches could not be evaluated for episodes with a larger amount of classes and a
larger amount of samples and it is therefore not clear how they can be made compatible with the
setting of a semi-automatic annotation system. Examples of meta-learning-based systems are
ProtoBERT (Ding et al., 2021) and StructShot (Yang and Katiyar, 2020). The second category
of few-shot NER systems are prompt-based systems. Prompt-based systems, instead of using
sophisticated classification techniques or additional layers, utilize the language understanding
of pre-trained transformer models directly. For this, the task is reformulated in such a way
that it resembles the pre-training task of the model. Examples for prompt-based systems are
TemplateNER (Cui et al., 2021) and EntLM (R Ma et al., 2022). These prompt-based systems
are reported to perform well for few-shot NER tasks. However, they bring other disadvantages,
such as high inference time (TemplateNER) or the inability of switching tasks quickly (EntLM).
Adapters (Pfeiffer, Rücklé, et al., 2020) offer the advantage of being able to rapidly switch tasks
without large storage overhead. They also perform comparably well in the few-shot setting, if
the base transformer model has been fine-tuned on a rich-resource dataset. Chapter 3 answers
this research question in a more detailed manner.

RQ2: How many support samples are needed to achieve adequate results on an automatic
annotation task based on entity classes and how does the number of classes relate to the number
of required support samples?

The experiments done during the course of this thesis showed that few-shot named entity
recognition is a challenging task, even for state-of-the-art models. For K = 10 examples per
class and N = 16 classes, no system achieved an F1 score over 53 % and for K = 500 examples
per class (TemplateNER), no system achieved an F1 score over 70 % (Adapter). Furthermore,
the additional experiments with K > 500 examples that were conducted on Adapters indicate,
that the F1 score will converge somewhere in that region. The number of classes present in the
training data had only a minor influence on the performance of Adapter: For K = 10 examples
per class, the model’s performance was roughly equal for 16 classes and for 66 classes, with
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around 20-24 % F1 score. For K = 500 examples per class, the 16-class Adapter achieved an F1
score of 67 % and the 66-class Adapter achieved an F1 score of 57 %.

RQ3: How does the presence of semantically more similar labels affect the overall performance
of NER models?

The results regarding the presence of fine-grained labels in the training data were mixed. Meta-
learning-based approaches achieved F1 scores of 42 % (StructShot) and 32 % (ProtoBERT) for
the task of differentiating between 10 fine-grained classes which were randomly sampled for
each episode, when being given only 2 examples per class. This indicates that meta-learning
approaches have the potential to perform well in a fine-grained few-shot setting. TemplateNER
achieved an F1 score of 53% on the 7-class fine-grained experiment, which is roughly equal to
its score on the 16-class experiment on more coarse categories. Adapter achieved an F1 score
of 27 % on the 7-class fine-grained experiment, which also is roughly equal to its score on the
16-class experiment, indicating that the fine-grained task is only slightly harder for those models.
EntLMs performance on fine-grained labels on the other hand was very low, indicating that not
all prompt-based systems are equally suitable for fine-grained NER tasks.

7.2 Summary and Conclusion

The goal of this thesis was to research state-of-the-art few-shot named entity recognition systems
and implement a prototype of a semi-automatic annotation system. First, different state-of-the-art
few-shot NER systems have been researched and five systems were selected according to their
reported results and how suitable they are for the few-shot NER task of an automated annotation
system. For training and experiments, suitable datasets for few-shot NER have been researched.
Here, a special focus was set on datasets that best can resemble fine-grained and few-shot named
entity recognition tasks. After selecting a dataset, experiments were carried out on all five
systems, where the experiments resembled a 16-class few-shot NER task and a 7-class fine-
grained few-shot NER task. Meta-learning approaches like ProtoBERT and StructShot achieve
good results for lower K while also being efficient during training and inference. Due to their
episodic learning nature, they are also good at task switching because the model "learns to learn"
from new episodes every time. However, it is not clear how they perform for gradually larger
N and K, because evaluation on larger N and K was not possible in a straightforward manner
due to memory issues. Leveraging the language modeling capacities of pre-trained language
models directly in order to do few-shot NER (prompt-based learning) sounds promising at first.
While both prompt-based systems delivered adequate results in terms of F1 score on the 16-class
experiment, they both revealed their own weaknesses: EntLM - while achieving fast inference
times - needs to generate the label representatives based on an unlabeled corpus with the help of
knowledge bases, making it impractical for quickly switching tasks in the annotation system.
Furthermore, EntLM displayed severe problems during the classification of finer-grained labels.
TemplateNER, on the other hand, displayed inference times that are impractical for the use case
of an annotation system, with inference times in the order of multiple seconds per sentence.
Prompt-based learning approaches scale directly with the power of the underlying language
model. Recently released open-source language models like LLaMA (Touvron et al., 2023) or
Falcon (TII, 2023) could be analyzed further with regard to their capabilities on few-shot named
entity recognition and might be an entry point to improving such a system. Adapters, while
exhibiting no specific few-shot NER technique in their vanilla form, offer the advantage of being
able to rapidly switch tasks without the need of saving large additional models, because only the
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specific Adapter is saved. They also perform comparably well in a low-resource setting, when
the base transformer model has been fine-tuned on a rich-resource dataset. The efficient training
and inference time of Adapters is also an advantage. During the second part of this thesis, a
prototype of an annotation system has been designed and implemented using Adapter models.
On the front end, the system displays an interface for the user, with which they can upload a
text document, annotate it using custom labels, and initiate training of the model with their own
annotations. After training, the system is able to automatically annotate the uploaded document
using the labels that the user specified. On the backend, the system manages a huggingface
transformer Adapter model, utilizing a task queue for asynchronous training. Overall, it has
been shown that a semi-automatic annotation system presents a multitude of challenges to
the underlying model and that none of the investigated state-of-the-art models fully meet the
requirements of such a system.
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