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Abstract

This study investigates multiple aspects of sentiment analysis on German datasets,
comparison of various models, domain adaptation strategies with sparse labeled data,
and automatic lexicon adaptation using advanced learning techniques. The initial
findings demonstrate wide variation in model performance based on the dataset and
domain, with models optimized on specific domains generally outperforming others.
Progress between model generations shows promising enhancements, but no single
model consistently outperforms across all domains, highlighting the need for model
adaptation and fine-tuning.

Effective strategies for domain adaptation with sparse labeled data are analyzed. In-
context learning demonstrates benefits, though its success varies across different models
and datasets. Fine-tuning techniques like LoRA adapters show significant promise,
especially in low-data situations. Training with the SetFit approach also produces
positive outcomes but requires substantial computational resources. Both LoRA and
SetFit techniques have potential for enhancing model performance in data-scarce envi-
ronments; however, no single strategy is universally applicable to all models and datasets.

Large language models demonstrate promising results in creating domain-specific
lexicons with prompting. The generated lexicons can outperform existing ones, increas-
ing the possibility of creating domain-specific lexicons without the need for annotation.
While embedding-based lexicon extension produces mixed outcomes, it can outperform
traditional lexicons like GerVADER in certain datasets, indicating potential for leveraging
the capabilities of large language models. Detailed analysis is made to gain insights
into the challenges and benefits of this approach.
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1
Introduction

In the digital age, user-generated content is widespread across social media platforms,
online forums and digital communication channels. This has revolutionized the way
individuals and organizations engage with the world. Authors can express their opinions
on any public topic, including individuals, products, events, or ideas. This immense
amount of data provides valuable opportunities for insights and analysis, particularly in
understanding human emotions and opinions through sentiment analysis.

Research on sentiment analysis is motivated by many use cases for various domains,
including social science, digital humanities, customer feedback, crisis detection and
public health monitoring (Tan et al., 2022; Wankhade et al., 2022). Sentiment analysis in
news articles helps researchers and policymakers understand how societal perspectives
in the media evolve (Balahur et al., 2010). Sentiments on various topics can change
quickly, especially in current political cases, or gradually shift over years and decades.
For example, analyzing social media posts can help detect shifts in societal opinions
during ongoing events (Thelwall et al., 2011; Rauh, 2018). In product reviews, aspect-
based sentiment analysis provides detailed insights at a granular level. This detailed
insight is crucial for product enhancements, development and for new marketing plans
based on customer feedback (Zhang et al., 2023; van Kleef et al., 2015).

Sentiment analysis, also known as opinion mining, involves using computational
techniques to identify and extract subjective information from textual data. It is a text
classification task that belongs to the domain of natural language processing (NLP).
It includes the automatic identification, aggregation, and classification of sentiments
expressed in texts. The sentiment polarity of words, phrases, sentences, or entire
texts can be classified into predefined categories, which can range from binary (positive,
negative) to including a neutral category or even more nuanced classifications (Tsytsarau
and Palpanas, 2012).

Sentiment analysis in written communication presents unique challenges due to
the complexity and variability of language. Often contextual cues, linguistic patterns,
and advanced techniques such as deep learning are utilized to categorize the expressed
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1. Introduction 2

sentiment. The written language lacks acoustic information, but other layers such as
slang, sarcasm, opinions or emotions, can still be part of written communication. The
text must not only be read word by word; the structure, order and both explicit and
implicit meaning, are also important in understanding language (Norvig, 1987; X Hu
and H Liu, 2012). Documents can differ in writing style and may contain spelling errors
or ungrammatical sentences. When slang is used, it is not always possible for humans
to determine the sentiment of a text at first glance (e.g., “This steak is the bee’s knees!”
which means the steak is excellent or outstanding). Normalization and error correction
can be a preprocessing step to handle mistakes and convert slang to more clear sentences
to create robust systems (Schouten and Frasincar, 2016). Sarcasm makes it difficult to
determine whether a statement is meant seriously or not. This has led to its direction of
research focusing on sarcasm (Ghosh et al., 2015). Sentiment is sometimes concealed
within the structure of text (Polanyi and Zaenen, 2006). The representation of sentiment,
or the way the author expresses their opinion, is closely tied to the domain and can
depend on subtle nuances. Due to the variety of ways to express oneself, there are
countless possibilities to convey sentiment. Utterances can hold sentiment explicitly
stated (e.g., “I don’t like dogs!”), subtly expressed (e.g., “Considering the price, the
hotel was fine”), not necessarily limited to a single word (e.g., “The hotel was bad, but
way better than I expected”) or about various aspects (e.g., “The weather was bad, but
the food was delicious”). The inherent flexibility and ambiguity in natural language
can make it challenging to extract sentiment from a text, making it a field of ongoing
research (Schouten and Frasincar, 2016).

Sentiment analysis employs various methodologies and techniques to interpret
and classify sentiment within textual data. These approaches primarily fall into three
categories: rule-based lexical methods, machine learning and large language models.

Lexicon-based methods utilize dictionaries containing positive and negative words.
These dictionaries can also contain values representing the strength of polarity. The
scale typically ranges from a negative value for the most negative sentiment to a positive
value for the most positive. Dictionaries can be human-created, semi-automatically
generated or automatically generated. The term semi-automatically refers to the creation
of lexicons by humans supported by NLP methodologies, whereas the term automatically
refers to methods that generate lexicons without human involvement (Remus et al.,
2010). When calculating the sentiment of a text, each word is assigned a value from
the dictionary or zero if the word is not present in the lexicon. Rule-based systems
use algorithms to determine common linguistic expressions connected to sentiment,
such as negation or intensifiers. If the total score after summing the values is above
a certain threshold, the text is categorized as positive; if the score is below a certain
threshold, it is categorized as negative. Otherwise, it is categorized as neutral. Lexicons
require only a small set of data to yield good results, but creating domain-specific
lexicons requires extensive domain knowledge or substantial computational resources.
Creating rules to capture linguistic details is time-consuming, but the results are
transparent, comprehensible, and computationally inexpensive. The sentiment of
words can vary or even reverse across different domains. Without considering context,
this technique can fail to determine the sentiment accurately, not handling linguistic
patterns such as phrases or nuances due to the inflexibility to unknown data and
structure (Tymann et al., 2019).
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Machine learning models are statistical models and encompass a wide range of
techniques and algorithms. This includes classical approaches such as Naïve Bayes
Classifier (NBC) and more sophisticated approaches like Neural Networks (NN). Both are
trained on large amounts of data with the goal of creating a generalized model (Witten
et al., 2011). While NBC, based on the Bayes rules, learns conditional probabilities out of
the data, NN learns patterns from the training data. Both, NBC and NN, heavily depend
on training data. Like lexicons, NBC may not require extensive computational training
but may struggle with unknown words or linguistic features (Jung et al., 2016). Achieving
good results with NNs requires significant computational resources. This makes them
time-consuming and costly to create, but unlike lexicons, they do not heavily depend
on domain knowledge. This helps to generalize patterns in the given data and also
classify unseen data accurately. While this makes them effective for the specific topics
they are trained on, they yield lower results when faced with domain shifts (Guhr et al.,
2020). Furthermore, they can be utilized to create or adapt existing lexicons (Li and Shah,
2017). Because machine learning models are not transparent in their decision-making
processes, the underlying reasons for the results are difficult to observe. Due to the
drastic increase in the usage of machine learning models lately, gaining better insight into
the decision-making processes has become more crucial. The decision-making process of
machine learning models is mostly opaque, producing results without a comprehensible
explanation. Since the result can have a significant impact on decision-making in some
domains, explainability is an ongoing field of research (Zielinski et al., 2023).

Large language models (LLMs), based on the transformer architecture, represent the
state-of-the-art (SOTA) in NLP. They have gained prominence over the past few years.
Transformers are built on attention mechanisms, which allow them to incorporate
contextual information like slang, hashtags, and sarcasm (Kheiri and Karimi, 2023).
Their large number of parameters allows them to learn more intricate structures from
the provided data. Achieving satisfactory results requires a substantial amount of data,
enabling LLMs to learn diverse patterns. In addition to classification, they support natural
language queries, expressed in human language and offer human-readable reasoning
for their decisions. Pre-trained LLMs can be fine-tuned for new tasks or adapted using
few-shot learning techniques to accommodate domain shifts. Training LLMs requires
high-end computational hardware, which is challenging for small research groups or
companies seeking to adapt them (Hu et al., 2022). Some models are not freely available
and can only be accessed through a proprietary programming interface. This incurs
costs for each use. Processing data in the provider’s data center raises concerns about
the privacy of personal and business information (Sebastian, 2023).

Adapting sentiment analysis to the diverse and dynamic nature of modern communi-
cation presents unique challenges. In modern communication, elements such as emojis,
abbreviations and hashtags convey valuable information beyond solely negotiation or
sarcasm. Sentiment varies across domains; for instance, movie reviews use different
linguistic characteristics than news articles. Furthermore, accounting for the cultural
context is essential when analyzing texts. The expression of opinions varies among
cultural groups, countries, continents, and between native and non-native speakers.
The mentioned methods face challenges when adapting to new domains. Creating
dictionaries for lexical-based approaches is tedious and requires domain knowledge.
Training a machine learning model for a specific domain requires extensive domain
data and significant computational power, even if the model is pre-trained. Data must
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be well-labeled or preprocessed, a process that can be tedious and time-consuming.
LLMs are trained on billions of words and can handle a many tasks out of the box,
but they need fine-tuning to achieve decent results. LLMs initially require significant
computational power to run, and even more for fine-tuning (Wankhade et al., 2022). In
conclusion, there is no one model that fits all application scenarios.

1.1 Research Questions
The hypothesis of this thesis is that LLMs can outperform traditional sentiment analysis
approaches that rely on lexicons or machine learning. Although there are available
out-of-the-box (OOTB) models, they often are not well-suited for specific domains.
There is no universal state-of-the-art solution that brings satisfying results for every
domain, highlighting the need for domain-specific adaptation. This leads to the following
research questions, which will be addressed in this thesis:

RQ1: Which model achieves the highest performance in sentiment analysis on
German datasets? Models are often trained on freely available data such as social
media posts, leveraging web crawling for its diverse and cost-effective nature without
incurring license expenses. Since most texts on the internet are in English, the highest-
performing models also are typically designed for the English language. Understanding
common errors made by available models is necessary because they often struggle with
domain and language switching. This approach helps to identify the best-performing
OOTB models and provides insights into common error sources. To address this
question, various models are evaluated and compared on German datasets. A detailed
error analysis is conducted to understand common errors among the models, identify
similarities and interpret the causes of these errors.

RQ2: Which strategies prove effective for domain adaptation in sentiment analysis,
particularly when there is a scarcity of labeled data in the target domain? Domain
adaptation is crucial because no one-size-fits-all model exists. Since many domains
have limited labeled data for sentiment analysis, achieving satisfactory results through
domain adaptation can be challenging. What is the best strategy for adapting an existing
model without extensive data or computational resources? Ultimately, an effective
technique should facilitate rapid model adaptation. To answer this question, different
approaches of fine-tuning the models are compared and tested. This involves selecting
promising models from RQ1 and fine-tuning it on a domain-specific dataset, while
evaluating multiple adaptation approaches.

RQ3: How can lexicons be automatically adapted, generated or updated using weak
or unsupervised learning techniques? The hypothesis is that machine learning-based
approaches outperform lexical-based methods according to common metrics in the
field of NLP. Lexicons on the other hand are computationally inexpensive, transparent
and can be easily shared for proper repeatability. Is there a way to generate or adapt
a domain-specific lexicon with weak or unsupervised learning? To accomplish this,
the best-known models are employed and unsupervised or weak learning techniques
are applied to generate lexicons for specific domains.



2
Background

2.1 Sentiment analysis

The study of people’s expressions of emotions, opinions, or stances about a topic, known
as sentiment analysis, is part of Natural Language Processing (NLP). The words do not
only have polarity — most often positive or negative — but also a valence, which is
the intensity of the word or emotion. Polarity and valence are combined in sentiment
analysis to classify text as positive, neutral, or negative. Sentiment analysis is used in
various domains, such as in the analysis of political views or communities, product
or movie reviews, news article categorization, psychological or social sciences, and
the analysis of natural disasters or events (Schmidt et al., 2022; Shalunts et al., 2014;
Jung et al., 2016). The domain is described as the context in which the writer expresses
their opinion. This can, for example, include social media posts, which are mostly
short, opinionated, and written from a personal perspective; news articles, which are
more formal with longer sentences and describe situations or events in greater detail;
movie or article reviews, which are more descriptive and opinionated; or statements
from political parties or companies in advertisements, which are concise to influence
public opinion or consumer behavior.

Sentiment analysis is a text classification task with different levels of detail: aspect,
phrase, sentence, or document. Document-level sentiment analysis is used to analyze
the sentiment of entire documents. This can be useful for analyzing book chapters.
Sentence-level sentiment analysis is used to determine the sentiment for each sentence in-
dependently. Texts with a wide range of sentiments can benefit from this. Sentences can
contain multiple phrases, each of which can include one or more aspects. Classification is
done at the phrase level. It is often utilized for analyzing longer product reviews. Aspect-
level sentiment analysis is the most detailed method and is used to classify individual
aspects of a sentence, where each sentence can contain multiple aspects. A single
sentence can contain multiple aspects with different sentiments (Wankhade et al., 2022).

How polarity is expressed can vary between writers, topics, and domains. Words
that are used to express positive sentiment in one domain can be used to express
negative sentiment in another domain. For example, the German word “scharf” can
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mean “seared” as a cooking technique for meat or ’sharp’ in the context of edges. “Das
Steak ist scharf angebraten” means “The steak is seared”, which would be considered a
good cooking technique. “Die Ecken sind sehr scharf!” means “The corners are very
sharp!” which is intended as a caution.

Additionally, elements such as sarcasm, slang, punctuation, capitalization, negation,
or, especially for social media, emoticons, tags, or abbreviations can significantly affect
sentiment and even reverse it (Kheiri and Karimi, 2023). The most common methods
for sentiment analysis include rule-based approaches with word lists, classical machine
learning techniques such as the Naïve Bayes Classifier, neural network methods like
BERT, or the use of large language models.

2.2 Lexicon

The baseline for sentiment analysis is often the lexicon-based method, which is based
on affect lexicons. Affect lexicons are word lists consisting of words, their inflections
and are labeled with their prior polarity with a value. Inflection is the technique of
changing a word to fit different grammatical categories, such as tense, number, gender,
and case, without changing its main meaning or part of speech. Each word is assigned
with a value between -1 and 1, representing the polarity (negative values represent
negative sentiment and vice versa). The higher the positive value, the more positively
the word is marked; the lower the value, the more negatively the word is marked.
The most straightforward implementation is to check every word in the document for
the corresponding value in the lexicon. Assign the word the value if it exists in the
lexicon, and afterward sum the values up. It is computationally inexpensive because,
for classification, two word lists are needed: one with positive words and the other with
negative words, both with a value representing their sentiment strength. They have the
advantage of transparent and reproducible results, but one of the main disadvantages
is their inflexibility. As lexicon-based methods are rule-based, the outcomes are fully
comprehensible. Since these methods lack context when implemented directly, the
lexicons need to fit the domain of the text; otherwise, the classification can not only be
inaccurate but also false (Polanyi and Zaenen, 2006). Thus, phrases cannot be detected.
The task of creating lexicons can be tedious and requires domain knowledge. In English,
there are solutions like General Inquirer (GI), which has one of the oldest lexicons,
extended several times. For classification, the document is split into single words and
compared to the lexicon. If the word is listed in one of the lexicons, a value is assigned
to it. Afterward, the values are summed together, and if the overall score is negative,
the document is classified as negative, and vice versa (Khoo and Johnkhan, 2018).

To take context into account, rule-based algorithms are used. This does not help
for phrases (“Alles in Butter” which means “all right”), specific sentence orders, or
unseen phenomena like slang or irony. Every language construct needs to be caught by
rules. This can make it difficult for lexicons to take context into account, since grammar
structures differ from those of other languages. Negations can occur after the subject to
which they are connected, or there can be multiple words between the negation and
the subject it refers to, which makes them difficult to cover with rules (Tymann et al.,
2019). Since words can have another sentiment regarding their context, this can also
be only addressed by handcrafted lexicons or rules (Shaukat et al., 2020).
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SentiWS1 is short for “Sentiment Wortschatz” (Sentiment vocabulary) and is a
publicly available resource for sentiment analysis for the German language. It consists
of adjectives, adverbs, and nouns explicitly and implicitly containing a sentiment. It
contains about 1,650 negative and 1,800 positive words and their inflections, which
makes about 16,000 positive and 16,000 negative forms. It is crafted by collecting
sentiment bearing words from different sources. Sources were the General Inquirer
lexicon automatically translated into German, words which often occur in positive or
negative documents, the German Collocation Dictionary, and manually added words
from the financial domain (Remus et al., 2010).

GerVADER2 is the German adaption of VADER (for Valence Aware Dictionary for
sEntiment Reasoning), an implementation of the lexicon approach. GerVADER, like
VADER, also adapts heuristics and multiple linguistic features common in the domain
of social media. Abbreviations or emoticons were copied from VADER because both are
common and identical in both languages (like “lol” or “rotfl”). GerVADER is a rule-based
system that relies on SentiWS, which has been enhanced with additional words and
rules for capitalized words (Hutto and Gilbert, 2014; Tymann et al., 2019).

2.2.1 TF-IDF

TF-IDF, short for term frequency-inverse document frequency, is a statistical measure
that assesses the importance of a term in a document relative to a corpus of documents.
The term frequency component quantifies how often a term appears in a specific
document and helps to understand its relevance in the context of the document. Words
that frequently appear within a document are considered more significant in conveying
information about that document’s content. The logarithm is often used to normalize
the results and account for varying weights. The calculation for term frequency 𝑡𝑓 of
a term 𝑡 within a document 𝑑 is typically computed as follows:

𝑡𝑓𝑡,𝑑 = 𝑙𝑜𝑔(𝑐𝑜𝑢𝑛𝑡(𝑡, 𝑑) + 1)

Document frequency 𝑑𝑓𝑡 reflects the occurrences of a term 𝑡 across multiple doc-
uments, measuring how frequently used the term is within the corpus. Terms that
are present in numerous documents may not contribute significantly to categorizing
individual documents. Inverse document frequency 𝑖𝑑𝑓 is utilized to assign weight to
terms based on their presence across the corpus. Terms occurring less frequently across
documents receive higher weight. The formula for calculating the inverse document
frequency 𝑖𝑑𝑓𝑡 for the term 𝑡 using the weight 𝑁 (representing the total number of
documents) is typically expressed as:

𝑖𝑑𝑓𝑡 = 𝑙𝑜𝑔
𝑁

𝑑𝑓𝑡

Common words in the document collection receive a low score, as their information
about the particular document is likely to be low. This technique is commonly employed
in various areas of NLP, including information retrieval and classification tasks (Jurafsky
and Martin, 2024).

1. https://wortschatz.uni-leipzig.de/de/download/#sentiWSDownload
2. https://github.com/KarstenAMF/GerVADER

https://wortschatz.uni-leipzig.de/de/download/#sentiWSDownload
https://github.com/KarstenAMF/GerVADER
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c-TF-IDF

To analyze topic representations within cluster documents in a collection, the cluster-
based TF-IDF (c-TF-IDF) approach is utilized. When applying the c-TF-IDF technique,
documents within a cluster are concatenated to form a single unified document rep-
resentation of the entire cluster. The TF-IDF formula is adjusted when implementing
c-TF-IDF to accurately capture the importance of terms within the cluster as a whole.
The modification involves incorporating the average number of words per class 𝐴, in
the calculation to normalize the term’s importance relative to the total word distribution
across all classes. To represent the importance of a term 𝑡 in a class 𝑐, the average
number of words per class 𝐴 is divided by the term frequency 𝑡𝑓𝑡 as follows:

𝑡𝑓𝑡,𝑐 = 𝑙𝑜𝑔(1 +
𝐴

𝑡𝑓𝑡
)

By adjusting the TF-IDF formula and considering the cluster-level representations,
it becomes possible to generate topic word distributions for each cluster in the col-
lection. This is useful in identifying the most informative words specific to each
cluster (Grootendorst, 2022).

2.3 Machine learning

While traditional lexicon-based methods have been standard, advances in technology
have introduced the benefits of machine learning techniques. Machine learning (ML)
covers several methods (Witten et al., 2011). A classical ML approach is the Naïve Bayes
Classifier, a statistical classifier based on Bayes’ theorem, which classifies the most
likely class, assuming each feature is independent (Rish, 2001). Nowadays, modern
machine learning models are mostly based on Artificial Neural Networks (ANN) which
are inspired by the biological nervous system. They are built with neurons, which
are structured layerwise, with interconnections between the layers. The input data is
initially loaded into the input layer and sequentially passed through the internal hidden
layers until it reaches the output layer. Each internal hidden layer processes the input
it receives from the previous layer, using assigned weights to generate its own output,
which is then passed to the next layer. The weights, which are the trainable parameters
of the model, are adjusted during the training process to minimize error and maximize
the model’s performance. The model is trained using either supervised or unsupervised
learning techniques to learn based on given input and output data. In supervised learning,
labeled data is used, where each input has an assigned label that the model is supposed
to predict. The model receives the input, produces an output, and utilizes the training
label to correct itself and minimize the prediction error. In unsupervised learning, the
model learns to identify patterns and structures from unlabeled data. The tasks can
include, but are not limited to, identifying objects in images or generating answers to
input questions (O’Shea and Nash, 2015; Brown et al., 2020). The network architecture
can vary, depending on the use case. Architectures like Long Short-Term Memory
(LSTM) have interconnections to the next layer and also to the current layer, giving the
possibility of traversing input data through multiple steps. When analyzing sentences,
LSTM can consider previous input tokens, while Bi-LSTM lets it consider both before and
after the actual token (Hochreiter and Schmidhuber, 1997; Tabinda Kokab et al., 2022).
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Figure 2.1: Standard structure of the transformer architecture (Vaswani et al., 2017)

2.3.1 Transformer

Language models nowadays are most commonly based on the transformer architecture
and trained on a huge number of sentences, learning diverse patterns in the data, which
makes them flexible and enables them to outperform previous approaches (Devlin et al.,
2019). While transformers share the attention mechanism with earlier architectures,
they are generally considered a fundamentally new architecture. Context-sensitive
architectures like LSTM or Bi-LSTM calculate a sequence of hidden states at each
computation step, considering the previous states (and future states for Bi-LSTM). The
transformer architecture avoids sequential processing and instead relies entirely on an
attention mechanism, enabling it to learn global dependencies between input and output
sequence. The attention mechanism involves parameters that enable the calculation
of attention scores, determining the relative importance of different parts of the input
sequence. The structure of the transformer model is illustrated in Figure 2.1 with the
encoder on the left side and the decoder on the right side (Vaswani et al., 2017).

The standard transformer architecture consists of a decoder and an encoder, both
of which can also be utilized independently. An encoder maps input symbols into
an internal numerical representation and sequentially transforms the input data into
higher-level representations of entire sequences.

In contrast, decoder blocks operate in an autoregressive manner, generating each
token one at a time based on previous tokens. Autoregression refers to generating the
next token by depending on all previous generated symbols and the input sequence,
meaning token 𝑛 depends on the input and the previously generated tokens 1 to 𝑛 − 1.
In contrast, encoder-decoder architectures can utilize the full context of the input data
in both encoding and decoding phases (Vaswani et al., 2017). This autoregressive archi-
tecture is often referred to as Causal Language Models (Causal LMs) and is particularly
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beneficial for text generation tasks. Causal LLMs are trained by predicting the next
token in a sequence based on all preceding tokens. Large language models are mostly
based on a decoder-only architecture due to generative performance (Gemma Team
et al., 2024; AI@Meta, 2024; Brown et al., 2020). The BERT architecture is based on
encoder blocks (Devlin et al., 2019).

BERT

BERT (short for Bidirectional Encoder Representations from Transformers) is a neural
network architecture based on the transformer architecture, specifically utilizing the
encoder blocks within that structure. BERT is trained on extensive text corpora to
understand and learn the contextual relationships within the training data. This enables
the model to create context-aware word embeddings, unlike models like GloVe, which
always generate the same embedding for a word regardless of its meaning in the
sentence (Devlin et al., 2019; Pennington et al., 2014). The encoder structure of BERT
is particularly beneficial for classification tasks, as it allows the model to analyze and
classify the text after fully processing it. The BERT architecture includes training
for next sentence prediction (NSP) to learn the context between two sentences and
determine if one follows the other. BERT models undergo pretraining on a large corpus
of unlabeled data, using a technique called masking. Masking replaces certain tokens
in the input with a mask token. The network is trained to predict the original tokens
that were masked. After this pretraining phase, BERT models are fine-tuned on labeled
data for specific downstream tasks (Devlin et al., 2019) There are several variations
of the BERT architecture available, including RoBERTa and DistilBERT. RoBERTa (A
Robustly Optimized BERT Pretraining Approach) does not include NSP training and
utilizes different masking strategies to improve robustness (Liu et al., 2019). DistilBERT
is a compact model trained using knowledge distillation, which enables it to replicate
the behavior of a larger teacher model (Sanh et al., 2019).

The BERT architecture is utilized by the model trained by Guhr et al. (2020). The
pre-trained model, called “German BERT Cased small” is trained on a diverse range
of texts including Wikipedia, German law documents, and news articles. The model
is fine-tuned for the classification task on different datasets in the domain of cus-
tomer reviews (hotel, apps, movies), GermEval, social media (political, general), and
Wikipedia (Guhr et al., 2020).

Another frequently used sentiment analysis model, based on the monthly downloads
on Huggingface, is trained by the user Lxyuan3. The model is based on the DistilBERT
architecture. The teacher model employed in the distillation phase is trained using
transfer learning techniques (Laurer et al., 2024; Lxyuan, 2023).

SBERT

SBERT, short for Sentence-BERT, modifies the BERT architecture to enable faster
sentence comparisons based on semantic similarity while maintaining nearly the same
accuracy. This architecture is also known as a sentence transformer. For this, the SBERT
architectures use a siamese network architecture, creating the embeddings for two
sentences by two identical networks. Embeddings are internal vector representations
created by the model, encapsulating the information extracted from the input. The

3. https://huggingface.co/models?language=de&sort=trending&search=sentiment accessed on 1.5.2024

https://huggingface.co/models?language=de&sort=trending&search=sentiment
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embeddings are compared by calculating their cosine similarity to measure their relative
distance. Since BERT creates embeddings for individual tokens, SBERT adds a pooling
operation, such as mean pooling, to the output of BERT or RoBERTa to provide fixed-size
sentence embeddings. The model is trained so that semantically similar inputs produce
more similar embeddings, whereas semantically different inputs produce more distinct
embeddings (Reimers and Gurevych, 2019).

Google Gemma

Google Gemma is a model family of LLMs developed by Google. The models are available
in two parameter sizes: 2 billion (referred to as 2B) and 7 billion (7B). The 2B model is
trained on 3 trillion tokens and the 7B model is trained on 6 trillion tokens. The primary
training data language is English. Instruct fine-tuned models are also available, referred
to as 2B Instruct and 7B Instruct. The context length for all models is 8,192 tokens. For
positional encoding, Rotary Positional Encoding (RoPE) is used to calculate a vector
of the absolute position of a token and the relative distance between a second token
to calculate the attention. RMSNorm is used to stabilize the training by normalizing
different layers (Gemma Team et al., 2024).

Meta AI Llama

Llama is a LLM family introduced by Meta AI. The models are based on the Llama
architecture, introduced with Llama 1. The architecture is based on the decoder blocks
of the transformer architecture. The Llama 2 models are available in four parameters
sizes: 7 billion (referred to as 7B), 13 billion (13B), 34 billion (34B) and 70 billion (70B).
There are also available as an instruct fine-tuned version, referred to as 7B Chat, 13B Chat,
34B Chat and 70B Chat. The Llama 2 architecture has an extended context length of
4,096 tokens and Grouped Query Attention (GQA) for the 34B and 70B model for lower
memory usage. The Llama 2 architecture also uses RoPE (Touvron et al., 2023). In
Llama 3, models are available with a parameter size of 8 billion (8B) and 70 billion (70B),
and the context length extended from 4,096 tokens to 8,192 tokens. Furthermore, GQA
is now used in all sizes compared to Llama 2. Llama 3 architecture also uses RMSNorm.
The Llama 3 models are available in two parameter sizes of 8 billion (8B) and 70 billion
(70B). The models are fine-tuned for instruction-following tasks and are referred to as
8B Instruct and 70B Instruct. The models are trained on 15 trillion tokens, of which
are 5% other languages than English (AI@Meta, 2024).

MistralAI Mistral

Mistral is a LLM model family introduced by MistralAI. The models are available
in parameter sizes of 7 billion (referred to as 7B) and 22 billion parameters (22B).
Both parameter sizes are also available as instruct fine-tuned versions, referred to
as 7B Instruct and 22B Instruct. All models are also available in a mixture-of-experts
version, containing 8 distinct groups of parameters, called experts, on which the model
decides which specific block to use. These models are referred to as 8x7B for the 7
billion parameters version and 8x22B for the 22 billion parameters version. The model
architecture uses GQA and Sliding Window attention (SWA). SWA handles longer input
with reduced computational cost (Jiang et al., 2023).
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Figure 2.2: SetFit training pipeline for sentence classification. The left side represents the first
step and the right side the second step (Tunstall et al., 2022).

2.3.2 Fine-tuning

Fine-tuning involves adapting pre-trained models by training them with a comparatively
small amount of data for a specific downstream task. This technique requires less training
time and data compared to creating a model from scratch (Devlin et al., 2019). Various
techniques exist for fine-tuning pre-trained models.

In-context learning

LLMs have the ability to handle tasks even when they are not specifically trained for
them. Tasks for which the model is not explicitly trained are called zero-shot tasks.
When given examples, these are called few-shot tasks. In-context learning describes
the ability of the LLM to learn from additional information or examples provided in the
input, which are not part of the primary task but serve as additional context. The model
retrieves information from the input and performs the task without any additional
training. Since no additional training is necessary, this is a cost-effective method to
improve results (Brown et al., 2020).

Sentence Transformer Fine-tuning

SetFit (Sentence Transformer Fine-tuning) is an efficient fine-tuning method for sentence
transformers. SetFit trains sentence transformer models in two steps: firstly, fine-
tuning the siamese network on sentence pairs, and then training a classifier head on
the newly trained embeddings.

In the first step, the model’s embeddings are trained on sentence pairs. For each
pair, two sentences from the labeled training data are combined to form positive and
negative pairs. Positive pairs are two sentences from the same class, while negative pairs
are sentences from separate classes. The model is trained using contrastive learning
to ensure that embeddings of positive pairs are brought closer together while being
pushed further apart for negative pairs. Combining sentences into pairs expands the
available training data, which is beneficial for smaller training data but increases the
training time for bigger training datasets drastically. In the second step, the classification
head is trained on the fine-tuned embeddings to perform classification. The multiple
steps of the training are illustrated in Figure 2.2, showing the first step of training
the embeddings on the left side and the second step of training the classification head
on the right side (Tunstall et al., 2022).
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Figure 2.3: LoRA adapter matrices 𝐴 and 𝐵 processing the input 𝑥 simultaneously with the
model weights, combined to the output ℎ (Hu et al., 2022).

LoRA adapter

Adapters are a fine-tuning technique that involves adding parameter-efficient compo-
nents, often in the form of small modules or sublayers, into an existing model to adapt
it for specific tasks. Compared to the original model, adapters require only a minimal
number of additional parameters, leveraging the pre-existing knowledge in the model but
still achieve good results. The parameters of the original model remain unchanged during
the fine-tuning process. During training, the additional parameters introduced by the
adapter are often trained on a smaller, task-specific dataset compared to the original pre-
training dataset. This approach is particularly beneficial when computational resources
are limited, when only a small amount of training data is available, or when flexibility
and scalability across multiple tasks are desired. A single pre-trained model can be used
with different adapters for each downstream task (Houlsby et al., 2019).

LoRA (Low-Rank Adaptation) adapters are a cost-effective fine-tuning technique
that extends the adapter method for efficiency and performance. The LoRA adapter
is represented by two smaller matrices that reduce the rank of the weight matrices
within the model while maintaining the overall computational dimensionality. As
illustrated in Figure 2.3, the LoRA adapter matrices (right), each matrices 𝐴 and 𝐵

with the dimension 𝑟 , process the input similarly to the pretrained model (left). The
outputs of both the pretrained layer and the adapter are linearly combined and further
processed (Hu et al., 2022).



3
Related Work

3.1 Lexicon

Lexical-based methods, among the oldest approaches in sentiment analysis, are still
utilized today. A rule-based approach to recommending movies based on sentiment
in reviews was proposed by Turney (2002). The pipeline involves the use of a part-
of-speech tagger to identify phrases containing adjectives and adverbs. The semantic
orientation of phrases was estimated by association. A positive semantic orientation was
estimated for phrases with good associations (e.g., “romantic ambience”) and a negative
orientation for phrases with bad associations (e.g., “terrifying events”). If the average
semantic orientation of the review is positive, the movie was classified as recommended.
Otherwise, the movie was not recommended. The sole focus on these features resulted
in moderate outcomes for movie reviews. Focusing on specific aspects of a review may
not necessarily reflect the overall sentiment.

To create or expand a lexicon with technical approaches, there are mainly two methods
available: automatic or semi-automatic approaches. In the work of Taboada et al. (2011),
, lexicons were automatically collected from various sources. Sentiment-bearing parts
like adjectives, nouns, verbs, and adverbs were collected and weighted. Human an-
notators evaluated the dictionary. Algorithms were developed to take intensifiers
into account. Intensifiers can be amplifiers (e.g., very, incredibly) that increase the
sentiment of neighboring words and downtoners (e.g., somewhat, a bit) that decrease
it. The development of rules for identifying negation requires linguistic expertise.
Identifying intensifiers and negation helps to avoid classification errors. This gave
strong performance across several domains.

Furthermore, for languages with limited training data, one option is to translate
pre-existing sentiment dictionaries. In the work of Ali et al. (2021), this was done for
Sindhi, an Indo-Aryan language spoken by more than 75 million people, by using English
dictionaries. The English sentiment lexicons EmoLex and Bing Liu’s were combined
and given a polarity score from the SentiWordNet synset (Mohammad and Turney,
2010; M Hu and B Liu, 2004; Sebastiani and Esuli, 2006). During preprocessing, the

14
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duplicate words were removed and the remaining words were translated into Sindhi
using a bilingual dictionary. Modifiers for Sindhi, such as intensifiers and negations,
were collected, automatically translated into English, and assigned a polarity score from
the SentiWordNet synset with human annotation.

In predicting literary quality, the work by Bizzoni et al. (2023) included sentiment
as a measurement alongside stylometric properties. Stylometric measures can include
lexical diversity, redundancy, readability, or adverb percentage. The quality of the
literature was measured by using the average ratings in an online database with a scale
from 1 (worst) to 5 (best). Lexical sentiment analysis gave good performance across
various domains and genres. Global parameters such as the average sentiment across
the entire document were included as additional features in the predictions. Dynamic
features such as variation in sentiment, i.e., how the sentiment changes over time, and
sentiment intensity, which measures the intensity of the sentiment, also improved the
results. Books with unpredictable arcs received lower scores, while higher average
sentiment and more positive endings received higher scores, provided the sentiment
was not too flat or repetitive.

Because lexical methods cannot take context like negation into account, researchers
developed ways to improve this method with static rules. Jurek et al. (2015) demonstrated
a more sophisticated approach, incorporating intensifiers and negation. They designed
algorithms and formulas to consider context by effectively handling negations and
intensifiers. The formula not only inverts the sentiment of a negated phrase but also
calculates a value based on both negation and the lexical value of the word. A similar
approach is employed for intensifiers. These approaches performed well on social media
posts discussing certain events and on movie reviews.

3.2 Machine Learning

The Naïve Bayes Classifier is a machine learning-based approach that relies on the
assumption that every word is independent of each other. They are often employed as
baselines for machine learning text classification and sentiment analysis tasks. Various
types of Naïve Bayes Classifiers exist, such as the Multinomial Naïve Bayes Classifier
(MNBC) and the Binarized Naïve Bayes Classifier (BNBC). Since the probability of an
NBC depends on word frequency, it assigns a zero probability to words that are not in the
training data. The difficulty of predicting sentiment for a document lies in identifying
the sentiment-bearing phrases within the text. BNBC is often the choice because it
focuses on presence instead of frequency. Naïve Bayes classifiers learn the sentiment
probabilities of words within the data to determine whether a given text is positive or
negative. NBC has the advantage of being inexpensive and quickly trained compared to
other machine learning techniques, but cannot handle unknown words well.

The work by Jung et al. (2016) utilized BNBC to analyze texts sourced from social
media. To effectively handle out-of-vocabulary (OOV) words, the Laplace smoothing
technique was employed. SparkR, a framework to execute data science tasks in a data
cluster environment, was used for parallelization.

Instead of training a model on text as input, Tan et al. (2022) trained an LSTM
model on the embeddings of a pre-trained RoBERTa model as input. This enables the
LSTM-based model to extract semantic and syntactic information efficiently, even with
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limited training data. Thus, the new LSTM-based model can rely on the learned data
from the RoBERTa model without needing to be trained on the entire data set. As
LSTM is good at handling long-distance dependencies, it provides a suitable approach
for detecting context over a longer span of words. Long-distance dependencies in text
can be negations or intensifiers connected to their origin over the sentence, taking
previously seen words in the text into account. To augment the data, GloVe model
embeddings were utilized, enhancing the new model’s performance. This newly trained
model outperforms all previous models on the benchmarked data sets.

To consider context from both directions, before and after the word in the docu-
ment, Tabinda Kokab et al. (2022) employed a bidirectional LSTM (Bi-LSTM) architecture.
In addition to LSTM, Bi-LSTM can take context from both forward and backward
directions into account. To account for short dependencies without using standard
CNN, a different approach was employed. Due to parameter explosion from expanding
standard CNNs, Dilated CNNs (DCNNs) are utilized. The trained model produces
strong results across diverse data sets, including movie reviews, social media posts,
and election reviews.

In the work of Barbieri et al. (2022), a multilingual BERT approach was trained for the
domain of microblogging. The model performed better than general-domain multilingual
approaches in the domain of microblogging. A multilingual dataset of social media
posts in eight languages was released in addition to the pre-trained models. Models
trained on multiple languages, compared to monolingual models, showed performance
gains for multiple languages. When language-specific data is unavailable, cross-lingual
zero-shot outcomes show promise.

3.3 Large Language Models

Lately, Large Language Models (LLMs) with their extensive parameter space have
shown impressive performance on various NLP tasks (Radford et al., 2018; OpenAI,
2023). They can generate human-like responses and simulate thought reflection in
decision-making processes. Mixed sentiments and linguistic nuances, such as emojis,
slang, hashtags, sarcasm, cultural context, or abbreviations, can be handled by LLMs
due to their extensive training corpora. The interpretation focuses on these nuances and
consistently handles them within the context of the text. LLMs can handle zero-shot
tasks, which the model is not specifically trained on, as well as out-of-vocabulary words.
LLMs make it possible to infer them through instruct-based tasks. This enables the
generation of response texts that reflect decisions in natural language.

The research by Kheiri and Karimi (2023) compared the results of instruct-based
approaches with those of fine-tuned models and embedding classification across various
GPT-3.5 Turbo models (Brown et al., 2020). Given that GPT embeddings effectively
capture language context and nuances, they were also used to train a model based on
Random Forest, an ensemble learning method. These approaches were tested on the
SemEval2017 Task 4 dataset, which consists of social media posts (Bethard et al., 2017).

Context is often provided to help LLMs understand the downstream task and improve
their results. In the work of Min et al. (2022), the crucial parts for the performance gain
were evaluated. In classification tasks, such as sentiment analysis, this is achieved by
providing the task description and the gold label as additional input. The context with
accurate gold labels was compared to experiments done with the identical context but
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with incorrect labels and also with out-of-domain examples. The performance generally
increased with any given context and performed best with the domain context and
correct label. The context had the biggest impact on results. The domain context and
the correct label further enhanced the outcomes, but not with the same impact. This
indicates that the most influence comes from context, which can be further improved
by correctly labeled domain data.

To extend the idea of in-context learning, the context is enriched with domain-
specific keywords or examples, as demonstrated in the work by Aycock and Bawden
(2024). This has been done in the context of machine translation with LLMs by ad-
ditionally providing three examples for few-shot learning, as well as keywords and
labels about the domain. The few-shot examples helped the model produce the desired
output format and improve the results.

Since LLMs are capable of understanding and generating text, Sun et al. (2023) used
LLMs to check the work of other LLMs. In this iterative process, the first model works
as a generator, predicting the label and giving reasoning for the decision. The second
model works as a discriminator, deciding if the prediction and reasoning on the text
is correct. If both models agree, the round is over; if they do not agree, the first model
makes a new prediction based on the output of the second model. One round is finished
if both models finally agree or after a fixed number of turns. The models then switch
and predict the labels a second time. If the decisions of both rounds do not align, a third
LLM is used to reverse the of the generator and discriminator and decide on the most
voted decision. This improves the result in every combination, no matter of whether
the generator and discriminator are the same model or different models.

Comparisons of different approaches, namely lexical, machine learning, and LLMs,
were conducted by Barnes (2023). The experiments were conducted with multiple
languages under different settings. Low-resource training situations were compared
to fully supervised situations. Fully supervised models outperformed low-resource
solutions on ML and LLM-based models. The out-of-domain loss for fully supervised
models was lower compared to few shot models. Lexical approaches performed well
compared to domain-shifted and low-resource environments in English. In cross-lingual
scenarios, the smaller RoBERTa models achieved better results compared to larger
RoBERTa models and dictionary-based approaches. For low-resource languages, the
larger models achieved better results, on the other hand.



4
Methodology

This chapter introduces the experiments in detail. The datasets and their domains, the
different approaches, and the corresponding models are covered. The metrics used to
evaluate the methods are also introduced and covered. The training methods for the
research questions RQ2 and RQ3 and their specifics are discussed.

4.1 Datasets

The focus of this thesis is on German sentiment analysis across various domains. Since
the way sentiment is encoded into text can vary between domains, multiple datasets
from different domains are considered to provide a broader view of the topic. These
diverse datasets should provide an overview of how different models perform across
various domains, even if they were not specifically trained or tuned for these specific
areas. Due to copyright restrictions, caution, or legal difficulties, some datasets based
on crawled data from social media or microblogging sites often lack the actual text,
including only the ID and the label. As original sources can change over time (e.g.,
posts can be modified or deleted, users can become invisible, accounts can be suspended
or removed), the resulting dataset can undergo significant changes, making it difficult
or unfeasible to compare results. Over time, the dataset can become sparse, making
it difficult to compare results between publications if a significant amount of data is
missing. To address these problems, only datasets with available annotations and texts
are considered for benchmarking. Additionally, information about the quality of the
annotations, such as annotation guidelines or Cohen’s kappa/Fleiss’ kappa agreement,
is also considered. An overview of the datasets, including their classes and class
distributions, is provided in Table 4.1. This comprehensive analysis aims to provide
insights into the performance of sentiment analysis models on different datasets and
thus promote progress in this field. The section headings of the datasets are used as
names in the thesis to reference the datasets.
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ID: http://twitter.com/tomvomizh/statuses/815662187217829890
Text: @aLienMAstA Nicht ganz. DB Regio und GVH, soviel ich weiß.
Relevant: true
Sentiment: neutral
Aspect:Polarity: Allgemein:neutral

Figure 4.1: Example of a document from the GermEval dataset with all metadata. Translation:
“@aLienMAstA Not quite. DB Regio and GVH, as far as I know”

4.1.1 GermEval

The GermEval dataset consists of texts in German from social media, microblogs, and
news articles about the state-owned railway provider Deutsche Bahn (DB). It was
created as a shared task with four subtasks, one of which—the sentiment analysis at
the document level—is utilized here. The dataset was collected from various sources,
including social media, microblogs, news articles, and question-and-answer forums. The
dataset is divided into four subsets: train, dev, test synchronic, and test diachronic. The
documents are labeled as 65% to 68% neutral, 25% to 30% negative, and 4% to 6% positive
over the subsets. All subsets, except for the diachronic test set, were collected between
May 2015 and June 2016. The diachronic test set was collected between November
2016 and January 2017. The synchronic subset captures a snapshot in time without
considering historical development, while the diachronic subset tracks the development
of phenomena over the collection timespan. To cover all seasonal problems (e.g., air
conditioning failure in the summer heat or slippery tracks due to wet leaves in autumn),
the collection period was set to one year. Only entries marked as “relevant“ in the
dataset are evaluated. In total, the dataset consists of 26,198 documents, with lengths
ranging from 11 to 32,818 characters. Each document is annotated with one sentiment
label (positive, negative, or neutral) at the document level and an aspect polarity at the
token or span level. An example document is shown in Listing 4.1. Each sample was
annotated by two annotators and checked by a supervisor if there was a disagreement
between the annotators. The inter-annotator agreement for polarity started between
0.35 and 0.79 and improved to a range of 0.90 to 1.00 in the last iteration (Wojatzki et al.,
2017). The annotation guidelines are available in German1.

4.1.2 OMP

To cover another part of social media, in this case news comments made by users,
the One Million Post (OMP) dataset is utilized. This dataset contains one million user
comments posted below news articles on the German-language Austrian news website
Der Standard. The comments are linked to the corresponding news articles. Additionally,
responses to earlier user comments are traceable. The comments are categorized into
labels such as off-topic, feedback, and the three sentiment classes: positive, negative,
and neutral. The posts may consist of text only or both a headline and text. For this
study, only posts labeled as positive, negative, or neutral are considered. This subset
consists of 3,599 posts, each ranging in length from 6 to 998 characters, including both

1. http://ltdata1.informatik.uni-hamburg.de/germeval2017/Guidelines_DB_v4.pdf

http://ltdata1.informatik.uni-hamburg.de/germeval2017/Guidelines_DB_v4.pdf
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Datasets Domain Size Positive Negative Neutral
GermEval SM, Review, Company 2095 105 780 1670
OMP News commentaries 3,599 43 1,691 1,865
Schmidt SM, politics 357 97 108 152
Wikipedia Online Encyclopedia 10,000 0 0 10,000
total 16,051 245 2579 13,687

Table 4.1: An overview of the datasets used in this work, including the subsets of the datasets and
the sizes of their classes used for evaluation. The size belongs to the test dataset for evaluation
(GermEval 2017 test synchronic, Schmidt test) or the size of the full dataset (OMP, Wikipedia).

headline and text where applicable. The classes are 1% positive, 47% negative and 52%
labeled neutral (Schabus et al., 2017). Since the dataset does not come with subsets
of dev or train for later experiments involving training, the first half of the dataset is
used for training and the second half is used for testing.

4.1.3 Schmidt

Politics on social media has garnered significant interest from the research community
due to its influence on public opinion and political discourse (Highfield, 2017; Trottier,
Fuchs, et al., 2015; Kruse et al., 2018). The dataset represents the political domain
on social media due to its comprehensive coverage of political discourse. The dataset
comprises microblogging posts from politicians and political parties who were part of the
19th Bundestag, which existed from 24 October 2017 to 26 October 2021. The data were
collected between January 2021 and December 2021, encompassing the period before and
after the 20th Bundestag election on September 26, 2021. A total of 1,785 social media
posts from 89 accounts were collected. These accounts include the ten largest personal
accounts of party members and the three largest main accounts for each party, as
measured by follower count. The documents range in length from one to 762 characters.
Of all documents, approximately 27% are labeled positive, 30% negative, and 42% neutral.
Three annotators labeled each sample, achieving a Fleiss’ Kappa agreement score of 0.53.
The data collection surrounding the election provides insights into sentiment changes
before and after the election. This dataset provides insights into sentiment changes
before and after the election, helping to understand the sentimental shifts of political
parties and politicians on social media during the election (Schmidt et al., 2022).

4.1.4 Wikipedia

To provide a source of neutral text, Wikipedia, an online encyclopedia, is utilized. Since
Wikipedia, as an encyclopedia, is viewed as having a neutral sentiment, every sentence
in the dataset is labeled as neutral. The Leipzig Corpora Collection serves as a repository
for various monolingual datasets from different sources. For this study, the most recent
German Wikipedia dataset from 2021 is utilized. The subset is composed of 10,000
randomly sampled sentences (Goldhahn et al., 2012). The sentences vary between 16
and 255 characters in length. The purpose of using the Wikipedia dataset is to determine
whether sentiment classification works not only for domains frequently containing
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sentiment, such as social media or politics, but also for neutral texts. The dataset is used
solely for evaluation purposes for the RQ1 experiments and not for training.

4.2 Metrics
To evaluate the results, different metrics can be utilized for comparison. The most
common metrics in the task of sentiment analysis are accuracy, precision, recall, and F1-
score (Schabus et al., 2017; Schmidt et al., 2022; Guhr et al., 2020; Laurer et al., 2024). Every
dataset, except Wikipedia, is labeled at the document level into one of the three classes:
negative, positive, and neutral. This makes the evaluation a multiclass classification.

Accuracy

The accuracy is a measure of how many labels are predicted correctly, named as True
Positive (TP) and True Negative (TN) over all predictions, including False Positive (FP)
and False Negative (FN) labels. The calculation is made by dividing all correct predicted
labels by the total number of predictions.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇 𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Measures such as recall, precision, and the F1-score is traditionally designed for binary
classification. The measures can be adapted to multiclass problems using various
methods. The most common strategies are micro, macro, and weighted averaging. Micro
averaging is calculated at the label level, where each label is assigned the same weight. It
is calculated by taking True Positives (TP), False Positives (FP), and False Negatives (FN)
into account, while excluding True Negatives (TN). This method yields results that are
equivalent to accuracy for precision, recall, and F1-score. Macro averaging computes the
measures at the class level, without considering class imbalance. This method is suitable
for cases where each class is equally important or when dealing with balanced datasets.
Weighted averaging also calculates the measures at the class level, as in macro averaging,
but assigns weights to each measure based on class size. This adaption is applicable
when each label is equally important, but the classes are not equally distributed in the
dataset (Pedregosa et al., 2011). The weighted average technique is employed in this
thesis to calculate precision, recall, and the F1-score, denoted as 𝑤 .
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Precision

Precision is a measure to capture how many positive predictions made by the model
are correct. The measure therefore divides the True Positive labels by all positive
predicted labels, including False Positives:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇 𝑃

𝑇𝑃 + 𝐹𝑃

To account for multiclass and class imbalance, weighted averaging is applied at the class
level, with weights proportional to class size, and the results are summed across all
classes.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑤 =

𝑐𝑙𝑎𝑠𝑠𝑒𝑠

∑

𝑐

𝑇 𝑃

𝑇𝑃 + 𝐹𝑃
∗ 𝑐𝑠𝑖𝑧𝑒

Recall

Recall indicates the proportion of how many positive labels the model predicts out of
all positive labels. A higher recall value indicates more True Positive labels predicted.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇 𝑃

𝑇𝑃 + 𝐹𝑁

When using weighted averaging, recall results in mathematical equivalence to accuracy.

𝑅𝑒𝑐𝑎𝑙𝑙𝑤 =

𝑐𝑙𝑎𝑠𝑠𝑒𝑠

∑

𝑐

𝑇 𝑃

𝑇𝑃 + 𝐹𝑁
∗ 𝑐𝑠𝑖𝑧𝑒

F1-score

The F1-score is calculated using precision and recall and gives a harmonic mean of
both measures.

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

While the F1-score in binary classification is between recall and precision, this is no
longer the case with the weighting of the classes.

𝐹1𝑤 =

𝑐𝑙𝑎𝑠𝑠𝑒𝑠

∑

𝑐

𝐹1𝑐 ∗ 𝑠𝑖𝑧𝑒𝑐
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<|begin_of_text|>
<|start_header_id|>user<|end_header_id|>

Classify the sentiment of the text into ONE of the three classes:
neutral, negative or positive.
Split the answer in two parts: Label and Reasoning. Text:
Sollte das WLan bei der Bahn aus Versehen einmal funktionieren,
wird halt nach 200MB gedrosselt. Lächerlich. https://t.co/pLOuRTgMTs

<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

Figure 4.2: Prompt converted into the chat template for the Llama-based instruct models. The
document is taken from the GermEval dataset.

4.3 Chat Template for Instruct-based models
All evaluated LLMs are trained on a chat template. A chat template is a predefined
format guiding the interaction and giving the model additional information about the
input. This information can be the role or the order. The template differentiates between
the user and system role. The model is trained to interpret the user data as input and the
system data as previously generated data. Custom context, denoted with the system, can
be added to the context to simulate previous interactions, which the model interprets
as generated by its actions. This structure guides the conversation flow, ensuring that
each input is clearly addressed in a structured manner. As illustrated in Listing 4.2, a
task and a document of the GermEval dataset is converted into the chat-template for
Llama-based models (Touvron et al., 2023; AI@Meta, 2024).



5
RQ1: Identifying the Best Model for

Sentiment Analysis on German Datasets

The first research question demands comparing existing models across various domains
using different approaches. This comparison offers an initial understanding of the
outcomes of these approaches and their potential. The comparison provides insights into
how each approach performs on the investigated datasets and their relative effectiveness.

All methods, including rule/lexicon-based, machine learning, and large language
models, are evaluated and compared. Given the differences in training data, parameters,
and the expected capabilities of the models, the results are anticipated to provide insights
into the possibilities and limitations of these methods. The Wikipedia dataset offers
additional insights into model performance, specifically on the neutral class.

5.1 Models

The GerVADER model is selected for the rule- and lexicon-based approach. The
documents are converted into a CSV (comma-separated values) file and processed for
further analysis. As ML-based models, the models by Lxyuan and Guhr are used (Guhr
et al., 2020; Lxyuan, 2023). For the Guhr model, the data is preprocessed to convert digits
to text and remove special characters. For the Lxyuan model, no preprocessing steps
were stated. For LLMs, foundation models fine-tuned for instruction-based inference
were selected. The selected models include Gemma 1.1 7B Instruct (shortened to Gemma),
Llama 2 13B Chat (Llama 2), Llama 3 8B Instruct (Llama 3), Mistral 7B Instruct v0.2
(Mistral), and Mistral 8x7B Instruct v0.1 (Mistral 8x). Since the models run on a local
server, they need to fit on an A100 GPU with 80 GB of video memory. Although most
models generally fit on this hardware, the Mistral 8x and Llama 2 models ran out of
memory. The Llama 2 model only succeeded on the OMP, Schmidt and Wikipedia
dataset, Mistral 8x only succeeded on the Schmidt dataset. Both models are excluded
from further analysis after the first research question.
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5.1.1 Prompt

Since the evaluated LLMs are instruction-fine-tuned, the task must be described using a
human language prompt. The task is to read the given text and return only the prediction
without explanations (Zhang et al., 2023).
The first draft of the prompt was accordingly short and precise:

Classify the sentiment of the text into ONE of three classes:
neutral, negative, or positive.
Provide only the correct category without explanation. Text:

After some pre-experiments, not all answers generated by the LLMs followed the
described task precisely. While some models only provided the answer as requested,
others added reasoning, despite it being explicitly forbidden by the prompt. The
responses of the models are in human language, unlike lexical or machine learning
approaches, making post-processing necessary for evaluation. Simply checking for
the class labels “positive’, “negative”, or “neutral” was not successful, as some models
provided extensive, off-topic text. Even if the prediction was clear, the unwanted
reasoning could still contain the class labels, making the result unusable for processing.
The prompt was extended to address the issue of unsuppressible reasoning. The
prompt was modified to include reasoning in the answer, explicitly placed after the
prediction. This is meant to handle the output of the model better and facilitate post-
processing (Buscemi and Proverbio, 2024). This splits the answer into two parts: the
predicted label and the reasoning. After further testing, the final prompt is:

Classify the sentiment of the text into ONE of the three classes:
neutral, negative, or positive.
Split the answer into two parts: Label and reasoning. Text:

Since the LLMs are autoregressive and create the answer token by token, the reasoning
at the end has the least impact on the result. Only the prompt as part of the input affects
the results; the order of classification and reasoning does not. This approach resulted in
unambiguous answers for 99.7% of all documents (e.g., “This text contains hate speech.
I’m unable to categorize it.”). The prompt is converted into the model’s chat-template
format and processed by the model.
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5.2 Results
The results of this research question are divided by datasets. For each dataset, the results
are analyzed, prepared, and compared. The absolute number of results can vary slightly,
as some documents produced no clear answers on certain models.

5.2.1 GermEval

RQ1 GermEval

Model Architecture Accuracy
Recallw

Precisionw F1w

GerVADER Rule/Lexicon 0.37 0.62 0.44
Guhr BERT 0.73 0.72 0.72
Lxyuan DistilBERT 0.33 0.50 0.24
Gemma Gemma 0.49 0.67 0.49
Llama 3 Llama 0.56 0.65 0.56
Mistral Mistral 0.65 0.69 0.66

Table 5.1: Performance metrics of models on the GermEval dataset. Underlined values indicate
the best results. Recallw equals Accuracy and is not elaborated further.

Negative Positive Neutral
Predictions

N
eg

at
iv

e
Po

sit
iv

e
N

eu
tra

l
La

be
ls

324 283 173

11 84 10

196 637 377

RQ1 GermEval GerVADER

0.0

0.5

1.0

D
ist

rib
ut

io
n

Figure 5.1: Confusion matrix for GerVADER on the GermEval dataset. Rows represent labels,
columns represent predictions. Colors indicate prediction distribution in each row, summing to
one.

The results of the evaluation for all approaches are listed in Table 5.1.
The accuracy of the GerVADER model on this dataset is slightly better than random

guessing, which is 0.33 or 33% with three classes. The confusion matrix in Figure 5.1
presents detailed results for each class. The rows represent the actual labels, whereas the
columns represent the predicted labels. The colors indicate the distribution of predictions
for each class label. The optimal result would display a diagonal line from the upper-left
to the lower-right corner in yellow, indicating high accuracy across all classes.
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The GerVADER model predicts negative labels with an accuracy of 0.41, positive
labels with 0.80, and neutral labels with 0.31. The green box in the middle indicates high
accuracy for positive labels, while the blue color in the lower-right corner indicates
low accuracy for neutral labels. Because the neutral class is the largest in the dataset,
the overall accuracy is only 0.37. Reports indicate that GerVADER has issues with
accurately classifying negative sentiment. The authors of GerVADER state that long
sentence structures in German are difficult to predict because negation is sometimes
separated from its context (Tymann et al., 2019). This issue may also affect documents
from news sources, which typically contain longer sentences compared to social media
comments. On the GermEval dataset, the model often incorrectly predicts documents
as positive, which supports the statement.

The Guhr model has the best performance on all metrics on the dataset. It achieves
the best results, outperforming even the LLM models. The GermEval dataset is part
of the training data (Guhr et al., 2020). This may be the primary reason for the high
performance of the model, surpassing all other models and approaches, including LLMs.
The Lxyuan model is as accurate as random guessing, correctly predicting the label with
an accuracy of 0.33. The Lxyuan model is trained on over 3000 German microblogging
posts; however, it seems unable to generalize to the broader domain of German social
media. News articles, which are part of the GermEval dataset, can make it difficult for
the Lxyuan model to perform well, as such content is not included in its training data.

The LLM models perform better than the GerVADER model, but not as well as
the Guhr model. The Gemma model has a lower accuracy of 0.49 compared to the
Llama 3 model, which has an accuracy of 0.56. The precision of the Gemma model is
higher at 0.67 compared to Llama 3 with 0.65. The best-performing LLM-based model
is Mistral, with an accuracy of 0.65. The Guhr model has a 12.8% higher accuracy
when compared to the Mistral model. The Gemma and Llama 3 models are behind the
Mistral model. The Mistral model, as the best-performing LLM, still does not perform
as well as the BERT-based Guhr model.

5.2.2 OMP

RQ1 OMP
Model Architecture Accuracy Precisionw F1w

GerVADER Rule/Lexical 0.32 0.56 0.40
Guhr BERT 0.48 0.50 0.48
Lxyuan DistilBERT 0.43 0.54 0.32
Gemma Gemma 0.48 0.62 0.46
Llama 2 Llama 0.46 0.63 0.48
Llama 3 Llama 0.55 0.63 0.53
Mistral Mistral 0.58 0.58 0.57

Table 5.2: Performance metrics of models on the OMP dataset.

Table 5.2 lists the results on the OMP dataset. The GerVADER model only achieves
an accuracy of 0.32, which is not better than random guessing. This could be an out-of-
domain problem for the approach, as the documents are discussions referring to other
commentators or news articles. An explanation could be the presence of typing errors
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Figure 5.2: Confusion matrix for Llama 2 (left) and Llama 3 (right) on the OMP dataset.

in the comments, which pose a challenge for lexical methods in achieving accurate
outcomes. Unlike GermEval, which also includes newspaper articles, the OMP dataset
consists solely of comments written by individuals on news articles.

Although the Guhr model has limited performance, it is comparable to the Gemma
and Llama 2 models in terms of accuracy. The Guhr model is 4% more accurate than
Llama 2, the lowest-performing LLM in measures of accuracy. The similarity between
the domain of the training data and the OMP dataset may explain the good performance
of the Guhr model. The Lxyuan model, which is also trained on social media posts, is
10% lower in accuracy than the Guhr model but achieves an 8% higher precision.

On this dataset, LLM-based models are closer in performance to each other and to
BERT-based models. The Gemma, Llama 2, and Llama 3 models have similar accuracy
to the Guhr model. The Llama 3 and Mistral models perform better on the dataset. The
Mistral model has 26% higher accuracy compared to the Llama 2 model. The Llama 3
model performs better than the Llama 2 model on all measures, despite having 40%
fewer trainable parameters. The detailed results of both Llama-based models, shown in
a confusion matrix, are presented in Figure 5.2. The Llama 3 model predicts the negative
class with an accuracy of 0.82, which is 23% higher than that of the Llama 2 model. The
Llama 3 model also demonstrates better accuracy for neutral documents. Although the
Llama 2 model frequently misclassifies neutral documents as either negative or positive,
the Llama 3 model almost exclusively classifies them as negative.

5.2.3 Schmidt

The dataset, like the OMP dataset, is not explicitly named as a training dataset for
any of the tested approaches, but this cannot be ruled out since it has been publicly
available since 2022. The results in Table 5.3 indicate that the GerVADER method
achieves its best results so far in absolute terms. The GerVADER lexical method has
similar accuracy to the BERT-based models, but outperforms both in the F1-score. In
terms of accuracy, it is approximately 16% lower than Llama 2, which has the lowest
score of all LLMs tested. This may be attributed to the fact that SentiWS, the sentiment
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RQ1 Schmidt
Model Architecture Accuracy Precisionw F1w

GerVADER Rule/Lexical 0.48 0.60 0.45
Guhr BERT 0.50 0.59 0.44
Lxyuan DistilBERT 0.52 0.73 0.39
Schmidt BERT 0.93*
Gemma Gemma 0.60 0.72 0.54
Llama 2 Llama 0.57 0.68 0.48
Llama 3 Llama 0.61 0.69 0.61
Mistral Mistral 0.68 0.70 0.67
Mistral 8x Mistral 0.68 0.75 0.64

Table 5.3: Performance metrics of models on the Schmidt dataset. Result with an asterisk is from
the original paper.

lexicon on which GerVADER is based, is also collected from the financial news domain.
Financial regulations are a typical election campaign topic. Since social media posts are
generally shorter than other types of documents, such as news articles, the restricted
context window of this rule-based method is less limiting for detecting negations and
intensifiers. The grammatical quality can be considered higher, since only statements
from official politician accounts and political party accounts are included. This dataset is
likely to contain documents written by professional adversarial and advertising experts,
unlike the OMP dataset. This could result in fewer grammatical errors. Since politicians
use social media primarily to set talking points, the documents are more likely to contain
sentimental words. However, further investigation is required to confirm this.
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Figure 5.3: Confusion matrices of class-wise results on the Schmidt dataset: Mistral (left) and
Mistral 8x (right).

The dataset domain is politics in social media, which is also the training domain
for the Guhr model. Both BERT-based models are also trained on the SB10k dataset,
which consists of social media postings (Cieliebak et al., 2017). Since both models
were trained on domains identical to the dataset, it appears they do not significantly
benefit from it. Official political accounts may have a different writing style compared to
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private social media comments. GerVADER demonstrates the same level of performance
as both BERT-based models. The results stated by Schmidt et al. (2022) outperform
all other approaches. It is BERT-based and has been fine-tuned on GermEval and
Schmidt to achieve an accuracy of 0.93. Since the model is not publicly accessible,
the outcomes are not further considered.

All LLMs, including Llama 2 and Mistral 8x, performed significantly better than
the other tested methods. Both Mistral-based models performed best on this dataset.
In precision metrics, the Mistral 8x model outperforms the Mistral model; however,
the weighted F1-score is lower. Since the F1-score is dependent on both recall and
precision due to the weighting of class results, it can vary. The detailed results from both
Mistral-based models in 5.3 show the distribution of predictions side-by-side. While
the Mistral model (left) has higher accuracy in the neutral class, the Mistral 8x model
(right) does better in the negative and positive classes. Although the Mistral model
often categorizes neutral documents as positive, the Mistral 8x model predicts them
almost twice as frequently as negative. The GerVADER model is surprisingly strong
on this dataset, which could be due to the estimated quality of the data. This appears
to be beneficial for the LLMs as well. One reason could be the better cross-lingual
performance on well-written and structured texts.

5.2.4 Wikipedia

RQ1 Wikipedia
Model Architecture Accuracy Precisionw F1w

GerVADER Rule/Lexical 0.44 1.0 0.61
Guhr BERT 0.99 1.0 0.99
Lxyuan DistilBERT 0.03 1.0 0.05
Gemma Gemma 0.57 1.0 0.73
Llama 2 Llama 0.45 1.0 0.62
Llama 3 Llama 0.76 1.0 0.86
Mistral Mistral 0.87 1.0 0.93

Table 5.4: Performance metrics of models on the Wikipedia dataset.

The Wikipedia dataset can serve as a valuable indicator of how the approaches handle
the neutral class. Since the dataset has only one class, the precision stated in Table 5.4
is always 1. The GerVADER approach is performing very well on this dataset, almost
as well as the Llama 2 model in terms of accuracy. This could be due to the lexical
and rule-based approach, predominantly working on a bag-of-words model that lacks
context. Since sentiment-bearing words can be part of encyclopedic texts, this does
not necessarily make them sentiment texts.

The Guhr model was trained using the Wikipedia 2016 dataset, which contains
1 million sentences. Wikipedia data accounts for 91.71% of all training examples for
the neutral class. Therefore, Wikipedia data constitutes the main part of the neutral
training data. The 2016 dataset does not differ significantly from the 2021 dataset, as
length and structure are likely similar. Online encyclopedias are likely to have different
sentence structures compared to news articles or social media posts. This could explain
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Figure 5.4: Confusion matrix of Lxyuan model results on the Wikipedia dataset. Only the neutral
label is present; all other rows are zero.

the outstanding results of the Guhr model, as the length and structure of the input data
make it easier for the model to predict the dataset correctly. The neutral class, which
accounts for 18.7% of the model’s training data, is still underrepresented. The model
seems to overfit on Wikipedia documents. Even though the Lxyuan model is trained
on all three classes, only 2.7% of all predictions are correct. As stated in the confusion
matrix in Figure 5.4, the model predicts most of the data as positive, with more than
61% positive predictions and 36% negative predictions. The model cannot discriminate
well between positive and neutral classes on this dataset.

The Llama 2 model’s results are very similar to those of the rule-based GerVADER
model. When compared to the Llama 2 model, the Mistral model has predicted the
documents correctly almost twice as often. One reason could be that the Llama 2 model
usually predicts either positive or negative outcomes more frequently. Compared to
the detailed results for the OMP dataset shown in Figure 5.2 (left), the accuracy for all
classes is the lowest for neutral. The low accuracy for the neutral class is indicated by
the blue color, in contrast to the high accuracy for the negative and positive classes. The
Llama 3 model is performing very well and is second best to the Mistral model. The
Gemma model performance in terms of accuracy is higher compared to the Llama 2
model, but is 33% below the Llama 3 accuracy. The accuracy of the Llama 3 model is
69% higher compared to the Llama 2 model. The Mistral model clearly outperforms all
other models, especially considering that the Guhr model may be overfitting.
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5.3 Conclusion
The objective of this research was to evaluate various models for sentiment analysis
on German datasets, comparing both monolingual and multilingual approaches across
different domains. The Guhr model achieved the best performance on the GermEval
dataset, likely due to being specifically trained on this data. At the same time, the Lxyuan
model underperformed, even when compared to the rule-based GerVADER approach.
Detailed analysis indicates that GerVADER performed well in classifying positive
sentiments but struggled with neutral ones. The performance of the large language
models varied in terms of accuracy, with the lowest accuracy at 0.49 for the Gemma
model and the highest at 0.65 for the Mistral model. On the OMP dataset, the results were
overall lower compared to GermEval. The performance of the Guhr model was moderate,
notably surpassed by the Llama 3 and Mistral model. Llama 3 outperformed others in
classifying positive and neutral sentiments, but often misclassified neutral documents
as negative. All models performed well on the Schmidt dataset. The Lxyuan model
slightly outperformed the Guhr model, while GerVADER matched the performance
of BERT-based models. Interestingly, the Mistral 8x model showed better accuracy in
classifying negative and positive sentiments compared to the standard Mistral model.
The Wikipedia dataset highlighted overfitting of the Guhr model on Wikipedia data.
The Lxyuan model performed not well, correctly predicting only 3% of data points, with
a strong bias towards positive classifications. A significant performance improvement
was evident between model generations for the Llama-based models.

The performance of LLMs varied widely, indicating potential issues with the zero-
shot environment or domain applicability. Notably, successive generations of Llama-
based models showed increasing accuracy. This variability in performance suggests a
need for further investigation into domain-specific improvements.



6
RQ2: Effective Strategies for Domain

Adaptation in Sentiment Analysis with
Limited Labeled Data

The objective of RQ1 was to provide an overview of various approaches and their
performance across different domains in comparison to one another. The hypothesis
postulated that LLMs would outperform both lexical/rule-based and machine learning-
based methods. While this was not true for every combination of domain and model, the
overall performance of LLMs was generally superior. It is hypothesized that even a small
amount of data can significantly enhance model adaptation. Since LLMs demonstrated
superior overall performance and offer additional possibilities for enhancing their
capabilities, they were subjected to further testing. Given that LLMs are trained on
billions of tokens, it is reasonable to assume that their zero-shot performance can
be improved. Additional methods like few-shot learning and adapter training could
potentially yield further performance improvements.

For this research question, various models were further trained and evaluated. Three
distinct training approaches were used to address the research questions: in-context
learning (RQ2.1), LoRA adapters (RQ2.2), and SetFit (RQ2.3) All methods are briefly
described in Chapter 2. The experimental details are provided in each subsection
pertaining to the method.
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6.1 RQ2.1: In-context learning

The first training method tested is in-context learning. As introduced in Section 2.3.2,
LLMs can acquire additional information through their input without requiring further
training. Hypothesis: Does the source of the examples affect the model’s performance?
To test this hypothesis, the prompt is extended with documents from the dataset being
tested, a different dataset, or multiple datasets. The context varies among the Schmidt,
GermEval, and OMP datasets, or a combination of all previously mentioned datasets.

6.1.1 Models

The models evaluated in the research questions are the instruct-fine-tuned models
Gemma 1.1 7B Instruct (shortened to Gemma), Llama 3 8B Instruct (Llama 3), and
Mistral 7B Instruct v0.2 (Mistral).

6.1.2 Prompt

For this experiment, the input is enhanced to provide context, guiding the model on the
domain and the desired answer format. This also involves adapting the prompt. Since the
model now receives guidance on the desired output format, the prompt is shortened to:

Classify the sentiment of the text into ONE of the three classes:
neutral, negative or positive. Text:

The examples are included as part of the input history, making it appear as if the
model generated them previously. In this template, the answer is limited to the class
name. Given that the datasets in these experiments contain three classes, the context
is augmented with three examples, one for each class. The input is converted into the
chat template for the model as described in Section 4.3, integrating three previously
given examples and their corresponding answers. This extended input, incorporating
documents from the GermEval dataset in the chat template for Llama-based models,
can be seen in Appendix A.1. The examples with the correct labels are incorporated as
history for the model. For this experiment, only three examples are necessary to provide
the model with domain context and reference for output formatting. The document in
the context was taken from the dataset being tested and was not removed from the test
dataset. This should not significantly affect the results, as it accounts for only a small
fraction of the entire dataset. For each dataset, three random examples were selected.
Additionally, context from all datasets was combined and tested on the Schmidt dataset.

6.1.3 Results

The results of this research question are segmented by dataset. For each dataset, the
results are analyzed, prepared, and compared. The absolute number of results may vary
slightly, as some documents did not produce clear answers on certain models.
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RQ2.1 GermEval
Model Accuracy Precisionw F1w

Gemma 0.54↑ 0.64↓ 0.52↑
Llama 3 0.56∙ 0.62↓ 0.58↑
Mistral 0.67↑ 0.68↓ 0.67↑

Table 6.1: Performance evaluation on the GermEval dataset. Compared to RQ1, arrows indicate
improved ↑ or declined ↓ results, while ∙ represents no change. The values are compared to
Table 5.1.

GermEval

The GermEval dataset posed significant challenges for LLMs and other approaches, with
the notable exception of Guhr’s model, as evidenced in RQ1. Table 6.1 presents the
evaluation results, with arrows indicating whether the outcomes, compared to RQ1,
improved, remained stable, or declined.
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Figure 6.1: Performance comparison of Gemma on the GermEval dataset between RQ1 (left)
and RQ2.1 (right).

Compared to the results from RQ1, the accuracy of the Gemma model increased
by 10%, from 0.49 to 0.54, thereby narrowing the gap with other models. The model
appeared to struggle with executing tasks in a zero-shot environment. The Gemma
model achieved an accuracy of 0.49, outperforming the Llama 3 model but not the Mistral
model. Figure 6.1, depicts the detailed results, including the confusion matrix for RQ1
(left) and RQ2.1 (right). The accuracy for the negative class increased from 0.79 to 0.87,
which represents a 10% improvement. For the positive class, accuracy declined from
0.78 to 0.41, representing a 47% decrease. The model misclassified neutral documents as
positive less frequently in the context-based results, improving the performance for the
neutral class overall. Utilizing examples and context, the model enhanced performance
for the neutral class. Although the positive class is the smallest in the dataset, the overall
accuracy improved despite the decline in positive class performance.
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The accuracy of the Llama 3 model did not improve, remaining below the Mistral
model but slightly above the Gemma model. Performance in terms of precision slightly
decreased, from 0.65 to 0.62.

The Mistral model excelled in in-context learning, improving its accuracy slightly
from 0.65 to 0.67, a 3% increase. The model appeared to have a good understanding of
the task in a zero-shot environment, therefore the slight improvement. At the same
time, the Llama 3 model showed no overall improvement in accuracy. The dataset is
diverse, comprising various authors and sources, including news articles and social
media posts within the domain of Deutsche Bahn. This context may be appropriate
for one source while being unhelpful for another. With only three examples in this
setting, this mismatch could pose a problem. Similarly, when the context sources and
the text to be predicted do not align, it becomes more challenging for the model to
accurately predict the correct class.

OMP

RQ2.1 OMP
Model Accuracy Precisionw F1w

Gemma 0.61↑ 0.64↑ 0.59↑
Llama 3 0.60↑ 0.65↑ 0.59↑
Mistral 0.59↑ 0.60↑ 0.56↓

Table 6.2: Performance metrics of models on the OMP dataset, compared to Table 5.2.

As indicated in Table 6.2, all models showed improvements in accuracy and precision
compared to the zero-shot experiment described in RQ1.

The performance by the Gemma model significantly improved for the dataset,
achieving the highest scores in both accuracy and F1-score. The accuracy increased
from 0.48 to 0.61, representing an improvement of over 27%.
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Figure 6.2: Detailed results comparison on the OMP dataset between RQ1 (left) and RQ2.1 (right)
by the Gemma model.
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The context helped the model to better predict the neutral class, doubling the number
of correct predictions, as illustrated in Figure 6.2. It appears that the model was trained
exclusively on binary sentiment classification for positive and negative sentiments. The
performance for the negative class slightly improved compared to RQ1, but the accuracy
for the positive class declined from 0.86 to 0.58, a decrease of 33%. A similar decline
in accuracy for the positive class is observed in the GermEval dataset.

The Llama 3 model increased its accuracy from 0.55 to 0.60, a gain of 9%, and
demonstrated the best precision among all models.

The accuracy of the Mistral model improved slightly from 0.58 to 0.59 and precision
from 0.58 to 0.60 while the F1-score declined slightly from 0.57 to 0.56.

The accuracy of the Mistral model slightly increased from 0.58 to 0.59, and its
precision improved from 0.58 to 0.60. The F1-score slightly declined from 0.57 to
0.56. This behavior is consistent with the trends observed in the GermEval dataset.
The model performed best in RQ1 using the zero-shot environment but did not show
improvement with in-context learning.

Schmidt

RQ2.1 Schmidt
Model Accuracy Precisionw F1w

Gemma 0.64↑ 0.64↓ 0.62↑
Llama 3 0.70↑ 0.73↑ 0.68↑
Mistral 0.61↓ 0.68↓ 0.60↓

Table 6.3: Performance metrics of models on the Schmidt dataset compared to Table 5.3.

The Gemma model shows improvements in few-shot experiments regarding accuracy
and F1-score compared to RQ1, as presented in Table 6.3. The accuracy increased
from 0.60 to 0.64, showing an approximate 7% improvement. Although the Gemma
model showed an improvement compared to RQ1, other models demonstrated even
greater enhancements.

The Llama 3 model achieved increases in accuracy, precision, and F1-score by 14.8%,
5.8%, and 11.5%, respectively, compared to the RQ1 results, representing the highest
improvement among all tested models. As illustrated in Figure 6.3, the accuracy for
the negative class decreased, while the accuracy for the positive class remained nearly
unchanged compared to RQ1. The accuracy for the neutral class increased from 0.20
to 0.45, representing a 125% improvement. The detailed results of the Gemma model
on the GermEval and OMP datasets showed that its improvement primarily results
from better predictions for the neutral class. Similarly, the Llama 3 model appears to
be primarily trained for binary sentiment classification.

The Mistral model achieved the best results on this dataset, with gains of 5.9% in
accuracy, 7% in precision, and 7.5% in F1-score.

To determine whether the context itself or domain-specific guidance contributes more
significantly to performance improvement, the models were tested on the Schmidt
dataset with various contexts and also all contexts combined. Since all previous ex-
periments related to this research question were conducted using one example per
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Figure 6.3: Comparison of Llama 3 results on the Schmidt dataset between RQ1 (left) and RQ2.1
(right).

RQ2.1 Schmidt
Model Context Accuracy Precisionw F1w

Gemma Schmidt 0.64↑ 0.64↓ 0.62↑
Gemma GermEeval 0.63↑ 0.64↓ 0.61↑
Gemma OMP 0.62↑ 0.62↓ 0.60↑
Gemma All 0.64↑ 0.66↓ 0.62↑
Llama 3 Schmidt 0.70↑ 0.73↑ 0.68↑
Llama 3 GermEval 0.71↑ 0.73↑ 0.71↑
Llama 3 OMP 0.68↑ 0.70↑ 0.67↑
Llama 3 All 0.66↑ 0.71↑ 0.65↑
Mistral Schmidt 0.61↓ 0.68↓ 0.60↓
Mistral GermEval 0.67↓ 0.70∙ 0.67∙
Mistral OMP 0.64↓ 0.69↓ 0.64↓
Mistral All 0.66↓ 0.69↓ 0.65↓

Table 6.4: Performance of various contexts on the Schmidt dataset. Underlined values denote
the best performance achieved by each model across all contexts.

class and the context provided by the dataset, the dataset was tested across all three
contexts, including the combination of all contexts. Table 6.4 provides an overview
of the results obtained from the Schmidt dataset under the different tested configurations.

The Gemma model achieved an improvement in accuracy and F1-score compared
to the zero-shot experiments. The model could not achieve further improvement by
the specific domain-related context. It appears that the model did not interpret the
task sufficiently during the zero-shot experiments, and the observed improvement was
primarily due to the explanation of the task rather than the addition of domain-specific
knowledge. As illustrated in Figure 6.4, the accuracy for negative labels remained nearly
identical, while the accuracy for positive labels declined, and the accuracy for neutral
labels improved significantly. It appears the model has difficulties predicting the neutral
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Figure 6.4: Side-by-side comparison of class accuracy by the Gemma model across different
contexts and RQ1 on the Schmidt dataset.

class. With context, the accuracy for the neutral class increases, but it leads to more
false predictions for the positive class. One reason could be, that if the sentiment is only
slightly positive, the model, without in-context learning, tends to favor the positive class
over the neutral class. When provided with context, the model is more likely to predict
these documents as positive. The Llama 3 model demonstrated improvement across all
measures compared to the zero-shot classification. This improvement appears to be due
to the guidance of the task primarily, rather than the domain-specific context, similar
to the Gemma model. The Mistral model performed best in the zero-shot classification
task but declined across all contexts on the dataset. The model did not benefit from
the examples and was misled by them. Some random samples generated by the model
indicate that the model increasingly predicted the neutral class and exhibited greater
uncertainty compared to other datasets and experiments.

6.1.4 Conclusion

The results of in-context learning varied across all models and datasets. Although
Gemma initially did not perform well in the setting of the previous research question, it
performed significantly better with additional information. The results indicate an in-
crease in the neutral class across all datasets, including all contexts in the Schmidt dataset.

The Llama 3 model showed some improvement on certain datasets but did not match
the progress of the Gemma model. The identical accuracy on the GermEval dataset
compared for zero-shot might be due to the diverse structure of the dataset and the
few examples provided, which can make it difficult to find guidance. Since the results
for all contexts on the Schmidt dataset show the least favorable outcomes for Llama 3,
this statement must be verified with further experiments.
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The Mistral model had mixed results with the provided context on the dataset. It
improved on the GermEval and OMP datasets but declined in all contexts on the Schmidt
dataset. It seems the model understood the task well in the zero-shot setting and was
misguided by the given context. The random selection of examples might be the cause.
Overall, the results of the Mistral model are still good in the few-shot environment, but
they are not as outstanding compared to the zero-shot results.

In conclusion, in-context learning can help guide LLMs to understand the task
better, but this process needs adaptation to the model and the domain. The results
by Min et al. (2022) have been confirmed by experiments with different contexts
for Gemma and Llama 3, while the performance of the Mistral model declined. The
right context can help, as Aycock and Bawden (2024) stated, but the results are not
so clearly comprehensible here.

6.2 RQ2.2: Fine-tuning with LoRA adapters and classi-
fication head

Fine-tuning large language models by adjusting the model weights is a computationally
expensive task. Sometimes, labeled training data is sparse and expensive to obtain, as
labeling can be a tedious task that requires human annotators, significant time, and
domain-specific knowledge. When the availability of training data or computational
resources is limited, adapters can be a suitable approach. This research question aims to
determine the necessary size of training data required to enhance the results. This should
provide insight into the optimal size of training data for adapters when comparing
different models.

6.2.1 Training details

Unlike the models in previous research questions, the models evaluated in this ex-
periment are not instruction fine-tuned. The evaluated models include Gemma 7B
(shortened to Gemma), Llama 3 8B (Llama 3) and Mistral 7B v0.1 (Mistral). These models
do not require a prompt as part of their input. Additionally, an untrained classification
head is initialized and set atop the model architecture. The model weights are frozen,
indicating they remain untrained. Only the additional LoRA adapter layers undergo
training. The adapter layers are trained using the following parameters, adapted from
the approach proposed by Hu et al. (2022):

Alpha 128
Batch S i z e 8
Dropout 0 . 0 5
Epochs 2
L e a r n i n g Rate −2 e5
max grad norm 0 . 3
Rank 128
T a r g e t modules Q_proj , V_proj , a l l − l i n e a r
Warmup r a t i o 0 . 1
Weight decay 0 . 0 1
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To compare various sizes of available training data, the datasets are divided into subsets
of different sizes. Since the OMP dataset does not come with a predefined training
set, it is divided into two parts. The first half of the samples is designated for training,
while the second half is reserved for evaluation. The training subsets for OMP and
Schmidt consist of 32, 64, 128, 256, 512, and 1,024 samples. Additional subsets of 2,048,
4,096, and 8,192 samples are created for the GermEval dataset due to its larger training
data size. The class distribution remains unchanged across all subsets. Additionally,
all models are trained on the complete training datasets: 16,201 samples for GermEval,
1,799 for OMP, and 1,428 for Schmidt. Each combination of model and subset is trained
three times. For evaluation, the mean accuracy of all runs is used. The results of all
experiments are provided in the Appendix in Section A.2.

6.2.2 Results

GermEval

RQ2.2 GermEval
Model 32 64 128 256 512 1024 2048 4096 8192 16201 OOTB
Gemma 0.44 0.40 0.43 0.43 0.51 0.57 0.62 0.68 0.78 0.80 0.49
Llama 3 0.43 0.40 0.41 0.43 0.44 0.56 0.61 0.74 0.78 0.81 0.56
Mistral 0.44 0.43 0.47 0.47 0.48 0.53 0.60 0.69 0.76 0.80 0.65

Table 6.5: Performance metrics of LoRA adapters with classification head on GermEval, compared
to Table 5.1. Accuracy is the average of three passes. The training size at which the accuracy
exceeds the OOTB model for the first time is underscored. The OOTB values are taken from
Table 5.1.

The results are presented in Table 6.5, including findings from RQ1, marked as
OOTB. The values represent the mean accuracy after three training runs. Detailed
accuracy for each training run is provided in the Appendix in Table A.1. For training
sizes up to and including 256 samples, none of the models show an improvement in
their results. This may be due to randomness and the quality of the training data for the
model. With smaller training sizes, individual documents can have a more significant
impact compared to when larger training sets are used.

The Gemma model requires the least amount of training data to enhance its per-
formance compared to the zero-shot results. Starting with 512 training samples, the
accuracy improves incrementally. The highest accuracy of 0.80 is achieved by training
the adapters with the full dataset of 16,201 samples. This represents a 60% increase
in terms of accuracy over the OOTB results and is comparable to the Llama 3 and
Mistral model. As observed in the previous evaluation, the model can improve its
performance with limited data. Although the model is performing weakly in zero-shot
evaluation, it can adapt quickly.

The Llama 3 model is unable to improve with smaller training sizes. With a training
size of 2,048 samples, the model surpasses the OOTB results. The model is performing
similarly to the Gemma and Mistral model starting at 1,024 samples, with some deviations.
As the training data is selected randomly, this variability could be a relevant factor. With
the full dataset, the Llama 3 model achieves an accuracy of 0.81, the highest among all
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models on this dataset and 44% higher than the Llama 3 OOTB model. The model adapts
to the dataset, but requires more training data to achieve optimal results. This may be
due to its better initial performance in the OOTB setting compared to the Gemma model.
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Figure 6.5: Performance metrics of models on the GermEval dataset. The y-axis represents the
accuracy, while the x-axis is logarithmically scaled for training size. The lines indicate mean
values, and the shaded areas represent the deviation across three runs.

As the best-performing model in the zero-shot setting in terms of accuracy, the
Mistral model shows improvement during training. Starting with 4,096 samples, the
model surpasses the OOTB model, reaching an accuracy of 0.80, which is 16% higher.
The performance of the model improves with additional training data, matching the
full-training-size performance of the other models.

The graph in Figure 6.5 illustrates the mean results for the models as lines and the
deviations as shaded areas. All models show similar accuracy across different training
sizes but struggle with sparse data below 512 samples. Due to random sampling, results
for training sizes between 32 and 256 vary widely. The result scatter, shown as colored
areas, decreases with increasing training size. The accuracy of all models showed
minimal improvement when the training data nearly doubled from 8,192 to 16,201
samples. With training data of 8,192 samples or more, no model stands out.

OMP

The results presented in Table 6.6 indicate a more varied outcome compared to the
evaluation on the GermEval dataset. While the GermEval dataset is the largest among
the three evaluated, the OMP training dataset contains only 1,799 samples, which
is just one-ninth of the size. When comparing the results between OOTB and this
evaluation, it is important to note that RQ1 was assessed using all samples, whereas
the dataset was split equally into training and test sets for this analysis. As shown
in Figure 6.6, the model adaptation differs.

The Gemma model surpasses the OOTB performance, starting at a sample size of
64. For smaller training sizes, the model runs better than the other models, but still
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RQ2.2 OMP
Model 32 64 128 256 512 1024 1799 OOTB
Gemma 0.45 0.50 0.50 0.49 0.56 0.63 0.67 0.48
Llama 3 0.31 0.46 0.51 0.54 0.55 0.63 0.66 0.55
Mistral 0.42 0.49 0.51 0.53 0.54 0.59 0.57 0.57

Table 6.6: Accuracy of LoRA adapters with classification head evaluated on the OMP dataset,
compared to Table 5.2.
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Figure 6.6: Accuracy of all training sizes on the OMP dataset.

falls short as compared to the OOTB model in terms of accuracy. At 512 samples, the
Gemma model is superior to both the Llama 3 and Mistral model with the same training
size. The Gemma model begins to surpass the Mistral OOTB model, which performed
the best in RQ1. With larger training sizes, the Gemma model achieves an accuracy of
0.67, which is 39% higher as compared to the OOTB results. The additional features
that have been learned help the model to achieve the best performance. This was also
evident when evaluating the Gemma model with in-context learning on the OMP dataset.
This suggests, as previously observed with on the GermEval dataset, the potential for
adapting the Gemma model even with sparse data. Although the performance of the
model in a zero-shot setting was lower compared to other models, it can be efficiently
adapted to the domain using adapters.

The Llama 3 model also begins to improve its accuracy, starting at 1,024 training
samples. The When trained on all available data, the model reaches an accuracy of 0.66,
which is 20% higher compared to the OOTB performance. The model has the same
accuracy as the Gemma model, both being well-adapted to the dataset and capable
of improvement with trained adapters.

In contrast to the Gemma and Llama 3 models, the Mistral model cannot provide
significant performance improvements. Although it reaches a higher accuracy at 1,024
training samples, the performance of the model decreases at 1,799 samples, whereas
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the other models continue to improve with additional data. As shown in Figure 6.6,
the accuracy of the Mistral model fluctuates a lot at 32 samples. For 1,024 samples,
all training runs achieved an accuracy ranging from 0.59 to 0.60, as detailed in the
Appendix, Table A.2. The model appears to require more training samples to surpass
its OOTB performance and fully adapt to this domain in terms of accuracy.

Schmidt

RQ2.2 Schmidt
Model 32 64 128 256 512 1024 1428 OOTB
Gemma 0.38 0.33 0.41 0.41 0.55 0.64 0.75 0.60
Llama 3 0.31 0.32 0.41 0.39 0.52 0.66 0.75 0.61
Mistral 0.34 0.36 0.40 0.44 0.54 0.62 0.65 0.68

Table 6.7: Accuracy of models, trained on the Schmidt dataset, compared to Table 5.3.

The results presented in Table 6.7 indicate that only the Gemma and Llama 3 models
are showing improvements in performance in terms of accuracy.

The performance of the Gemma model surpasses the OOTB results in terms of
accuracy, starting at 1024 training samples, achieving an accuracy of 0.75, which is
25% higher as compared to the OOTB model. For training sizes below 512 samples,
the Gemma model shows no substantial improvement. As previously discussed for
other datasets, the Gemma model can improve even with sparse data, surpassing
models like Mistral.

With 1,024 training samples, the Llama 3 model achieves an accuracy of 0.75, which
is 23% higher as compared to the OOTB model. The Llama 3 model adapts well to
sparse datasets, achieving great results when compared to the Gemma model. The
performance of the model in terms of accuracy improves with in-context learning, and
further enhances when using adapters and low-data fine-tuning.

The Mistral model is the only one that did not improve as compared to the OOTB
in terms of accuracy. Even with all available training data, the Mistral model remains
slightly behind the OOTB model. As shown in Figure 6.7, the resulting distribution is
relatively high for 1,428 training examples compared to other models. The results, as
visualized, improve with more training data, indicating the models learn effectively from
given data. However, the Mistral model appears to need more data to adapt to specific
domains. The accuracy of each training run is listed in the Appendix in Table A.3.

6.2.3 Conclusion

This research investigated how different models perform with varying training sizes,
using LoRA adapters for efficient fine-tuning. The effectiveness of LoRA adapters for
sparse data scenarios was evaluated by comparing models trained on different sample
sizes. The hypothesis that LoRA adapters could be effective in such environments
was partially confirmed.

On the GermEval dataset, which had the largest training set, all models showed
improved performance. They reached similar accuracies with full training data, indi-
cating the advantages of using adapters. Models with initially lower accuracy in the



6. RQ2: Effective Strategies for Domain Adaptation in Sentiment Analysis with Limited
Labeled Data 45

32 64 128 256 512 10241428
Training size

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

RQ2.2 Schmidt
Gemma
Llama 3
Mistral

Figure 6.7: Performance metrics of all three models on the Schmidt dataset.

OOTB experiments required less data to improve, while those with better OOTB results
needed more data, ultimately achieving comparable performance.

On the smaller OMP dataset, only the Gemma and Llama 3 models showed per-
formance improvements, while the Mistral model did not. The limited training data
was sufficient to fine-tune the Gemma and Llama 3 models, but Mistral appears to
require more data.

Evaluated on the Schmidt dataset, similar trends were observed. The Gemma and
Llama 3 models adapted well to sparse data, whereas the Mistral model improved but did
not surpass the OOTB results. Given difficulties for the Mistral model to adapt with in-
context learning, further research is needed to enhance its performance with limited data.

In summary, fine-tuning with LoRA adapters is feasible for sparse data, although
not universally effective across all models. Some models adapt quickly with less data,
whereas others require significantly more data. Enhancing results while reducing
the required data should be a focus for future work, as the current findings show
promise for low data environments. LoRA adapters appear effective with training
data containing at least 512 samples, with performance improving further as more data
becomes available. Future experiments should verify whether adjusting hyperparameters
can yield even better results.
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6.3 RQ2.3: Sentence Transformers Fine-tuning (SetFit)
Another effective technique for fine-tuning models, particularly Sentence Transformers,
is referred to as SetFit. In contrast to adapters, SetFit does not introduce any additional
parameters into the model. Instead, the model weights are refined utilizing a contrastive
learning approach. This attribute makes SetFit exceptionally useful for situations where
data is sparse. SetFit is a good third strategy for adapting a model to a domain.

6.3.1 Training details

In this experiment, the weights of a sentence transformer model are trained using
the SetFit approach. Despite the availability of the sentence transformer-based Mis-
tral 7B Instruct, it cannot be utilized due to memory limitations that hinder its training.
To address this research question, it is necessary to adapt a smaller model. The
top-performing embedding models undergo regular evaluation in the Massive Text
Embedding Benchmark (MTEB). A part of this benchmark is the Amazon Review
classification task, which involves categorizing Amazon reviews into one to five stars
based on their sentiment. As models are also evaluated on the German subset, this
yields valuable insights into the most effective OOTB sentiment classification model
for German(Muennighoff et al., 2023).

As of June 1, 2024, the model "intfloat/multilingual-e5-large-instruct" was selected
due to its exemplary performance and relatively compact size. This model, built on
the RoBERTa architecture, benefits from training on multilingual data (Wang et al.,
2024). The parameter selection is based on the work by Tunstall et al. (2022) with
a few adjustments:

Batch size: 32
Epochs: 1
Sampling Strategy: Oversampling
Warmup proportion: 0.01

The SetFit method is not originally designed to use prompts; however, the model is
fine-tuned using prompts. In the context of the Amazon Review Classification task, the
fine-tuning process leverages a specific prompt. The adapted prompt is as follows:

Instruct: Classify the sentiment of a given text
as either positive, negative, or neutral.
Query:

To measure the performance on different training sizes, the data is divided into subsets
containing 32, 64, 128, 256, 512, and 1024 samples for the OMP and Schmidt dataset.
Additionally, an extra subset containing 2048 samples is included for the GermEval task.
Considering the exponential growth in training time associated with larger datasets,
fine-tuning for data sizes exceeding 2048 samples has not been explored.
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Figure 6.8: The y-axis represents accuracy, while the x-axis denotes training size. The lines
indicate mean values, and the shaded areas represent the deviation across three runs.

6.3.2 Results

RQ2.3
Dataset 32 64 128 256 512 1024 2048
GermEval 0.67 0.69 0.71 0.72 0.73 0.74 0.74
OMP 0.56 0.56 0.62 0.64 0.67 0.68
Schmidt 0.62 0.71 0.77 0.79 0.79 0.77
Training time (minutes) 2 3.5 9.5 30 112 483 1901

Table 6.8: SetFit training performance metrics, averaged over three runs.

The results are presented in Table 6.8, which shows the mean accuracy across different
training sizes over three runs. Detailed data is available in the Appendix, Table A.4. The
model shows good performance on the GermEval dataset, even with smaller training
sizes. With additional data, the model achieves optimal performance at 1,024 samples
and above in terms of accuracy. The model is performing slight improvements as the
training data size increases. In comparison to training with LoRA adapters, the training
time increases exponentially, rather than linearly, due to the integration of contrastive
learning. Despite achieving the highest accuracy at 1,024 training samples, using half the
training data yields almost the same accuracy with only a quarter of the training time.
Since the improvement in terms of accuracy between 128 and 1,024 samples is marginal,
the method proves effective when adapting with limited training data. Training with
4,096 samples was evaluated in one run, as detailed in the Appendix, Table A.4, but
results showed only slight improvement. Further evaluation of training on 4,096 samples
was not conducted due to the high training time of over 7,600 minutes (127 hours).

The results on the OMP dataset are lower for the trained models, and the deviation
in training runs with fewer than 512 samples is significant, as shown in Figure 6.8.
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The model adapts to the dataset with an overall accuracy of 0.68, compared to 0.56
with only 32 training samples. This is an increase of 21%. On the Schmidt dataset,
the model achieves an accuracy of 0.79 after using 256 training samples. This is the
smallest training size required to achieve the highest accuracy compared to the results
on other datasets. The visualized results in Figure 6.8 indicate that training with more
than 256 examples results in greater scattering. It appears the model begins to overfit,
as the accuracy declines with increased data. Comparing the datasets, the model is
performing well early and rapidly reaches its peak performance. One potential reason
could be the diverse data sources in the GermEval dataset, in contrast to the Schmidt
dataset, which consists solely of microblogging posts. The approach appears to deliver
satisfactory results quickly, but also begins to overfit early.

6.3.3 Conclusion

The contrastive learning method demonstrated promising results from the early stages
on the GermEval and Schmidt datasets. This training method can be particularly
beneficial for small datasets, owing to its low time requirements. The requirement
to train all weights makes it a computationally expensive method as well. In this case,
the results are not directly comparable with those from prior research questions because
the models differ significantly in architecture and size. Nevertheless, the findings
illustrate the capability of the SetFit training approach in enhancing existing models
with sparse data for sentiment analysis. The model adapts rapidly to the data, even
with small training sets. With additional computational power, further evaluations
using larger models are feasible, which could be particularly interesting given the
promising results of this approach.



7
RQ3: Adapting and Generating Lexicons

with Weak and Unsupervised Learning

In RQ1, the rule-based method using lexicons generally yielded lower results compared to
machine learning models, including large language models. However, lexicons continue
to be used and developed due to their extremely low computational requirements. One
reason for this is the complete transparency of the results, as well as the ease and
cost-effectiveness of reproducibility. Additionally, there is no need for extensive data
engineering for their creation, adaptation, or prediction, making them easily usable.
Unlike supervised machine learning models that demand large annotated datasets,
the process of developing and maintaining lexicons can often be accomplished with
minimal resources and infrastructure.

Since LLMs offer the advantage of performing tasks they are trained on, as well
as tasks they are not explicitly trained for, this flexibility could be leveraged. LLMs
could be utilized not only for analyzing texts for classification, but also for creating
lexicons containing sentiment-bearing words. Given that LLMs like BERT or GPT have
shown proficiency in understanding context and semantics, they can assist in generating
contextually relevant lexicon entries. This could bridge the gap between traditional
lexicon methods and machine learning approaches, creating a hybrid model that uses
the strengths of both. Such an approach not only minimizes the labor-intensive process
of manual lexicon creation but also allows adaptations as language changes, ensuring
that the lexicons remain relevant and effective over time.

49
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7.1 RQ3.1: Creating lexicons through LLM prompting

Large language models offer the advantage of understanding tasks, even those they
were not explicitly trained on. Because LLMs are trained on extensive datasets, their
learned information can be utilized in new downstream tasks through prompts. The
idea is to create lexicon entries with relevant values, similar to those used in SentiWS or
GerVADER. This unsupervised approach can aid in generating domain-specific lexicons
without requiring human annotation.

7.1.1 Technical details

Models

To evaluate the approach, different Instruct-based models are utilized, specifically
Gemma 7B Instruct (referred to as Gemma), Llama 3 8B Instruct (Llama 3), and Mis-
tral 7B Instruct v0.2 (Mistral). The approach is tested on three datasets: GermEval,
OMP, and Schmidt. The model is presented with the documents from the training set,
without the labels. This ensures that the approach is tested in an unsupervised manner,
highlighting the capability to work without labeled data.

Prompt

The task is divided into multiple parts, each providing guidance for the task. Initially,
the task involves analyzing the sentiment of a text. Additionally, each sentiment-bearing
word should be assigned a value between 1 (most positive) and -1 (most negative) to
represent sentiment strength. Since the results of RQ2.1 show better performance for
when LLMs are provided with contextual task information in most situations, in-context
learning is employed. This step is crucial because the difficulty of the task is higher
compared to previous tasks. Since models tend to justify their decisions, allowing
them to provide additional reasoning helps maintain the desired format. The following
prompt is used for creating the lexicon:

You are provided with a text, and your task is
to analyze the sentiment. Analyze each sentiment-bearing
word and emotion in the context of the text.
For each sentiment-bearing word, assign a sentiment value
between -1 (most negative) and 1 (most positive).
Neutral words or those not bearing sentiment should
not be assigned any value.
Format: word - value - reasoning.

This is a more detailed prompt compared to those used in RQ1 and RQ2, showing
the increased complexity of the task. For this experiment, the model is provided
with three examples of text and their corresponding answers to guide the process.
The resulting text is divided by the hyphen, and sentiment-bearing words with their
assigned values are added to a list. The results are collected, post-processed, and used
as the lexicon for GerVADER.
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Post-processing

For post-processing, several steps are applied to filter the data. Firstly, entries containing
single characters, special characters, or stop words are removed. As each document
is processed independently, single words may sometimes be assigned both positive
and negative values in the process. Moreover, the assigned sentiment strength can
differ between sentences. The average of these values is taken as the final value. Each
observed inflection is assigned the same value, assuming that words generally maintain
consistent sentiment regardless of their inflection. This approach also effectively handles
any typos. Therefore, the lemma of each word is used for calculation. Values with a
sentiment strength below 0.30 for positive words and above -0.30 for negative words
are filtered out to reduce slightly positive or negative words, which can affect the
accurate prediction of the neutral class.

7.1.2 Results

RQ3.1
Dataset GerVADER Gemma Llama 3 Mistral
GermEval 0.37 0.54 0.40 0.51
OMP 0.32 0.50 0.49 0.49
Schmidt 0.48 0.54 0.49 0.50

Table 7.1: Comparison of accuracy results between the GerVADER lexicon and LLM-generated
lexicons.

The results presented in Table 7.1 offer a side-by-side comparison of the accuracy of
lexicons generated by prompting the models. All lexicons created by prompting LLMs
outperformed the OOTB GerVADER lexicon in terms of accuracy. The accuracy of the
lexicon generated by the Gemma model is 46% higher as compared to the OOTB model,
and even surpasses the Gemma zero-shot results from RQ1.
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Figure 7.1: Confusion matrix for the GerVADER lexicon (left) and the generated lexicon with
Gemma (right) on the GermEval dataset.
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The class-wise results shown in Figure 7.1 point out significant improvements for
the neutral class when comparing the GerVADER lexicon with the Gemma-generated
lexicon for the GermEval dataset. The accuracy for the positive class is lower for the
generated model when compared to the GerVADER lexicons results. The low accuracy
for the positive class might be due to averaging the sentiment values of words across
all occurrences. Only 6% of the GermEval dataset is labeled positive. Therefore, if a
word is classified both positively and negatively within different sentences, it is more
likely to be assigned a negative value due to the greater number of negative documents.
The accuracy for the negative class is 0.48 for the Gemma generated lexicon, which
is 14% higher than the GerVADER lexicons accuracy of 0.42.

The LLM-generated lexicons for the OMP dataset all outperformed the GerVADER
OOTB lexicon. Notably, the OMP dataset does not have a train split. Therefore, RQ1 is
evaluated on the complete dataset, while for this experiment, the lexicon is generated
from the first half of the dataset and evaluated on the second half. The lexicon generated
from the first half of the OMP dataset by the Gemma model performs best, achieving an
accuracy of 0.50. This is 56% higher compared to the GerVADER lexicon in terms
of accuracy. On the Schmidt dataset, the lexicon created with the Gemma model
outperforms the GerVADER lexicon, with an accuracy of 0.54, which is 12% higher.
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Figure 7.2: Confusion matrix for the GerVADER lexicon (left) and the generated lexicon with
Gemma (right) on the Schmidt dataset.

The detailed results in Figure 7.2 compare the class-wise accuracy between RQ1 and
the lexicon generated by the Gemma model. The generated lexicon performs equally
well for the negative class, while the accuracy for the positive class declines. This decline
may be due to the imbalanced training data in the dataset. The relatively small training
dataset, with around 1400 examples, could also have an impact on this problem. Given
that the training was unsupervised, additional data could still be beneficial without the
need for labeling. Since the training was done unsupervised, additional data could be
beneficial still without the need of labeling. The improved overall results are mainly
related to the neutral class, achieving an accuracy of 0.56 for the generated lexicon by
Gemma compared to 0.19 for the GerVADER lexicon.

The histograms in Figure 7.3 illustrate the distribution of sentiment between the
lexicons for the datasets. The histograms show the lexicons after post-processing, but
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Figure 7.3: Distribution of results for all models across the datasets.

without filtering out values below 0.30 for positive words and above -0.30 for negative
words. The Llama 3 model tends to select higher polarities compared to the other models,
particularly in the positive spectrum for the GermEval and OMP datasets. Neither the
frequency nor the sentiment value can be directly considered; rather, they serve as
guidance to help interpret the results.

All the models have included significantly more negative words than positive ones in
the lexicons. This pattern is consistent with the initial general distribution observed in
the dataset. However, at first glance, the number of positive words appears significantly
smaller than the number of negative words.

This finding should be interpreted with caution due to certain unknown factors.
It is unclear whether positive documents contain significantly more positive words
compared to negative documents. Furthermore, it is unclear if positive documents tend
to have more diverse sentiment descriptions, whereas negative documents may contain
more repetitive negative sentiment. Additionally, it is uncertain whether positive words
appear in documents with an overall negative sentiment.

7.2 RQ3.2: LLM Embeddings for lexicon extension

Since embeddings can convey a significant amount of information, the idea is to directly
utilize them to expand an existing lexicon. The approach leverages embeddings by
starting with a small lexicon and expanding it by searching for semantically similar words
in an embedding database. Within the same domain, semantically similar words tend to
produce similar word embeddings due to their contextual relevance. This methodology
allows for the incremental and automated growth of the lexicon, minimizing the need
for manual intervention. This can help to capture subtle semantic variations, enhancing
the effectiveness and accuracy of the lexicon-based methods.

7.2.1 Technical Details

To create a small seed lexicon, class-based TF-IDF (c-TF-IDF) is used, finding the
most significant terms in each class. To achieve this, the algorithm analyzes the term
frequencies and their distribution in the training set. The 500 most frequently used
words for both the positive and negative classes from the training dataset are selected,
forming a small lexicon of up to 500 words for each category. Furthermore, a full
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lexicon is generated using the c-TF-IDF approach to serve as a baseline for comparison
against the extended seed lexicon.

Due to technical difficulties with the Mistral model, the tokenizer cannot create a
mapping from tokens back to words. Consequently, the word embeddings are created
only using the Gemma 7B (Gemma) and Llama 3 8B (Llama 3) models. The models
generate outputs for each document, which are then segmented into individual words.
The words are stored in the vector database without the label of the sentence. The
weights of the last four layers are averaged to combine them, as this conveys the most
useful features. The resulting words and their embeddings are stored in the vector
database Weaviate (“Weaviate,” n.d.).

Once the entire dataset has been processed in an unsupervised manner, words from
the seed lexicons are used to query the vector database. For each seed word in the
vector database, up to five embeddings are used to search for the five most similar
embeddings, resulting in a maximum of 25 additional words. The results are filtered to
ensure embeddings with the same word are not chosen. Additionally, each embedding
ID is verified to ensure it is used only once for each seed word. When a word from
the seed lexicon is found in the vector database, the most similar word embeddings
are collected and the words are merged into the expanding lexicon. The sentiment
values assigned to the seed lexicon words are then applied to these newly identified
similar words. These new similar words, along with their assigned sentiment values,
are added to the lexicon, extending it incrementally. In the post-processing, stop-words
are removed, and the values are recalculated by taking the mean of the lemmas.
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7.2.2 Results

RQ3.2
Dataset GerVADER c-TF-IDF Gemma Llama 3
GermEval 0.37 0.54 0.44 0.44
OMP 0.32 0.49 0.57 0.53
Schmidt 0.48 0.48 0.45 0.41

Table 7.2: Performance comparison of the GerVADER, c-TF-IDF-based and LLM-extended
lexicons.

As shown in Table 7.2, the extension of seed lexicons produced different levels of success
across various datasets. The lexicon created using the c-TF-IDF method outperforms
the OOTB GerVADER and both LLM-extended lexicons on the GermEval dataset in
terms of accuracy. It shows the best performance among all methods tested. The LLM-
extended lexicons created using Gemma and Llama 3 both improve results compared
to the GerVADER lexicon but perform lower in accuracy compared to the full c-TF-
IDF lexicon. Both extended lexicons achieve an accuracy of 0.44, which is 19% higher
compared to the GerVADER lexicon.
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Figure 7.4: Confusion matrix for the results of the generated lexicon utilizing Gemma (left) and
Llama 3 (right) on the Schmidt dataset.

As shown in Figure 7.4, both the Gemma and Llama models mostly predict the documents
as negative. Both lexicons have a very low likelihood of predicting the positive class,
which is visualized by the blue column in the middle. For the OMP dataset, the
lexicon extended utilizing Gemma achieves the highest accuracy, which is 0.57. This
accuracy is 78% higher compared to the accuracy of the GerVADER lexicon. Moreover,
the c-TF-IDF-generated lexicon also outperforms the GerVADER lexicon in terms of
accuracy. Comparing the results of the GerVADER lexicon with the other lexicons, none
show a significant improvement in accuracy, except for the c-TF-IDF and Gemma
embeddings methods.
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7.3 Conclusion
Applying LLMs for lexicon generation can produce promising results. Creating lexicons
by prompting leverages the robust capabilities of LLMs, enabling the creation of domain-
specific lexicons without the need for extensive manual annotation. All models generate
lexicons by analyzing the given documents and outperform the GerVADER lexicon, with
the Gemma model producing the best results in terms of accuracy. A detailed analysis
indicates that the greatest accuracy gains are achieved in correctly predicting the neutral
class. These findings suggest that while traditional lexicons remain valuable, integrating
LLM capabilities can significantly advance lexicon generation, offering more flexible
and precise results. Creating lexicons by prompting LLMs is a promising approach that
can notably enhance the lexicon generation process.

However, experimenting with LLM embeddings has been less successful compared
to the previous approach. The primary goal of leveraging word embeddings to expand
an existing lexicon and potentially enhance its performance was achieved only partially.
The c-TF-IDF method, serving as a baseline, achieves comparable or superior accuracy
to the GerVADER lexicon. Despite higher accuracy for the GermEval and OMP datasets,
the class-wise accuracy on the GermEval dataset exhibits a considerable bias towards
the negative class.

Thus, while employing additional information within embeddings presents an
interesting avenue for future research, more work is necessary to manage and improve
these results. Future efforts should concentrate on fine-tuning models and exploring
advanced adapters to harness the full potential of this approach for even better out-
comes. Additionally, further refining the calculation of sentiment values, for instance
by considering the distance between a negative word and its opposing class, could
contribute to achieving more accurate and nuanced performance.
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Conclusion

The first research question compared the performance of various models for sentiment
analysis on German datasets, both monolingual and multilingual approaches. The
findings highlight that model performance can vary significantly depending on the
dataset and domain. Generally, models specifically trained on particular datasets tended
to perform better. However, some models have encountered difficulties, particularly
with neutral sentiments or when applied to datasets outside their training domain.
Overall, advancements between model generations offered promising performance
enhancements. Across all domains, no single model consistently outperformed the
others. This highlights the critical need for model adaptation and domain-specific fine-
tuning to effectively handle diverse German-language datasets.

In the evaluation of effective strategies for domain adaptation with sparse labeled data,
several key findings were observed. In-context learning shows good results to guide
LLMs in understanding the task better, though its effectiveness varies depending on
the model and dataset. While additional context can lead to significant performance
improvements, the outcome is not always positive across all scenarios. For instance, the
Gemma model demonstrated significant improvement with additional context, while
the Mistral model showed mixed results. This indicates that in-context learning requires
careful adaptation to both the model and the specific domain to achieve optimal results.

Fine-tuning techniques like LoRA adapters demonstrate potential, especially with
limited data. Experiments demonstrated that on the GermEval dataset, which had
the largest training set, all models showed improved performance, achieving similar
accuracy levels with full training data. This highlights the advantages of employing
LoRA adapters, especially for models that initially showed lower accuracy in out-of-
the-box (OOTB) experiments. Models such as Gemma and Llama 3 adapted well to
sparse datasets, although some models like Mistral require more data to improve. This
points to the need for further research into why certain models like Mistral require
more data to achieve significant performance gains.

The findings illustrate the capability of the SetFit training approach in enhancing
models with sparse data. Contrastive learning shows promising results, especial for
small datasets. However, the computational expense due to the need to train all weights
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is a notable consideration. Overall, while no single strategy universally fits all models
and datasets, both LoRA adapters and SetFit present promising approaches for enhancing
model performance in low-data environments. Future work should focus on refining
these techniques, adjusting hyperparameters, and exploring the impact of larger datasets
and more computational resources. Additionally, the integration of hybrid approaches
that combine the strengths of in-context learning, LoRA adapters, and contrastive
learning could be considered to identify optimal combinations. Moreover, newer models
with higher parameter sizes could be beneficial in future work or also LLMs trained on
German texts.

The third research question aims to explore how lexicons can be automatically adapted,
generated, or updated using weak or unsupervised learning techniques. While lexicons
are computationally inexpensive, transparent, and easily shareable, the objective was to
determine if domain-specific lexicons could be effectively generated or adapted using
advanced learning techniques. The findings from this study suggest that the application
of large language models for lexicon generation indeed presents promising results.
The approach harnesses the capabilities of LLMs to create domain-specific lexicons
without the need for extensive manual annotation. Considering the complexity of
the task, the models have performed quite well. Furthermore, experimentation with
LLM embeddings for lexicon extension showed mixed results. The aim of using word
embeddings to expand existing lexicons and potentially enhance their performance was
partially achieved. Specifically, for the GermEval and OMP datasets, LLM-extended
lexicons outperformed GerVADER results, indicating promising directions for future
research. This suggests that LLM-extended lexicons could outperform traditional ones in
certain contexts. While traditional lexicons remain useful, integrating LLM capabilities
can significantly enhance lexicon generation and adaptation. Future work should focus
on further refinement of these approaches to achieve even better results. Furthermore,
the implementation of more sophisticated techniques for calculating sentiment values
could potentially enhance the performance.

Due to the rapid evolution and extension of languages, sentiment analysis is still a topic
of research, even in the era of large language models. The presented work compares
approaches, trying to help this direction of research.

The code to reproduce the results is freely available under an open license1.

1. https://github.com/Alienmaster/MasterThesis

https://github.com/Alienmaster/MasterThesis
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A.1 RQ2.1

<|begin_of_text|>
<|start_header_id|>user<|end_header_id|>

Classify the sentiment of the text into ONE of the three classes:
neutral, negative or positive.
Text: köln: wo sich in der bahn ein mittfünfziger im trikot neben dich
setzt und dir lebenstipps gibt. ich würde nicht tauschen wollen.

<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>neutral<|eot_id|>
<|start_header_id|>user<|end_header_id|>

Classify the sentiment of the text into ONE of the three classes:
neutral, negative or positive.
Text: RT @holgi: Hui, die neuen QR-Lesegeräte der Bahn
sind mal sauschnell... Huiuiui

<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>positive<|eot_id|>
<|start_header_id|>user<|end_header_id|>

Classify the sentiment of the text into ONE of the three classes:
neutral, negative or positive.
Text: @DB_Bahn manchmal fragt man sich,
warum es euch überhaupt noch gibt!!

<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>negative<|eot_id|>
<|start_header_id|>user<|end_header_id|>

Classify the sentiment of the text into ONE of the three classes:
neutral, negative or positive.
Text: screams @ deutsche bahn.

<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

Figure A.1: In context learning prompt for a Llama-based model with three documents from
GermanEval
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A.2 RQ2.2

Model Run 32 64 128 256 512 1024 2048 4096 8192 16201
Gemma 0 0.42 0.41 0.46 0.44 0.51 0.56 0.56 0.68 0.77 0.79
Gemma 1 0.43 0.39 0.46 0.46 0.50 0.58 0.69 0.64 0.76 0.81
Gemma 2 0.47 0.39 0.36 0.39 0.52 0.57 0.61 0.73 0.80 0.80
Llama 3 0 0.48 0.24 0.43 0.44 0.44 0.54 0.56 0.68 0.78 0.80
Llama 3 1 0.48 0.42 0.37 0.44 0.44 0.60 0.65 0.75 0.78 0.82
Llama 3 2 0.29 0.39 0.43 0.42 0.43 0.55 0.62 0.64 0.77 0.80
Mistral 0 0.46 0.49 0.45 0.45 0.50 0.50 0.63 0.70 0.77 0.79
Mistral 1 0.41 0.42 0.43 0.49 0.50 0.52 0.63 0.74 0.74 0.79
Mistral 2 0.35 0.40 0.41 0.46 0.44 0.58 0.54 0.64 0.78 0.81

Table A.1: RQ2.2: Results with LoRA adapters on GermEval.

Model Run 32 64 128 256 512 1024 1796
Gemma 0 0.39 0.47 0.47 0.49 0.60 0.65 0.67
Gemma 1 0.48 0.50 0.52 0.50 0.51 0.63 0.66
Gemma 2 0.47 0.52 0.51 0.49 0.58 0.60 0.68
Llama 3 0 0.27 0.42 0.49 0.54 0.51 0.62 0.66
Llama 3 1 0.47 0.50 0.55 0.55 0.60 0.62 0.65
Llama 3 2 0.18 0.47 0.48 0.53 0.55 0.65 0.68
Mistral 0 0.32 0.51 0.51 0.53 0.54 0.59 0.55
Mistral 1 0.40 0.48 0.50 0.55 0.53 0.59 0.56
Mistral 2 0.53 0.49 0.51 0.51 0.54 0.60 0.59

Table A.2: RQ2.2: Results with LoRA adapters on OMP

Model Run 32 64 128 256 512 1024 1425
Gemma 0 0.35 0.29 0.41 0.46 0.57 0.62 0.71
Gemma 1 0.38 0.33 0.40 0.41 0.54 0.67 0.76
Gemma 2 0.42 0.38 0.41 0.35 0.53 0.63 0.77
Llama 3 0 0.34 0.32 0.41 0.38 0.59 0.69 0.75
Llama 3 1 0.34 0.33 0.38 0.41 0.50 0.66 0.76
Llama 3 2 0.26 0.31 0.45 0.38 0.48 0.64 0.73
Mistral 0 0.34 0.38 0.42 0.42 0.54 0.63 0.64
Mistral 1 0.33 0.38 0.40 0.43 0.55 0.54 0.68
Mistral 2 0.35 0.33 0.37 0.36 0.53 0.68 0.64

Table A.3: RQ2.2: Results with LoRA adapters on Schmidt.
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A.3 RQ2.3

Dataset Run 32 64 128 256 512 1024 2048 4096
GermEval 0 0.66 0.70 0.72 0.71 0.72 0.74 0.72 0.76
GermEval 1 0.66 0.70 0.70 0.71 0.72 0.75 0.75
GermEval 2 0.68 0.67 0.72 0.73 0.74 0.72 0.74
OMP 0 0.57 0.51 0.63 0.64 0.68 0.68
OMP 1 0.55 0.58 0.66 0.65 0.68 0.69
OMP 2 0.56 0.58 0.57 0.64 0.67 0.68
Schmidt 0 0.60 0.68 0.78 0.80 0.80 0.79
Schmidt 1 0.64 0.73 0.79 0.78 0.81 0.74
Schmidt 2 0.63 0.72 0.74 0.80 0.77 0.79

Table A.4: RQ2.3: Results of intfloat/multilingual-e5-large-instruct on different datasets.
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