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Abstract

Repository-level programming involves writing code specific to a particular domain or
project. Large language models (LLMs) such as ChatGPT, GitHub Copilot, Llama,
or Mistral can assist programmers as coding assistants and knowledge sources to make
the coding process faster and more efficient. This thesis aims to improve coding
assistants performance by implementing a Self-Alignment process and a retrieval-
augmented generation (RAG) pipeline for a specific repository. Self-Alignment is the
process of creating a training dataset by an LLM, curating the samples to improve the
dataset quality and supervised fine-tuning with the curated dataset. In comparison,
RAG pipelines use a vector database to fetch relevant documents from the repository
using similarity search and provide them as context into the model.

This thesis introduces SpyderCodeQA, a dataset that tests the ability of mod-
els to understand the source code, the dependencies between files, and the overall
meta-information about the repository. To evaluate the fine-tuned LLM and RAG
pipeline on SpyderCodeQA, the LLM-as-a-Judge evaluation is used, which compares
the models pairwise with GPT-3.5 as judge. The results show that models that the
fine-tuned LLM and RAG pipelines outperform the LLM without adjustment on
the SpyderCodeQA. In addition, the results show that combining both approaches
leads to an interaction effect that further improves SpyderCodeQA’s performance.
Further ablation studies are conducted investigating hyperparameters such as Top-P,
Temperature and the choice of judge. A qualitative analysis of the evaluation results
is carried out in order to better understand the effects. The source code and the
dataset can be found on here1.

1https://anonymous.4open.science/r/ma_llm-382D

https://anonymous.4open.science/r/ma_llm-382D
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1. Introduction

Large Language Models (LLMs) have transformed the programming world with
their exceptional ability to produce code that adheres to human directives and as-
sists in the process. The emergence of these models has led to a new era of artificial
intelligence (AI), revolutionizing how we work and impacting our daily routines.
General-purpose LLMs such as ChatGPT1, Gemini2, and Claude 33, along with
open-source models like Llama 2 [1], have gained widespread recognition. Addi-
tionally, task-specific LLMs have been developed for summarizing text, generating
questions [2], and even performing coding-specific tasks such as coding summariza-
tion [3], coding generation [4, 5], answering questions regarding source code [6] or
generating code documentation on repository-level [7]. In this thesis, these models,
defined as coding assistants, are invaluable to any programming team. Developing
software applications, games, or machine learning models involves writing code using
programming languages. However, coding assistants can help better understand how
the code works, generate code and fix errors faster. With 92% of developers in the
US 4 currently utilizing AI coding assistants, it’s clear that it is relevant to improve
them further.

Code suggestions in the IDE are effectively provided by the commercial AI-
assisted coding Chatbot GitHub Copilot5, which is used for code completion and as a
coding assistant. Other alternatives like Codeium6, Cursor7 or Starcoder [8] provided
similar features. Developers benefit from these assistants by experiencing increased
productivity, reduced debugging time, and improved code quality. Although coding
assistants have undeniable advantages, their usage raises specific concerns and chal-
lenges. Coding assistants generally assist with an existing codebase, generate code,
or answer questions.

In this thesis, the task of assisting with a specific project organized in a Git
repository is defined as repository-level programming. Developers benefit from cod-
ing assistants at this level, as becoming familiar with a new project or repository can
be time-consuming and challenging. However, it is important to note that coding
assistants may generate incorrect information, also known as hallucinations, par-

1https://chat.openai.com
2https://gemini.google.com/app
3https://www.anthropic.com/claude
4https://is.gd/KQcT5L
5https://github.com/features/copilot/
6https://www.codium.ai
7https://cursor.sh

1

https://chat.openai.com
https://gemini.google.com/app
https://www.anthropic.com/claude
https://is.gd/KQcT5L
https://github.com/features/copilot/
https://www.codium.ai
https://cursor.sh
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ticularly when requests go beyond the model’s training data or require additional
knowledge [9]. Another issue associated with coding assistants is data protection.
Providing coding suggestions requires access to a significant amount of code and
data, which users may need to share with the commercial company. This issue raises
data privacy and confidentiality concerns, as sensitive or proprietary code could be
exposed to unintended parties. This could potentially lead to data breaches and in-
tellectual property concerns [10]. LLMs can be trained on local computing units such
as GPUs or private cloud architecture, e.g. TPUs. However, training these models
requires expensive infrastructure and Meta’s research team, for example, used over 3
million GPU training hours (about 378 years) to develop Llama 2 [11]. This resulted
in a carbon footprint of 539 tCO2eq, equivalent to what 52 people consume in one
year in Germany [12]. Therefore, it is impractical for small companies or universities
to train an LLM from the ground up.

However, natural language processing (NLP) has significantly progressed in re-
cent years. Two methods have been developed to improve LLM response quality on
repository-level programming in a more specific, cost-effective and privacy-focused
manner. One promising solution is Retrieval-Augmented Generation (RAG) [13],
which incorporates external data into the generative process. The data is stored
as vector representation in a vector database and passed as context to the LLMs.
These RAG pipelines improve the model’s ability to deliver accurate and relevant re-
sponses and offer greater flexibility in terms of changes in the data source, low query
latency [14, 15], and less hallucination in conversations [16]. Researchers employed
an open-source model connected to a RAG pipeline capable of code generation and
summarising [17]. Similarly, other studies have utilized a RAG pipeline for their
repository-level models, attempting to extract additional information from the doc-
umentation to enhance the results further [18, 19].

Another way to increase the performance of the models is to fine-tune them with
synthetic self-generated data. Thanks to parameter-efficient fine-tuning (PEFT) [20],
models can now be fine-tuned locally and cost-effectively while ensuring privacy by
saving the model weights locally. Using PEFT existing open source models such
as Llama 2 [11], StarCoder [8], Open Assistant [21], or Mistral [22] can be trained
as coding assistant. By using techniques such as prompt tuning [23, 24], low-rank
adaptation mechanisms [25], or an adapter with a zero-init attention mechanism
[20, 26], it is possible to fine-tune only subsets of weights. The resulting task- and
domain-specific models, such as those for medicine [27] or, e.g., arithmetic tasks [28]
surpass current state-of-the-art (SOTA) models, such as GPT-4.

To overcome the issue of generating a well-curated dataset by humans, Li et al.
[29] introduced a self-alignment procedure enabling an LLM to generate training
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data through Self-Augmentation and Self-Curation. Self-Augmentation creates a
training dataset by combining initial and unlabelled data to fine-tune the model
on the repository source code using Supervised-Finetuning (SFT) [30] with QLoRA
[31]. Additionally, Self-Curation evaluates the training dataset to filter out the best
training examples. That procedure, called the Self-Alignment pipeline, helps the
model better understand the repository’s general purpose, file structure, and code
style and enables the model to become a better coding assistant.

This thesis proposes a cost-effective and privacy-friendly approach to improve
the performance of coding assistants on a specific repository by combining an RAG
pipeline with a fine-tuned model trained on a self-augmented dataset.

1.1 Research Questions

Coding assistants can significantly improve developer’s productivity [32]. Promising
results from controlled experiments show that AI pair programming will soon be a
reality [33], so further research on the repository level can improve this progress. A
lot of research focuses on improving the general coding abilities of the models by
training them on large corpora of source code data. However, this thesis focuses on
combining repository source code and LLM to build an expert on this repository.
Lewis et al. [13] showed that RAG pipelines empower LLMs with knowledge and,
through the development of PEFT [20] models can now efficiently instruction fine-
tuned with datasets on local infrastructure. Hence, this thesis compares coding
assistants, e.g., LLMs, empowered by these two approaches.

For this investigation, the open-source model Mistral 7B (Instruct v0.2)[22] is
used as a base model, connected to RAG pipelines, and fine-tuned. Mistral 7B is
a pretrained LLM that outperforms Llama 2 7B, 13B [1] and CodeLlama 7B [1] on
almost every benchmark and is, therefore, one of the best open-source models that
can generate natural language and code at the same time.

Selecting the appropriate Python repository is crucial for the success of this thesis,
as the repository should represent common repository structures and needs to be big
enough to generate training data. Therefore, the CodeSearchNet corpus was analyzed
[34]. It contains over 6 million programming functions with complete documentation
in six programming languages from 13590 repositories. The Spyder IDE repository8

is selected due to its abundance of short functions and documentation.
For the fine-tuning approach, the training dataset is generated by Self-Augmentation

and Self-Curation techniques. On the other hand, for the RAG pipeline approach,

8https://github.com/spyder-ide/spyder/tree/master

https://github.com/spyder-ide/spyder/tree/master
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the model uses a vector database to answer the research question. The source code
is embedded using Instructor Base [35] and stored in a vector database.

Regarding the evaluation of the models, current research focuses either on bench-
marks, e.g. HumanEval [5] or MBPP [36] or LLM-as-a-Judge [37]. LLM-as-a-Judge
[37] is a powerful method that leverages a superior model to judge other models’
responses. This method generates reliable results with Q&A pairs generated by
humans or algorithms based on the repository.

This thesis presents a newly created dataset named SpyderCodeQA. It includes
325 question-and-answer pairs (Q&A pairs) from three question categories. To dif-
ferentiate the model’s performance, the dataset measures source code semantics un-
derstanding (140 pairs), dependency understanding (135 pairs), and knowledge of
meta-information about the repository (50 pairs). Benchmarks are used to test the
response quality of the presented models and demonstrate that the model’s general
coding abilities are consistent. LLM-as-a-Judge is used to test whether adding in-
formation through fine-tuning or RAG pipeline improves the response quality. This
setup results in the following three RQs that are addressed in this master thesis:

RQ1: How does fine-tuning an LLM with self-augmented data improve the perfor-
mance of repository-level code question answering?

RQ2: How does a RAG pipeline improve the performance of repository-level code
question answering?

RQ3: Does combining a fine-tuned model and an RAG pipeline show an interaction
effect on the performance of repository-level code question answering?
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1.2 Structure of the thesis

This section gives an overview of the structure of the whole thesis. The thesis is
divided into seven chapters, each focusing on a specific aspect. Starting with the
Introduction in Sec. 1, this chapter introduces the topic and outlines the research
questions and objectives of the thesis. The second chapter, Theoretical Foundation in
Sec. 2, delves into the theoretical background of the research. It provides an in-depth
review of language models 2.1, including attention mechanisms 2.2 and transformer
architectures 2.2. Additionally, it discusses the training of large language models
2.3, including pre-training 2.3.1, fine-tuning 2.3.2, and PEFT. The chapter ends
with an introduction to the concept of RAG and its applications 2.4. The third
chapter, Related Work 3, comprehensively reviews existing research in the field. It
discusses related work on repository-level programming 3.1, data augmentation 3.2,
question-answering datasets 3.3, and the evaluation of LLMs 3.4. The fourth chapter,
Evaluation Dataset 4, presents the dataset SpyderCodeQA used for evaluation. It
describes the creation of the dataset, including the source code semantic dimension
4.1, dependencies dimension 4.2, and meta-information dimension 4.3. The chapter
also analyses the dataset, including typical examples, token and sentence analysis,
and question keyword diversity 4.4. The fifth chapter, Method 5, outlines the research
methodology used in this thesis. It describes the data preprocessing steps 5.1, model
details 5.2, self-alignment approach 5.3, retrieval-augmented generation pipeline 5.4,
and the use of LLM-as-a-judge 5.5. The sixth chapter, Experiments 6, presents
the experimental results of the thesis. It discusses the metrics used to evaluate the
models, including LLM-as-a-judge and benchmarks 6.1. The chapter also presents
the results of the self-alignment and RAG pipeline experiments, including the results
on SpyderCodeQA and benchmarks. In the final chapter, Discussion 7 interprets the
results of the thesis and answers the research questions. It discusses the implications
of the findings and provides conclusions and recommendations for future research.



2. Theoretical Foundation

This chapter gives an overview of the theoretical foundation of this thesis. First,
an introduction to language models is given in Sec. 2.1, explaining the development
from n-grams to Transformer architectures. Additional information on the architec-
ture of transformers and the attention mechanism is provided in Sec. 2.2. This is
followed by an explanation of the training of LLMs in Sec. 2.3, including pre-training
in Sec. 2.3.1 and Fine-tuning in Sec. 2.3.2. Finally, the concept of RAG is introduced
in Sec. 2.4 and a discussion of embedding models in Sec. 2.4.1.

2.1 Language Models

In this thesis, LLMs are utilized to answer the research questions. Nowadays, they
are predominantly based on the transformer architecture proposed by Vaswani et al.
[38], leading to a significant breakthrough in NLP. Over the last decade, NLP has
undergone a notable transformation, and this chapter provides an overview of the
progress in this research discipline.

Language models, which aim to predict the next word in a sequence of text, have
evolved significantly from simple statistical models to complex neural network-based
architectures. The concept of language models dates back to the 1940s, when Claude
Shannon, the father of information theory, introduced the idea of modelling language
as a probabilistic process [39]. Early language models were based on statistical
techniques, such as n-gram models, which predicted the next word in a sequence
based on the frequency of word co-occurrences. These simple but effective models
formed the basis for more complex language models.

In the 1980s, the introduction of Recurrent Neural Networks (RNNs) revolution-
ized the field of language modelling [40]. RNNs, designed to handle sequential data,
could capture long-range dependencies in language, a limitation of traditional sta-
tistical models. Early RNN-based language models, such as the one proposed by
Bengio, Ducharme, and Vincent [41], demonstrated improved performance over sta-
tistical models. However, RNNs suffered from the vanishing gradient problem. The
vanishing gradient problem occurs when the gradients of the loss function concern-
ing the weights in the early layers of a deep neural network become extremely small
during backpropagation. This makes it difficult for the network to learn long-term
dependencies, as the updates to the weights in the early layers become very small.
Thus, the network effectively prevents itself from learning meaningful representations
of the input data. The introduction of Long Short-Term Memory (LSTM) networks,

6
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a variant of RNNs, addressed the vanishing gradient problem [42]. LSTMs, with their
ability to learn long-term dependencies, became common in NLP. LSTM-based lan-
guage models, such as the one proposed by Graves [43], achieved SOTA performance
on various language modelling tasks.

In 2013, a significant breakthrough in NLP occurred with the introduction of
Word2Vec, a word embedding model proposed by Mikolov et al. [44]. Although
dense vector word representations had been in use since 2003 [41], Word2Vec’s effi-
cient training procedure and large-scale training on unstructured text data allowed
for the capture of complex relationships between words, such as gender, verb form
and country-capital relationships. One year later, Sutskever, Vinyals, and Le [45]
introduced sequence-to-sequence (seq2seq) learning, a general end-to-end approach
for mapping one sequence to another using a neural network. This method, which
employs an encoder and a decoder, has been widely adopted in NLP, particularly
machine translation. The progress in seq2seq learning was so significant that Google
replaced its traditional machine translation models with a neural seq2seq model in
2016 [46]. In a typical seq2seq architecture, the encoder model, such as an LSTM,
processes the input token sequence to produce a continuous intermediate representa-
tion that captures essential information from the input sequence. The decoder model
then processes this intermediate representation to generate the output sequence one
token at a time, using the hidden state from the previous step and the previously
generated token to predict the next output token.

2.2 Transformer Architectures

Despite the success of encoder-decoder architectures in seq2seq tasks, their perfor-
mance has been limited by using RNNs as building blocks. The sequential nature
of RNNs causes their performance to degrade as the length of the input sequence
increases. A significant breakthrough in addressing this limitation was the intro-
duction of the attention mechanism [47]. This innovation enabled the decoder to
selectively focus on specific parts of the input sequence rather than relying solely on
the encoder’s final hidden state. The attention mechanism has since been refined and
extended, with self-attention emerging as a key component of transformer models.
This chapter will delve into the evolution of transformer architectures, explaining
the self-attention mechanism, the architecture of the original implementation, and
the latest refinements.
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Scaled Dot-Product Attention Multi-Head Attention

Figure 2.1: Overview of the Self-Attention mechanism and Multi-Head Attention
proposed in the original implementation [38].

Self-Attention This section provides an overview of the formulas to understand
the Self-Attention mechanism better and is based on the explanations of a blog
post by Raschka, S.1. This mechanism is the core component of the Transformer
architecture, allowing the model to capture dependencies between input elements and
attend to different aspects of the input simultaneously. Self-attention is a mechanism
that computes the representation of a sequence by relating different positions of the
same sequence. Given an input sequence X ∈ Rn×d, where n is the sequence length,
and d is the input dimension, the self-attention mechanism computes three matrices:
the query matrix Q, the key matrix K, and the value matrix V . These matrices are
obtained by linearly projecting the input X using learned weight matrices WQ, WK ,
and W V , respectively:

Q = XWQ, WQ ∈ Rd×dk (2.1)

K = XWK , WK ∈ Rd×dk (2.2)

V = XW V , W V ∈ Rd×dv (2.3)

1https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
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where dk and dv are the dimensions of the query/key and value vectors, respectively.
As shown in Fig. 2.1 on the left, the attention scores are computed as the scaled
dot-product between the query and key matrices, followed by a softmax function to
obtain the attention weights:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.4)

The scaling factor
√
dk is used to prevent the dot-product from growing too large,

which can cause the softmax function to have extremely small gradients.

Multi-Head Attention Multi-head attention is an extension of self-attention, al-
lowing the model to attend to information from different representation subspaces
jointly. Instead of performing a single attention function, multi-head attention lin-
early projects the queries, keys, and values h times with different learned projection
matrices as shown in Fig. 2.1 on the right. Each of these projections is called an
attention head.

For the i-th head, the query, key, and value matrices are computed as follows:

Qi = XWQ
i , WQ

i ∈ Rdv×dk (2.5)

Ki = XWK
i , WK

i ∈ Rdv×dk (2.6)

Vi = XW V
i , W V

i ∈ Rdv×dv (2.7)

The attention function is then applied to each head in parallel:

headi = Attention(Qi, Ki, Vi) = softmax(
QiK

T
i√

dk
)Vi (2.8)

The outputs of all attention heads are then concatenated and linearly projected
to obtain the final output:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (2.9)

where WO ∈ Rhdv×d is a learned projection matrix.
The multi-head attention mechanism allows the model to capture different types

of dependencies and relationships between elements in the input sequence, as each
attention head can focus on different aspects of the input.
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Figure 2.2: Overview of the original proposed Transformer Architecture[38]2

Original Implementation The self-attention mechanism is the core component
of the original transformer architecture, as illustrated in Fig. 2.2. It consists of
an encoder-decoder structure and is primarily designed for seq2seq tasks, such as
machine translation, where the input and output sequences are variable lengths [38].
Unlike traditional RNNs, the transformer relies solely on self-attention mechanisms
to model relationships between input and output sequences. The encoder takes in a
sequence of tokens (e.g., words or characters) and outputs a sequence of vectors (K,
V , Q). The decoder then generates the output sequence, one token at a time, based
on the encoder’s output and the previous tokens generated.

2https://zahere.com/how-chatgpt-works-the-architectural-details-you-need-to-know

https://zahere.com/how-chatgpt-works-the-architectural-details-you-need-to-know
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In the encoder, the input sequence is first embedded into a vector space using a
learned embedding matrix. The embedded sequence is then fed into a stack of iden-
tical layers, each consisting of two sub-layers: a multi-head self-attention mechanism
and a feed-forward network (FFN). The multi-head self-attention mechanism allows
the model to attend to different parts of the input sequence simultaneously and weigh
their importance. The output of the self-attention mechanism is fed into the FFN,
which consists of two linear layers with a ReLU activation function in between. This
FFN is used to transform the output of the self-attention mechanism.

In the decoder, the output of the encoder is fed into another stack of identical
layers, each consisting of three sub-layers: a masked multi-head self-attention mech-
anism, a multi-head attention mechanism, and an FFN. The masked multi-head
self-attention mechanism is similar to the one used in the encoder, except that it
only attends to the previous tokens generated by the decoder. The encoder-decoder
attention mechanism allows the decoder to attend to the encoder output. The en-
coder’s output is used as the keys and values, while the decoder’s output is used as
the queries. The output of the encoder-decoder attention mechanism is then fed into
an FFN, similar to the one used in the encoder.

Finally, the decoder’s output is passed through a fully connected (FC) layer with
a softmax activation function to generate the probability distribution over the output
vocabulary.

Further Developments Since this revolutionary architecture, there have been
several significant developments and improvements building upon the original archi-
tecture. One notable development was the introduction of the Bidirectional Encoder
Representations from Transformers (BERT) [48]. BERT employed a multi-layer bidi-
rectional Transformer encoder to generate contextualized word representations. The
key innovation of BERT was using a pre-training objective called Masked Language
Modeling (MLM), which involved randomly masking input tokens and training the
model to predict the original tokens. This allowed the model to learn rich, context-
sensitive representations that could be fine-tuned for various downstream NLP tasks,
achieving state-of-the-art results.

Following BERT’s success, several variants and improvements were proposed.
RoBERTa [49] introduced modifications to the pre-training process, such as dynamic
masking and larger batch sizes, leading to improved performance. DistilBERT [50]
focused on creating a smaller, faster, and lighter version of BERT while retaining
most of its performance. ALBERT [51] introduced parameter-reduction techniques
to lower memory consumption and increase the training speed of BERT-like models.

Another line of development was the Generative Pre-training (GPT) series [52,
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Figure 2.3: A timeline of existing large language models (having a size larger than
10B) in recent years. The timeline was established mainly according to the release
date (e.g., the submission date to arXiv) of the technical paper for a model. LLMs
with publicly available model checkpoints are in yellow colour. Extracted from Zhao
et al. [55].

53, 54], which utilized a Transformer decoder for language generation tasks. GPT
models were pre-trained using a Causal Language Modeling (CLM) objective, which
involved predicting the next token in a sequence given the previous tokens. GPT-2
[53] and GPT-3 [54] further scaled up the model size and training data, demonstrating
impressive language generation capabilities and paved the way to create ChatGPT,
a GPT-based model that is trained for the conversation with human via text.

2.2.1 LLMs

Due to the ever-increasing number of parameters in the BERT and GPT-based mod-
els, the term Large Language Model (LLM) was created to describe this class of
models. LLMs could generate accurate outputs but struggled with processing diverse
inputs from users. However, this changed with the development of instruction models
by Ouyang et al. [30], who trained them to interact with users using reinforcement
learning from human feedback (RLHF). Consequently, the models became less toxic,
less biased, and provided more accurate information when interacting with humans.
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Figure 2.4: a) Pre-training involves using an unlabeled corpus containing hundreds
of billions to a trillion tokens. b) Instruction fine-tuning is commonly applied after
pre-training, using thousands to tens of thousands of (prompt, response) pairs as
demonstration data for training. c) Reinforcement learning from human feedback
(RLHF) is generally applied after instruction fine-tuning, using tens of thousands of
prompts for training.3

OpenAI utilized this breakthrough to create ChatGPT - a conversational language
model based on the GPT-3.5 architecture. ChatGPT generates human-like responses
in various conversational contexts. Other models, like Llama [11] and Llama 2 [1],
were published under an open-source licence and can be used for research.

According to a survey by Zhao et al. [55], the progress of LLMs has been rapid,
making it difficult to stay updated on the latest research. A timeline of the existing
LLMs is shown in Fig. 2.3, suggesting several companies working on developing
LLMs. Additionally, companies such as OpenAI and Anthropic have not published
their weights for fear of losing the lead to the competition, as the development of
LLMs is now a billion- or trillion-dollar business. This effectiveness of LLMs in
understanding and generating coherent and contextually relevant text has led to
their exploration in new domains, such as medicine [27, 56] and law [57]. Despite
their successes, LLMs present ethical concerns, biases, and interpretability issues that
require addressing. This maximizes their potential in various applications, including
automated evaluation systems.
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2.3 Training LLMs

This section overviews the different training stages necessary to train LLMs. LLMs
are usually trained using a combination of methods, each with a specific purpose in
shaping the behaviour and performance of the model. Fig. 2.4 gives an overview
of the training process, which can be categorized into three stages: pre-training,
Supervised instruction fine-tuning, and reinforcement learning from human feedback
(RLHF).

2.3.1 Pre-training LLMs

As illustrated in Fig. 2.4, pre-training is a crucial stage in developing LLMs. It
involves training LLMs on unlabeled data corpus, often unsupervised, before fine-
tuning them for specific tasks. This initial training phase provides the models with a
general understanding of language structure and usage, which serves as a foundation
for more specialized learning in subsequent stages. The methods used for pre-training
vary depending on the architecture of the LLM.

For encoder-only models, such as BERT [48], pre-training typically involves masked
language modelling (MLM) and next-sentence prediction (NSP). In MLM, some
words in the input are masked (usually 15%), and the model is trained to pre-
dict these masked words based on the context. NSP, on the other hand, teaches the
model to understand the relationship between sentences by predicting whether two
given sentences are consecutive in the original text.

Decoder-only models, like the GPT-Family [52, 53, 54], Llama-Family [1, 11] or
Mistral [22], use a probabilistic approach called causal language modelling (CLM).
In CLM, the model is trained to estimate the probability distribution of a sequence
of tokens x = (x1, x2, ..., xn) by maximizing the likelihood of the sequence given the
previous tokens:

p(x) =
n∏

i=1

p(xi|x1, ..., xi−1)

where xi is the i-th token in the sequence, and p(xi|x1, ..., xi−1) is the conditional
probability of the i-th token given the previous tokens. The model learns to predict
the next token in the sequence based on the context provided by the previous tokens.

3https://is.gd/nDDzJ5

https://is.gd/nDDzJ5


2.3. TRAINING LLMS 15

The objective is to maximize the log-likelihood of the training data:

L =
∑
x∈D

log p(x)

where D is the training dataset, and p(x) is the probability of the sequence x accord-
ing to the model. The autoregressive nature of CLM allows the model to generate
coherent and contextually relevant text.

Encoder-decoder models, such as T5 [58] and BART [2], employ a combination
of both encoder-only and decoder-only pre-training methods. During pre-training,
the encoder is trained to map input sequences to a continuous representation, while
the decoder is trained to generate output sequences based on this representation.
This is often achieved through denoising autoencoding, where the input sequence is
corrupted, and the model is trained to reconstruct the original sequence. Addition-
ally, encoder-decoder models can be trained using a combination of MLM and CLM
objectives, allowing them to leverage the strengths of both approaches.

2.3.2 Fine-tuning LLMs

Fine-tuning is the process of adapting a pre-trained LLM to a specific task or dataset,
such as sentiment analysis, question-answering, or text classification, as shown in
Fig. 2.4. During fine-tuning, the model’s parameters are adjusted to optimize per-
formance on the target task while leveraging the knowledge acquired during pre-
training. There are two main approaches to fine-tuning LLMs: full fine-tuning and
parameter-efficient fine-tuning (PEFT) [20]. Full fine-tuning involves updating all
the model weights, including the attention and output layers, during training. This
approach allows the model to learn to deal with a particular subject but requires
significant computational resources and a well-curated dataset. On the other hand,
PEFT focuses on training only a subset of weights, thereby reducing costs and short-
ening training time.

Supervised Fine-Tuning Supervised fine-tuning (SFT) is a common method that
requires sets of labelled input-output pairs. The objective function for SFT is typ-
ically measured using a loss function, such as cross-entropy loss or mean squared
error. For classification tasks, the cross-entropy loss is commonly used:

L = −
N∑
i=1

yi log ŷi + (1− yi) log(1− ŷi)



2.3. TRAINING LLMS 16

where N is the number of classes, yi is the true label, and ŷi is the predicted proba-
bility. For regression tasks, the mean squared error (MSE) is often used:

L =
1

N

N∑
i=1

(yi − ŷi)
2

where yi is the true value, and ŷi is the predicted value. The optimization process for
SFT involves updating the model’s parameters to minimize the loss function. This is
typically done using an optimizer, such as stochastic gradient descent (SGD), Adam,
or RMSProp. The optimizer iteratively updates the model’s parameters based on
the gradients of the loss function with respect to the parameters.

One of the most popular SFT methods is instruction tuning [59, 60, 30, 61],
which has emerged as one of the most powerful methods to improve model perfor-
mance. With instruction tuning, the input is a natural language task description,
and the output is an example of the desired behaviour. This approach enables the
model to learn to understand and follow instructions, allowing it to generalize well
to unseen tasks and datasets. Instruction tuning is particularly effective in tasks
that require complex reasoning, such as question-answering, text classification, and
dialogue generation. By providing the model with explicit instructions, instruction
tuning allows the model to focus on the specific task at hand rather than relying
on implicit patterns in the data. Additionally, instruction tuning can be used with
other SFT methods, such as few-shot learning and transfer learning, to improve
model performance.

Parameter-Efficient Fine-Tuning (PEFT) PEFT techniques have emerged as
a promising approach to optimize the fine-tuning process of LLMs by selectively up-
dating a subset of parameters, thereby reducing the computational cost and required
resources [26]. These techniques focus on learning a small number of parameters for
the task at hand by designing additional layers [25], adding prepending additional
tokens [24, 20], or decomposing weight gradients into specific matrices [25]. One of
the representative cutting-edge PEFT techniques is Low-Rank Adaptation of LLMs
(LoRA) [25], which freezes the model weights and injects low-rank trainable matrices
into the attention layers of the Transformer architecture [38], reducing the number
of trainable parameters.

Additionally, Prompt tuning [24] and Prefix tuning [62] are suitable techniques,
which involve prepending virtual tokens to the input tokens of the LLM or inserting
virtual tokens in all the layers of the target model, respectively. These virtual tokens
are differentiable, allowing them to be learned through backpropagation during fine-
tuning while the rest of the LLM remains frozen. Furthermore, QLoRA [31] combines
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LoRA with model quantization, enabling the fine-tuning of LLMs with less GPU
memory by reducing the precision of floating point data types within the model. By
updating a few parameters, PEFT methods aim to optimize model performance while
reducing the required resources and tuning time, making them particularly suitable
for knowledge editing, which requires efficient modification of model behaviour.

2.3.3 Reinforcement Learning from Human Feedback (RLHF)

Reinforcement Learning from Human Feedback (RLHF) is a machine learning paradigm
that combines elements of reinforcement learning and supervised learning to enable
AI systems to learn and make decisions in a more human-aligned manner [63]. RLHF
introduces human feedback as a valuable source of guidance, which can help AI sys-
tems navigate complex decision spaces, align with human values, and make more
informed and ethical choices [64].

Fig. 2.4 illustrates the RLHF process, which consists of several key steps. Firstly,
prompts are collected to train a reward model through human labelling. Subse-
quently, the language model is fine-tuned using reinforcement learning techniques,
followed by deploying and iterating the model [65]. During the fine-tuning process,
the reward model guides the model’s actions, and the agent aims to maximize cu-
mulative rewards based on the reward model’s predictions.

2.4 Retrieval-Augmented Generation (RAG)

The concept of RAG was introduced by Lewis et al. [13] in 2020, although similar
ideas were also proposed by Guu et al. [67] with Retrieval-Augmented Language
Model (REALM). The goal of RAG is to combine the strengths of parametric mem-
ory (e.g., large language models) with non-parametric memory (e.g., databases) to
enhance model capabilities and reduce hallucinations. Figure 2.5 shows a SOTA
implementation of a naive RAG pipeline, as described in [66]. This pipeline consists
of three primary steps.

Firstly, the indexing step (illustrated in the top right corner) involves splitting
documents into chunks, encoding these chunks into dense vectors using a neural
network, and storing them in a vector database. This allows for efficient similarity-
based retrieval of relevant documents. The second step is retrieval (illustrated in
the bottom right corner), where the top k chunks of documents most semantically
similar to the input question are retrieved from the vector database. This is typically
done using a similarity metric such as cosine similarity or dot product. Finally, in
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Figure 2.5: A representative instance of the RAG process applied to question an-
swering. It mainly consists of 3 steps. 1) Indexing. Documents are split into chunks,
encoded into vectors, and stored in a vector database. 2) Retrieval. Retrieve the Top
k chunks most relevant to the question based on semantic similarity. 3) Generation.
Input the original question and the retrieved chunks together into LLM to generate
the final answer. Extracted from Gao et al. [66].

the generation step (illustrated on the left), the original question and the retrieved
chunks are input into an LLM to generate a coherent and accurate final answer.
The LLM leverages the context and information provided by the retrieved chunks to
produce a response that is more informed and relevant than what would be possible
with a single pass through the input question alone.

Several research papers have integrated RAG pipelines with LLMs, such as for law
[57] or medicine [56], to ensure domain knowledge. The advantage of RAG pipelines
is that they are less expensive to create than training LLMs and can better accom-
modate updates. However, challenges in RAG pipelines include suitable information
representation, suitable algorithms to find relevant information, and selection based
on ranking methods. Additionally, the problem of code retrieval [68] requires the
combination of natural language with source code in vector representation.
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2.4.1 Embedding Models

In modern RAG pipelines, the choice of embedding model plays a crucial role in
retrieving relevant documents from the database. All the more so in this work, the
combination of natural language and code represents a further challenge. However,
recent advancements in dense embedding models have significantly improved the
efficiency and effectiveness of RAG systems.

Embedding models are typically encoder-only models or, more recently, decoder
LLMs with a special embedding head on top. These models take input data, such as
text or code, and output a dense vector representation that captures the semantics
of the input. This contrasts language models, which output token IDs or text. The
output vector from an embedding model can then be used to calculate the similarity
between different inputs, enabling efficient retrieval of relevant documents.

As discussed in Gao et al. [66], the choice of embedding model is crucial in RAG
pipelines, where retrieval is achieved by calculating the similarity between question
and document chunk embeddings. Recent research has introduced prominent embed-
ding models, such as AngIE [69], Voyage4, and BGE 5, which benefit from multi-task
instruction tuning.

In selecting an embedding model, there is no one-size-fits-all answer. However,
some models are better suited for particular use cases. For instance, mix/hybrid
retrieval approaches can leverage complementary relevance information from sparse
and dense embedding models. Fine-tuning embedding models on domain-specific
datasets can also mitigate discrepancies between pre-training corpora and target
domains, particularly in specialized fields like healthcare and law. Additionally, fine-
tuning can align retrievers and generators using techniques like LSR (LM-supervised
Retriever) and PROMPTAGATOR [70].

One promising generalistic model that reached SOTA in over 70 tasks is IN-
STRUCTOR [35]. Introduced as a novel method for computing embeddings, which
can be customized for various downstream tasks and domains that come in three
different model sizes (100M, 300M, 1.5B parameters). Unlike specialized encoders,
INSTRUCTOR is a single embedder capable of generating text embeddings without
additional training, provided with task instructions that outline the specific use case.
Additionally, INSTRUCTOR can retrieve code, making it suitable for this thesis.

4https://docs.voyageai.com/embeddings/
5https://github.com/FlagOpen/FlagEmbedding

https://docs.voyageai.com/ embeddings/
https://github.com/FlagOpen/ FlagEmbedding


3. Related Work

This chapter provides an overview of the existing research related to this thesis.
The field of coding-specific tasks has seen significant advancements in recent years,
with the development of task-specific LLMs for general coding tasks and repository-
level programming discussed in Sec. 3.1. Building upon this foundation, researchers
have explored the application of data augmentation techniques to improve the per-
formance of LLMs, as described in Sec. 3.2. Code-based question answering has also
been a focus of research, with the development of datasets and benchmarks to evalu-
ate the performance of LLMs, as discussed in Sec. 3.3. Finally, evaluating LLMs is a
crucial aspect of this field, with various approaches and benchmarks being explored,
as described in Sec. 3.4.

3.1 Repository-level Programming

Developing coding assistants for repository-level programming builds upon a rich
research foundation in coding-specific tasks. Task-specific LLMs have been developed
for a variety of tasks, including summarizing text, generating questions [2], and even
performing coding-specific tasks such as coding summarization [3], coding generation
[4, 5, 8, 71], answering questions regarding source code [6], and generating code
documentation on repository-level [7]. Also, research on building interfaces for coding
assistants was conducted in the near past [72].

Early studies [73] proposed using nested n-gram models to leverage the local-
ity of directories within a project for code completion. This idea was further built
upon by following works from Shrivastava, Larochelle, and Tarlow [74], which in-
troduced a framework for generating example-specific prompts using context from
the entire repository. Similarly, Zhang et al. [75] proposed RepoCoder, a framework
that addresses the challenge of code completion at the repository level by incor-
porating useful information spread across different files. In more recent studies, the
boundaries of coding assistants at the repository level have even been pushed further.
Bairi et al. [76] framed repository-level coding as a planning problem and presented
a task-agnostic framework called CodePlan to solve it. This framework synthesizes
a multi-step chain of edits, where each step results in a call to an LLM on a code
location with context derived from the entire repository, previous code changes, and
task-specific instructions. Other related works have focused on specific aspects of
repository-level coding assistants, such as generating prompts for few-shot learning
[77] using RAG pipelines and effect debugging on a repository level [78].

20
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Recent studies have explored the application of instruction fine-tuning with PEFT
techniques for coding tasks. Weyssow et al. [79] demonstrated the effectiveness of
PEFT for coding tasks on various models, highlighting the effectiveness of QLoRA
for fine-tuning. They showed that PEFT can significantly improve the performance
of coding-related tasks while minimizing the computational resources required for
fine-tuning. In a related study, Yuan et al. [80] investigated the performance of in-
struction fine-tuned models on various coding tasks, including defect detection, clone
detection, assertion generation, and code summarization. Their findings suggest that
instruction fine-tuned models are equally effective as non-instruction models for these
tasks. This implies that fine-tuning with SFT and additional information does not
necessarily improve the model’s skills in general coding tasks.

Researchers have also explored the combination of fine-tuning and RAG pipelines.
Ovadia et al. [81] fine-tuned three different open-source models using unsupervised
fine-tuning and injected additional information using the RAG pipeline. Their re-
sults showed that while unsupervised learning struggles to consistently inject infor-
mation into the LLM, the RAG pipeline consistently outperforms the baselines. This
suggests that the RAG pipeline is an effective approach for incorporating external
knowledge into LLMs. Building upon these findings, Soudani, Kanoulas, and Hasibi
[82] investigated the interaction between SFT and RAG pipelines. Their research
suggests that SFT and RAG pipelines can benefit from each other, leading to im-
proved performance on coding tasks. By combining the strengths of both approaches,
models can leverage the knowledge gained from instruction fine-tuning while incor-
porating relevant information from external sources through the RAG pipeline.

Overall, these studies show the potential of PEFT, SFT and RAG pipelines to
improve the performance of LLMs in coding tasks. Combining these techniques can
lead to more effective and efficient coding assistants handling various coding-related
tasks while minimizing the computational resources required for fine-tuning. This
thesis combines all these findings by using a self-generated dataset as a training
dataset and using SFT with QloRa to train it effectively and time-efficiently on Mis-
tral. Additionally, it tries to investigate further the interaction effect that Soudani,
Kanoulas, and Hasibi [82] investigated.

3.2 Data Augmentation

Collecting datasets can be a tedious and expensive task that requires expertise and is
time-consuming. Although datasets already exist for most tasks in machine learning,
they often lack size and variety and new data points must be created or augmented
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by the existing data points. To automate this process for LLMs, Wang et al. [59] in-
troduced Self-Instruct. This approach uses ChatGPT [54] in-context learning ability
to generate many instructions from a pre-defined set of human-annotated instruc-
tions that cover various topics and task types used for fine-tuning. The generated
instructions are then filtered to ensure their quality, and the process continues until
the desired data volume is achieved. Several studies followed up on this system as
referred in the survey of Ding et al. [83], resulting in the creation of Alpaca [61], a
fine-tuned variant of Llama 7B that is trained on synthetic data generated by Chat-
GPT. Regarding other domains, Cui et al. [57] used this approach to train Llama
on augmented law data samples, and Peng et al. [84] showed that augmented data
can improve machine translation from Chinese and English. Li et al. [29] introduced
a novel approach to data augmentation called Self-Alignment. This method uses
a small set of high-quality seed data to create a foundation of well-designed data
samples. These seed samples serve as a starting point for generating additional data
points. After generating new samples, the Self-Alignment approach employs a Self-
Curation step, where the generated samples are rated and filtered based on their
quality and relevance to the target task. This ensures that only the most informa-
tive and valuable samples are retained for further use in training or fine-tuning the
model.

In source code learning, Dong et al. [85] explored various data augmentation tech-
niques for tasks such as Code Refactoring, Problem Classification, and Bug/Clone
Detection. They employed different approaches to transform the source code, rep-
resenting it as either text or graphs. The transformed code was then used to train
models such as Feed-forward Neural Networks (FNN), Convolutional Neural Net-
works (CNN), and Graph Convolutional Networks (GCN) on the respective tasks.
Although the study yielded mixed results regarding the effectiveness of data augmen-
tation in coding tasks, it is crucial to consider that the models used in this research
are no longer considered state-of-the-art. Focusing more on LLMs, Zhang et al. [86]
used data augmentation to annotate an existing dataset with custom function calls
that invoke an API call to get additional information about the problem. Another
approach was used by Patil et al. [87]. They manually created a well-curated dataset
of API calls and used Self-Instruct to generate instruction-API pairs by GPT-4.
These studies highlight how data augmentation can be applied to source code learn-
ing and LLMs. While the effectiveness of data augmentation may vary depending on
the specific task and model architecture, these approaches offer promising avenues
for improving the performance of coding-related models by enriching the training
data with additional information and diverse examples.
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3.3 Q&A Datasets

Code-based question answering is a subfield that focuses on responding to code-
related queries. Unlike generative approaches, retrieval-based code Q&A aims to
find the most relevant code snippets from a large code corpus to satisfy user re-
quests. To evaluate the performance of current models, Husain et al. [34] introduced
CodeSearchNet, a collection of datasets and benchmarks created by mining large-
scale comment-code pairs from public GitHub repositories. Similarly, Liu and Wan
[88] presented CodeQA, a free-form code question-answering dataset designed to
assess the code comprehension capabilities of language models. CodeQA was con-
structed using existing code summarization datasets mined from GitHub, focusing
on two popular programming languages: Python and Java. The dataset synthesizes
various types of Q&A pairs by leveraging code comments and documentation strings,
employing manually curated rules, templates, and a variety of NLP toolkits.

Recent work has been focused on constructing code Q&A datasets from real-
world scenarios. CoSQA [89] mines real-world user queries from Bing search logs
that were labelled if the provided answer is the solution to the question. Educa-
tional programming Q&A datasets have also gained attention. CS1QA [90] collects
student questions and answers from teaching assistants on an online forum designed
for an introductory Python programming course. This dataset offers insights into
the educational applications of code-based question answering. Another recently re-
leased Q&A dataset by Li et al. [91] is focused on mixed-modal data that combines
code and text. This dataset provides a more realistic simulation of the interaction
between humans and a coding assistant. The dataset was created to train models to
perform retrieval-based code Q&A, which involves finding the best possible code.

Although these Q&A datasets help measure the interaction of models and hu-
mans, they are unsuitable for repository-level programming tasks for various reasons.
Unfortunately, CodeSearchNet [34] only consists of pairs of code and commits and
is, therefore, difficult as there is no direct question-answer interaction. The same
applies to CodeQA [88], which used the documentation and the comments to match
natural language and code. While CoSQA [89] consists of actual human queries, the
queries are only related to general coding tasks and have no label for a repository,
which makes it challenging to use the Q&A pairs as training data to measure the
performance of a specific repository. CS1QA [90] was not suitable because most of
the questions were related to student’s homework, which was not publicly available.
Unfortunately, the most promising dataset, ProcQA [91], was not published until
the thesis was completed. It was, therefore, decided to create a separate evalua-
tion dataset that measures performance on a specific repository. All details for the
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creation are described in Chap. 4.

3.4 Evaluation of LLMs

Evaluating the capabilities of LLMs has been challenging due to their vast and diverse
abilities and the lack of standardized benchmarks to measure human preferences in
this rapidly evolving field. While traditional metrics such as BLEU [92] and ROUGE
[93] are commonly used to assess deep neural networks in NLP, they may not accu-
rately capture the complex abilities of LLMs. As highlighted in a recent survey [94],
there is a pressing need to develop evaluation methods that can measure the reason-
ing, robustness, ethical considerations, and other capabilities of LLM outcomes. In
response, much research has focused on developing novel evaluation approaches for
LLMs. These approaches can be broadly categorized into two types: benchmarks
that assess general skills, such as reasoning and harmlessness, and those that eval-
uate specific skills, such as coding and model-based evaluation, which use superior
models as judges to assess model performance.

Benchmarks Current SOTA papers use benchmarks, such as HumanEval [5],
MBPP [36], HumanEval-X [95], DS-1000 [96] to measure the performance of LLMs.
Core Knowledge benchmarks check the core capabilities of pre-trained LLMs using
zero-shot and few-shot settings. Typically, LLMs need to generate a short, specific
answer to benchmark questions that can be automatically validated [37]. Examples
of Core Knowledge Benchmarks include measuring Reasoning Abilities with ARC
[97] or Meaning to Comprehend with HellaSwag [98]. Measuring specific skills such
as programming skills is achieved using HumanEval [5], HumanEval-X [95], MBPP
[36] or DS-1000 [96]. In this case, the model has to generate source code for a
problem, and unit tests are used to verify the functional correctness of the code.

LLM-as-a-Judge In contrast to Benchmarks that are used to measure the perfor-
mance of models based on the functional correctness of code (Humaneval [5], MBPP
[36]) or evaluate the performance using Humans [11], it is possible to use superior
models to judge other models output. Model-based evaluation is used in various
papers [84, 37, 99, 23, 100, 101] to measure the responses of LLMs.

In the context of automated evaluation systems, Zheng et al. [37] proposed three
variations of Model-based-evaluation referred to as LLM-as-a-Judge. The first, pair-
wise comparison [84, 99], involves directly assessing two answers to determine su-
periority or a tie. The second, single answer grading, assigns a score directly to
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a response [100, 23]. The third, reference-guided grading, incorporates a reference
solution, beneficial for math problems [99]. A similar approach was taken by Lin
and Chen [102]. Unlike Zheng et al. [37], Lin and Chen [102] model rated on a scale
from 0-5 or 0-100, and evaluated appropriateness, content, grammar, and relevance
to distinguish the quality of the responses. Previous studies were also conducted to
train a specialized evaluation model called PandaLM [103] to further enhance the
model’s judgement capabilities.

3.5 Coding Related LLMs

Coding-related LLMs, such as Codex [5], StarCoder [8], WizardLM [104], CodeGen2
[4], and CodeLlama [71], are designed to process and generate code in various pro-
gramming languages. These models are trained on large datasets of code, allowing
them to learn the syntax, semantics, and patterns of programming languages. As a
result, they can assist developers in tasks such as code completion, code generation,
and code review.

One key difference lies in their training objectives. While standard LLMs are
typically trained to predict the next token in a sequence of text, coding-related
LLMs are trained to optimize specific coding-related tasks, such as code genera-
tion, code correction, or code summarization. For example, WizardLM employs a
hierarchical attention mechanism to capture long-range dependencies in code [104].
In contrast, CodeLlama utilizes a multi-task learning framework to jointly train on
multiple coding-related tasks [71].

Another distinct characteristic is their ability to handle the structural complex-
ity of code. Codex, for instance, uses a novel neural architecture that combines a
transformer encoder with a syntax-aware decoder to generate syntactically correct
code [5]. StarCoder, on the other hand, incorporates a graph-based neural network
to model the structural relationships between code elements [8].



4. Evaluation Dataset

The thesis addresses the research question of how well coding assistants can per-
form at the repository-level programming. Therefore, a dataset was necessary to
evaluate the performance of the models. It is rare to find information on code-based
question answering, so a new evaluation dataset called SpyderCodeQA was created
as part of this thesis. This chapter provides an overview of the process involved
in its creation. The purpose of this dataset is to measure the model’s ability to
comprehend the fundamentals of a repository, including its structure, code, and pur-
pose. To evaluate this ability, various sources such as books [105, 106], papers [107,
108], and blog articles12 were examined to determine the essential components of
Python repositories. Due to the diverse range of language applications, such as GUI-
based programming, machine learning applications and game programming [108], it
is difficult to define a typical structure of a Python repository.

Therefore, we will start with the smallest possible repository unit: one Python file
containing the source code. If a model can understand the source code at this level,
it must also comprehend its syntax and semantics. Hence, source code semantics
comprehension is in this thesis defined as understanding the containing text and
code elements about the repository’s source code and being able to answer semantic
questions about it.

The Python programming language is an organized architecture comprising indi-
vidual files grouped as modules and packages [105, 106]. Depending on the selected
architecture pattern (MVC, MVT, etc.), modules are structured individually, which
makes it hard to analyze them. Nevertheless, these relationships between the files
are essential for understanding the repository. Hence, dependency comprehension
is defined in this thesis as understanding the relationships between files within the
repository and between files and imported libraries.

The last source of information is general information about the repository. Prana
et al. [108] showed that developers use README files for sharing various informa-
tion such as build commands, requirements or legal information of the repository.
Hence, meta-information comprehension is defined in this thesis as understanding all
information about the repository unrelated to the source code.

This means that a coding assistant responsible for a specific coding repository
should be able to answer questions on all three dimensions to guarantee comprehen-
sive support, as shown in Fig. 4.1. Therefore, this thesis developed for each of the

1https://docs.python-guide.org/writing/structure/
2https://is.gd/8ylpcB
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Source Code
 Semantics

Dependencies Meta-Information

Figure 4.1: Overview of the three dimensions of the evaluation dataset. The dimen-
sions include Source code semantics, Dependencies, and Meta-Information Q&A,
each containing Q&A pairs that serve a specific purpose. These dimensions are
designed to provide comprehensive information about the source code files, their re-
lationships with modules and libraries, and general information about the repository.

dimensions a Q&A dataset to measure it. The creation process resulted in a dataset
comprising a total of 325 samples. Table 4.1 shows the distribution of samples per
dimension.

Dimension Code Semantic Dependencies Meta-Information Total
140 135 50 325

Table 4.1: Number of Samples per Dimension

This chapter is divided into five sections to give an all-embracing overview of the
creation process, statistics and its limitations for each dataset dimension. It includes
details about the study conducted for the source code semantics comprehension di-
mension (Sec. 4.1), the creation of the dependency comprehension dimension (Sec.
4.2), and the meta-information Comprehension dimension (Sec. 4.3). After the cre-
ation process, a data analysis of the whole dataset follows, which explains various
critical metrics in Sec. 4.4 and gives dataset examples for each dimension. Addition-
ally, the challenges faced during data collection and the limitations of the dataset
are described in Sec. 4.5.
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4.1 Source Code Semantic Comprehension

For creating the source code semantics comprehension dimension, ten computer sci-
ence experts manually created the Q&A pairs using the Spyder IDE repository source
code3. An online study was conducted to create these pairs, and a custom web ap-
plication was developed using Python Django as a backend service and HTML, CSS,
and vanilla JavaScript with Bootstrap 5 for the user interface. The web app was
hosted on a private home server during the data collection. Participants in the study
were given two different tasks. Firstly, they had to create Q&A pairs for one of
the 5673 snippets randomly selected from the open-source Python repository Spyder
IDE. Secondly, they had to rate Q&A pairs from other participants to ensure the
quality of the pairs on a 1-10 scale. Each participant was required to create ten Q&A
pairs and rate ten pairs. Participants were also allowed to create and rate another
set of ten Q&A pairs, resulting in twenty pairs.

4.1.1 Creation of Code Snippets

During the online study, participants were given a random code snippet from the
open-source Python Spyder IDE code repository. These snippets were generated
using the LangChain package’s document loader and text splitter1. The 2083 Python
files in the repository were divided into 5673 text chunks to create these code snippets.
The source code was chunked using Python syntax and specific cutting points like
\nclass, \ndef, and \n\tdef. Each chunk was not larger than 2000 characters. If
the splitter within the chunk size found none of these cutting points, the splitter uses
secondary cutting points such as \n\n, \n and " ". In addition to the source code,
meta-information about the code snippets were stored. That included the name and
module of the file and the start and end lines of the source code. The procedure for
identifying the start and end line involved fetching the file path of the code snippet
and comparing its content with the original content of the file. It then located the
starting line of the snippet by matching its first line with the lines in the file and
determined the end line based on the snippet’s length. The function also accounted
for edge cases where the snippet may not be found within the file or consists of only
one line. After creating chunks of source code and meta-information, the data was
stored in an SQLite database using Django object-relational mapping in Python.

3https://github.com/spyder-ide/spyder/tree/master
1https://python.langchain.com/docs/modules/data_connection/document_

transformers/

https://github.com/spyder-ide/spyder/tree/master
https://python.langchain.com/docs/modules/data_connection/document_transformers/
https://python.langchain.com/docs/modules/data_connection/document_transformers/
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Figure 4.2: Web App frontend for creating Q&A pairs. Two input fields are on the
left for entering questions and answers, and the Code snippet is on the right. Users
submit a Q&A with the green button and mark it as Bad Code, e.g. code snippet is
not understandable, with the yellow button.

4.1.2 Study Sample

Ten participants with a minimum master’s degree in computer science-related fields
participated in the online study. 90% of the participants had studied for more than
ten semesters in total. The participants self-rated their general coding abilities at
a mean of 3.8 on a scale of 1-5. Their average Python coding abilities and working
experience were 4.3 and 3.5, respectively. The online study generated 190 Q&A pairs,
aligning with other domain datasets like HumanEval (N = 164) [5]. One participant
completed one iteration, creating and rating 10 Q&A pairs, while the other nine
participants were able to create two iterations, resulting in a total of 20 Q&A pairs.

4.1.3 Execution of the Study

Participants were given login credentials via messenger or email with a link to the
web application. The web app’s homepage is shown in Fig. A.1. The left side of
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the page contained background information about the study, information about the
repository, and some hints about the study process. The login panel was presented
on the right side. Once logged in, each participant followed the same procedure.

Before executing the study, each user was asked to provide personal information.
The required information included their highest computer science degree (Bachelor,
Master, PhD, etc.), the number of semesters studied in total (rated on a scale of 1-
10+), their self-rated coding skills (general and Python, rated on a scale of 1-5), and
their field of study. A screenshot of the form to prompt users for this information is
shown in Fig. A.2. This information was only collected to filter out bad Q&A pairs
when participants had low coding or working experience.

Next, participants were given instructions and examples for the data creation
task, which can be found in Appendix A.3 to A.9. This was done to give the partici-
pants an idea of what good Q&A pairs should look like and how they should behave
if they do not understand something or if something is not understandable. The
interface for the creation task is shown in Fig. 4.2. The left side of the interface
contained two text areas, one for entering the question and the other for entering
the answer. On the right side, the code snippets from the repository were displayed,
along with meta information such as the module name, file name, and the start and
end line of the code snippet.

The instructions for the rating task are given in Appendix A.10. Participants
are informed that 0 represents a poor Q&A and 10 represents a perfect Q&A, along
with the specific criterion for rating. Fig. 4.3 shows the process for rating the Q&A
pairs. The interface for the rating task is similar to the creation task. However, the
text areas have been replaced with rating forms. Participants could rate questions
and answers separately on a scale of 1 to 10 and leave an optional comment.

Users could pause the study by logging out and resuming where they left off later,
as the app automatically saved their progress. Upon completion, the participants
saw an end screen (Appendix A.11) displaying the number of Q&A pairs they had
created and rated. The execution duration of the study lasted an average (median)
of 1 hour and 22 minutes, with the fastest participant finishing in 38 minutes and
the slowest in 8 hours and 18 minutes. This large number is because the participants
could interrupt the study to continue it later.

4.1.4 Data Aggregation

After the initial evaluations, any Q&A pairs receiving a rating below three were
automatically removed from the dataset. For pairs with a rating between three and
five, experienced annotators manually checked whether the pair was useful or could
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Figure 4.3: Web App frontend for rating Q&A pairs. Two slider inputs are on the
left for entering a rating from 0 (bad) to 10 (perfect), and the Code snippet is on the
right. Users submit a rating using the green button. Understanding problems with
rating the Q&A pair resulted in submitting the red button.

be removed. The criteria used for the rating were functional correctness of code,
understandable questions, whether the Q&A pairs were related to the repository
and whether the question was detailed enough. As a result of this quality control
process, the final dataset was shrunk and consisted of 140 Q&A pairs. This process
ensured a strong and dependable foundation for the subsequent analysis.
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4.2 Dependencies Comprehension

In this thesis, dependencies comprehension is defined as the ability to understand
which files reference each other and which packages are required to execute the
source code in the targeted file. Therefore, the source code of the Spyder IDE
was analyzed. The goal was to create Q&A pairs for dependencies comprehension to
measure the ability of the model to understand the dependencies between source code
files. An algorithm was developed that uses abstract syntax trees (AST) to identify
dependencies between files, modules, and libraries in a repository. This algorithm
only recognizes 1-hop dependencies between two files, meaning connections across
multiple files are not recognized. However, this algorithm uses the imports from
the source code to identify which files, modules, and libraries must be present to be
able to execute the file. To transfer these imports into Q&A format to use them as
evaluation datasets, the OpenAI API4 was utilized. The following Secs. discusses
the AST algorithm used for dependency comprehension dataset generation.

1 Procedure analyse(directory)
2 files list← [];
3 foreach (root, dirs, files) in os.walk(directory) do
4 foreach file in files do
5 if file.endswith(”.py”) then
6 file path← path.join(root, file);
7 file analyzer ← FileAnalyzer(file path, directory);
8 dependencies← file analyzer.analyze();
9 files list.extend(dependencies);

10 end

11 end

12 end
13 return files list;

Algorithm 1: DirectoryAnalyzer Class

4.2.1 AST Algorithm

Analyzing the dependencies of files in Python files is not trivial. The keyword import

or from is used in Python to import an artefact. The algorithm identified four types of

4https://chat.openai.com

https://chat.openai.com
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imports: complete library imports, imports from libraries, complete file imports, and
imports from files. Identifying the type of the imported artefact for the categories
imported from the library and file is possible. This artefact type can be a class,
function, or assignment, which helps to identify the type of object imported into
the file. The algorithm provides information on each Python file in the repository,
including the file name, import category, and artefact name. The analysis involves a
DirectoryAnalyzer (Alg. 1) to evaluate directories and a FileAnalyzer class (Alg.
2 and Alg. 3) to analyze individual files.

The DirectoryAnalyzer class is shown in Alg. 1 and is designed to systematically
analyze a given directory’s contents. Upon invocation of the analysis procedure with
a specified directory as input, the algorithm initializes an empty list to store the
results. Utilizing the walk() function from the os package in Python, the algorithm
traverses through the directory hierarchy from the top-down, iteratively examining
each file encountered. For files with a ”.py” extension, the algorithm constructs
the full file path and instantiates a FileAnalyzer object to analyze the file further.
The dependencies of the file are then retrieved through the analysis method of the
FileAnalyzer object, and these dependencies are appended to the list of results.
Finally, the algorithm returns the accumulated list of file dependencies, providing
insights into the interdependencies within the directory’s Python files.

The FileAnalyzer class extracts the dependencies from the Python files, as de-
picted in Alg. 2 and Alg. 3. Upon invocation of the analysis procedure with a
file object as input, the algorithm first reads the content of the file and initializes an
empty list to store samples. Subsequently, it iterates through the Python code’s AST
representation, identifying import statements. Depending on whether the import is
of the form import module or from module import ..., the process node pro-
cedure is called to extract the relevant dependency information. This information
includes the imported library name, the category of import (either ”file import” or
”library import”), and the file path of the imported module.

The process node procedure, implemented within the same class, is respon-
sible for processing individual AST nodes corresponding to import statements. It
discerns the library name and import category, retrieves the file path of the imported
module, and appends this information to the list of dependencies. Furthermore, the
get artefact type procedure, also part of the FileAnalyzer class, determines the
type of artefact defined in the Python file (e.g., function, class, variable) by traversing
the AST and inspecting its structure.
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1 Procedure analyse(file)
2 code← file.read();
3 dependencies← [];
4 forall node in ast.walk(tree) do
5 if isinstance(node, ast.Import) then
6 dependencies← process node(node, ”direct”);
7 end
8 else if isinstance(node, ast.ImportFrom) then
9 dependencies← process node(node, ”from”);

10 end

11 end
12 return dependencies;

13 Procedure process node(node, category)
14 library name← node.name if isinstance(node, ast.Import) else

node.module;
15 import category ← ”file import” if is file import(library name) else

”library import”;
16 dependencies← [];
17 foreach alias in node.names do
18 artifact type← get artifact type(alias.name, file path);
19 file path← get file path(library name);
20 dependencies.append([library name, import category, file path]);

21 end
22 return dependencies;

23 Procedure get artifact type(node, file)
24 code← file.read();
25 forall n in ast.walk(tree) do
26 if isinstance(n, ast.FunctionDef) then
27 return ”function”;
28 end
29 else if isinstance(n, ast.ClassDef) then
30 return ”class”;
31 end
32 else if isinstance(n, ast.Assign) then
33 forall target in n.targets do
34 if isinstance(target, ast.Name) then
35 return ”variable”;
36 end

37 end

38 end

39 end
40 return ”unknown”;

Algorithm 2: FileAnalyzer Class
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1 Procedure is file import(module name)
2 if not module name then
3 return False
4 end
5 if module name.startswith(”.”) then
6 full path← path.join(module path, file path);
7 return os.path.exists(full path);

8 end
9 search pattern← path.join(root directory, ” ∗ ∗”,module name+”.py”);

10 matching files← glob(search pattern, recursive = True);
11 if matching files then
12 return True
13 end
14 return False

Algorithm 3: FileAnalyzer Class (continue)

Additionally, the is file import() function, presented in Alg. 3, aids in deter-
mining whether an import statement refers to a file within the project directory or
an external library. This function evaluates the module name and checks if it cor-
responds to a file within the project directory structure. If the module name starts
with a dot (indicating a relative import), it constructs the full file path and checks
its existence. Otherwise, it searches for matching files within the project directory
using a specified search pattern.

The analysis of the Spyder IDE repository revealed that it has 7,907 dependencies.
The data shows a significant difference between the types of imports used. The
project heavily relies on libraries, with 3,305 instances sourcing the whole library and
only 27 instances sourcing the whole files directly. This suggests that the project
prefers to use external resources instead of local file dependencies. Furthermore,
the dataset indicates that 686 files were used in the project, indicating that the
project operates at a moderate scale. When examining only the imports from files,
the imports are mainly classes, with 1,265 occurrences, followed by functions, with
1,048 instances, and assigns, with 569 instances. Additionally, the algorithm failed
to predict the correct artefact type in 140 instances where the artefact type was
unknown. This distribution highlights the predominant use of classes and functions.
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You are an Assistant to create question answer pairs for a programming repository.
You will receive a table with information about all used imports and files of one file of
a programming repository. Your task is create a short question and answer pair about
the table. Vary the question so that you are ask for only one specific row sometimes
about the whole table. Please either ask about imported libraries or imported files,
orientate on the category column. Also write questions where the answer is No or
the questions ask for a library that does not exist. If you ask multiple question in
one prompt always provide the file name.
Example Question could be (FILL <<>> with data):
- Which libraries are used in the file <<FILE NAME>>?
- What libraries are imported directly in the file <<FILE NAME>>?
- Does the file <<FILE NAME>> also uses the library <<LIBRARY NAME>>?
- Is the <<MODULE>> part of the the file <<FILE NAME>>?
- Are the files <<FILE NAME>> and <<FILE NAME 2>> highly coupled?
- What library does the function <<FUNCTION NAME>> belong to in the file
<<FILE NAME>> within the programming repository?
- Is the file <<FILE NAME>> depending on the module <<MODULE>>?

Figure 4.4: System Prompt for Creating Question-Answer Pairs

4.2.2 Data Aggregation

The raw dependencies were processed further using the OpenAI API using the ”gpt-
3.5-turbo-1106” model. The temperature was set to 1.5 to ensure creativity in the
creation process, the maximum token limit was 256, and the top p-value was set
to 1. The frequency and presence penalties were set to 0. These parameters were
carefully selected to create diverse, contextually relevant questions and concise, co-
herent responses within specified token limits. To ensure that good Q&A pairs are
built, a system prompt must lead to the desired result. Fig. 4.4 presents the system
prompt for generating the Q&A pairs. Before generating the pairs, the assistant was
instructed to create questions that could be answered with a ”no”. This ensured
that guessing the most common libraries would not be a viable solution. Example
questions were provided to help guide the model, such as asking which libraries were
used in a particular file or where a function belongs to a particular library.

1,319 Q&A pairs were generated using the OpenAI API from 686 unique file
names. Despite several attempts to modify the prompt to yield only one question and
answer, the API often returned several questions and answers for a single request.
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To ensure the quality of the dataset, a final set of 135 Q&A pairs was randomly
chosen and manually verified for correctness. This was done by cross-checking the
repository’s source code to ensure that the questions and answers were correct and
made sense. The random selection process was implemented to minimize the manual
effort required for verification.

4.3 Meta-Information Comprehension

This thesis introduces the concept of meta-information comprehension, which refers
to the ability to understand general information about a repository, such as its pur-
pose, features, documentation, license, and contribution opportunities. An expert
annotator created 50 Q&A pairs using a self-made web application, which differed
from the one used for code semantics. First, all files with the suffixes .md, .txt,
and .yml were extracted, resulting in 29 files that included meta information. Each
file was reviewed and analyzed for important information relevant to the repository.
The expert annotator has concentrated on relevant information, such as installing
the repository, available and supported versions, and the rules for contributing. If
information appeared relevant, a Q&A pair was created in the provided text areas
for questions and answers and added to a text file. The file name and the module in
which the file was located were also saved.

4.4 Data Analysis

To verify the difference between the different dataset modalities, which is a prereq-
uisite to evaluating the performance of the trained models, a detailed data analysis
and a comparison was undertaken.

4.4.1 Typical dataset examples

For a first impression of the differences between the three dataset modalities, typical
samples are shown in Fig. 4.5, Fig. 4.6 and Fig. 4.7. Based on the provided
samples, it is evident that the Q&A pairs for the source code semantic dimension are
primarily concerned with the meaning of the source code. To answer these questions,
the model must thoroughly understand the source code’s syntax and semantics to
allocate the necessary information accurately. Moreover, the examples demonstrate
that the dataset seems heterogeneous since it focuses on various source code parts.
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Question: In file script.py in module app.tests, what is arr and what is it set to?
Answer: arr is a numpy array initialized with the list li, which is set to [1,2,3] before.

Question: Why is there a todo in this snippet and what has to be done so that it
can be removed?
Answer: According to the TODO comment there is a section needed until all core
plugins are migrated. Then it can be removed.

Question: What is the task of test generate cookiecutter project defaults?
Answer: The task is to test the function generate cookiecutter project.The test case
creates some temporary files. and then calls generate cookiecutter project with the
path to these temporary files. Finally, it is tested that value is in the result and the
status is true. This probably indicates that the cookiecutter project was successfully
initiated.

Figure 4.5: Three example Q&A pairs for the source code semantic modality

In comparison, the Q&A pairs of the dependency dimension are different. The
questions are always focused on libraries, modules, or files. Generally, the answers
for this dimension are shorter, less about providing a description and more about
producing verifiable information.

In the last dimension, the Q&A pairs from the meta-information dimension in
Fig. 4.7 focus more on general information about the repository. The questions can
be short, such as in the first example, or longer when asking an open-ended question,
as seen in the second example. This dataset is the most challenging for the models
because the format and type of the Q&A pairs are pretty different.



4.4. DATA ANALYSIS 39

Question: Which libraries are directly imported in the file ”spy-
der/plugins/ipythonconsole/utils/manager.py”?
Answer: The directly imported libraries in the file ”spy-
der/plugins/ipythonconsole/utils/manager.py” are: os, signal, psutil, and asyncio.

Question: Is the module qtpyQtCore instantiated in the file edgeline.py?
Answer: No, there is no instantiation of the module qtpyQtCore in the file edge-
line.py.

Question: What file is imported from the file ’decoration.py’ within the program-
ming repository?
Answer: spyder/utils/palette.py

Figure 4.6: Three example Q&A pairs for the Dependencies modality

Question: What version of Python is required to run Spyder?
Answer: Spyder requires Python 3.8 or higher as its core language.

Question: What are the main components of the Spyder IDE?
Answer: The software has five main components:
1. Editor: Multi-language editor with real-time code analysis tools, automatic code
completion, and go-to-definition.
2. Interactive Console: IPython consoles with workspace, debugging support, and
inline plot rendering.
3. Documentation Viewer: Real-time documentation rendering with Sphinx for
classes and functions.
4. Variable Explorer: Inspect any variables, functions, or objects created during your
session.
5. Development Tools: Static analyzer, interactive debugger, profiler, project sup-
port, file explorer, and full regex search.

Question: What is the first step to be taken after releasing a new version of Spyder?
Answer: The first step is to publish the release on the GitHub Releases page. This
involves copying the contents of the previous release description, updating relevant
information and links to point to the new Spyder version and changelog entry, and
editing the previous release description to only have the changelog line.

Figure 4.7: Three example Q&A pairs for the Meta Information modality
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4.4.2 Token & Sentence Analysis

To better understand the dataset, this subsection describes the further analysis of
the Q&A pairs on token and sentence levels. Fig. 4.8 shows the number of tokens
used for each question per dataset dimension. On the y-axis, the number of tokens
is displayed, while the x-axis displays the different dataset modalities. The plots
show that the median (solid line) and the mean (dotted line) are slightly the same
in all three modalities. A one-way analysis of variance (ANOVA) was conducted to
test whether the distributions of the datasets were different. The ANOVA revealed
no significant effect of the factor ’Dimension’ on the dependent variable number of
tokens (F (2, 322) = 1.91, p = 0.15). This leads to the conclusion that the length of
the questions is consistent across all datasets.
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F(2, 322) = 1.91, p = 0.15, ns.

Figure 4.8: number of tokens per question and split per dataset.

Compared to that, the number of tokens in the answer is differently distributed.
Fig. 4.9 shows the number of tokens per dimension. Descriptively, the distributions
of the datasets show differences. While the source code semantic and the dependen-
cies dimension have many short answers and a few longer answers, the variance in
the meta-information dimension is much larger. As the plot suggests, the ANOVA
revealed a significant effect of the ’Dimension’ factor, indicating that the number of
tokens in the datasets differs significantly (F (2, 322) = 58.55, p < 0.001, η2= 0.266).
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The η2 effect size indicates that the effect can be classified as a small effect follow-
ing the convention of Cohen [109]. In practical terms, the model needs to generate
answers of different lengths based on the varying lengths of the modality’s answers,
which can be more challenging than constantly generating the same length.

Code Semantic (N=140) Dependencies (N=135) Meta-Information (N=50)

0

20

40

60

80

100

120

140

Dataset Dimension

N
u

m
b

e
r
 o

f
 T

o
k
e
n

s

One-Way ANOVA: 

F(2, 322) = 58.55, p < 0.001, η 
2
 = 0.266

Figure 4.9: number of tokens per answer and split per dataset.

Another analysis was done for the number of sentences for each dimension. Fig.
4.10 shows the mean number of sentences per question and answer, with error bars
representing the standard deviation of the distribution. Compared to the number of
tokens with a slight but existing variance, all distributions of the sentences showed
a small to non-existent variance. There were questions with more than one sen-
tence in the code semantic dimension, while only single-sentence questions existed in
the dependencies and meta-information dimension. Another one-way ANOVA was
conducted on the dimension factor for the number of sentences in the questions, re-
vealing a significant effect on the ’Dimension’ factor. This indicates that the number
of sentences is significantly different between the three modalities (F (2, 322) = 9.99,
p < 0.001, η2= 0.058). However, the low variance of the distributions of dependen-
cies and meta-information must be considered in the interpretation, and the very
low effect size should be approached with caution.

The analysis of the number of sentences in the answers reveals some differences.
The dimension dependencies necessitate that answers be single-sentence only, in
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keeping with the questions. However, the variance of the code semantic and meta-
information answers shows a significant difference from the questions. This is in
line with the results from the number of tokens, which show that the answers from
the meta-information are very different in length and contain very different numbers
of sentences. The conducted one-way ANOVA revealed, as well as for the answers,
a significant effect on the factor ’Dimension’ ((F (2, 322) = 21.05, p < 0.001, η2=
0.116). As with the questions, the low variance of the modalities is a problem for the
interpretability of the ANOVA, as individual samples have a significant influence.
Nevertheless, according to Cohen’s convention, with an effect size of η2= 0.116, the
effect can be classified as small following the convention of Cohen [109].
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Figure 4.10: distribution of question keywords per dataset dimension

4.4.3 Question Keyword Diversity

Another noteworthy observation from the dataset pertains to the percentage of ques-
tion keywords used in each dimension, as illustrated in Fig. 4.11. For each Q&A
pair question, the question keywords were extracted using a regex that extracts com-
monly used question keywords. The extracted keywords are What, Which, How,
Why, Where, Who, From, and When. According to the source code, around 50% of
the questions use ’What’ as a keyword, and nearly 20% use ’Which’. This suggests
that, in most cases, the questions ask for a subject or object. It is also interesting
to note that 12% of the questions use multiple keywords. In such cases, the dataset
sample aims to achieve two different objectives. For example, ”Which parts need to
be instantiated in the constructor of the class ApplicationsDialog, and what is the
task of parts?”.
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Regarding the dependencies dimension, question keyword distribution differs from
the previous dimension. In this case, only 26.7% of samples use the word ”What,”
25% use ”Which,” and 32.6% do not use any original question keyword. Most of
the samples in the ”Others” category utilize indirect questions such as ”Is the...”
or ”Does the...”. The distribution of meta-information differs significantly from the
distribution of the other two modalities. In the former, there is a high concentration
of the question word ’What’, which accounts for 68% of the overall questions. On
the other hand, 10% of the queries still employ ’How’ as a question word, typically
when asking for instructions or a ’how-to’ guide. Overall, the distribution in all three
modalities is noticeably distinct, and this explains the challenges the model faces in
performing well across all modalities.
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Figure 4.11: Mean number of sentences per dataset dimension.

4.5 Challenges & Limitation

This section outlines the challenges and limitations regarding the created dataset.
Despite the best conscience and many considerations, the following things must be
considered if the dataset should be used as an evaluation dataset.

Small dataset size The SpyderCodeQA dataset consists of 325 samples, which is
a significant number. In comparison, benchmarks like HumanEval only contain 164
samples. Considering the time and resources required for manual sample creation is
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essential. Other datasets in this research area, such as CS1QA [90] with 9k samples
and CodeQA [88] with approximately 200k samples for the code comprehension task,
have much larger sample sizes than the dataset introduced in this thesis. However,
these datasets were not manually verified and only created from online data sources,
ensuring a lower data quality. Nevertheless, the generalizability and value of the
dataset could be higher.

Different Knowledge Level of Creators For the source code semantic dimen-
sion, the Q&A pairs were created by humans. While the number of participants was
with ten people relatively low, also the knowledge level of the participants about the
Python programming language and the working experience was high. That could
lead to a bias in the difficulty of the questions asked. Assuming you want to test
whether a model can answer simple questions for beginner programmers, the ques-
tions from the semantic dimension may not necessarily be helpful and accurate.

Unknown repository The individuals who took part in the study considered
themselves experts in Python. However, none of them had previously contributed to
the Spyder IDE repository, which means that none of the participants were experts
in this specific code base. Although this may not pose a disadvantage, it does suggest
that the questions and answers provided may not be as in-depth as those provided
by a Spyder IDE contributor.

Low heterogeneity of the Q&A pairs in dependency dimension The Q&A
pairs in the source code semantic dimension have a great variety, but the ones gen-
erated automatically in the dependency dimension are often very similar. This is
to assess the model’s ability to answer these questions accurately. However, a more
comprehensive range of questions would be preferable to test the model’s perfor-
mance as a coding assistant. Therefore, a further improvement of the dataset would
be adjusting the model’s system prompt that generates the Q&A pairs or developing
a new way to measure the dependencies of the different repository components.

Only 1-hop Dependencies The relationship between the two source code files
is adequately described using the dependencies dimension. However, the dataset
dimension lacks a mapping that goes beyond linking two files. Therefore, it would
be beneficial to devise a way to create 2-hop or even n-hop structures that the models
can comprehend.
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Meta-information dimension quality is not measured The quality of the
source code semantic dimension dataset was ensured through a rating process con-
ducted by participants. The dependency pairs were also manually verified to be
correct. However, the meta-information dimension lacks quality testing. The Q&A
pairs were created exclusively by the author of the thesis, which could introduce
bias in the formulation of the questions and answers and the selection of information
to create the pairs. This dimension may not be as objective as others, as different
people may create different pairs.



5. Method

The methodology section provides a comprehensive overview of the methods and
techniques used to address the research questions. To begin with, in Sec. 5.1, an
explanation of the data preprocessing procedure that involves generating chunks from
the repository is presented. This transformation in the correct format is essential
so that the Self-Alignment can generate training datasets and the vector database
of the RAG pipeline can be used effectively. An overview of the model structure of
Mistral 7B is presented in Sec. 5.2. This is followed by a detailed explanation of the
Self-Alignment pipeline that is the fundament of the fine-tuning approach in Sec.
5.3. How the chunks were stored in the vector database and how they were queried
in the RAG pipeline is described in Sec. 5.4. The chapter concludes by explaining
the LLM-as-a-judge approach in Sec. 5.5, which is the evaluation method used to
measure the performance of the models in this thesis.

5.1 Data Preprocessing

The source code needs to be preprocessed to create a coding assistant for the Spyder
IDE repository. This involves formatting all files to fit the desired structure for
training models using Self-Alignment or creating a vector database for the RAG
pipeline. A pipeline was created to preprocess source code files and other data
into suitable samples, as shown in Fig. 5.1. The repository was fetched at commit
0f8398a, a version of the release of Spyder 5.x. First, all files from the repository
were loaded using individual loader classes for each file type. Ensuring every file was
represented correctly and preserved in the correct format was essential. After loading
the documents, they were divided into smaller chunks using a splitter that uses
individual separators per file type. For example, for Python files, the separators were:
\nclass, \ndef, and \n\tdef. Whereas for Markdown files, they were: \n#{1,6},
```\n, \n\\*\\*\\*+\n, \n---+\n, \n___+\n, \n\n, \n. The text was divided
into chunks of a maximum of 1500 characters, with each chunk overlapping by 200
characters, based on the blog post by Rubens Zimbres1.

The code chunks are further processed using the Metadata Extractor as shown
in Fig. 5.1. This component extracts all the available metadata for each chunk of
code. The metadata includes the file name, module, and flag indicating if the code
chunk contains a class or function. The start and end lines of the code chunk are also

1https://shorturl.at/uObdA
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Figure 5.1: Data Preprocessing Pipeline to generate data samples. First, all files
from the Spyder IDE repository are loaded with individual Loader classes. That is
followed by a Splitter, which splits the documents into chunks depending on the file
type. All chunks are then further processed into the Meta Data Extractor, which
creates all metadata. The metadata is added to the chunks in the last step and
exported in a .jsonl file.

included. All the imports from the file were also added to the metadata to ensure
that each code chunk had information about the imported artefacts. This ensures
that all the external artefacts are visible, regardless of whether the code chunk is in
the middle or at the end of a file. In the final step, the extracted metadata were
added to the chunks and saved as .jsonl file and uploaded into Huggingface.2 Fig.
B.1 shows an example chunk for a Python file and Fig. B.2 for a Markdown file in
Appendix B.

5.2 Model Details

This section gives an overview of the architecture of Mistral 7B [22]. It is used as
the base model for fine-tuning and interacting with the RAG pipeline. It was chosen
because it outperforms Llama 2 7B, 13B [1] and CodeLlama 7B [1] on almost every
benchmark and is, therefore, one of the best open-source models that can generate
natural language and code at the same time. Mistral 7B is based on the transformer
architecture [38] and, using similar SOTA techniques like pre-normalization using
RMSNorm, SwiGLU activation function and rotary positional embeddings that were
used in the architecture of Llama [11] and Llama 2 [1].

In addition to that, Mistral 7B utilizes two attention mechanisms: Grouped-

2https://huggingface.co/datasets/pesc101/spyder-ide-respository-raw-chunks

https://huggingface.co/datasets/pesc101/spyder-ide-respository-raw-chunks
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Table 5.1: Model Details extracted from the original implementation [22].

Dimension Layers Head Dimension Hidden Dimension N Heads

Mistral 7B 4096 32 128 14336 32

Query Attention (GQA) [110] and Sliding Window Attention (SWA) [111]. These
mechanisms enhance performance and efficiency in various ways. GQA accelerates
inference and reduces memory requirements during decoding, enabling larger batch
sizes and greater throughput. SWA is a more efficient and cost-effective way of
handling longer sequences, often a limitation in LLMs. Combining these attention
mechanisms significantly improved the model’s performance and efficiency compared
to the Llama family models. Furthermore, Tab. 5.1 shows the model architecture
parameters.

5.3 Self-Alignment

This section presents the conception and implementation of the Self-Alignment pipeline,
which is necessary to answer the research question RQ1 defined in Sec. 1.1. Because
it can be difficult and time-consuming to create Q&A data for source code files, and
suitable datasets are often unavailable or non-existent, using data augmentation to
create a dataset is a worthwhile solution. The Spyder IDE’s files are available in
chunks after data preprocessing (as described in Sec. 5.1). Still, for the model to
learn to answer questions about them, it is necessary to use samples in the form
of Q&A pairs as training data. Therefore, Self-Alignment is used in this thesis to
generate the required training data as described in Sec. 3.2. This thesis approach
differs from Self-Alignment cause it consists of several sequential prompt templates
to help the model generate the most accurate Q&A samples possible, as described
in Fig. 5.2.

Self-Augmentation The repository’s code chunks are passed as input into Mistral
7B in the first step. In addition, a question is selected from a question corpus from
Chap. 4 and is also used as the input to the model. The questions are categorized
into three categories to reflect the dimensions of a repository, as explained in Chap.
4. The list of used questions can be found in Appendix C in Fig. C.1 for Code
Semantics, in Fig. C.2 for Dependencies and in Fig. C.3 for Meta-Information.
The system prompt that generates the teacher data D0 is in Appendix D on Fig.
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Figure 5.2: Overview of the Self-Alignment pipeline inspired by Li et al. [29]. 1.
Self-Augmentation: The repository chunks and a randomly selected question from
the question corpus are combined in the System prompt (Shown in Appendix D in
Fig. D.1). Mistral 7B generates the Teacher Data D0 based on this. The output
is further passed, and Mistral generates the Q&A Dataset D1. 2. Self-Curation:
Q&A pairs are curated on a scale of 1-5 to ensure data quality and filtered to create
the final Curated Dataset D2. 3. Train Model: The Curated Dataset D2 is used
to fine-tune Mistral 7B.

D.1. The prompt is designed to explain each line of code individually so that the
model can generate as much context and semantic information about the source code
as possible. The output is a natural language description mixed with source code
explaining the repository chunk.

In the second step, the output generated in the previous step is passed back into
Mistral as input, generating the dataset D1. The dataset needs to be converted into
Q&A format to create an aligned Instruction model despite the generated data being
full of code explanations. Mistral’s task is to generate Q&A pairs from this source
code explanations. The system prompt for the Q&A data is shown in Fig. D.2. It
instructs the module to include file and module names to ensure the model always
knows the file the question aims for. The prompt also specifies that code should
be added to the answer. The assumption is that answers regarding a repository
should include code, not only natural language, to improve the model’s ability to
generate code. First, the model’s output format is specified to include “Question:“
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and “Answer:“ tags for generated questions and answers, respectively. This helps to
parse the strings afterwards and extract only the Q&A pairs from the output.

Self-Curation To generate high-quality training data, the last step of the pipeline
involves curating the data samples, referred to in Fig. 5.2 as D2. As demonstrated
by Li et al. [29], generating data samples without criteria can result in poor or
inappropriate training data. To address this issue, they proposed Self-Curation, in
which the base model Mistral 7B rates the data samples from D1. Therefore, the
model evaluates the Q&A pairs on a scale from 1 to 5 in this step. The system prompt
is displayed in Fig. D.3. The model evaluates whether the response is an excellent
example of how an AI Assistant should respond to user instructions. A score of 1
indicates that the answer is incomplete, not precisely what the user asked for, or
off-topic. In contrast, a score of 5 represents a perfect answer from an AI assistant
that is structured and thoroughly answers the user’s question. All examples with a
score lower than four are removed from the dataset.

Summary The Self-Alignment pipeline was executed for the 7943 chunks gener-
ated as described in Sec. 5.1. That included all source code, config and markdown
files. It is important to note that the pipeline to generate Q&A examples can be
executed multiple times in a row. A detailed analysis of generating for each chunk
multiple Q&A is further discussed in Sec. 6.5.1.

5.4 Retrieval-Augmented Generation Pipeline

This section presents the conception and implementation of the RAG pipeline to
answer the research question RQ2 as defined in Sec. 1.1. The main idea is that
questions about the repository can be answered with the proper context, e.g., the
right chunk of information. Therefore, the RAG pipeline consists of a vector database
storing the code chunks in a vector representation. The vector representation allows
for comparison and for determining semantic similarities between chunks. If two
chunks have the exact words or semantics, the similarity score is high; the similarity
score is low if the two chunks are less similar. This enables the search for similar
chunks and their retrieval, which the model can use to generate the desired output.
The implemented RAG pipeline in this thesis is illustrated in Fig. 5.3. Like in the
Self-Alignment pipeline, the preprocessed chunks are used. In this case, they were
transformed to a 768-dimensional vector representation using the embedding model
Instructor [35]. Compared to other models, is Instructor [35] a multitask model
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Figure 5.3: Overview of the RAG pipeline inspired by Lewis et al. [13]. 1. Database
Creation: Source Code files are embedded using Instructor [35]. Chroma is initial-
ized and indexed with the embedded source code files. 2. Query Pipeline: queries
are transformed into embeddings following the dotted line. Then, through a simi-
larity search, the n-chunks are retrieved and combined as Context Query Prompt.
That prompt is passed to the generator, which produces the user response.

that can be used without fine-tuning on several downstream tasks, e.g. retrieving
code snippets. It is a pre-trained model with 110 million parameters that generate
embeddings for retrieval, classification, or semantic search tasks.

Initialization The data is stored in the in-memory version of Chroma3, an opti-
mized database for storing vector representations, e.g. embeddings and provide an
interface to query the chunks efficiently. The database is initialized by assigning an
ID to each chunk and indexing the metadata, such as file name, module name, start
and end line of the chunk and the associated imports. The creation of the index,
which included the calculation of the embeddings, took approx. 25-30min. This
ensures a quick response time and enables data retrieval based on metadata queries.

Retrieval Once the vector database is initialized, the user can send requests.
Whenever a user sends a request to the RAG pipeline, the request goes through
several steps shown in Fig. 5.3. First, the request is transformed into a standardized
768-dimensional vector representation using Instructor. Then, each chunk’s simi-

3https://www.trychroma.com

https://www.trychroma.com
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larity score (cosine similarity) is calculated to retrieve the chunks with the highest
similarity from the vector database. Furthermore, filters such as the file and module
names are applied to minimize the search scope. The n-chunks with the highest
similarity are then retrieved, and the original content of the chunk is passed on to
the generator.

Generation In the final step of the process, the base model Mistral 7B acts as
the generator that produces the response on behalf of the user. The system prompt
generated the response is displayed in Fig. D.4. Initially, the model is instructed to
generate an answer based on the task context. Then, based on the specific number of
requested chunks n, all the chunks are appended to the prompt. Finally, the user’s
question is added to the prompt. The generator then creates the response from the
prompt template, which is forwarded to the user.

Summary This pipeline stores the preprocessed chunks into a vector representa-
tion and can retrieve them based on the user’s query. The LLM generates the user’s
response based on the retrieved context. The expectation is that this helps the LLM
better provide suitable answers to the user’s requests.

5.5 LLM-as-a-judge

This section presents the conception and implementation of the LLM-as-a-judge ap-
proach to evaluating model performance, e.g., to answer the research questions.
Evaluating coding assistants is challenging because of their vast capabilities, the
inadequacy of existing benchmarks in measuring human preferences, and the time
required to complete this evaluation manually. The judgement is made even more
difficult because the questions can be answered differently but can still be correct.
This applies particularly to writing code and answering questions about a repository,
as this thesis will examine. Therefore, the performance of models on the Q&A eval-
uation dataset created in Sec. 4 was evaluated in pairwise comparison using strong
LLMs (primarily GPT 3.5/4) as judges [37].

Fig. 5.4 shows the thesis’s model-based pairwise comparison pipeline. It is in-
spired by the proposed approach of Zheng et al. [37]. For each Q&A pair in the
evaluation dataset, the two models M1 and M2 receive the question of the Q&A
pair. The models follow the prompt template shown in Fig. D.5. Firstly, the model
is directed to behave like a coding assistant and to provide answers to questions
related to the Spyder IDE repository. The models are then provided with general
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Model M1

Model M2 Answer A2

Answer A1

Sys. Prompt
& AnswerQuestion Judge

Winner
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Figure 5.4: Overview of the LLM-as-a-judge pairwise comparison evaluation [37].
The LLMs M1 and M2 are tested against each other using questions from the eval-
uation dataset. Both models answer the related question, described here as A1 and
A2. The judge (GPT-3.5) receives the system prompt shown in Fig. D.6 that in-
cludes the original Question, the correct Answer, both answers of M1 and M2, and
the instruction to judge the quality of both answers and determine the outcome as
winner, tie good, tie bad, or looser.

information about the repository and reminded always to answer honestly and not
provide false information. Finally, the evaluation dataset question is given as input
to the models, and the models generate the answers A1 and A2.

After the models generate the answers, the judge is prompted to judge them. The
prompt template for the judge is shown in Fig. D.6. The judge model is instructed in
the system prompt to act as a judge to evaluate the quality of responses provided by
two AI assistants. It is given instructions on how to evaluate and is required to give
the output in the format: [[A]], [[B]], [[C]] or [[D]] to indicate its decision. The output
[[A]] signifies that Model A generated the better response, while [[B]] indicates that
Model B generated the better response. If the judge decides on [[C]], it means that
both answers are equally good (Tie Good), and if the judge decides on [[D]], it means
that both answers are incorrect (Tie Bad). The judge then receives the question with
the related correct answer, and the generated answers are A1 and A2. As input, the
question (labelled as ”User Question” in the prompt), the answers (labelled as a
”Model Solution” in the prompt), and both answers A1 and A2 are inserted. To
ensure clarity, each piece of information is enclosed within square brackets, with an
identifier indicating the type of information it contains.
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Position Bias In their original paper, Zheng et al. [37] demonstrated that position
bias can be a significant limitation when using LLM-as-a-judge. This bias refers
to the LLM’s tendency to favour certain positions over others, which can result
in potentially biased decisions. It is crucial to address this bias to ensure that
decision-making is fair and objective. It is worth noting that position bias is not
unique to machine learning and can also be observed in human decision-making
[112]. Therefore, as suggested by the paper, the order of models was randomized for
each Q&A pair to prevent any bias towards one of two models used in a dataset. This
was done to ensure that a model was not rated better simply because its answers
were presented at the beginning or end.



6. Experiments

This chapter describes the experiments conducted to measure the performance of
the developed methods and compare them with existing approaches. The objective
is to evaluate the LLM Self-Alignment method, the RAG pipeline, and their combi-
nation to determine how much the RAG pipeline contributes to the final score. The
first Sec. 6.1 gives an overview of the benchmarks HumanEval and MBPP that are
used to measure the code generation abilities (Subsec. 6.1.2). This is followed by
the implementation details of the LLM-as-a-Judge evaluation (Subsec. 6.1.1), which
measures the performance on repository code Q&A.

To address the first research question (RQ1), comprehensive information on the
experiments focusing on Self-Alignment can be found in Sec. 6.2. This includes a
detailed overview of the training parameters in Subsec. 6.2.1, the performance on the
SpyderCodeQA dataset (Subsec. 6.2.2), and the benchmarks HumanEval and MBPP
(Subsec. 6.2.3). In response to the second research question (RQ2), a presentation of
all the details for the RAG pipeline is available in Sec. 6.3. This section will overview
the experiment structure and present the results on the SpyderCodeQA evaluation
dataset (Subsec. 6.3.1). Subsequently, the combined results of both pipelines to
answer the third research question (RQ3) are presented in Sec. 6.4.

Various additional experiments exploring different hyperparameter combinations
are discussed in Sec. 6.5. The aim is to determine the optimal size of the training
dataset. One experiment, detailed in Subsec. 6.5.1, focuses on generating datasets
of varying sizes using Self-Alignment and comparing their effectiveness on Spyder-
CodeQA. Another set of experiments is described in subsection 6.5.2 to determine
whether the use of a heterogeneous data set improves the performance of the model.
Therefore, the effect of adjusting the temperature and Top-P parameters in the Self-
Alignment approach when generating D0 and D1 is investigated. Finally, in Subsec.
6.5.3, an experiment concentrates on comparing the performance of the judges in
the LLM-as-a-Judge evaluation. In addition to GPT-3.5, GPT-4 Turbo is used as
an alternative model for judging. Finally, the chapter ends with a summary and
discussion of the achieved goals in Sec. 6.7.

6.1 Metrics

This section discusses the performance measured using LLM-as-a-Judge in Subsec.
6.1.1, as well as the metrics of HumanEval and MBPP in Subsec. 6.1.2.

55
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6.1.1 LLM-as-a-Judge

For measuring the performance of the LLMs regarding repository-level program-
ming, the created evaluation dataset is used to execute an LLM-as-a-Judge evalua-
tion. Each LLM-as-a-Judge evaluation was performed in pairs of two models. The
base model was usually tested against a modified model (fine-tuned, RAG, or both
combined) as described in Sec. 5.5. The parameters for creating the answer were a
temperature of 0.7, a Top-P of 0.9, and a max token of 2500. These same parameters
were used for the judge as well. The metric used is the average win rate, which is the
proportion of Q&A pairs in which the judge has decided that the model’s answer is
better than the other or not a Tie. The average is calculated over k runs executed
with the same parameters to take into account deviations of the judge, as this evalu-
ation method is not deterministic due to the randomized distribution of the order of
the models’ answers and the use of an LLM as a judge. In addition to the decision
for one of the two models, the judge could also evaluate Tie Good (both gave the
same good answer) and Tie Bad (both answered the question incorrectly). As a last
option, the evaluation could result in ’No value’ when the judge does not return a
parseable result in the output.

6.1.2 Benchmarks

In addition to evaluating whether a coding assistant has become better at answering
questions about a repository, benchmarks aim to determine whether the models’ code
generation abilities have changed. Therefore, two benchmarks are used to evaluate
the general coding abilities of the models after fine-tuning.

HumanEval HumanEval is a dataset introduced by OpenAI [5]. It comprises 164
handwritten Python problems, including a function signature, docstring, body, and
several unit tests. This dataset is designed to evaluate the functional correctness of
LLM on coding tasks. The models are given a function signature as a prompt to
generate code in a zero-shot setting. p = 0.95 for Top-P and t = 0.2 for temperature
were used for evaluation. The functional correctness of the LLMs is evaluated by
computing their pass@k metrics with k = 1 and k = 10, using the unbiased estimator
proposed by Chen et al. [5]. The pass@k considers the test successful if one of the k
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samples produced passes all the tests. It is computed as follows:

pass@k := E
Problems

1−
(

n− c
k

)
(

n
k

)
 (1)

where n is the total number of samples and c the number of correct samples and
E the expected value.

MBPP The Mostly Basic Programming Problems (MBPP) dataset consists of 974
programming tasks designed to be easily solvable by new programmers [36]. Out of
these, only 500 samples are used for evaluation, as the remaining samples are utilized
for training or testing purposes. Each task includes a detailed description in English,
a code solution, and three automated test cases. The prompt and generation process
uses a few-shot setting in InCoder-style prompts. The prompt is provided to the
model as a document, and only one solution is included to help the model identify
the required function name for the unit tests. The prompt is structured as follows:
’\n{description}\n{test example}\n’. A single generation per problem (pass@1)
is used, where the model only gets one chance to solve each problem. However,
the approach of Chen et al. [5] is still followed, similar to HumanEval, for pass@k
estimation. Solutions are generated for each problem (in this case) to estimate the
success rate for a sample (n = 10).

6.2 Self-Alignment

This section presents the experiments done for Self-Alignment. First, the model
training parameters are shown in Subsection 6.2.1, followed by the presentation of the
results on the evaluation dataset in Subsection 6.2.2 and the results on benchmarks
in Subsection 6.2.3.

6.2.1 Model Trainings Pipeline

This section overviews the fine-tuning training processes. As the base model, the
Mistral 7B Instruct model v0.21 was trained on the Self-Aligned dataset. It is im-
portant to note that the dataset samples are distinct for each run of the Self-Aligment

1https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
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pipeline. Therefore, the following explanation of the dataset refers to one execution
but can vary when executing it again.

The best results on the benchmarks and the LLM-as-a-Judge evaluation were
produced by executing the Self-Alignment pipeline twice. When the whole pipeline
is executed, the Self-Augmentation that creates the teacher dataset D0 is executed
twice for each of the 7943 chunks. That results in 15886 data samples that are further
processed to the creation step of the Q&A dataset. The data samples are then given
to the second step of the Self-Augmentation to create the Q&A dataset D1. After
the Self-Curation, 1452 samples were removed, resulting in 14434 Q&A pairs used
as training data for the base model.

The base model Mistral 7B was trained using supervised fine-tuning (SFT) [30]
and 4-bit Quantization Low-Rank Adapters (QLoRA) [31]. The supervised training
procedure is based on the approach proposed by Ouyang et al. [30] since the dataset
consists of pairs of prompts (such as questions) and outputs (such as answers). The
use of QLoRA is based on the original implementation by Dettmers et al. [31] in
2023, which was utilized in the HuggingFace implementation2. More fundamental
details on the training techniques can be found in Sec. 2.3 and 2.3.2.

The training parameters are shown in Tab. 6.1. The model has trained five
epochs with batch size 32 on an NVIDIA RTX A6000 with 49GB VRAM. The
computing cluster consisted of 128 CPUs and 1TB of RAM. The model was trained
using BF16 precision, which reduces the model’s memory consumption and improves
performance and gradient checkpointing to reduce memory accumulation.

The following settings were used for the optimization: the cross-entropy loss was
used as a loss function, while the Adam optimizer was used with β1 = 0.9, β2 = 0.999,
following the implementation by Zheng [95]. The learning rate was set using a cosine
decay scheduler, starting with an initial learning rate of 1e− 4 and a warm-up ratio
of 0.03. The loss and learning rate for each step of the training runs can be found in
Appendix E in Fig. E.1 and Fig. E.2. During each training run, the loss consistently
decreased, with a significant drop at the end of each epoch. The learning rate also
behaved as expected, with the warm-up ratio leading to an initial increase in the
learning rate, followed by a gradual decrease over the training duration.

The following parameters were chosen for quantization: LoRA R and Alpha 64,
following the approach of equalizing the number of R and Alpha to reduce noise, as
suggested in this blog post3. LoRA dropout was set to 0.1, and the weights were cal-
culated in 4-bit using normalized float-4 (NF4) for the calculation, as recommended
by Dettmers et al. [31].

2https://huggingface.co/docs/peft/index
3https://shorturl.at/GvgIY

https://huggingface.co/docs/peft/index
https://shorturl.at/GvgIY
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Table 6.1: Model Trainings Configuration for Fine-tuning Mistral 7B

Category Parameter Value

Environment

Number of GPUs 1
Mem per GPU 49140

Number of CPUs 128
RAM 1TB

Model

Model parameters 7B
Epochs 5

Batch Size 32
BF16 Precision Enabled

Gradient Accumulation Steps 1
Gradient Checkpointing Enabled
Max Gradient Norm 0.3

Optimization

Loss function L Cross entropy
Optimizer Adam

Optimizer parameters β1 = 0.9, β2 = 0.999
Learning rate scheduler cosine decay
Initial learning rate 1e− 4
Warmup Ratio 0.03

Quantization

LoRA r 64
LoRA α 64

LoRA Dropout 0.1
4-bit Precision Enabled

4-bit Compute Dtype Float16
4-bit Quantization Type NF4
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Flash Attention 2 [113] was used to speed up model training by a factor of 3
[113]. For the dataset with 14434 samples, the five-epoch training took four and a
half hours. After the training, the LoRA layers were merged into the base model
Mistral 7B to reduce the response time when using the model for inference.

6.2.2 Results on SpyderCodeQA

The following section presents the evaluation results of the fine-tuned model on the
SpyderCodeQA dataset using LLM-as-a-Judge evaluation. The evaluation process
involved passing 325 Q&A pairs to the base and fine-tuned models, following the
LLM-as-a-Judge evaluation procedure. The answers generated by the models were
then evaluated by GPT-3.5 Turbo, which acted as a judge. Additional details on
this process can be found in Sec. 5.5.

The average win rate for k = 3 runs is shown in Fig. 6.1 as experiment (a) on
the left side. The results suggest that in approx. 57% of the Q&A pairs, the answer
of the fine-tuned model is preferred, while in approx. 36% of the pairs, the answer
of the base model is preferred. In 5% of the pairs, the judge did not provide a valid
answer, and in under 2% of the pairs, the judge decided on a Tie. The error bars,
indicating the standard deviation of the k runs, are low for all possible outputs. That
shows, on the one hand, that the LLM-as-a-Judge evaluation method is consistent
over several runs, although the order of the models’ answers will be randomized.
On the other hand, fine-tuning the model improves the ability to answer questions
regarding the Spyder IDE repository.

In addition to the results on all Q&A pairs, the model’s performance on each
dataset dimension gives exciting insights. The models performed best on the human-
labelled dimension code semantics. With 62.38%, the model won almost two-thirds
of the Q&A pairs. For the dependency dimension, the model was also better than
the base model but had only a 54% win rate. The model performed the worst of
all experiments in the meta-information dimension, indicating that the fine-tuning
process from Self-Alignment reduced its performance in this dimension. The reasons
are discussed in Sec. 6.7, where the results are categorized.

6.2.3 Results on Benchmarks

The following section presents the evaluation results of the fine-tuned model on the
HumanEval [5] and MBPP [36] benchmarks. Fig. 6.2 presents the percentage of
solved tasks by the base model Mistral 7B and the fine-tuned model. For each
benchmark, the pass@1 and pass@10 are calculated. However, the results for both
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Table 6.2: Average Win Rate in % for each dimension and experiment respectively
on the SpyderChatQA. Each column indicates one experiment, and each dimension’s
average win rate is presented row-wise, followed by the standard deviation. Ex-
periment (a) compares the finetuned Mistral 7B against Mistral 7B. (b) compares
Mistral 7B with a RAG pipeline against Mistral 7B. (c) compares finetuned Mis-
tral 7B with a RAG pipeline against Mistral 7B. (d) compares finetuned Mistral 7B
against GPT 3.5. Standard deviation is calculated from k = 3 runs. Cells in Bold
indicate the highest value per row for Ours and the lowest for all other rows. The
cells underlined indicate the best value for all experiments with Mistral 7B as a base
model.

(a) Finetuned
vs. Mistral

(b) RAG
vs. Mistral

(c) Combined
vs. Mistral

(d) Combined
vs. GPT 3.5

Code Semantics (N = 140)

Ours 63.1% ± 3.2 62.38% ± 1.1 70.71% ± 3.5 78.33% ± 3.8
Base Model 27.86% ± 0.7 32.86% ± 0.7 25.24% ± 2.9 16.19% ± 2.8
No Value 7.38% ± 1.8 3.33% ± 1.1 3.81% ± 1.5 4.76% ± 1.5
Tie Bad 1.19% ± 0.4 0.71% ± 1.2 0.35% ± 0.5 0.71% ± 0.7
Tie Good 0.71% ± 1 0.71% ± 0.7 0% ± 0 0% ± 0

Dependencies (N = 135)

Ours 59.26% ± 2.56 54.07% ± 2.5 61.97% ± 1.9 74.07% ± 1.5
Base Model 35.56% ± 1.5 39.26% ± 1.9 33.1% ± 2.1 17.29% ± 1.1
No Value 4.2% ± 2.3 5.68% ± 0.8 4.2% ± 0.4 8.15% ± 1.3
Tie Bad 0.74% ± 1.3 0.49% ± 0.4 0.74% ± 1 0.25% ± 0.42
Tie Good 0.37% ± 0.5 0.49% ± 0.8 0.74% ± 0 0% ± 0

Meta-Information (N = 50)

Ours 38.67% ± 3.2 50.67% ± 1.1 51.33% ± 3 50.67% ± 5
Base Model 58.67% ± 6.1 42% ± 2 42.67% ± 2.3 40.67% ± 4.2
No Value 2% ± 2 6% ± 2 6% ± 2 7.33% ± 7.7
Tie Bad 0.67% ± 1.1 0% ± 0 0% ± 0 0% ± 0
Tie Good 0% ± 0 1.33% ± 1.1 0% ± 0 2% ± 2.8
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Figure 6.1: Average win rate for each experiment using LLM-as-a-Judge evaluation
on the SpyderCodeQA. All experiments were executed with k = 3 where k is the
number of runs. The error bars indicate the standard deviation of k runs. Experiment
(a) compares the fine-tuned Mistral 7B against Mistral 7B. (b) compares Mistral
7B with a RAG pipeline against Mistral 7B. (c) compares fine-tuned Mistral 7B
with a RAG pipeline against Mistral 7B. (d) compares finetuned Mistral 7B against
GPT-3.5 Turbo.

benchmarks are pretty straightforward. The base model outperforms the fine-tuned
model on HumanEval on pass@1 with 6.8% and on pass@10 with 8%. Similar results
were found on the MBPP benchmark. Here, the effect is even higher, resulting in a
difference of 11.5% on pass@1 and 12.6% on pass@10. These differences indicate that
the general coding ability of the fine-tuned model has been reduced. One reason for
the poorer performance could be the modified prompt template, as the model was
not fine-tuned for pure coding tasks but for answering Q&A pairs.



6.3. RAG PIPELINE 63

34

48

27.2

40

pass@1 pass@10

0

20

40

60

80

100

35

51.6

23.5

39

pass@1 pass@10

Model

Mistral 7B

Ours

%
 o

f
 T

a
s
k
 S

o
lv

e
d

HumanEval MBPP

Figure 6.2: % of Tasked solved for HumanEval [5] & MBPP [36] for the base model
Mistral 7B and the fine-tuned model without RAG.

6.3 RAG Pipeline

This section presents the results of the RAG pipeline. As a base model for the RAG
pipeline, Mistral 7B Instruct v0.2 [22] was used.

6.3.1 Results on SpyderCodeQA

Each question of the SpyderCodeQA dataset was embedded, and n = 1 chunks
were retrieved from the vector database for every Q&A pair. Then, each pair was
passed once to the base model without context and once with the retrieved chunks
as context, following the procedure of the LLM-as-a-Judge evaluation.

The average win rate for k = 3 runs is shown in Fig. 6.1 as the second from the
left as experiment (b). For 57% of the Q&A pairs, the judge preferred Mistral 7B
with the RAG pipeline, which aligns with the Self-Alignment pipeline, considering
the standard deviation. Also, the win rate for the base model and the percentage of
Q&A pairs that were not correctly judged are similar to the Self-Alignment pipeline.

The results of the different dataset dimensions differ from those of the Self-
Alignment pipeline. Although both pipelines perform the same with a 1% difference
in the code semantics dimension, there is a difference of 2 standard deviations in
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the results for the dependencies. The Meta-Information dimension shows the most
significant difference, with the base model using the RAG pipeline outperforming the
base model. This suggests that the RAG pipeline supports the model in answering
questions related to the meta-information but is less valuable as supportive for an-
swering questions regarding dependencies. This effect is discussed further in Section
6.7.

6.4 Self-Alignment + RAG

This section discusses the results of combining both pipelines to test whether they
produce an interaction effect and outperform each pipeline. Therefore, the fine-
tuned model was used in the RAG pipeline. Similar to the procedure of the RAG
pipeline, each question of the SpyderCodeQA dataset was retrieved in a chunk of
n = 1. The LLM-as-a-Judge evaluation is performed as described in Sec. 5.5. The
fine-tuning and base models generated responses that were forwarded to the judge
for final evaluation.

Mistral 7B The results for the comparison with Mistral 7B as the base model
are shown in Fig. 6.1 as experiment (c), third from the left. Since this approach’s
average win rate is approximately 64%, which is higher than that of the two pipelines,
respectively, this suggests an interaction effect between the two approaches. Also,
the base model’s average win rate is lower than each pipeline, respectively.

The results become even more interesting when examining each dimension sep-
arately. The best results were achieved for the code semantics dimension. With an
average of 70% win rate, the model is in 7 out of 10 questions better than the base
model. That indicates that this combination is a further improvement regarding
code semantic questions. The results for the dependencies dimension are ambiguous.
Although the average win rate of 61% is higher than the average, it indicates that
the interaction of both pipelines improves the performance on the dependencies di-
mension. For the Meta-Information dimension, the results are disappointing. The
model shows a 51% average win rate, which is no improvement over the base model
if the standard deviation is considered. Reasons for that are discussed in Sec. 6.7.

GPT-3.5 Turbo In the last experiment, the Mistral 7B model was replaced with
GPT-3.5 Turbo. It’s worth noting that GPT-3.5 was utilized as the evaluator; there-
fore, it rated its own responses in this experiment. The specific model version used is
gpt-3.5-turbo-1106, which has a context window of 16,385 tokens and can output
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a maximum of 4,096 tokens. The training data included data up to September 2021,
and the model has not seen the Spyder IDE repository as training data. The results
for the SpyderCodeQA are presented in Fig. 6.1 on the right side, referred to as
experiment (d). The experiment’s results were even more evident when compared
to the experiments done with Mistral 7B. The combination of the fine-tuned model
with an RAG pipeline outperformed GPT-3.5, with an average win rate of 72%.
Only 20% of the Q&A pairs were won by GPT-3.5. However, it is worth noting that
the rate of not finding a rating by the judge is slightly higher than with Mistral 7B.

Looking at the dimensions, the code semantics and dependencies results are even
better, with 78.3% and 74.07%, respectively. That indicates that the fine-tuned
model with the RAG pipeline is a better coding assistant than GPT-3.5. Only on
the Meta-Information dimension does the model show a low performance, but that
aligns with the results of Mistral 7B. With a standard deviation of 5, the difference
between the two models is highly uncertain and should not be overinterpreted.

6.5 Ablation Studies

This section comprises additional experiments that aim to provide a deeper insight
into the role of hyperparameters, such as the number of dataset samples, tempera-
ture, Top-P values, and the choice of judge, in influencing the results. The goal is
to understand better how these hyperparameters affect the outcome and to provide
a more comprehensive justification of the results.

6.5.1 Training Dataset Size

This section provides an overview of the investigation into the number of executions
for the Self-Alignment approach, which was run twice for the main results pipeline.
As said in Sec. 6.2.1, the first step of the Self-Augmentation is an executed n-times.
The second step and the Self-Curation are always executed for all created Q&A pairs.
Therefore, the Self-Augmentation was executed once (a), twice (b), and quadruple
(c) to create these datasets. The related loss curves are shown in Appendix E in Fig.
E.1 and the development of the learning rate in Fig. E.2. They were then used to
train one model at a time, which was evaluated later on the SpyderCodeQA dataset.
The RAG pipeline was utilized during the evaluation to compare them better with
the main results. The results are shown in Fig 6.3, and the results for each dimension
are attached in Appendix G on Tab. G.1.

In all three experiments, each fine-tuned model learned about the repository, as
reflected in the higher average win rates compared to the base model. However, the
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best-performing model was achieved using the Self-Alignment pipeline twice to create
the training dataset. The average win rate was considerably higher than the models
trained with one or quadruple datasets, with an improvement of approximately three
standard deviations. This difference is also visible regarding the win rate of the base
model. However, there were only marginal differences in the number of ’No Values’,
Tie Good and Tie Bad compared to the other two models.
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Figure 6.3: Average Win Rate in % for each experiment respectively on the Spy-
derCodeQA. Experiment (a) comparison of a fine-tuned model trained on the Self-
Alignment pipeline once against Mistral 7B. (b) comparison of a fine-tuned model
trained on the Self-Alignment pipeline twice against Mistral 7B. (c) comparison of a
fine-tuned model trained on the Self-Alignment pipeline quadruple against Mistral
7B. Standard deviation is calculated from k = 3 runs.

Considering each dataset dimension, the results are ambiguous. On the one hand,
the code semantic dimension has a high standard deviation for the twice and quadru-
ple models, so no clear difference could be made while the average was higher. On
the other hand, the difference was more evident for the dependencies dimension, with
an average improvement of 8% in the win rate, indicating a significant improvement
in the model’s performance.
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Figure 6.4: Average Win Rate in % for each experiment respectively on the Spyder-
CodeQA. Experiment (a) Low temperature and Top-P for Teacher and Q&A dataset
vs. Mistral 7B. (b) only reduced the temperature and Top-P for the Teacher dataset
creation process vs. Mistral 7B. (c) Default parameters vs. Mistral 7B.

6.5.2 Hyperparameters for Data Augmentation

An experiment was conducted to observe the impact of varying temperature (t) and
Top-P (p) parameters in the Self-Augmentation step. These hyperparameters control
the behaviour of the model’s responses during inference. The temperature parameter
determines the level of randomness in the output generated by the model. A value
of 0 will produce deterministic output, while a value of 2 will result in more random
output. On the other hand, the Top-P parameter controls the number of possible
words that are considered [114]. For instance, when setting the Top-P parameter to
0.9, the model will only consider the most probable words that account for 90% of the
probability mass. The goal was to create a Teacher dataset D0 and a Q&A dataset
D1 with different values for temperature and Top-P. Three setups were tested:

• Low All - Reduced temperature and Top-P values for both dataset creation
steps D0 and D1 (t = 0.3, p = 0.3).

• Low Teacher - Reduced temperature and Top-P values only for creating the
Teacher dataset D0 (t = 0.3, p = 0.3) while keeping the Q&A dataset D1

parameter default (t = 0.7, p = 0.9).
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• Default - Default values for both dataset creation steps D0 and D1 (t = 0.7,
p = 0.9).

A model was trained using SFT and QLoRA for each setup and evaluated with one
run per setup with an RAG pipeline on the SpyderCodeQA. The experiment results
are presented in Fig. 6.4. All three trained models in the experiment performed
better than the base model but showed differences in their win rates. While the win
rates for the Low Teacher and Default setups were the same, the Low All setup had
a significantly lower win rate. This indicates that a high t and p when creating D1

leads to higher performance on SpyderCodeQA afterwards. The assumption here
is that the higher temperature and Top-P lead to more heterogeneous Q&A pairs
generated from the generated output of the Teacher dataset D0. A more diverse
dataset will make the model more differentiated and robust. Moreover, since there
was no significant difference between the Low Teacher and Default setups, it can be
concluded that the temperature t and Top-P p used for creating the Teacher dataset
D0 do not significantly influence the performance on SpyderCodeQA.

6.5.3 Judgement with GPT-4 Turbo

This section explores the use of GPT-4 Turbo as a judge instead of GPT-3.5 Turbo,
which was previously used in evaluating the models using the SpyderCodeQA dataset.
However, using GPT-4 for this purpose is more expensive, and performing an LLM-
as-a-Judge evaluation costs about $5.60, which is 14 times more than GPT-3.5’s
cost of 40 cents. As a result, most of the evaluation in this thesis was done using
GPT-3.5. However, to investigate whether there is any difference in the quality of
judgment between the two models, both models were used to judge and evaluate
the best-performing model using the RAG pipeline and the same hyperparameters
on the SpyderCodeQA dataset. The results of this comparison are presented in Fig.
6.5, and the corresponding results for each dimension can be found in Appendix G,
Tab. G.2.

The findings of this investigation provide exciting insights into the quality of the
judgments. Both judges rated the quality of the response of the fine-tuned model
with the RAG pipeline higher. However, GPT-4 preferred the fine-tuned model
more than GPT-3.5. Moreover, the preference for the base model was even lower, as
GPT-4 chose a tie in almost 10% as judgment, which is significantly more often than
GPT-3.5. Furthermore, only 0.3% of the answers could not be assigned, indicating
that GPT-4 can judge the performance of models more consistently and accurately.

Analyzing the individual dimensions presented in Tab. 6.5 is worth analyzing.
Regarding code semantics, the fine-tuned model’s win rate was quite similar, while



6.5. ABLATION STUDIES 69

the base model’s win rate was 9% lower, making the difference between the two
models even more significant. GPT-4 judged that approximately 8% of the questions
were not correctly answered by both models, while 4.29% were equally good.

The results for the dependencies and meta-information dimension are even better.
Both models showed an improvement of over 10% in win rate for the fine-tuned
model. While in the judgement of GPT-3.5, the results for the meta-information
showed no difference in win rate between the models, the assessment of GPT-4 gives
hope that the fine-tuning model has also improved on this dimension. In total, GPT-
4 confirms the results of the GPT-3.5 evaluation on SpyderCodeQA and strengthens
them further since the results have improved.
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Figure 6.5: Average Win Rate in % for each experiment respectively on the Spy-
derCodeQA. Left: Fine-tuned model with RAG pipeline vs Mistral 7B judged by
GPT-3.5 Turbo. Right: Fine-tuned model with RAG pipeline vs. Mistral 7B judged
by GPT-4 Turbo.
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6.6 Qualitative Analysis of SpyderCodeQA

This chapter presents an analysis based on the subset of Q&A pairs and the LLM-
as-a-Judge evaluation to give more qualitative insights into the model performance
and a deeper understanding of how fine-tuning and the use of RAG pipelines affect
the output of the model. The examples are shown in Appendix F. Each example
consists of the original question and answer, the answer of the two models and the
judge’s judgement at the end.

6.6.1 Code Semantics - Q&A pair 135

For Q&A pair 135 from SpyderCodeQA, the Self-Alignment and RAG pipeline eval-
uations are shown in Figs. F.1 and F.2, respectively. The answers and judgments
for both combined are presented in Fig. F.3.

Focusing on the Self-Alignment evaluation in Fig. F.1, the question seeks an
explanation of the class’s functionality. The original answer, serving as a reference
for the judge, provides a general description of the semantic purpose and the input
and output values. The two models generate significantly different answers. As
anticipated, the base model (Mistral 7B) states its inability to provide a precise
answer due to lack of access to the code, attempting to infer the benefit from the
name but remaining vague. Conversely, the fine-tuned model confidently explains the
class’s usage and returns a correct code snippet. However, comparing the generated
code with the original reveals that the model hallucinates and does not provide the
correct code. GPT-3.5 favours the fine-tuned model in its judgment despite the
model’s hallucination. The judge assumes the presented code snippet is correct and
is satisfied with the answer, as it addresses the user’s question and includes the code.

In comparison, the RAG pipeline evaluation in Fig. F.2 shows the provided con-
text on the right side, indicating that the correct code snippet was fetched from the
vector database because it contains the code of the requested class. While the base
model’s answer is nearly identical to the answer in the Self-Alignment evaluation, the
base model fed with the needed code snippet gave a notable explanation of the class,
explaining which superclass the model came from and its functionalities. Therefore,
GPT-3.5’s judgment again favours the modified variant, recognizing that the answer
correctly explained the code’s functionality.

Regarding the combination of both approaches in Fig. F.3, each approach demon-
strates its benefits. While the fine-tuned model’s answer was nicely formatted, it was
contextually incorrect. In comparison, the RAG pipeline’s answer was contextually
correct but not formatted in a user-friendly manner. The combination of both ap-
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proaches fulfilled both requirements, providing a well-formatted answer with a good
explanation of the class and the correct code snippet. This example provides valu-
able insight into the effect each approach has on the base model. After training,
the fine-tuned model changed the output format but could not reproduce the knowl-
edge inserted through fine-tuning. It only improved its output format to become
a better coding assistant. On the other hand, the RAG pipeline could insert the
needed context but lacked an output adjustment. This underlines that combining
both approaches leads to a better output, as the model benefits from both.

6.6.2 Code Semantics - Q&A pair 2

The evaluation results for Q&A pair 2 from SpyderCodeQA are presented in Fig. F.4
for the Fine-Tuned + RAG pipeline and in Fig. F.5 for the same model combination,
but judged by GPT-4.

In this Q&A pair, the question seeks to explain the purpose of a test function
within the test harness of the Cython client. The correct answer is that the function
tests whether the Cython console is working correctly, which is a concise response.
The base model’s answer repeats information from the question and infers that the
function’s purpose is likely to test the Cython client. In contrast, the Fine-Tuned
Model + RAG pipeline is provided with the relevant code snippet, including the code
for the requested function, which enables the model to justify the purpose of the test
function based on the interface comments. Not only does the model provide a more
detailed explanation, but it also reproduces the code snippet. However, GPT-3.5
mistakenly prefers the base model’s answer, failing to distinguish between the two
responses and incorrectly crediting Assistant A with a precise description and code
snippet.

In contrast, GPT-4’s judgment is more diverse and accurate. By categorizing the
answers into four dimensions - Relevance and Accuracy, Depth and Detail, Creativity,
and Helpfulness - GPT-4’s evaluation highlights the added value of the code snippet,
which makes the answer more relevant, detailed, and creative. Consequently, GPT-4
correctly judges the Fine-Tuned Model’s answer as superior. This example illustrates
that evaluations assisted by LLMs can be tending to errors. However, leveraging
larger and better-trained models makes the evaluation more granular and accurate,
thereby minimizing errors.
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6.6.3 Dependencies - Q&A pair 211

The evaluation results for Q&A pair 211 from SpyderCodeQA, which is part of the
dependencies dimension, are presented in Figs. F.6, F.7, and F.8 for the Fine-Tuned
model, RAG pipeline, and combined approaches, respectively.

This question is a typical example from the dependencies dimension, asking for
all imported libraries in a file. The correct answer lists all imports used in the file. In
evaluating the Fine-Tuned model (Fig. F.6), the base model correctly acknowledges
its limitations, stating that without access to the file’s source code, it cannot provide
information about the imports used. In contrast, the Fine-Tuned model provides
a confident but entirely incorrect answer, denying the presence of external library
imports and listing non-existent internal imports from other repository modules.
Unfortunately, the judgment fails to recognize the Fine-Tuned model’s answer as
incorrect, instead describing it as accurate.

In contrast, the answer provided by the base model with the RAG pipeline (Fig.
F.7) is more accurate. When fed the correct file as context, the model lists all
imports, including those from external libraries and internal repository modules.
Although the response format is not aligned, the content is correct. This result is
similar to that of Q&A 135. The combined evaluation of both approaches (Fig. F.8)
generates an answer aligned to the provided format, listing only the external libraries
without internal imports. This example demonstrates again that fine-tuning changes
the output format of the model while the RAG pipeline effectively incorporates the
correct context into the model.

6.6.4 Meta-Information - Q&A pair 313

The evaluation results for Q&A pair 313 from SpyderCodeQA, which falls under the
meta-information dimension, are presented in Fig. F.9 and Fig. F.10. This question
is a typical example from this dimension, as it inquires about the minimum size of
the Spyder logo, a piece of information readily available in the README file or other
documentation files, making it easily verifiable for correctness.

When evaluating the fine-tuned model, as shown in Figure F.9, it becomes ap-
parent that the base model correctly indicates its lack of access to the source code
or repository files. In contrast, the fine-tuned model attempts to guess the answer,
incorrectly stating that the information is part of the README file. The judge-
ment recognizes the fine-tuned model’s answer as incorrect. Instead of penalizing
both models for incorrect answers and judging Tie Bad, it favours the base model’s
response for its transparency in acknowledging the lack of information.
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In contrast, the answers from the base and fine-tuned models using the RAG
pipeline, presented in Figure F.10, demonstrate a more accurate response. The
models’ answers align perfectly with the correct answer by feeding the correct context
into the prompt. The judgement also reflects a positive assessment of the RAG
pipeline variant, as the answer conforms to the expected format and contains the
correct information. This example illustrates the fine-tuned model’s tendency to
hallucinate without the context provided by the RAG pipeline, making it unable to
answer the question about the repository. However, with the context, the model can
effectively retrieve the relevant information and provide a correct answer.

6.6.5 Meta-Information - Q&A Pair 317

The evaluation results for Q&A pair 317 from the SpyderCodeQA dataset, which
falls under the meta-information dimension, are shown in Fig. F.11. The question is
typical for the meta-information category, asking how to install the Spyder Kernels
using conda. The answer contains a natural language description and a shell com-
mand to install the spyder-kernels package. In this case, the base model provides a
concise and comprehensive installation guide. It explains step-by-step how to create
a conda environment, activate it, and set the necessary environment variables. In
comparison, the fine-tuned model using the RAG pipeline provides the relevant con-
text, including the installation markdown file for the spyder kernels. However, the
model fails to generate a meaningful response. It initially produces repetitive Q&A
pairs and then simply repeats the content of the markdown file. Additionally, the
model cannot format the answer in natural language, instead retaining the markdown
formatting. The evaluation suggests that the base model’s answer provides a brief
overview and a good explanation of the installation process. Therefore, the judge
favours the answer from the base model. This example highlights that the model’s
response can still fail, even when provided with the proper context from the RAG
pipeline. Despite having access to the relevant information, the model struggles to
generate a coherent, natural language answer and properly format the output.

6.7 Summary

The results on the SpyderCodeQA evaluation dataset generated using the LLM-as-
a-Judge evaluation show that fine-tuning and using an RAG pipeline improves the
coding assistant’s performance. That can be seen in Fig. 6.1, which shows that
with 57%, the Fine-tuned model and the model using an RAG pipeline outperform
the base model. In addition to that, the combination of both approaches shows an
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interaction effect because the win rate is approx. 64%, which is 7% higher than both
approaches alone. Although the model showed promising results on the evaluation
dataset, it experienced an average decrease of 9% on the HumanEval and MBPP
benchmarks after being fine-tuned. Regarding the model’s performance on different
dataset dimensions, this thesis found that it performs exceptionally well for Code
Semantics, which is the human-labeled dimension. While it also outperforms the
base model on the dependencies dimension on GPT-3.5, the model performs even
better when judged by GPT-4. However, the study’s results indicate that the model’s
performance for Meta-Information is not very promising cause, most of the time, the
performance between the fine-tuned and base models was equal.

The hyperparameter analysis demonstrates that the choice of the training dataset
significantly impacts the model’s performance. Doubling the training dataset seems
to be the optimal way to achieve higher performance in the evaluation dataset.
Utilizing high temperature and Top-P can lead to a more heterogeneous dataset in the
Self-Alignment pipeline, which makes the model more differentiated and robust. In
the last experiment, it was found that GPT-4 is a better judge than GPT-3.5. This is
because GPT-4 has a lower Self-Alignment No Value rate and can decide on Tie more
often. Additionally, there was a significant improvement in the performance of the
meta-information dimension when GPT-4 was used as a judge. One possible reason
for this improvement is that the correct answers of the Q&A pairs are significantly
longer and consist of more sentences than the other two dimensions, as shown in the
analysis of the evaluation dataset in Sec. 4.4.2. Due to this more extended context,
the judgment of the answers could be worse because GPT-3.5 cannot work with such
an extended context and has difficulties producing valid judgments.

About the examples presented in Sec. 6.6, it can be concluded that the Fine-
tuning process alters the output format of the model but may occasionally produce
inaccurate content. Conversely, the RAG pipeline typically generates accurate con-
tent but may not always display the appropriate output format. When both methods
are combined, as demonstrated in the evaluated examples, the model exhibits an in-
teraction effect, effectively adjusting the output format while maintaining correct
content in most cases.



7. Discussion

In the final chapter, the research results are summarized and discussed. First, the
work is concluded in Sec. 7.1. This is followed by a categorization of each research
question in Secs. 7.2, 7.3 and 7.4. Each research question is structured the same
way. It starts with a short overview of what was done and how the question can
be answered based on the evaluations conducted. This is followed by implications
resulting from the answer, an overview of known limitations, and emerging future
work.

7.1 Conclusion

This paper presents a set of experiments to evaluate the performance of LLMs at
the repository level Q&A. The experiments were designed to address three research
questions: (RQ1) the impact of fine-tuning an LLM with self-augmented data on
model performance, (RQ2) the effect of an RAG pipeline on repository-level code
question answering, and (RQ3) the interaction effect of combining a fine-tuned model
with an RAG pipeline. A novel approach inspired by Li et al. [29] was employed to
create a training dataset through Self-Alignment. This approach utilizes multiple
prompt templates to extract information from repository chunks of the Spyder IDE,
generating Q&A dataset pairs for SFT [30] training using QLoRA [31]. The RAG
pipeline was constructed by embedding the same repository chunks using Instructor
[35] and storing them in a Chroma Vector database1.

Addressing the research questions required a suitable dataset representative of a
repository to test the abilities of the fine-tuned LLM or LLMs with RAG pipelines.
Due to the lack of an appropriate dataset in the literature, SpyderCodeQA was
created. This dataset consists of 325 Q&A pairs related to the Spyder IDE2 repos-
itory, divided into three dimensions: code semantics, dependency understanding,
and meta-information understanding. These dimensions assess the ability of LLMs
to answer questions at the repository level. The Q&A pairs were used to evalu-
ate the approaches by comparing them with the base model using LLM-as-a-Judge
evaluation. Additionally, the HumanEval [5] and MBPP [36] benchmarks were con-
ducted to verify the general coding generation abilities. The experimental results
suggest that fine-tuning and RAG pipelines improve the abilities of coding assistants

1https://www.trychroma.com
2https://github.com/spyder-ide/spyder
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to significantly outperform the base model on the repository-level coding Q&A with
approx. 20% and show an interaction effect when combining both approaches that
further improves the performance on SpyderCodeQA. However, the benchmark re-
sults indicate a decline in code generation skills, with an average decrease of 9.65%
in the pass@1 rate.

7.2 Research Question 1 (RQ1)

The first research question investigated whether self-augmented data improves the
performance of answering code questions at the repository level. The Spyder IDE
repository was utilized to answer the research question. The repository was parti-
tioned into chunks and then processed through the Self-Alignment pipeline. This
process generated a Q&A dataset further used as training data. Henceforward, the
base model Mistral 7B [22] was fine-tuned with QLoRA.

The fine-tuned model’s performance was evaluated using LLM-as-a-Judge on Spy-
derCodeQA, HumanEval [5], and MBPP [36] benchmarks. The results indicate that
the fine-tuned model, trained on self-augmented data, improves coding-related Q&A,
with an average win rate approximately 20% higher than the base model, demon-
strating clear improvement.

With regard to the SpyderCodeQA evaluation, the research question can be an-
swered affirmatively. Specifically, the model shows a significant improvement in the
Code Semantics dimension, the only human-labelled dimension, suggesting that the
model can align with user requests and fetch the necessary context incorporated
during SFT into the model weights. The dependency dimension also exhibited im-
provement after fine-tuning, indicating that inserting imports as the context in the
training dataset aids the model in understanding the repository’s structure. However,
the model’s performance in the meta-information dimension decreased, possibly due
to difficulties fetching the correct information after fine-tuning. Further investigation
is required to explain this phenomenon fully.

The benchmarks show contrasting results to those of SpyderCodeQA. On both
Benchmarks, the model performance decreased significantly after the fine-tuning.
One reason for that can be that the model catastrophically forgot its code genera-
tion abilities. Another possible explanation is that the model struggles to generate
the code in the right format through the Alignment of the Q&A format of the self-
augmented dataset. The training data often contained explanations of the code’s
functionality rather than the code itself. A possible solution for that problem would
be to change the Self-Alignment pipeline to create a more diverse dataset that in-
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cludes Q&A pairs mainly focused on code generation.
The results of the qualitative analysis of the examples in Sec. 6.6 indicate that

the model displayed an adapted response format more aligned with user interaction.
Additionally, the model often could not replicate the knowledge from the training
dataset for fine-tuning.

Implications These results have further implications for possible usage and future
work. After fine-tuning the model with the training dataset created through the
Self-Alignment process. This effect suggests that adjusting the prompt templates of
the Self-Alignment process changes the way the model behaves. For example, the
questions (Sec. C) that were used in the pipeline (Shown in Fig. 5.2) to create the
Teacher Dataset D0 could be changed for further alignment to actual user requests.
Another possible improvement is generalising the prompt templates for the Teacher
datasetD0 and Q&A datasetD1, as they are currently tailored to one specific Python
repository.

Another implication is that the training data created in the Self-Alignment pipeline
does not contribute knowledge to the model. To train the output format, the repos-
itory does not necessarily have to be used for learning; instead, the focus should
be on defining specified output formats for frameworks, programming languages, or
projects, which can then be applied to the models via fine-tuning.

Limitations However, despite the attempt to design the experiments as validly
and objectively as possible, essential limitations must be considered when interpret-
ing the results. The Q&A pairs generated by the Self-Alignment process may not
be semantically and syntactically correct. Although the model has been trained to
match questions with the corresponding answers, it is not guaranteed that the gen-
erated code is functionally correctly reproduced and that the generated question is
similar to a user request. The model itself curates the Q&A pairs, but the cura-
tion can only verify if the question matches the answer and seems to be correct.
Therefore, this pipeline step could further improve the curation/verification process.

In Sec. 4.5, the limitations of the evaluation dataset were discussed. It is worth
noting that the evaluation is limited to one Python repository that has its own unique
structure. This is important to consider as the model may behave differently when
applied to other repositories, which could result in biased results. In addition, the
evaluation results only cover a limited set of questions that could arise in relation
to repositories. Given the wide range of programming languages, frameworks, and
projects, these results may not apply to all scenarios.

Regarding evaluating the model’s performance, the LLM-as-a-Judge approach
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also has limitations. Despite the elimination of the position bias and the attempts to
use GPT-4 as a judge, the evaluation is not flawless. The superior model judges the
answers, but sometimes, the criteria are chosen by the model itself and do not match
those of humans. Also, the correctness of the produced code is often not sufficiently
verifiable for the model, as it does not have access to the necessary source code.

Future Work Several future works have resulted from the insights of this study’s
implications and elaborated limitations. One promising direction is to enhance the
Self-Alignment approach by ensuring the correctness of generated training samples
and creating more diverse Q&A pairs. This could lead to a more robust model capable
of handling various programming languages and repositories. Additionally, fully fine-
tuning the model with the training dataset could allow it to query information more
effectively, and exploring this possibility could yield valuable insights.

To better align the model with user needs, human evaluation is essential. It
would provide additional insights since humans are the target audience for Q&A
on repository-level programming, and they often have more knowledge about the
repository, allowing them to judge the model’s responses better. Regarding the
LLM-as-a-Judge evaluation, the qualitative analysis suggests that GPT-4 Turbo is a
more objective judge, capable of effectively differentiating answers. Therefore, it is
recommended to use GPT-4 Turbo in all future analyses.

7.3 Research Question 2 (RQ2)

The second research question investigated if an RAG pipeline improves the perfor-
mance of repository-level code Q&A. The RAG pipeline generates a vector repre-
sentation of the repository data using chunks (as described in Sec. 5.1), which are
then stored in a vector database. When queried, the relevant chunks are retrieved
and passed as context to the model. The implementation of the RAG pipeline is
illustrated in Sec. 5.4.

With regard to the evaluation of SpyderCodeQA, the research question can be
answered affirmatively. Similar to the results of RQ1, the model significantly im-
proves the Code Semantics dimension, the only human-labelled dimension. This
indicates that the information in the prompt is suitable, ensuring that the model
receives the correct context to answer the question correctly. However, on the de-
pendency dimension, the model’s performance is slightly inferior to the performance
of the Self-Alignment approach. The model seems to use only the RAG pipeline and
faces difficulties in aligning its answers with the user’s output format, as discussed in
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Sec. 6.6.3. Although it often provides the correct information, it struggles to reduce
the volume of information and answer the question precisely. This is also consistent
with the results of Q&A 317 (Sec. 6.6.5), which is part of the Meta-Information
dimension. In this Q&A pair, the model has problems aligning to the correct format
and has difficulties processing the given context to extract the correct information
and generate a meaningful answer.

The other Q&A pairs presented in Sec. 6.6 indicate that, in most cases, the model
is provided with the correct context (Shown in Figs. F.2, F.7 & F.10), which suggests
that the Instructor embedding model generates meaningful embeddings to locate the
appropriate chunk in the vector database. Also, the model seems to utilize the
context to answer the question, particularly for the code semantics dimension. This
shows that the chunk size and overlap are appropriately chosen to provide sufficient
context. However, additional experimentation is required for other dimensions to
identify issues in generating responses.

Furthermore, a significant advantage of the RAG pipeline over Self-Alignment is
that the weights of the base model remain unchanged, ensuring that the benchmark
performance remains unaffected.

Implications The findings indicate that using RAG is a suitable and effective
method for enhancing the model’s knowledge about the repository. However, several
factors determine the performance of the model. It is crucial that the model utilizes
the provided context and selects the proper output format to generate an accurate
answer. Other factors, such as the embedding model and the chunk size, can also
influence whether the model provides the correct and adequate information.

It is essential to consider certain factors to build a successful RAG pipeline for
repository-level Q&A. First, the knowledge transfer into the model through an RAG
pipeline works better than the Self-Alignment approach, given this specific training
setup and data set. Second, the RAG pipeline is easier to maintain and update and
only requires GPUs for inference, not training.

Limitations Despite its advantages, the RAG pipeline has some limitations that
must be considered. One major limitation is that the context provided to the LLM is
always just a portion of the file, which means that knowledge about multiple files is
not processed. The connection between the files and the code cannot be considered.
To address this, the context would need to be preprocessed better. One possible
solution is to have a hierarchical structure that provides context at different levels
and contains summarized knowledge. For example, a description of what a module
is responsible for or how its general structure could be added to each chunk of each
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file in the module. That additional information should help the model gain a deeper
understanding of the repository.

Another limitation is the number of chunks retrieved using the RAG pipeline.
For all experiments, the number of chunks was set to N = 1, but it could also be
interesting to test whether the number of chunks could further improve the model’s
performance. Also, the size of the chunk and the overlapping characters are possible
variables for optimizing the results.

Future Work Several potential optimizations for the RAG pipelines could be ex-
plored in the future. Additionally, testing the number of retrieved documents could
help further optimize the model’s ability to retrieve relevant information. As de-
scribed in the limitations, preprocessing the chunks and adding hierarchy knowledge
from superior modules shows excellent potential to provide answers to a single code
file and create a coding assistant with superior knowledge about the repository. Fur-
thermore, pre- and post-retrieval optimization techniques, as suggested by Gao et al.
[66], could also be implemented to enhance the performance of the RAG pipeline
further. These techniques involve optimizing the retrieval and summarization of
information from the input data, which could improve the model’s accuracy and
efficiency.

7.4 Research Question 3 (RQ3)

The third research question investigated the interaction effect of combining a fine-
tuned model and an RAG pipeline on performance. Both approaches, described in
Sec. 5.2 and Sec. 5.3, were applied to the Spyder IDE repository, and the evaluation
was conducted using the SpyderCodeQA dataset.

The SpyderCodeQA evaluation confirms that both RQ1 and RQ2 have been an-
swered positively, and the focus now lies on determining if the effects show an inter-
action. As shown in Fig. 6.1 for all Q&A pairs and in Tab. 6.2 for each dimension,
the combination of both approaches is better than each approach individually. With
approx. 7% higher average win rate than both approaches individually and a lower
win rate of the base model, the effect is sufficient. This result is supported by the
fact that for each of the three dimensions, there is an increase in the win rate and a
reduction in the base model win rate. In addition, the results against GPT-3.5 also
show that the combination is superior to a strong LLM. Also, the experiments using
GPT-4 Turbo as Judge shown in Sec. 6.5 suggest even further that the combination
of both approaches outperforms the base model and is a promising approach for
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repository-level Q&A.
The qualitative analysis in Sec. 6.6 provides meaningful insights into how the

interaction effect. The Q&A example 135 in Fig. F.3 is an excellent example of
how the output format is adjusted from the fine-tuning process while the proper
knowledge, e.g. context, is provided through the RAG pipeline. The same applies
to Q&A example 211 in Fig. F.8 for the Dependency dimension and also for the
Meta-Information dimension in Q&A 313 in Fig. F.10.

Implications The findings suggest that combining both approaches can be a suit-
able strategy for aligning the format through fine-tuning and providing knowledge
through the RAG pipeline. Specifically, fine-tuning with QloRA did not produce
any noticeable effect on knowledge transfer, while vice versa, the RAG pipeline did
not affect changing the output format. It is recommended that both methods be ex-
plored to gain better insights into their respective benefits and limitations to further
develop a coding assistant.

Limitations The limitations sections of both approaches have highlighted several
constraints. Still, a significant challenge in the interaction of both approaches is
the impact of the fine-tuning process on the effective and accurate use of context.
As mentioned in Sec. 6.2, the model’s performance decreased on both MBPP [36]
and HumanEval [5] benchmarks following the fine-tuning process. This shows that
fine-tuning can change models’ abilities to perform specific tasks. Therefore, the
experiments that were conducted do not clarify how the model enhances its capacity
to handle the context, particularly source code, and grasp it deeper after the fine-
tuning process.

Future Work In terms of future work, many of the ideas for both approaches
can apply to the interaction effect. However, a new concept to explore is possibly
adapting the model to a specific output format. This output format can be generated
from the question using pre-processing techniques to rewrite the prompt, as suggested
in the survey conducted by [66]. The newly generated rewritten prompt is optimized
for similarity search in the vector database, thus enhancing the retrieval accuracy.
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A. Screenshots of Evaluation App

Figure A.1: Login screen for the evaluation web application
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Figure A.2: User Information Screen

Figure A.3: Create Question-and-Answer Pairs Instruction Screen 1
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Figure A.4: Create Question-and-Answer Pairs Instruction Screen 2

Figure A.5: Create Question-and-Answer Pairs Instruction Screen 3
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Figure A.6: Create Question-and-Answer Pairs Instruction Screen 4

Figure A.7: Create Question-and-Answer Pairs Instruction Screen 5 1/2
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Figure A.8: Create Question-and-Answer Pairs Instruction Screen 5 2/2

Figure A.9: Create Question-and-Answer Pairs Instruction Screen 6
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Figure A.10: Rating Question-and-Answer Pairs Instruction Screen

Figure A.11: End screen for the evaluation web application



B. Repository Chunks Example

1 {

2 "meta_data": {

3 "file_name": "requirements.py",

4 "module": "spyder.spyder",

5 "contains_class": false,

6 "contains_function": true,

7 "file_imports": [

8 "from packaging.version import parse",

9 "import tkinter as tk",

10 "import qtpy",

11 ],

12 "start_line": 1,

13 "end_line": 29,

14 },

15 "code": "

16 from packaging.version import parse

17 def show_warning(message):

18 '''Show warning using Tkinter if available'''

19 try:

20 # If tkinter is installed (highly probable), show an error pop-up.

21 # From https://stackoverflow.com/a/17280890/438386

22 import tkinter as tk

23 root = tk.Tk()

24 root.title('Spyder')

25 label = tk.Label(root, text=message, justify='left')

26 label.pack(side='top', fill='both', expand=True, padx=20, pady=20)

27 button = tk.Button(root, text='OK', command=root.destroy)

28 button.pack(side='bottom', fill='none', expand=True)

29 root.mainloop()

30 except Exception:

31 pass

32 raise RuntimeError(message)",

33 }

Figure B.1: Example .py Repository chunk from the Spyder IDE. Extracted from
the requirements.py, including all meta information to the file.
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1 {

2 "meta_data": {

3 "file_name": "ISSUE_TEMPLATE.md",

4 "module": "spyder..github",

5 "contains_class": false,

6 "contains_function": false,

7 "file_imports": [],

8 "start_line": 1,

9 "end_line": 48,

10 },

11 "code": "

12 ### Issue Report Checklist

13

14 * [ ] Searched the [issues page]

15 (https://github.com/spyder-ide/spyder/issues?q=is%3Aissue) for similar reports

16 * [ ] Read the relevant sections of the [Spyder Troubleshooting Guide]

17 (https://github.com/spyder-ide/spyder/wiki/Troubleshooting-Guide-and-FAQ)

18 and followed its advice

19 * [ ] Reproduced the issue after updating with ``conda update spyder``

20 (or ``pip``, if not using Anaconda)

21 * [ ] Could not reproduce inside ``jupyter qtconsole`` (if console-related)

22 * [ ] Tried basic troubleshooting (if a bug/error)

23 * [ ] Restarted Spyder

24 * [ ] Reset preferences with ``spyder --reset``

25 * [ ] Reinstalled the latest version of [Anaconda]

26 (https://www.anaconda.com/download/)

27 * [ ] Tried the other applicable steps from the Troubleshooting Guide

28 * [ ] Completed the **Problem Description**, **Steps to Reproduce**

29 and **Version** sections below

30

31 ## Problem Description

32

33 ### What steps reproduce the problem?

34

35 ### What is the expected output? What do you see instead?

36

37 ### Paste Traceback/Error Below (if applicable)

38 <!--- Copy from error dialog or View > Panes > Internal Console --->

39 ```python-traceback

40 PASTE TRACEBACK HERE

41

42 ## Versions

43 <!--- You can get this information from Help > About Spyder...

44 or (if Spyder won't launch) the 'conda list' command

45 from the Anaconda Prompt/Terminal/command line. --->

46 [...]

47 "

Figure B.2: Example .md Repository chunk from the Spyder IDE. Extracted from
the ISSUS TEMPLATE.md, with all the information. Cut the last 10 lines due to
space



C. Question Corpus

What is the name of the function/ class?
Which parameter does the function/ class has?
Which return type does the function/ class has?
Is it a Function or Class or Method?
Give me the code for the function <<name>>?
What functionality does this code aim to achieve?
What are the expected outputs or outcomes of running this code?
What variables are used in this code, and how are they defined?
What data structures are utilized, and why were they chosen?
How does the code control the flow of execution?
Are there conditional statements or loops, and how do they operate?
How does the code handle errors or unexpected situations?
Are there mechanisms in place to catch exceptions or problematic scenarios?
How might you improve the efficiency or performance of this code?
Is this code scalable for larger datasets or more complex scenarios?
How easy would it be to maintain or extend this code in the future?
Is the code adequately documented with comments or docstrings?
Are there areas where additional documentation would be beneficial?
Does this code adhere to best practices and coding standards?
Are there any deviations from commonly accepted conventions?
How are variables initialized and assigned values in the code?
Are there any variable naming conventions followed in the code?
How are comments utilized within the code?
Are there any comments explaining specific lines or blocks of code?
What are the data types used for the variables, and how are they declared?

Figure C.1: Question Corpus for Source Code Semantic
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Does the code depend on external libraries or modules?
How are external dependencies managed or imported?
What external libraries or modules does the code snippet depend on?
How are the external dependencies imported within the code?
Are there any optional dependencies that are conditionally imported based on certain
conditions?
How are version conflicts or compatibility issues managed with the dependencies?
Are there any considerations regarding licensing or usage restrictions for the external
dependencies?

Figure C.2: Question Corpus for Dependencies

Does this code rely on specific versions of external libraries or modules?
What is the filename and module name associated with the code snippet?
Does the file contain any classes or functions?
How many lines does the code snippet span from start to end?
Is there any additional metadata or information provided about the code snippet that
could be relevant for understanding its context?
How does the code snippet fit within the broader context of the module or project it
belongs to?
Has the code snippet been tested, and if so, what testing methodologies were em-
ployed?

Figure C.3: Question Corpus for Meta Information



D. Prompt Templates

<<SYSTEM PROMPT>>
You are a teacher for beginners in Python programming to explain Code.
First, explain from which file and module this code snippet is taken and which imports
are needed. Then, explain the code line by line.
Question: <<Teacher Question>>
Meta Data:
#file name: <<FILE NAME>>
#module: <<MODUL NAME>>
#contains class: <<BOOLEAN>>
#contains class: <<BOOLEAN>>
#file imports: <<IMPORTS AS LIST>>
#start line: <<INTEGER>>
#end line: <<INTEGER>>
<</SYSTEM PROMPT>>
{{CODE CHUNK}}

Figure D.1: The following is a description of the Prompt Template utilized to generate
the Teacher Data D0. The system prompt begins with an introduction on how to behave,
followed by a randomly selected question from the question corpus. Additionally, the meta
data for the related code chunk is included. Following the system prompt, the code chunk
is added as input.

102



103

You are a model to generate a question-answer pair. You will receive an explanation
of a code snippet. The provided function is Python code and is part of the Spyder
IDE repository. Predict a question a user would ask. Always include the name of the
file, the module in the question and the start and end line of the file. Always include
in your answer code from the explanation. Provide your question-answer pair in the
format:
Question: <<Your Question>>
Answer: <<Your Answer>>

Figure D.2: Prompt Template used to generate the Q&A Data D1
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Below is an instruction from an user and a candidate answer. Evaluate whether or
not the answer is a good example of how AI Assistant should respond to the user’s
instruction. Please assign a score using the following 5-point scale: 1: It means the
answer is incomplete, vague, off-topic, controversial, or not exactly what the user
asked for. For example, some content seems missing, numbered list does not start
from the beginning, the opening sentence repeats user’s question. Or the response
is from another person’s perspective with their personal experience (e.g. taken from
blog posts), or looks like an answer from a forum. Or it contains promotional text,
navigation text, or other irrelevant information.
2: It means the answer addresses most of the asks from the user. It does not directly
address the user’s question. For example, it only provides a high-level methodology
instead of the exact solution to user’s question.
3: It means the answer is helpful but not written by an AI Assistant. It addresses
all the basic asks from the user. It is complete and self contained with the drawback
that the response is not written from an AI assistant’s perspective, but from other
people’s perspective. The content looks like an excerpt from a blog post, web page, or
web search results. For example, it contains personal experience or opinion, mentions
comments section, or share on social media, etc.
4: It means the answer is written from an AI assistant’s perspective with a clear
focus of addressing the instruction. It provide a complete, clear, and comprehensive
response to user’s question or instruction without missing or irrelevant information.
It is well organized, self-contained, and written in a helpful tone. It has minor room
for improvement, e.g. more concise and focused.
5: It means it is a perfect answer from an AI Assistant. It has a clear focus on being a
helpful AI Assistant, where the response looks like intentionally written to address the
user’s question or instruction without any irrelevant sentences. The answer provides
high quality content, demonstrating expert knowledge in the area, is very well written,
logical, easy-to-follow, engaging and insightful. Please first provide a brief reasoning
you used to derive the rating score, and then write ’Score: <rating>’ in the last line.
{Generated Q&A}

Figure D.3: Prompt Template to generating the final training dataset D2. The generated
Q&A, which is assessed, is dynamically passed to the system prompt.
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Answer the question using the provided context.
Context: <<Documents>>
Question: <<Question>>

Figure D.4: Prompt Template to generate the response after retrieving the chunk from the
vector database. <<Documents>> are the retrieved documents. <<Question>> is the
question by the user’s request.

<<SYSTEM PROMPT>>
You are an AI programming assistant that is an expert in the Spyder IDE Git repos-
itory. Your task is to answer questions about this repository as good as possible.
Consider the following information about the repository. The repository is open-
source and hosted on GitHub. Anybody can contribute to the codebase.
Please only give truthful answers, and if you don’t know an answer, don’t hallucinate,
but write that you don’t know it.
<< /SYSTEM PROMPT>>
[User Question] <<USER QUESTION>> [End of User Question]
[/INST]

Figure D.5: Overview of the prompt template used to generate the responses for the LLM-
as-a-Judge evaluation. The model is instructed to be a coding assistant for the Spyder
IDE repository. The task is to answer questions about the repository. Also, the model is
reminded to always tell the truth and not hallucinate.
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<<SYSTEM PROMPT>>
Please act as an impartial judge and evaluate the quality of the responses provided by
two AI assistants to the user question and the model solution displayed below. You
should choose the assistant that follows the user’s instructions and answers the user’s
question better and compare it to the model solution. Your evaluation should consider
factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of
detail of their responses. Begin your evaluation by comparing the two responses and
provide a short explanation. Think step by step. Avoid any position biases and
ensure that the order in which the responses were presented does not influence your
decision. Do not allow the length of the responses to influence your evaluation. Do
not favor certain names of the assistants. Be as objective as possible. After providing
your explanation you must output your final verdict by strictly following this format:
[[A]] if assistant A is better,
[[B]] if assistant B is better,
[[C]] for a tie, and
[[D]] if both assistants gave a wrong answer.
<</SYSTEM PROMPT>>
[User Question] <<USER QUESTION>> [End of User Question]
[Model Solution] <<MODEL SOLUTION>> [End of Model Solution]
[The Start of Assistant A’s Answer] <<ANSWER A>> [The End of Assistant A’s
Answer]
[The Start of Assistant B’s Answer] <<ANSWER B>> [The End of Assistant A’s
Answer]

Figure D.6: Overview of the prompt template used to execute the model-based pairwise
comparison evaluation. First, the system prompt is shown. It gives the model the instruc-
tion to act as a judge to evaluate the quality of the responses provided by two AI assistants.
After providing instructions on how to evaluate, the model is instructed to give the output
in the format: [[A]], [[B]], [[C]] or [[D]] regarding the decision. To clarify the process, the
user question, model solution, and answers from assistants A and B are input into the
model one after the other. Each piece of information is enclosed within square brackets
and is accompanied by an identifier that indicates the type of information it contains.



E. Training Conditions

E.1 Loss Curves
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Figure E.1: During the training process of 5 epochs, the cross entropy loss develop-
ment value is demonstrated. Each line represents one training run. ”1x” represents
the training using the Self-Alignment pipeline once, while ”2x” represents the train-
ing run twice and ”4x” four times.
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E.2 Learning Rate
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Figure E.2: During the training process of 5 epochs, the value of the learning rate
development is demonstrated. Each line represents one training run. ”1x” represents
the training using the Self-Alignment pipeline once, while ”2x” represents the training
run twice and ”4x” four times.



F. Q&A Pairs from the LLM-as-a-
Judge evaluation

Q&A Pair 135 (Code Semantics): Fine-Tuned Model

What does the "InstallerMissingDependencies"
class do?

Question:

Mistral 7B (A):

Fine-Tuned Model (B):

Judgement:

Correct Answer:
The "InstallerMissingDependencies" class holds a function "_msg"  that takes in an 
error message that is likely to contain a list of missing dependencies for the installation of 
Spyder. The function then formats the error message and provides  additional context to the 
message before returning it.

I cannot definitively answer that question without access to the specific codebase in the Spyder IDE Git repository that contains the
"InstallerMissingDependencies" class. However, based on the name, it appears that this class may be related to handling missing 
dependencies during the installation process in Spyder. If someone could provide the context or location of this class within the 
codebase, I would be happy to try and provide a more accurate answer. If you don't have that information, 
I'm afraid I cannot provide a definitive answer.

The "InstallerMissingDependencies" class is a custom exception class defined in the Spyder IDE project. It is used to raise an error when certain dependencies
are missing during the installation process. Here is the code snippet for this class::
class InstallerMissingDependencies(Exception):
    def __init__(self, missing_dependencies, installer_type):
        super().__init__("Missing dependencies: {0}".format(missing_dependencies))
        self.missing_dependencies = missing_dependencies
        self.installer_type = installer_type

    def display_missing_dependencies(self):
        print("Missing dependencies:")
        for dependency in self.missing_dependencies:
            print("* {0}".format(dependency))

Assistant A provides a thoughtful response by stating that they cannot definitively answer the question without access to the specific codebase, but they 
make an educated guess based on the name of the class. They also express willingness to provide a more accurate answer if more context is provided. 
On the other hand, Assistant B gives a direct and detailed answer by explaining that the "InstallerMissingDependencies" class is a custom exception class in 
the Spyder IDE project, and provides a code snippet to illustrate its usage. Assistant B's response directly addresses the user's question with a clear and specific
explanation.
Based on the user's question and the responses provided, Assistant B's answer is better as it directly addresses the user's question with a specific explanation
and provides a code snippet to illustrate the usage of the "InstallerMissingDependencies" class.
Therefore, the final verdict is: "[[B]]" Assistant B is better.

Figure F.1: Q&A Pair 135 from the SpyderCodeQA answered by Mistral 7B and
Fine-Tuned Model.
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Q&A Pair 135 (Code Semantics): RAG Pipeline

What does the "InstallerMissingDependencies"
class do?

Question:

Mistral 7B (A):

Mistral 7B + RAG (B):

Judgement:

Correct Answer:
The "InstallerMissingDependencies" class holds a function "_msg"  that takes in an 
error message that is likely to contain a list of missing dependencies for the installation of 
Spyder. The function then formats the error message and provides  additional context to the 
message before returning it.

I cannot definitively answer that question without access to the specific codebase in 
the Spyder IDE Git repository that contains the "InstallerMissingDependencies" class.
However, based on the name, it appears that this class may be related to handling 
missing dependencies during the installation process in Spyder. If someone could 
provide the context or location of this class within the codebase,  I would be happy 
to try and provide a more accurate answer. If you don't have that information,
I'm afraid I cannot provide a definitive answer..

The "InstallerMissingDependencies" class is a subclass of "SpyderInstallerError" and 
is used to raise an error when some dependencies are missing during the installation 
process of Spyder. The error message includes the missing dependencies and their 
required versions, and it exits the Spyder installation with a status code of 1.

Assistant A provides a cautious response, stating that they cannot definitively answer the question without access to the specific codebase in the Spyder IDE 
Git repository that contains the "InstallerMissingDependencies" class. They also express willingness to provide a more accurate answer if provided with 
the necessary context or location of the class within the codebase. Assistant B, on the other hand, gives a specific and detailed answer, explaining that the 
"InstallerMissingDependencies" class is a subclass of "SpyderInstallerError" and is used to raise an error when some dependencies are missing during the
installation process of Spyder. The response also includes information about the error message and the action it takes.
In comparison, Assistant B directly addresses the user's question by providing a detailed and specific explanation of the "InstallerMissingDependencies" class, 
its purpose, and its behavior. Assistant A, while cautious, does not provide as much specific information about the class.

Therefore, Assistant B provides a better answer to the user's question.
Therefore, the final verdict is: "[[B]]" Assistant B is better.

import os
import glob
import textwrap
import logging

from spyder.config.base import get_conf_path

def running_installer_test():
    """Return True if currently running installer test"""
    return bool(int(os.environ.get('INSTALLER_TEST', '0')))
...
...
...
class InstallerMissingDependencies(SpyderInstallerError):
    """Error for missing dependencies"""
    def _msg(self, msg):
        msg = msg.replace('<br>', '\n')
        msg = 'Missing dependencies' + textwrap.
 indent(msg, '  ')

        return msg 

Context from RAG:

Figure F.2: Q&A Pair 135 from the SpyderCodeQA answered by Mistral 7B and
Mistral 7B with RAG pipeline.
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Q&A Pair 135 (Code Semantics): Fine-Tuned + RAG pipeline

What does the "InstallerMissingDependencies" 
class do?

Question:

Mistral 7B (A):

Fine-Tuned Model + RAG (B):

Judgement:

Correct Answer:
The "InstallerMissingDependencies" class holds a function "_msg"  that takes in an 
error message that is likely to contain a list of missing dependencies for the installation of 
Spyder. The function then formats the error message and provides  additional context to the 
message before returning it.

I cannot definitively answer that question without  access to the specific  codebase in 
the Spyder IDE Git repository that contains the "InstallerMissingDependencies" class. 
However, based  on the name, it appearsthat this class may be related to handling 
missing dependencies during the installation process in Spyder. If someone could 
provide the context or location of this class within the codebase, I would be 
happy to try and provide a more accurate answer. 
If you don't have that information, I'm afraid I cannot provide a definitive answer.

The "InstallerMissingDependencies" class is an error class  that inherits from "SpyderInstallerError". 
It is used to represent errors related to missing dependencies. The class defines a constructor that takes 
a message as an argument and writes the error message to the console. The error message is formatted 
with a newline charactr instead of a '<br>' tag for better display.  Here's the code snippet:
class InstallerMissingDependencies(SpyderInstallerError):
    """Error for missing dependencies"""

   def _msg(self, msg):
     msg = msg.replace('<br>', '\n')
     msg = 'Missing dependencies' + textwrap.indent(msg, '  ')

     return msg

Assistant A's response is cautious and lacks specific details about the "InstallerMissingDependencies" class. 
It mentions the potential relation to handling missing dependencies during installation in Spyder but fails to provide concrete information about the 
class's functionality. The assistant also mentions its inability to access the specific codebase, which, while honest, does not help answer the user's question 
effectively.
Assistant B, on the other hand, provides a detailed and specific answer about the "InstallerMissingDependencies" class. 
It includes information about the class being an error class, its inheritance from "SpyderInstallerError," and its purpose to represent 
errors related to missing dependencies. Furthermore, Assistant B offers a code snippet that shows how the class formats an error message, which aligns well 
with the model solution's description of the class handling error messages about missing dependencies. This response is not only relevant and accurate but 
also provides depth by including a code example. Comparing both responses to the model solution, Assistant B's response is more aligned with the model 
solution in terms of accuracy, relevance, and depth. Assistant A's response, while cautious, does not provide the necessary details to be helpful or accurate
in the context of the user's question. Final Verdict: [[B]]

import os
import glob
import textwrap
import logging

from spyder.config.base import get_conf_path

def running_installer_test():
    """Return True if currently running installer test"""
    return bool(int(os.environ.get('INSTALLER_TEST', '0')))
...
...
...
class InstallerMissingDependencies(SpyderInstallerError):
    """Error for missing dependencies"""
    def _msg(self, msg):
        msg = msg.replace('<br>', '\n')
        msg = 'Missing dependencies' + textwrap.
 indent(msg, '  ')

        return msg 

Context from RAG:

Figure F.3: Q&A Pair 135 from the SpyderCodeQA answered by Mistral 7B and
Fine-Tuned Model with RAG pipeline.
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Q&A Pair 2 (Code Semantics): Fine-Tuned + RAG pipeline

The test_cython_client function is part of the 
test_ipythonconsole.py file. 
What is the main purpose of the test function?

Question:

Mistral 7B (A):

Fine-Tuned Model + RAG (B):

Judgement:

Correct Answer:
The main purpose of the test function is to test wherever the Cython console 
is working correctly.

The main purpose of the test_cython_client function, as it is part of the 
test_ipythonconsole.py file in the Spyder Git repository, is to test the functionality 
of the Cython client in the IPython console within Spyder. Cython is a compiled 
extension language for Python, and the test ensures that Spyder's 
IPython console correctly interacts with Cython code.

The main purpose of the test function test_cython_client is to test the functionality of the 
Cython console within the IPython console in the Spyder IDE. It ensures that there are no
errors when executing Cython code and that the console namespace can be reset correctly.

Here is the code snippet for reference:

def test_cython_client(ipyconsole, qtbot):
    """Test that the Cython console is working correctly."""
    # Wait until the window is fully up
    shell = ipyconsole.get_current_shellwidget()
...
...

Assistant A provides a detailed explanation of the purpose of the test_cython_client function, including its specific location in the Spyder Git repository,
the functionality it tests, and its relevance to the Cython client in the IPython console within Spyder. The assistant also includes a code snippet for reference. 
Assistant B also provides a clear explanation of the purpose of the test_cython_client function, focusing on testing the functionality of the Cython console 
within the IPython console in the Spyder IDE, including specific tasks performed in the test function. The assistant also includes a code snippet for reference. 
Both assistants accurately describe the main purpose of the test function and provide relevant details.
However, Assistant A's response offers slightly more depth and context by mentioning the role of Cython as a compiled extension language for Python and 
explaining how the test ensures that Spyder's IPython console correctly interacts with Cython code. Additionally, Assistant A refers to the specific location 
of the function in the Spyder Git repository, providing additional context for the user. Furthermore, the code snippet included by Assistant A complements the 
explanation and offers a visual reference for the user. Therefore, Assistant A's response is better as it provides a more comprehensive and detailed explanation 
of the purpose of the test_cython_client function, including its specific location in the Spyder Git repository, the functionality it tests, and its relevance to the 
Cython client in the IPython console within Spyder. Additionally, the code snippet enhances the user's understanding of the test function. [[A]]

def test_cython_client(ipyconsole, qtbot):
    ##Test that the Cython console is working correctly.
    # Wait until the window is fully up
    shell = ipyconsole.get_current_shellwidget()

    # This is here to generate further errors
    with qtbot.waitSignal(shell.executed, 
                               timeout=SHELL_TIMEOUT):
        shell.execute("%%cython\n"
                      "cdef int ctest(int x, int y):\n"
                      "    return x + y")

    # Assert there are no errors in the console
    control = ipyconsole.get_widget().get_focus_widget()
    assert 'Error' not in control.toPlainText()

    # Reset the console namespace
    shell.reset_namespace()
    qtbot.wait(1000)

    # See that cython is still enabled after reset
    with qtbot.waitSignal(shell.executed, 
                              timeout=SHELL_TIMEOUT):
        shell.execute("%%cython\n"
                      "cdef int ctest(int x, int y):\n"
                      "    return x + y")

    # Assert there are no errors after restting the console
    control = ipyconsole.get_widget().get_focus_widget()
    assert 'Error' not in control.toPlainText() 

Context from RAG:

Figure F.4: Q&A Pair 2 from the SpyderCodeQA answered by Mistral 7B and Fine-
Tuned Model with RAG pipeline.
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Q&A Pair 2 (Code Semantics): Fine-Tuned + RAG pipeline
(Judged by GPT-4)

The test_cython_client function is part of the 
test_ipythonconsole.py file. 
What is the main purpose of the test function?

Question:

Mistral 7B (A):

Fine-Tuned Model + RAG (B):

Judgement:

Correct Answer:
The main purpose of the test function is to test wherever the Cython console 
is working correctly.

The main purpose of the test_cython_client function, as it is part of the 
test_ipythonconsole.py file in the Spyder Git repository, is to test the functionality 
of the Cython client in the IPython console within Spyder. Cython is a compiled 
extension language for Python, and the test ensures that Spyder's 
IPython console correctly interacts with Cython code.

The main purpose of the test function test_cython_client is to test the functionality of the 
Cython console within the IPython console in the Spyder IDE. It ensures that there are no
errors when executing Cython code and that the console namespace can be reset correctly.

Here is the code snippet for reference:

def test_cython_client(ipyconsole, qtbot):
    """Test that the Cython console is working correctly."""
    # Wait until the window is fully up
    shell = ipyconsole.get_current_shellwidget()
...
...

Relevance and Accuracy: Both assistants correctly identify the main purpose of the test_cython_client function. They mention that it is designed to test the 
functionality of the Cython console within the IPython console in Spyder, ensuring the correct interaction and error-free execution of Cython code. Assistant B 
goes further by providing a detailed code snippet from the function, illustrating exactly how the function tests the Cython console, including error checks and 
namespace resetting. This addition is highly relevant and enhances understanding of the function’s operation. 
Depth and Detail: Assistant A provides a general explanation, which aligns well with the user’s question and is quite informative. Assistant B, in addition to the 
explanation, includes a code snippet which adds significant depth to the answer. The snippet not only supports the explanation but also gives practical insight 
into the workings of the function, such as how errors are checked and the namespace is reset. Helpfulness: Assistant A’s response is helpful for someone looking 
for a concise answer. Assistant B’s response is particularly helpful for someone seeking a deeper understanding or verification of the function’s behavior through 
actual code. Creativity: Assistant B displays a creative approach by incorporating a specific code snippet, which is not only informative but also engaging for 
users familiar with Python and interested in the specifics of function implementation. In summary, while Assistant A provides a correct and succinct answer, 
Assistant B enhances the response with a detailed code snippet that aligns perfectly with the explanation, providing clarity and a deeper insight into the 
function's operation. This makes Assistant B's answer more comprehensive and informative. Final Verdict: [[B]]

def test_cython_client(ipyconsole, qtbot):
    ##Test that the Cython console is working correctly.
    # Wait until the window is fully up
    shell = ipyconsole.get_current_shellwidget()

    # This is here to generate further errors
    with qtbot.waitSignal(shell.executed, 
                               timeout=SHELL_TIMEOUT):
        shell.execute("%%cython\n"
                      "cdef int ctest(int x, int y):\n"
                      "    return x + y")

    # Assert there are no errors in the console
    control = ipyconsole.get_widget().get_focus_widget()
    assert 'Error' not in control.toPlainText()

    # Reset the console namespace
    shell.reset_namespace()
    qtbot.wait(1000)

    # See that cython is still enabled after reset
    with qtbot.waitSignal(shell.executed, 
                              timeout=SHELL_TIMEOUT):
        shell.execute("%%cython\n"
                      "cdef int ctest(int x, int y):\n"
                      "    return x + y")

    # Assert there are no errors after restting the console
    control = ipyconsole.get_widget().get_focus_widget()
    assert 'Error' not in control.toPlainText() 

Context from RAG:

Figure F.5: Q&A Pair 2 from the SpyderCodeQA answered by Mistral 7B and Fine-
Tuned Model with RAG pipeline. Judged by GPT-4.
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Q&A Pair 211 (Dependencies): Fine-Tuned Model

Question:

Mistral 7B (A):

Fine-Tuned Model (B):

Judgement:

Correct Answer:

To answer your question, I would need to have access to the specific test_introspection.py file in the Spyder IDE Git repository. 
Without that, I cannot definitively say which library imports are used in that file. However, I can tell you that based on the file name, 
it may be related to code introspection or testing, so libraries such as pytest, unittest, ipython, or inspect might be used. It's always 
best to check the file itself or the repository's documentation for the most accurate information.

The file test_introspection.py in the Spyder IDE Git repository does not import any external libraries. It only imports modules and
functions from other parts of the Spyder project. Here is the list of imports at the beginning of the file:

from spyder.plugins.editor.widgets.codeeditor import CodeEditor
from spyder.plugins.completion.api import CompletionRequestTypes
from spyder.plugins.completion.providers.languageserver.providers.utils import path_as_uri
from spyder.utils.conda import get_list_conda_envs

These imports are necessary to use the required functionalities within the test file.

Assistant A provides a comprehensive and thoughtful response. The assistant acknowledges the inability to definitively state the 
library import without access to the specific file but provides a list of potential libraries based on the file name and suggests checking 
the file itself or the repository's documentation for accurate information. On the other hand, Assistant B accurately states that the 
file test_introspection.py in the Spyder IDE Git repository does not import any external libraries, and it provides a list of specific
modules and functions imported at the beginning of the file.
While both responses are helpful, Assistant B directly addresses the specific file and its imports, providing accurate information about 
the modules and functions imported. Assistant A's response is informative and suggests potential libraries based on the file name but 
does not directly address the specific imports in the file. Therefore, based on the user's question and the specific information provided, 
Assistant B's response is better as it directly addresses the file's imports, providing accurate and relevant information.
Therefore, the final verdict is: [[B]]

What library import is Used in the file 
test_introspection.py?

The libraries used in the file test_introspection.py are os, os.path, random, 
textwrap, sys, flaky, pytest, pytestqt, Qt, and QTextCursor.

Figure F.6: Q&A Pair 211 from the SpyderCodeQA answered by Mistral 7B and
Fine-Tuned Model.
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Q&A Pair 211 (Dependencies): RAG Pipeline

Question:

Mistral 7B (A):

Mistral 7B + RAG (B):

Judgement:

Correct Answer:

To answer your question, I would need to have access to the specific 
test_introspection.py file in the Spyder IDE Git repository. Without that, I cannot 
definitively say which library imports are used in that file. However, I can tell you that
based on the file name, it may be related to code introspection or testing, so libraries
such as pytest, unittest, ipython, or inspect might be used. It's always best to check 
the file itself or the repository's documentation for the most accurate information.

The file "test_introspection.py" imports the following libraries:
import os; import os.path as osp; import random; import textwrap; 
import sys; from flaky import flaky; import pytest; import pytestqt; 
from qtpy.QtCore import Qt; from qtpy.QtGui import QTextCursor; 
from spyder.config.base import running_in_ci
from spyder.config.manager import CONF
from spyder.config.utils import is_anaconda
These imports are used throughout the file for various purposes, including file 
system manipulation, testing, and interacting with Spyder's configuration and plugins.

Assistant A's response provides a thoughtful and detailed answer to the user's question. It acknowledges the limitation of not having 
access to the specific file and provides potential libraries that might be used based on the file name. It also advises checking the file
itself or the repository's documentation for accurate information.
Assistant B's response lists the specific library imports used in the file "test_introspection.py" and briefly explains their purposes.
Upon comparing the two responses, Assistant B's response directly addresses the user's question by providing the specific library 
imports used in the file "test_introspection.py," along with a brief explanation of their purposes. It is more helpful and relevant to 
the user's question compared to Assistant A's response, which provides potential libraries without directly addressing the specific
imports used in the file. Therefore, Assistant B's response is better.
Therefore, the final verdict is: [[B]]

# Standard library imports
import os
import os.path as osp
import random
import textwrap
import sys

# Third party imports
from flaky import flaky
import pytest
import pytestqt
from qtpy.QtCore import Qt
from qtpy.QtGui import QTextCursor

# Local imports
from spyder.config.base import running_in_ci
from spyder.config.manager import CONF
from spyder.config.utils import is_anaconda
from spyder.plugins.completion.api import (
    CompletionRequestTypes, 
CompletionItemKind)
from spyder.plugins.completion.providers.
languageserver.providers.utils import (
    path_as_uri)
from spyder.utils.conda import 
get_list_conda_envs
# Location of this file
LOCATION = osp.realpath(osp.join(os.getcwd(), 
osp.dirname(__file__)))
# Code for: def set_executable_config_helper
(completion_plugin, executable=None):
...
(Implementation Code)

Context from RAG:

What library import is Used in the file 
test_introspection.py?

The libraries used in the file test_introspection.py are os, os.path, random, 
textwrap, sys, flaky, pytest, pytestqt, Qt, and QTextCursor.

Figure F.7: Q&A Pair 211 from the SpyderCodeQA answered by Mistral 7B and
Mistral 7B with RAG pipeline.
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Q&A Pair 211 (Dependencies): Fine-Tuned + RAG pipeline

What library import is Used in the file 
ttest_introspection.py?

Question:

Mistral 7B (A):

Fine-Tuned Model + RAG (B):

Judgement:

Correct Answer:
The libraries used in the file test_introspection.py are os, os.path, random, 
textwrap, sys, flaky, pytest, pytestqt, Qt, and QTextCursor.

To answer your question, I would need to have access to the specific 
test_introspection.py file in the Spyder IDE Git repository. Without that, I cannot 
definitively say which library imports are used in that file. However, I can tell you that 
based on the file name, it may be related to code introspection or testing, so libraries 
such as pytest, unittest, ipython, or inspect might be used. It's always best to check 
the file itself or the repository's documentation for the most accurate information.

The file test_introspection.py imports the following libraries: 
standard library - 
os, os.path, random, textwrap, sys; 
third party - 
flaky, pytest, pytestqt, qtpy.QtCore, qtpy.QtGui.

Assistant A's answer provides a thoughtful explanation of the potential libraries that could be used in the file test_introspection.py, 
given its name. The assistant suggests looking for the specific file or its documentation for accurate information. Assistant B's answer 
directly lists the libraries imported in  the file test_introspection.py, providing a clear and concise response to the user's question.

Upon evaluation, Assistant B's response directly addresses the user's question by providing the specific library imports used in the file 
test_introspection.py, aligning with the user's request for the library import. Assistant A's response, while informative, does not 
directly answer the  user's question about the library import used in the file.
Therefore, based on the user's question and request, Assistant B provides a better response by directly answering the user's inquiry.
Therefore, the final verdict is: [[B]]

Context from RAG:
# Standard library imports
import os
import os.path as osp
import random
import textwrap
import sys

# Third party imports
from flaky import flaky
import pytest
import pytestqt
from qtpy.QtCore import Qt
from qtpy.QtGui import QTextCursor

# Local imports
from spyder.config.base import running_in_ci
from spyder.config.manager import CONF
from spyder.config.utils import is_anaconda
from spyder.plugins.completion.api import (
    CompletionRequestTypes, 
CompletionItemKind)
from spyder.plugins.completion.providers.
languageserver.providers.utils import (
    path_as_uri)
from spyder.utils.conda import 
get_list_conda_envs
# Location of this file
LOCATION = osp.realpath(osp.join(os.getcwd(), 
osp.dirname(__file__)))
# Code for: def set_executable_config_helper
(completion_plugin, executable=None):
...
(Implementation Code)

Figure F.8: Q&A Pair 211 from the SpyderCodeQA answered by Mistral 7B and
Fine-Tuned Model with RAG pipeline.
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Q&A Pair 313 (Meta-Information): Fine-Tuned Model

What is the minimum size for the primary 
Spyder logo and the logomark?

Question:

Mistral 7B (A):

Fine-Tuned Model (B):

Judgement:

Correct Answer:
The minimum size for the primary Spyder logo is 75 px wide, and for the 
logomark, it is 14 px wide.

I cannot directly provide you with the minimum size for the Spyder IDE logo and logomark as I don't have access to the specific 
design files or brand guidelines of the Spyder project. However, you can refer to the official Spyder IDE GitHub repository or 
contact the project maintainers for any specifications related to logo usage. You can find the Spyder IDE repository on GitHub at 
https://github.com/spyder-ide/spyder. If you need help with using Git or contributing to the repository, feel free to ask.

The minimum size for the primary Spyder logo is 1500px in width, and the logomark has a minimum size of 500px in width. 
Here's the relevant code snippet from the "readme.md" file:

## Logos
The minimum size for the primary Spyder logo is 1500px in width.
The logomark has a minimum size of 500px in width.
Please find the logo files in the `spyder-logo` directory.

Assistant A provided a helpful response by acknowledging that it cannot directly provide the specific size for the Spyder IDE logo and logomark but directed 
the user to the official Spyder IDE GitHub repository or project maintainers for the information. Assistant A also offered further assistance with using Git or 
contributing to the repository if needed. This response is relevant, accurate, and helpful in guiding the user to the right source for the information.

Assistant B, on the other hand, provided incorrect information regarding the minimum size for the primary Spyder logo and logomark. 
The sizes mentioned (1500px and 500px) are not consistent with the model solution provided by the user. Furthermore, the code snippet mentioned is not 
from the official source and does not align with the correct sizes.
Therefore, Assistant A's response is better as it directs the user to the correct source for the information and offers further assistance if needed.

Therefore, the final verdict is: [[A]]

Figure F.9: Q&A Pair 313 from the SpyderCodeQA answered by Mistral 7B and
Fine-Tuned Model.
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Q&A Pair 313 (Meta-Information): Fine-Tuned / Mistral 7B
+ RAG Pipeline

What is the minimum size for the primary 
Spyder logo and the logomark?

Question:

Mistral 7B (A):

Fine-Tuned Model + RAG (B):

Judgement:

Correct Answer:
The minimum size for the primary Spyder logo is 75 px wide, and for the 
logomark, it is 14 px wide.

I cannot directly provide you with the minimum size for the Spyder 
IDE logo and logomark as I don't have access to the specific 
design files or brand guidelines of the Spyder project. However, 
you can refer to the official Spyder IDE GitHub repository or 
contact the project maintainers for any specifications related to 
logo usage. You can find the Spyder IDE repository on GitHub at 
https://github.com/spyder-ide/spyder. If you need help with 
using Git or contributing to the repository, feel free to ask.

The minimum size for the primary Spyder logo is 75 px wide, 
and the minimum size for the logomark is 14 px wide.

Assistant A's response is cautious and lacks specific details about the "InstallerMissingDependencies" class. 
It mentions the potential relation to handling missing dependencies during installation in Spyder but fails to provide concrete information about the 
class's functionality. The assistant also mentions its inability to access the specific codebase, which, while honest, does not help answer the user's question 
effectively.
Assistant B, on the other hand, provides a detailed and specific answer about the "InstallerMissingDependencies" class. 
It includes information about the class being an error class, its inheritance from "SpyderInstallerError," and its purpose to represent 
errors related to missing dependencies. Furthermore, Assistant B offers a code snippet that shows how the class formats an error message, which aligns well 
with the model solution's description of the class handling error messages about missing dependencies. This response is not only relevant and accurate but 
also provides depth by including a code example. Comparing both responses to the model solution, Assistant B's response is more aligned with the model 
solution in terms of accuracy, relevance, and depth. Assistant A's response, while cautious, does not provide the necessary details to be helpful or accurate
in the context of the user's question. Final Verdict: [[B]]

<h1>Spyder Logo Guidelines</h1>
<p>These guidelines are meant to help keep the Spyder logo consistent and
recognizable
across all its uses. They also provide a common language for referring to 
the logos and their components.</p>
<p>The primary logo is the horizontal option (logomark and text next to 
each other). You may also use the logomark on its own (meaning the 
logomark without text). 
When in doubt, it’s preferable to use the primary logo that includes 
text over the logomark alone. </p>
<p>If you have a case where you do not know what background the logo will
be on or it is a variable background (such as the application icon on a 
desktop), it is best to use a logo option with the light grey background.
</p>
<h2>Color</h2>
<p>Colors used in the various logos are as follows:
- Full color options are a combination of red (<code>#8c0000</code> or 
<code>rgb(140, 0, 0)</code>) and grey (<code>#303030</code> or 
<code>rgb(48,48,48)</code>).
- Full color options with a background have the same red and grey as other 
full color options and add a light grey (<code>#fafafa</code> or 
<code>rgb(250, 250, 250)</code>) rectangle behind it.
- Light options are white (<code>#ffffff</code> or <code>rgb(255, 255, 
255)</code>). 
- Dark options are black (<code>#000000</code> or <code>rgb(0, 0, 0)
</code>).</p>
<p>Whenever possible, use the full color logos. One color logos 
(light or dark) are to be used when full color will not have enough 
contrast or cannot be produced.</p>
<h2>Minimum Size</h2>
<p>Please do not make the primary logo smaller than 75 px wide or the 
logomark smaller than 14 px wide.</p>
<h2>Logo Integrity</h2>
<p>A few other notes to keep in mind when using the logo:
- Be sure to scale the logo proportionally.
- Maintain a good amount of space around the logo. Don’t let it overlap 
with text, images, or other elements without giving it a single color
background.
</p> 

Context from RAG:

Figure F.10: Q&A Pair 313 from the SpyderCodeQA answered by Mistral 7B and
Mistral 7B/ Fine-Tuned Mdoel with RAG pipeline. The answers were identical.
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Q&A Pair 317 (Meta-Information): Fine-Tuned + RAG Pipeline

How can Spyder Kernels be installed using 
conda?

Question:

Mistral 7B (A):

Fine-Tuned Model + RAG (B):

Judgement:

Correct Answer:
Spyder Kernels can be installed using conda with the following command: 
conda install spyder-kernels

To install Spyder kernels using Anaconda (conda), you can follow these steps: Open your terminal or command prompt and create 
a new conda environment with the desired dependencies:
conda create -n myenv python=3.x; conda activate myenv
Replace myenv with the name of your environment and 3.x with the Python version you prefer.
Install IPython and Jupyter Notebook: conda install ipython jupyter
Install Spyder: conda install spyder
Add Spyder's executable to your PATH:
For Windows: setx PATH "%PATH%;C:\Users\<username>\Anaconda3\envs\myenv\Scripts"
Replace <username> with your Windows username and myenv with the name of your environment.
For macOS and Linux: echo 'export PATH="$PATH:/path/to/anaconda3/envs/myenv/bin"' >> ~/.bashrc
Replace /path/to/anaconda3 with the actual path to your Anaconda installation directory and myenv with the name of your 
environment. Restart your terminal or command prompt to apply the PATH modification.
Now Spyder should be installed in your conda environment. To use it with specific Python interpreters, you can install additional 
Spyder kernels using the conda install command with the appropriate packages. For example, to install a Spyder kernel for Python 
3.9, use: conda install -c conda-forge spyder-kernels python=3.9 This will install the Spyder kernels.

To install Spyder Kernels using conda, you can run the following command: "conda install spyder-kernels"
Question: Which Markdown file in the Spyder-kernels repository contains information about installing Spyder Kernels using pip and
conda, as well as details about its dependencies and changelog? \n\n 
Answer: The CHANGLOG.md file in the Spyder-kernels repository provides information about installing Spyder Kernels using pip 
and conda, as well as details about its dependencies and changelog.
Question: In the CHANGLOG.md file of the Spyder-kernels repository, what is the code snippet that explains how to install 
Spyder Kernels using pip and conda, and what are the required dependencies for this project? \n\n 
Answer: The code snippet that explains how to install Spyder Kernels using pip and conda, and what are the required 
dependencies for this project is not provided in the given context. However, the context mentions that this information can be 
found in the CHANGLOG.md file. Here's the code snippet from the context:

<h2>Installation</h2> <p>To install this package, you can use either the <code>pip</code> or <code>conda</code> 
package managers, as follows:</p> <p><code>conda install spyder-kernels</code></p> <p>Using pip:</p> <p>
<code>pip install spyder-kernels</code></p> <h2>Dependencies</h2> <p>This project depends on:</p> ... (more HTML)

Assistant A provides a comprehensive and detailed explanation on how to install Spyder Kernels using conda. It includes step-by-step 
instructions, code snippets, and specific commands for both Windows, macOS, and Linux systems. The response also covers the 
installation of additional Spyder kernels for specific Python interpreters. Overall, it addresses the user's question thoroughly and 
provides a well-structured guide for installing Spyder Kernels using conda.
On the other hand, Assistant B's response does not directly address the user's question about installing Spyder Kernels using conda. 
Instead, it provides information about the CHANGLOG.md file in the Spyder-kernels repository, which is not directly related to the 
user's query. Therefore, Assistant A's response is more helpful, relevant, accurate, and detailed in addressing the user's question 
compared to Assistant B's response.
[[A]]

Context from RAG:
<h1>Jupyter kernels for the Spyder console</h1>
...
<h2>Installation</h2>
<p>To install this package, you can use either the 
<code>pip</code> or <code>conda</code> package
managers, as follows:</p>
<p>Using conda (the recommended way!):</p>
<p><code>conda install spyder-kernels</code></p>
<p>Using pip:</p>
<p><code>pip install spyder-kernels</code></p>
<h2>Dependencies</h2>
<p>This project depends on:</p>
<ul>
...
</ul>
<h2>Changelog</h2>
...
<h2>Sponsors</h2>
...

Figure F.11: Q&A Pair 317 from the SpyderCodeQA answered by Mistral 7B and
Fine-Tuned Mdoel with RAG pipeline.



G. Evaluation Results

Training Dataset Size

Table G.1: Average Win Rate in % for each dimension and experiment, respectively.
Each column indicates one experiment, and each dimension’s average win rate is
presented row-wise, followed by the standard deviation. Self-Alignment pipeline exe-
cuted once (a), (b) twice and (c) quadruple against Mistral 7B. Standard deviation
is calculated from k = 3 runs. Cells in Bold indicate the highest value per row for
Ours and the lowest for all other rows.

(a) Self-Align. 1x
vs. Mistral 7B

(b) Self-Align. 2x
vs. Mistral 7B

(c) Self-Align. 4x
vs. Mistral 7B

Code Semantics (N = 140)

Ours 63.81% ± 1.6 70.71% ± 3.6 66.19% ± 4.1
Base Model 29.05% ± 1.1 25.24% ± 2.3 28.09% ± 2.3
No Value 6.91% ± 2.5 3.81% ± 1.5 5% ± 1.9
Tie Bad 0% ± 0 0.35% ± 0.5 0.71% ± 0
Tie Good 0.71% ± 0 0% ± 0 0.35% ± 0.5

Dependencies (N = 135)

Ours 53.58% ± 1.8 61.97% ± 1.8 53.33% ± 2.6
Base Model 40.25% ± 0.8 33.09% ± 2.1 40.49% ± 5
No Value 5.68% ± 0.8 4.2% ± 0.4 6.17% ± 3.8
Tie Bad 0.74% ± 0 0.74% ± 1 0% ± 0
Tie Good 0% ± 0 0.74% ± 0 0% ± 0

Meta-Information (N = 50)

Ours 48% ± 2 51.33% ± 3.1 46.67% ± 2.3
Base Model 47.33% ± 3 42.67% ± 2.3 50.67% ± 5
No Value 4.67% ± 2.3 6% ± 2 1.33% ± 2.3
Tie Bad 0% ± 0 0% ± 0 1% ± 1.4
Tie Good 0% ± 0 0% ± 0 1% ± 1.4
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Judgement with GPT-4

Table G.2: Average Win Rate in % for each dimension and experiment respectively.
Each column indicates one experiment, and each dimension’s average win rate is
presented row-wise. Finetuned with RAG vs. Mistral 7b judged by GPT-3.5 (a)
and by GPT-4 (b). Cells in Bold indicate the highest value per row for Ours and
the lowest for all other rows.

Combined vs. Mistral 7B
Judge: GPT-3.5

Combined vs. Mistral 7B
Judge: GPT-4

Code Semantics (N = 140)

Ours 70.71% 72.86%
Base Model 24.29% 15%
No Value 4.29% 0%
Tie Bad 0.71% 7.86%
Tie Good 0% 4.29%

Dependencies (N = 135)

Ours 63.7% 73.33%
Base Model 31.85% 17.04%
No Value 3.7% 0.74%
Tie Bad 0% 4.44%
Tie Good 0.74% 4.44%

Meta-Information (N = 50)

Ours 52% 64%
Base Model 44% 32%
No Value 4% 0%
Tie Bad 0% 2%
Tie Good 0% 2%
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