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Abstract

With the ever-growing number of research papers published each day, documenting
advancements across all scientific fields through so-called survey papers has become
an essential part of the scientific process. These papers provide an overview of the
current state of research in a given field and serve as valuable resources for researchers
and learners alike. However, creating such a paper requires authors to sift through
hundreds of publications to determine which should be included, an effort that is both
time-consuming and labor-intensive.

This thesis poses the question: "Are large language models (LLMs) capable of aiding
in the creation of high-quality scientific survey papers?" While extracting information
from text is not a new application for LLMs, their potential to streamline the survey
paper creation process has yet to be fully explored. Here, we investigate the plausibility
of using different LLMs, such as GPT and LLaMA, to classify and retrieve information
from papers according to our specifications.

We begin by recreating the selection process from the survey paper "Machine
Learning in Computational Literary Studies" by Hatzel et al. (2023), testing how well
various models perform in analyzing abstracts to determine whether a paper employs
machine learning methods and whether or not its main focus is computational literary
studies. We then extend our experiments to unseen data, retrieving more fine-grained
information from recent publications of the same conferences considered in the original
study, that can be used for constructing tables in survey papers. Finally, we test the
generalization capabilities of our approach by adapting prompts and applying the same
methodology in a different scientific domain.
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1
Introduction

In 2024, at least 17,000 articles were published each month in the arXiv.org open-access
scholarly article archive.1 For each of these articles, the authors engaged in the rigorous
scientific writing process, which requires them to gather their sources and references,
develop a clear outline, acknowledge related work, conduct their research, analyze
results, and present their findings after multiple rounds of reviewing and revising their
work.

This is a lengthy process, yet an important one. It is undeniable that the mention
of prior work is important for every robust scientific paper; yet it is not uncommon
for authors to defer this part of the process until they have reached the later stages of
their writing. However, as reinforced by Doroudi (2023) gathering prior research, "is
an activity that leads to new insights into the research problem, generates new ideas,
and alters the course of the research." Doroudi highlights a case where searching for
previous related work had become the research process itself, since the link of various
pieces of literature generated new undiscovered public knowledge in Swanson (1986).
This amplifies the importance of engaging deeply with prior literature throughout the
research process, not merely as a final step.

This is even more so the case when looking at a specific type of scientific papers,
named survey papers. The primary goal of these papers is to highlight and summarize
existing research within an area of study. Survey papers provide researchers with
an organized overview of a field, allowing them to understand the current landscape
without manually reviewing hundreds of individual studies. Although this approach is
invaluable for navigating vast amounts of information, it places a significant burden on
survey authors, who must themselves engage in these exhaustive literature reviews.

To help alleviate the workload going into this process, we aim to assess if the
employment of LLMs would not help authors work more efficiently, thus asking the
question "Are LLMs capable of aiding in the creation of high-quality scientific survey

1. “arXiv Monthly Submissions,” 2025.
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1. Introduction 2

papers?"

This question presents the main focus of this thesis, with other sub-questions being
asked and answered along the way. These include:

(1): "How good are the information extraction qualities of different LLMs?"
(2): "Which prompting-based model performs the best in this context?"
(3): "Which prompting strategy shows the most potential?"
(4): "Does an increase in context help our best-performing model improve?"

To address these questions, we have structured this thesis as follows. First, we
contextualize our work in the background and provide information on the models and
methods used. This is followed by a listing of related works that ask similar research
questions to us. We then introduce the datasets we worked with during our experiments.
Afterwards, we continue with presenting our experimental approach as well as the
results. The experimental part of this paper is split into two distinct chapters. The
first of which provides quantitative data to establish a baseline and assess performance,
whereas the second chapter of the two aims to offer a more exploratory approach, where
we judge both qualitatively and quantitatively how well our best-performing model
generalizes and performs on more nuanced tasks. We round out the thesis by providing
a conclusion where we look back on our experiments and contextualize them within
the context of all our sub-questions, as well as the overarching main research question.



2
Background

2.1 Background

In this chapter we aim to provide the reader with background context that is needed to
comprehend the content presented in this thesis. We start with an introduction to NLP
and LLMs and then move forward with prominent LLM models that were used in this
thesis. We end by presenting different prompting strategies that were utilized for our
prompt-based models.

2.1.1 NLP and LLMs

The field of Natural Language Processing (NLP) has been growing rapidly over the past
few years, especially driven by the rise of large language models (LLMs). Monasterio
Astobiza (2025) defines LLMs as "a type of artificial intelligence (AI) that uses large
amounts of text data to generate human-like responses to questions and instructions".
A bibliometric review conducted by Fan et al. (2024) of research on LLMs from 2017 to
2023 shows a steady increase in publications, rising from 19 in 2017 to 392 in 2019 and
reaching 2,101 in 2022. Furthermore, within this field, the largest theme of publications
was “Algorithm and NLP Tasks,” comprising 54% of all publications related to LLMs.

In addition to increasing popularity, LLMs have also been shown to perform well in
NLP tasks. In a survey paper published byMinaee et al. (2025) the authors note that
"LLMs have drawn a lot of attention due to their strong performance on a wide range of
natural language tasks" and further present the benchmarks of different popular models.
Among the tasks most relevant to this thesis, and the creation of high-quality survey
papers, such as summarization, classification, and information extraction, LLMs have
proven particularly effective.

To better understand why LLMs perform so well across tasks like summarization,
classification, and information extraction, it is helpful to briefly outline how these models

3



2. Background 4

work and are trained. From a top-down perspective, LLMs are a type of neural network
characterized by their large number of parameters, which allows them to perform
a wide range of tasks and generate human-like text. LLMs work auto-regressively,
meaning that they focus on predicting the next token, or set of tokens, in a sentence
based on the previous sequence. This process, combined with the attention mechanism,
enables the LLM to create a coherent and contextually appropriate output. Since the
architectural details are not central to this thesis and are already well-documented in
existing literature, we provide only a high-level overview here.

Instead, we focus on the training process of LLMs. As described earlier, the objective
of an LLM is to predict the next token in a sequence. Achieving this with high accuracy
requires training the model on a large corpus of text. Most models, including those used
in this thesis, are pre-trained on general-purpose datasets sourced from the internet,
such as Wikipedia articles or Stack Overflow posts. The goal of this pre-training phase
is to equip the model with broad language comprehension capabilities. Once this phase
is complete, the resulting model is referred to as a pre-trained model.

Following pre-training, a model can be fine-tuned on a specific dataset or task to
improve its performance in that area. While fine-tuning has been shown to enhance
task-specific performance, recent advances in model size and generalization capabilities
have enabled some models to perform well on downstream tasks even without fine-
tuning. Given the limited size of our dataset, which would likely lead to overfitting
during fine-tuning, we restrict our experiments to using pre-trained models only.

With this general background in place, we now turn to a more detailed overview of
the specific model families used in this thesis.

2.1.2 Prominent LLM Models

In order to properly assess how well the strong performance of LLMs in the field of NLP
tasks translates into the creation of high-quality scientific survey papers, we test multiple
prominent LLM models and compare their performance. To this extent, we provide
some background knowledge about the different models that are referenced in this thesis.

LLaMA

The first model we used to assess the feasibility of this thesis was a LLaMA model.
LLaMA (Large Language Model Meta AI) is a family of "foundation language models"
developed by Meta.1 It is well known for being trained on publicly available datasets
and for its open access to the research community. The initial generation, LLaMA 1,
was released in February 2023 in sizes of 7, 13, 33, and 65 billion parameters. A few
months later, in July 2023, Meta released the LLaMA 2 models, available in sizes of 7,
13, and 70 billion parameters.2 These models introduced architectural and performance
improvements over the previous version and were made publicly available to “encourage

1. Touvron, Lavril, et al., 2023.
2. Touvron, Martin, et al., 2023.
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responsible AI innovation.” We used the 7B parameter LLaMA 2 model to explore the
viability of our research setup in the early stages of this thesis.

Needless to say, since it was the first model we tested with, it was not as large or
efficient as some of the ones presented later on. Although we did not test with the
newer version, LLaMA has also released current competitive models, in the LLaMA3
and LLaMA4 series, which are competitive with current state-of-the-art systems.

LLaMAmodels follow a transformer-based architecture similar to that of GPTmodels,
with a focus on next-token prediction. They introduce architectural optimizations that
allow for high performance with relatively fewer parameters, making them attractive
for research groups with limited computational resources.

DeepSeek

The DeepSeek family of models is developed by DeepSeekAI, a Chinese AI company,
and focuses on open-weight research similar to the LLaMA family. These models are
multilingual, designed to work well in both English and Chinese. DeepSeek offers
a variety of models, some tailored for general instruction and reasoning tasks, while
others are more specialized for math, coding, or even image processing. The architecture
and training data are similar to those of the LLaMA family, as DeepSeek models are
transformer-based and trained on open-source web data. The key difference lies in
their multilingual capabilities, which are enabled by training on bilingual content and
supported by a multilingual tokenizer.

The DeepSeek model tested in our experiments is the 7-billion-parameter variant
from the DeepSeek LLM line, published in November 2023. This model focuses on
instruction-following and has a larger 67-billion-parameter counterpart as well. This
focus on instruction-following refers to the enhanced ability of the model to accurately
respond to commands and prompts by the users. Instead of just generating text based
on statistical patterns, these models aim to produce relevant outputs based on their
interpretation of the instructions. According to DeepSeek-AI et al. (2024), the 7-billion
model outperforms LLaMA 2’s 7-billion model, and similarly, the 67-billion DeepSeek
model compares favorably to LLaMA 2’s 70-billion model. We use the 7-billion model to
evaluate whether this improved performance carries over to our specific task.

Gemma

In late 2023, Google released Gemini 1.0 as a competitor to OpenAI’s GPT-4. Gemini
came in three sizes, with the largest model achieving state-of-the-art performance
benchmarks at the time.3 While Gemini technology was integrated into select Google
products, it was not publicly accessible.

3. Google, 2023.
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In February 2024, Google released Gemma, a publicly accessible line of LLMs
developed during the same training process as Gemini.4 The initial Gemma models
included 2 billion and 7 billion parameter versions, representing some of the largest open-
source LLMs available at that time. Despite this, they were generally outperformed by
larger models such as GPT-4, primarily due to differences in scale.5 Subsequent versions,
Gemma2 and Gemma3, addressed this gap by increasing model size significantly and
improving performance to near state-of-the-art levels.

The Gemma family uses the transformer-based, autoregressive architecture common
to many contemporary LLMs, enabling it to generate coherent and contextually relevant
text. Notably, Gemma3, the model used in this thesis, has 27 billion parameters and
is fine-tuned for instruction-following tasks, making it well-suited for applications
involving summarization and classification.

We selected Gemma3 for our experiments due to its strong balance of model size,
instruction-following capabilities, and public availability, which allows us to benchmark
its performance against other prominent LLMs such as LLaMA2 and DeepSeek.

OpenAI

OpenAI has constantly been at the forefront of state-of-the-art LLM development;
whether it was with the initial release of GPT-1, creating the first auto-regressive model,
the 2020 release of GPT-3, showing an immense development in parameter size and
setting the standard for LLMs, or the release of ChatGPT in 2022 which made LLMs
accessible to the general public, OpenAI has defined key milestones in the field. While
other organizations have since released competitive, and sometimes superior, models,
OpenAI continues to hold state-of-the-art rankings across various tasks.

In this thesis, we test two recent models from OpenAI: GPT-4o and o3. GPT-4o was
released in May 2024 as an improved, multimodal variant of GPT-4 Turbo.6 It delivers
significantly faster and more cost-efficient outputs while maintaining text performance
on par with its predecessor. GPT-4o also includes vision and audio comprehension
capabilities, though we focus exclusively on text-based tasks in this work. As of May
28, 2025, GPT-4o ranks 28th in text performance on the community benchmarking site
lmarena7, and holds a LiveBench global average score of 53.95.8

The o3 model, released in April 2025 alongside o4-mini, is marketed by OpenAI as
their “smartest and most capable” model to date.9 The standout feature of this release
is the reasoning capabilities that these models sprout. They are trained to "think and
process for longer" before responding, thus increasing accuracy and quality. This
increase in quality is also noticeable; when making use of the high reasoning, o3 scores

4. Bouchard and Peters, 2024.
5. Sapling, 2024.
6. OpenAI, 2024.
7. LMArena, 2025.
8. LiveBench, 2024.
9. OpenAI, 2025b.
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first in the global average at LiveBench with a score of 80.71. Its reasoning average is
also impressive at 93.33, being only second to Claude 4 Sonnet Thinking. On lmarena, o3
is currently ranked second in the text category, indicating strong community sentiment
and performance.

Unlike the other models discussed in this thesis, OpenAI has not disclosed the
parameter sizes or architectural details for GPT-4o or o3. Furthermore, these models
are not open-source, and the weights are not publicly available. However, they are
accessible through OpenAI’s API and have been included in this thesis due to their
state-of-the-art performance and widespread adoption. Consequently, our evaluation of
these models is at times limited by the monetary constraints imposed by their API-based
access.

2.1.3 Prompting Strategies

Throughout this thesis, we employ various prompting strategies to identify optimal
prompts and assess which strategies are best suited to each model. In the following
section, we shortly outline and expand on these strategies to provide a baseline under-
standing.

Zero-Shot

Zero-shot prompting is often seen as the most basic prompting approach. Simply put, it
is defined as "when a model is asked to produce output without examples demonstrating
the task".10 Whether you ask the model to "tell me about your favorite color" or to
produce a detailed output summarizing the latest news, without any other specifications,
both of these prompts would be considered zero-shot. Zero-shot prompting is best
employed when the prompt is centered around a context that the model already knows
about, due to its large language base, since a zero-shot prompt does not provide any
further information or examples on the subject. Zero-shot prompting is often used
as a baseline to evaluate whether additional prompt engineering leads to improved
model performance. In the context of this paper, zero-shot acts as the most basic, simple
version of our prompt without further guidance.

Few-Shot

Few-shot prompting provides the model with a small number of examples alongside the
prompt, leveraging in-context learning. This helps the model more reliably understand
the desired output. The number of examples is not set and different tasks may find a
different number of examples to be optimal. While generally more complex tasks would
require more examples, if the number of examples is too large the model may struggle as
the input token length gets larger and the instructions are a smaller part of the prompt.
In those cases, it may be best to attempt a different prompting technique. In our thesis,
for the classification tasks we employ 2-3 examples with both negative and positive

10. Bouchard and Peters, 2024.
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classifications.

Step-by-Step

Step-by-step prompting is a variant of chain-of-thought prompting, which involves guid-
ing the model to break down tasks into smaller, logical steps. Unlike standard chain-of-
thought prompting, we do not provide examples; instead, we include a direct instruction
such as “let’s think step-by-step” to encourage structured reasoning. This helps keep
the input token count low, which is especially important when working with smaller
datasets where well-balanced examples are harder to create. As Bouchard et al. note,
such prompting strategies are most effective with larger models capable of generating
coherent reasoning, as “smaller models often produce nonsensical thought processes”.11

11. Bouchard and Peters, 2024.



3
Related Work

3.1 Related Work

A growing body of research has investigated how Large Language Models (LLMs) can
support the process of scientific writing. Scherbakov et al. (2024) provide an overview
of the stages where LLMs are currently used, showing that most applications focus
on the "Searching for Publications" step. This indicates that automation of literature
retrieval is a primary motivation in the field. Their analysis compares classification
models such as BERT with prompting-based models such as GPT, finding that while
BERT achieved higher accuracy in title and abstract screening, GPT models performed
better in data extraction tasks.

Similarly, Tang et al. (2025) ask the question "Are LLMs Good Literature Review
Writers?" and examine whether models can identify the most relevant studies for a given
research topic. Their prompting strategies influenced our own experimental design, as
did the follow-up study by Agarwal et al. (2025), who investigate whether LLMs can
generate related work sections directly from paper abstracts. While they gather that
LLMs have significant potential in this field, they are not there quite yet.

Beyond these larger surveys, Agarwal et al. (2024) introduce LitLLM, a toolkit
designed to support literature review workflows, while Joos et al. (2024) evaluate how
LLMs can be applied to filter studies more efficiently in systematic reviews. Together,
these works demonstrate a growing interest in using LLMs for automating different
components of the review-writing process.

Outside of complete LLM automation, a growing body of work also exists that focuses
on human and LLM collaboration to accelerate task completion while still retaining
good accuracy. Wang et al. (2021) present a survey outlining the research body in the
Human-in-the-loop (HITL) NLP frameworks. Text classification is a staple in this field
and Wang et al. mention how many HITL frameworks are developed for this problem,
where they train a text classifier that is then improved by humans annotating data based

9
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on the current model behaviour. This can be quite effective as "with a relatively small
set of human feedback, HITL can significantly improve the model accuracy."1

A related line of research asks how humans compare to LLMs in information extrac-
tion tasks. Goh et al. (2020) and Dasigi et al. (2021) both ask the question of whether
humans or LLMs perform better in the task of information extraction. Goh et al. (2020)
measure the performance of both parties when it comes to classifying research abstracts.
In this specific task, the classification models do outperform humans by a decent amount.
They note that, "The accuracy, measured by F1 score, of ML classifiers is 2–15 standard
errors higher than that of human classifiers." Dasigi et al. (2021) on the other hand,
focuses more on in-depth information retrieval. Both humans and the models are given
academic research papers as well as questions, created by NLP practitioners who have
only read the title and abstract of the corresponding paper. The results are as follows,
"we find that existing models that do well on other QA tasks do not perform well on
answering these questions, underperforming humans by at least 27 F1 points when
answering them from entire papers, motivating further research in document-grounded,
information-seeking QA."

In addition to general-purpose LLMs, domain-specific approaches have also been
explored. In the medical field, Zhou et al. (2021) tested BERT models for article
classification in systematic reviews. Their experiments showed that specialized models
such as srBERT, pre-trained on abstracts and fine-tuned on article titles, significantly
outperformed general-purpose BERT, highlighting the value of domain adaptation. This
result motivated our inclusion of BERT baselines and informed our decision to consider
previously fine-tuned models in our experiments.

Within the domain of Computational Literary Studies (CLS), existing infrastructure
has been established that we build upon. Hatzel et al. (2023) provide a database of CLS
publications across several conferences, which we recreated and extended as part of
our dataset construction. Likewise, we made use of the database contained in Table 2
of Sevgili et al. (2022) to supplement our training data. These resources provided a
foundation for evaluating LLM performance in our specific field of interest.

Beyond academia, large research organizations have begun releasing tools that
integrate LLMs into scientific workflows. OpenAI’s “Deep Research”2 and AI2’s “Schol-
arQA”3 are designed to support users in searching and synthesizing scholarly literature.
While promising, these tools are not free of limitations. Derek Lowe4 reports that Deep
Research can produce plausible yet outdated or misleading claims, such as citing older
studies that have since been superseded. He remarks that while the output often appears
solid, unless someone with subject expertise investigates the results, errors can easily
slip through. Similarly, OpenAI’s own technical report acknowledges that the o3 model,
which underpins Deep Research, has a tendency to produce more claims overall. Leading
to both more correct statements but also more hallucinations.5 AI2’s ScholarQA, which

1. Smith et al., 2018.
2. OpenAI, 2025a.
3. Allen Institute for AI, 2025.
4. Lowe, 2025.
5. OpenAI, 2025c.
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relies on a retrieval-augmented generation pipeline, reduces some of these risks by
grounding statements in evidence first, but still lacks robust contradiction detection.

Overall, prior work shows that LLMs are increasingly being explored for tasks
ranging from publication search and classification to related work drafting and data
extraction. Domain-specific studies underscore the value of specialized models, while
industry initiatives demonstrate the potential of integrating LLMs directly into research
pipelines. However, much of this work emphasizes search and filtering, whereas fine-
grained tasks such as structured information extraction and table construction remain
less explored. Our thesis addresses this gap by evaluating the performance of LLMs
in mostly CLS-specific datasets and by systematically testing their ability to extract,
organize, and present information in ways directly useful for survey paper creation.



4
Datasets

4.1 Datasets

This chapter introduces the three datasets used in our experiments. To evaluate model
performance, a diverse selection of scholarly papers was required to ensure a represen-
tative and challenging testbed. Each dataset is outlined in the following sections.

4.2 Original CLS Survey Paper Dataset

Our primary dataset is a modified version of the one introduced in the survey paper
by Hatzel et al. (2023). It includes all publications from the 2022 issue of the Journal
of Computational Literary Studies1, the 20212 and 20223 proceedings of the SIGHUM
Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities
and Literature, and the 2022 conference proceedings of the Conference on Computational
Humanities Research.4

We excluded one set of papers from the original dataset, the findings from the
2022 Digital Humanities conference, as they lacked identifiable abstracts and were
significantly shorter, averaging only about 300 tokens. After this filtering step, our final
dataset consists of 77 papers.

Each paper in the dataset was manually annotated with binary labels for two
categories: Machine Learning (ML) and Computational Literary Studies (CLS). If
a paper applied machine learning techniques, it received an ML score of 1; otherwise,
0. Similarly, if the main topic of the paper fell under computational literary studies,
it received a CLS score of 1; otherwise, 0. This allowed us to establish a quantitative

1. “Journal of Computational Literary Studies: Volume 1 - Issue 1 - 2022,” 2022.
2. SIGHUM, 2021.
3. Degaetano et al., 2022.
4. Karsdorp and Nielbo, 2022.

12
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baseline for evaluation. Of the 77 papers, 48 were labeled as CLS (1), and 54 were labeled
as ML (1).

All labels were manually assigned by a single annotator. Papers that received a label
of 1 in both categories were already mentioned in the survey by Hatzel et al. (2023),
allowing for cross-verification of those annotations. To assign the correct labels, each
abstract was read thoroughly, and when necessary, relevant parts of the full paper were
consulted. All papers were preprocessed into a standardized CSV format, with abstracts
extracted via PDF parsing scripts or manually in cases where automated extraction
failed. Each row in the dataset contains a paper number (as key), the title, abstract, and
binary CLS/ML labels.

In Chapter 5, we use this dataset to evaluate model performance by providing
each model with the abstract and comparing its predictions to our ground-truth labels,
reporting both accuracy and F1 scores. In Chapter 6, although we do not use the labels,
we continue to utilize the abstracts (and, in some experiments, the full texts, which we
extract via markdown parsing scripts after converting the PDFs) to explore qualitative
aspects of model performance.

4.3 Updated CLS Survey Paper Dataset

The second dataset used in this thesis is an updated version of the dataset described in
Section 4.2. It includes all papers from the following sources: the 20235 and 20246 issues
of the Journal of Computational Literary Studies, the 20237 and 20248 editions of the
SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences,
Humanities, and Literature, as well as the 20239 and 202410 proceedings of the Conference
on Computational Humanities Research.

This updated dataset comprises 199 papers, making it more than twice the size of
the original set. Due to the lack of prior survey-based inclusions (as we had for the
previous dataset) and the scale of the data, we did not assign binary CLS and ML labels.
Instead, this dataset is used exclusively for exploratory and qualitative analysis, as
outlined in Chapter 6. As with the previous dataset, both the abstracts and full texts
of the papers were extracted using PDF and Markdown parsing scripts, with manual
correction applied where necessary.

5. “Journal of Computational Literary Studies: Volume 2 - Issue 1 - 2023,” 2023.
6. “Journal of Computational Literary Studies: Volume 3 - Issue 1 - 2024,” 2024.
7. Degaetano-Ortlieb et al., 2023.
8. Bizzoni et al., 2024.
9. Sela et al., 2023.
10. Proceedings of the Computational Humanities Research Conference 2024, Aarhus, Denmark, December

4-6, 2024, 2024.
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4.4 Neural Entity Linking Survey Paper Dataset
The final dataset used in this thesis originates from a domain outside of Computational
Literary Studies. The motivation behind its inclusion was to evaluate how well the
techniques developed in earlier experiments generalize to a dataset unrelated to CLS.
To this end, we constructed a dataset based on the papers listed in Table 2 of the
survey "Neural Entity Linking: A Survey of Models Based on Deep Learning" by Sevgili
et al. (2022).

In that survey, the authors manually annotated the papers with metadata such as
encoder type and learning type for disambiguation. This structure mirrors the Table 3
found in the CLS survey paper by Hatzel et al. (2023), making it possible to use similar
classification-based approaches as in our earlier experiments. As such, this dataset is
employed in Chapter 6 to test the generalization ability of our prompting-based models
in a new research domain.



5
Analyzing abstracts

5.1 Analyzing abstracts
To explore whether large language models (LLMs) are capable of aiding in the creation
of high-quality scientific survey papers, we must first evaluate their ability to extract
and classify relevant information from scientific texts. This chapter presents our first set
of experiments, designed to quantitatively assess the performance of LLMs in processing
scientific literature and identifying key thematic categories.

The overarching goal is to classify scientific texts based on their association with
two categories: Computational Literary Studies (CLS) and Machine Learning (ML).

To achieve this, we use the first dataset introduced in Chapter 4, which contains
scientific texts and their annotated scores for the CLS and ML categories. Using this
data, we test various models by providing them with the abstracts of these texts and
asking them to assign scores:

• A score of 1 in CLS indicates the main theme of the text falls within Computational
Literary Studies; a 0 indicates otherwise.

• A score of 1 in ML indicates the use of machine learning techniques; a 0 indicates
no use of such techniques.

5.1.1 Research questions

These experiments aim to answer the following research questions:

1. How good are the information extraction qualities of different LLMs?

2. Which prompting-based model performs the best in this context?

3. Which prompting strategy shows the most potential?

15
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The first question will be revisited in Chapter 6, where we examine more fine-grained
information extraction tasks. While we do provide some results toward answering
this question in this chapter, the focus mainly lies on answering the second and
third questions.

5.1.2 Approach

Initially, we planned to test both encoder-based models and prompting-based models.
Early experiments, however, revealed that encoder-based models performed poorly even
on simple classification tasks. As a result, we shifted our focus to prompting-based
approaches, which allowed us to tailor instructions for each model and leverage their
few-shot learning capabilities.

Two types of approaches were explored in this chapter:

• Encoder-based classification models: These are briefly discussed in Section 5.2,
where we document their results for completeness.

• Prompting-based models: These are examined in detail in Section 5.3, where we
describe our prompt design, model selection, and evaluation.

This structured exploration allows us to compare different models and prompting
strategies in a systematic way, providing insight into their relative strengths and weak-
nesses.

5.2 Encoder-based models
Before exploring prompt-based methods, we first experimented with two encoder-
based models of the BERT architecture to evaluate whether treating our problem as a
straightforward classification task could yield satisfactory performance.

In the initial, simpler approach, we concatenated each paper’s title with its abstract
and created a train/test split (90% training, 10% testing). The input was tokenized and
passed to a BertForSequenceClassification model with the number of labels set to
2 for binary classification (0 or 1). After training, we evaluated the model’s performance
on the test set.

The results revealed a significant limitation: the model consistently predicted the
positive class (label 1) for all examples. This is likely due to the class imbalance in our
dataset, where positive labels dominate. As a result, the model achieved a CLS accuracy
of approximately 54.5% and an ML accuracy of 75.3%, which mirrors the proportion
of positive and negative labels in the dataset. Although the accuracies appear better
than random chance, these figures are misleading, as the model failed to identify any
negative cases, leading to a 100% false positive rate, an outcome that is completely
unacceptable. Attempts to mitigate this issue, such as modifying hyperparameters like
the learning rate or number of epochs, were unsuccessful. Consequently, we proceeded
to test a different BERT model in hopes of overcoming these shortcomings.
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The next model we tested was SciBERT, a variant of BERT trained on scientific text.
Its training corpus comprises full papers sourced from Semantic Scholar. Since SciBERT
is designed to handle scientific language, it appeared promising for our dataset. However,
simply repeating the same classification process as before was unlikely to succeed.
Instead, we implemented a masked token approach, in which SciBERT is provided with
a sentence containing a mask token and predicts the most likely replacement based on
the abstract’s context.

We experimented with two different sentences, one for each classification task. For
CLS classification, we used: “Is the main topic of this paper computational literary studies
related? The answer is [MASK].” For ML classification, the sentence was: “Does this
paper apply machine learning techniques? The answer is [MASK].” We then compared the
predicted scores for yes and no as possible replacements for the mask token, assigning
a binary label (0 or 1) depending on which had the higher score. The results were again
unsatisfactory: this time, the model consistently predicted the negative class (label
0). This behavior likely stems from the fact that SciBERT was not designed for such
masked question-answering tasks, and in scientific texts, a negative response (no) is
more probable in these contexts.

From these two experiments, we conclude that encoder-based models pre-trained
on large datasets are not well suited to our task. To improve their performance,
we would need to fine-tune these models specifically for our classification problem.
However, our dataset is both limited in size and nuanced in nature. As we observed with
BertForSequenceClassification, using 90% of the dataset for training introduced
a problematic pattern where the model consistently predicted the dominant class.
Increasing the training dataset sizemight help themodel capturemore subtle distinctions,
but it also raises the risk of overfitting and poor generalization on unseen data.

On the other hand, relying solely on a pre-trained model trained on scientific text
(e.g., SciBERT) led to predictions that merely reflect corpus probabilities, for instance,
favoring "no" over "yes" in our context. While encoder-based models have been used
successfully for classification tasks in other work (e.g., Zhou et al. (2021)), they proved
ineffective in our setting. For these reasons, we turned to prompt-based models instead,
as they allow us to work with a small dataset and design prompts that communicate
our task and expected outputs more directly.

5.3 Prompt-based models

Having concluded that simple classification approaches using encoder-based models
were insufficient for our task, we turned to prompt-basedmethods instead. This approach
allows us to clearly define the goal and provide the model with context beyond the
immediate data.

Throughout our experiments, we tested a wide variety of models. Each exhibited its
own quirks in response to prompting, and we observed that a strategy that worked well
for one model often performed poorly on another. As a result, we found it necessary to
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develop tailored prompts for each model. However, for the sake of objective comparison,
we also established a baseline prompt: this ensured that performance differences could
not be attributed solely to variations in prompt design. For each model, we tested
both the baseline and a more optimized prompt, and we present their comparative
performance at the end of this chapter. We now introduce the baseline prompts for both
CLS and ML classification tasks.

CLS Baseline Prompt

You are an expert in Computational Literary Studies (CLS).
**CLS Definition:**
CLS applies computational methods (e.g., text mining, stylometry,
sentiment analysis) to literary texts (e.g., novels, poetry, drama).
It excludes studies focused on historical records, cultural trends, or
linguistic change unless literature is central.
Your task is to analyze the text below and determine if it falls under
computational literary studies or not. Return only your analysis.
**Text:**
"{content}"
**Analysis:**

ML Baseline Prompt

You are an expert in Machine Learning (ML).
**ML Definition:**
ML focuses on the development of algorithms that improve automatically
through experience. It includes methods such as supervised learning,
reinforcement learning, and natural language processing. Simple
rule-based algorithms and statistical evaluation are not machine
learning.
Your task is to analyze the text below and determine if it mentions
machine learning techniques or not. Return only your analysis.
**Text:**
"{content}"
**Analysis:**

5.3.1 LLaMA 2 Prompting

The first model we used to test our approach was from the LLaMA 2 family, specifically
the 7B chat fine-tunedmodel.1 Developed byMeta and released in July 2023, this variation
represents the smallest size in the LLaMA 2 series, with larger models featuring 13B
and 70B parameters. It is designed exclusively for text input and generation without
image processing capabilities. Given its smaller size and performance relative to current
state-of-the-art models, we did not expect exceptional results but rather insights into
whether scaling up might yield significant improvements.

1. Meta, 2023.
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We first evaluated this model using the baseline prompt. As the initial model
tested, and also the least capable in our set, it shaped the constraints for our baseline
prompt. Unlike subsequent models, LLaMA 2 7B was unable to consistently assign
coherent values of 0 or 1 to our categories when directly prompted. Consequently, the
baseline prompt was simplified to request only an analysis of the text. The inability
to assign scores directly likely stems from the increased input length when requesting
both an analysis and numerical scoring, effectively adding a sub-task to the model’s
workload. After obtaining the analyses, we manually reviewed the outputs and assigned
scores to the categories based on the provided reasoning. The results of this process
were as follows:

Table 5.1: Performance of using the LLaMA 2 7B model on the original CLS dataset with the
baseline prompt

Category Accuracy (%) F1 Score

CLS 57.14 0.57
ML 68.83 0.77

Overall, these results shown in Table 5.1 are rather poor but not unexpected given
the limitations of this smaller model. For CLS, performance was close to random chance,
and although results in the ML category were somewhat better, they remained far from
satisfactory.

We then attempted to optimize the prompt. However, this process was hampered by
frequent issues where the model would repeat the prompt verbatim instead of generating
a meaningful output. This behavior was likely due to the combined length of the prompt
and abstract, which exceeded the model’s capacity to handle longer inputs effectively.
To address this, we set a token limit for the output using the max_new_tokens parameter
to discourage repetition and further streamlined the prompt to reduce input length.
Despite these adjustments, no significant improvements were observed. Consequently,
the results obtained with the baseline prompt also represent the best performance
achieved with this model.

Nevertheless, this experiment demonstrated that our overall approach is viable and
capable of producing results. It suggests that employing a larger and more capable
model could lead to substantial improvements.

5.3.2 DeepSeek Prompting

Before moving on to larger models, we first tested a model of comparable size that boasts
better reported performance. This model, developed by DeepSeek, is a quantized version
of the DeepSeek LLM 7B Chat model.2 While the architectural details of this model
have already been discussed in Chapter 2, it is worth emphasizing that the quantization
played an important role in reducing memory requirements and making it feasible to
run on the hardware available for our experiments. We selected this model because, like
LLaMA, DeepSeek is widely adopted within the open-source community. It provides a

2. Deepseek LLM 7B Chat - GPTQ (Hugging Face), 2025.
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direct comparison to LLaMA 2, offering similar parameter size but reportedly superior
performance on several benchmarks due to its more refined architecture. Here, we
evaluate whether these claimed advantages translate to improved results for our specific
information extraction task.

An interesting observation from this phase of testing is that the split between
classifying texts for the CLS and ML categories using two separate prompts originated
with the DeepSeek model. Unlike LLaMA, DeepSeek struggled to reliably handle
classification for both categories within a single prompt. Often it would output only
one score or analysis for a category, omitting the other entirely. To address this, we
introduced two separate prompts, one targeting CLS classification and another for ML.
This adjustment resolved the issue and, when retroactively applied to the LLaMA model,
also improved its performance to the values reported in the previous subsection.

When we ran the baseline prompt for DeepSeek, following the same process as for
the LLaMA model, obtaining an analysis and manually assigning scores, the results
were as follows:

Table 5.2: Performance of using the Deepseek 7B model on the original CLS dataset with the
baseline prompt

Category Accuracy (%) F1 Score

CLS 62.33% 0.73
ML 70.13% 0.76

While these results in Table 5.2 represent a clear improvement over the LLaMA
model, they remain somewhat underwhelming. This is not unexpected, as the model is
still relatively small at 7B parameters, though its architecture appears better optimized
for our task than LLaMA’s. These findings reinforce the idea that model size alone is
not the sole determinant of performance; architectural refinements and training data
also play a critical role.

Efforts to optimize the prompt revealed further challenges. Like LLaMA, DeepSeek
struggled with the added complexity of assigning scores directly in the original prompt.
In several cases, the model would correctly analyze a text, stating, for example, “This
text uses machine learning techniques”, yet assign an incorrect score of 0 for ML. This
suggests that the scoring step introduces cognitive overhead that exceeds the model’s
effective context handling capabilities at this scale. To mitigate this, we concentrated on
refining the analysis portion of the prompt and relied on an automated post-processing
step to extract scores from the generated analysis. This separation of concerns proved
more robust and highlights a practical strategy for working with smaller models.

In optimizing the prompt, we attempted to provide the model with additional context
about what constitutes a positive or negative classification for both categories. While
Deepseek was able to handle this increased context, unlike the LLaMA 2 model, it did
not consistently lead to improved scores. In fact, the results for the CLS category did
not improve during our testing and often performed slightly below the baseline by a
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few percentage points. In contrast, the scores for the ML category showed notable
improvement, reaching an accuracy of 70.13% and an F1 score of 0.76.

Overall, while Deepseek outperformed LLaMA 2 in both categories at the baseline
level, the improvement was modest. We attribute this to the relatively small size of
both models and their limited capacity to handle more complex prompts that could
have improved scoring. Nevertheless, this experiment provided the valuable insight
that improved model architecture alone can yield measurable gains. As we progress
to larger models with stronger performance, we hypothesize that increases in size alone
will eventually reach a performance plateau. At that stage, further advancements will
likely depend on architectural improvements rather than scaling. For now, we turn to
larger models to observe the expected gains in performance.

5.3.3 Gemma3 Prompting

The first larger model we tested was the quantized version of the Gemma3 27B Instruct
model. At 27 billion parameters, which is nearly four times larger than the previous
7B models, this model offers significantly more computational power. This difference
was evident in testing, as the model demonstrated a much stronger grasp of the task
compared to earlier models. We encountered fewer issues during both the baseline
prompting and the optimization process. This overall improvement in performance is
also reflected in the results of the baseline prompting, which we present below:

Table 5.3: Performance of using the Gemma3 27B model on the original CLS dataset with the
baseline prompt

Category Accuracy (%) F1 Score

CLS 89.61% 0.90
ML 75.32% 0.82

Table 5.3 highlights a substantial improvement in the CLS category, where the
increase in performance is particularly notable. While the ML results did not improve
as dramatically, they still show a clear gain over the previous models. Interestingly,
in contrast to the LLaMA and DeepSeek models, where the ML category consistently
outperformed CLS, this trend is reversed here, with CLS now achieving higher scores.
This also marks the largest disparity between the two categories observed so far. To
explore whether this trend continues and to further improve results, we experimented
with prompt optimization and alternative prompting strategies.

While the Gemma3 model is highly capable and able to handle analysis for both CLS
and ML within a single prompt, we observed improved performance when splitting the
prompts. Consequently, we chose to keep them separate. Including instructions for the
model to score the analysis itself did not negatively impact results, so this component
was retained in the prompts, as opposed to done through post-processing as we had
with the previous two models.
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In our initial attempts at optimizing the prompts, we provided more detailed defi-
nitions to help the model better understand the requirements for each category, while
maintaining a zero-shot prompting style. The impact of this change was minor: accuracy
and F1 scores for CLS remained almost identical, but ML scores improved slightly,
reaching an accuracy of 79.22% and an F1 score of 0.84.

Next, to address our third research question, we tested alternative prompting
techniques. We began with few-shot prompting, where the model was shown examples
of both positive and negative classifications. To avoid unnecessarily increasing context
length and potential overhead, we used only a single sentence for each example instead
of full abstracts.

This few-shot prompting approach, however, did not affect the performance of either
classification. Scores for both categories remained the same as those achieved with
zero-shot prompting.

The final prompting technique we tested was step-by-step prompting. Here, we
used a more concise definition along with step-by-step instructions guiding the model
through the analysis process. We outline an example prompt for our CLS classification
now; for more information on our prompts, including the ML variation of this one, see
appendix.

CLS Step-by-Step Prompt

You are an expert in Computational Literary Studies (CLS).
Analyze the following text and determine whether its **main topic** falls
under CLS.
**CLS Definition:**
CLS applies computational methods (e.g., text mining, stylometry,
sentiment analysis) to literary texts (e.g., novels, poetry, drama).
It excludes studies focused on historical records, cultural trends, or
linguistic change unless literature is central.
**Task:**
Analyze the text below step by step:
1. Identify computational methods used if any.
2. Determine if the text focuses on literary texts.
3. Classify the text a CLS (1) or Not CLS (0) based on your findings.
4. Provide a brief explanation justifying your decision.
**Text:**
"abstract"
**Output Format:**
CLS Score: [1 or 0]
[Brief Explanation]
"""

This approach led to a modest improvement in ML scores, achieving an accuracy of
80.52% and an F1 score of 0.86. For CLS, however, we observed a substantial improvement,
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with accuracy increasing to 92.21% and the F1 score rising to 0.93.

Table 5.4 summarizes the results across all prompting techniques:

Table 5.4: Performance of using the Gemma3 27B model on the original CLS dataset with various
prompts. Notice that Step-by-Step prompting performs best in both categories.

Prompting Technique Accuracy (%) F1 Score

CLS Results

Zero-shot 89.61% 0.91
Few-shot 89.61% 0.91
Step-by-Step 92.21% 0.93

ML Results

Zero-shot 79.22% 0.84
Few-shot 79.22% 0.84
Step-by-Step 80.52% 0.86

Overall, our experiments with the Gemma3 model provide several important insights.
First, an increase in model size results in a substantial improvement in classification
performance, highlighting the value of larger LLMs for this task. Second, our results
demonstrate that the CLS and ML categories respond differently to various prompting
approaches. Techniques that improve performance for one category may, in some cases,
not do the same for the other. Notably, step-by-step prompting produced the highest
scores for CLS and modest gains for ML, suggesting it may be particularly well suited
for more nuanced tasks like CLS classification.

These findings highlight the importance of not relying on a single prompting strategy
across categories. Instead, adopting a category-specific or mixed prompting approach
may lead to better overall performance. To see if these findings hold up, we move onto
a bigger model yet again and experiment with our prompting techniques.

5.3.4 GPT-4o Prompting

The last two models we examine are both developed by OpenAI. They differ from the
previous models in that they are the first proprietary systems we tested and feature a
substantially higher parameter count. We begin with the first OpenAI model we tested,
GPT-4o, before moving on to the second, o3.

Although OpenAI has not disclosed the exact number of parameters for GPT-4o,
it is “estimated to be well over one trillion”3, making it several orders of magnitude
larger than our previously largest model, which had 27 billion parameters. OpenAI also
offers a dedicated Python module to facilitate prompting their models. This module
adopts an “instruction” and “input” structure: in our use case, we used the “instruction”
component to assign a role to the model and the “input” field to provide the relevant

3. Shahriar et al., 2024.
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context for its analysis.

Using this structure, we introduced our baseline and received the following results:

Table 5.5: Performance of using the GPT-4o model on the original CLS dataset with the baseline
prompt

Category Accuracy (%) F1 Score

CLS 94.81% 0.95
ML 84.41% 0.89

As shown in Table 6.1, GPT-4o outperforms our previous best model, Gemma3,
across both categories. Remarkably, even this baseline prompt achieves results that
surpass those of Gemma3 under more engineered prompting conditions. However,
this performance appears to plateau near these benchmarks. Our attempts to further
improve scores using advanced prompting techniques yielded only marginal gains or,
in some cases, slight declines. Using the same prompting strategies applied to Gemma3
(with minor adjustments; see Appendix for prompt details), we observed the following:

Table 5.6: Performance of using the GPT-4o model on the original CLS dataset with various
prompts. Notice that CLS results are worse than the baseline while ML improves with zero-shot.

Prompting Technique Accuracy (%) F1 Score

CLS Results

Zero-shot 92.21% 0.93
Few-shot 93.51% 0.94
Step-by-Step 89.61% 0.90

ML Results

Zero-shot 85.71% 0.90
Few-shot 84.42% 0.90
Step-by-Step 84.41% 0.89

Table 5.6 shows that the baseline prompt remained the strongest for CLS classifica-
tion, while engineered prompts produced only minor improvements forML classification.
These results suggest diminishing returns for prompt engineering in large proprietary
models. GPT-4o’s baseline performance leaves little headroom for improvement, indi-
cating that gains from advanced prompting may be minimal when the model’s internal
logic is already highly optimized.

Interestingly, CLS classification continues to be an easier task for larger models
such as GPT-4o, whereas the smaller models (e.g., LLaMMA and DeepSeek) performed
comparatively better on ML classification.
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5.3.5 o3 Prompting

The other OpenAI model we tested, o3, is a recent release that offers state-of-the-art
performance as of May 2025. Known for its advanced reasoning abilities and strong
generalization across tasks, o3 has consistently outperformed earlier models, including
GPT-4o, in most benchmarks. Based on this, we anticipated that o3 would achieve
superior results in our classification tasks as well.

Before testing engineered prompts, we first evaluated o3 using a baseline prompt.
The results are summarized in Table 5.7.

Table 5.7: Performance of using the o3 model on the original CLS dataset with the baseline
prompt

Category Accuracy (%) F1 Score

CLS 89.61% 0.90
ML 90.90% 0.94

The results in Table 5.7 are unexpected. As previously noted, we anticipated that
o3 would surpass GPT-4o’s performance, even if only by a small margin. However, o3
performs noticeably worse than GPT-4o in classifying the CLS category, with a drop
of approximately 5%. Conversely, for ML classification, o3 achieves about a 5% higher
accuracy than GPT-4o. These findings suggest that performance in these two tasks
may depend heavily on how well the models align with the specific demands of each
classification problem.

We also examined the effects of different prompting techniques on o3’s performance:

Table 5.8: Performance of using the o3 model on the original CLS dataset with various prompts.
Notice that CLS results are highest with few-shot prompting while ML performs best at baseline.

Prompting Technique Accuracy (%) F1 Score

CLS Results

Zero-shot 92.21% 0.93
Few-shot 93.51% 0.94
Step-by-Step 92.21% 0.93

ML Results

Zero-shot 89.61% 0.93
Few-shot 89.61% 0.93
Step-by-Step 85.71% 0.90

As shown in Table 5.8, the trends differ from those observed with GPT-4o. While
GPT-4o exhibited no improvements for CLS classification and only minor gains for ML,
o3 shows a notable improvement in CLS performance when using prompting techniques
such as few-shot and step-by-step prompting, increasing from 89.61% (baseline) to 93.51%
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(few-shot). This challenges our earlier hypothesis that advanced prompting provides
only minimal benefits for larger models. On the other hand, for ML classification,
prompting techniques offer no significant gains and in some cases (e.g., step-by-step)
even lead to notable performance degradation.

These results suggest that the impact of prompting techniques is not uniform across
models or tasks. For o3, prompting refinements substantially improve CLS classification
but have little effect on ML classification. This reinforces the idea that prompting
effectiveness depends on both the task and the model.

Furthermore, when considering all prompting techniques, CLS classification remains
the easier task for larger models overall. However, o3 narrows the performance gap
between CLS and ML classification compared to GPT-4o.

In summary, both o3 and GPT-4o demonstrate impressive capabilities, achieving
around 90% accuracy across tasks. These results highlight both the potential and the
task-specific variability in how large language models respond to prompt engineering.
We discuss the broader implications of these findings in the next section.

5.4 Conclusion

Overall, these experiments provided valuable insights into the performance of different
models on our task. We established baselines for a range of models and evaluated how
they handle information extraction in the context of aiding the scientific survey paper
creation process. Throughout this testing process, several patterns emerged, allowing us
to confirm or reject prior hypotheses and refine our understanding of model capabilities.
We now turn our attention to addressing our research questions.

Question: "How good are the information extraction qualities of different LLMs?"
Answer: Our experiments showed that simpler classification approaches without
prompting (e.g., encoder-based models) did not produce promising results. While
these models can theoretically perform classification, in our context, the dataset was
too small to avoid overfitting, which led to poor performance. Utilizing pre-trained
encoder-based models also provided poor performance as they were unable to perform
within our context. By contrast, prompting-based approaches demonstrated strong
performance without any additional training. This suggests that leveraging pre-trained
LLMs through prompt engineering is a more effective strategy for modestly complex
tasks where limited training data is available. To further look into how well these models
performed, we move into the second research question.

Question: "Which prompting-based model performs the best in this context?"
Answer: While the encoder-based models performed very poorly in our experiments,
the prompting-based models showed strong potential. Interestingly, we did not identify
a single model that excelled universally; instead, different models performed best in
each classification category. For the CLS classification task, OpenAI’s GPT-4o achieved
the highest performance with an accuracy of 94.81% and an F1 score of 0.95. In contrast,
for the ML classification task, the best results came from o3, which achieved an accuracy
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of 90.90% and an F1 score of 0.94.

Although it is not surprising that these large, state-of-the-art models achieved the
best results overall, it is notable that GPT-4o outperformed o3 in CLS classification,
despite o3 achieving higher scores on general testing metrics as outlined in Chapter 2.
While we cannot pinpoint the exact reason for this difference, it is plausible that
variations inmodel architecture and pre-training data could lend onemodel an advantage
on certain task types.

Beyond the top performers, our experiments also showed that Gemma3 achieved
decent results, while the smaller prompt-based models struggled significantly. This
underscores the importance of model size for performance in tasks of this complexity.
For instance, although Deepseek slightly outperformed LLaMa at the 7B parameter scale,
it was unable to reach high accuracy without an increase in parameter size.

Finally, an interesting pattern emerged when comparing categories: ML classification
appeared easier for models to achieve moderate performance (~70% accuracy), but
harder to achieve excellent results (~90%). Conversely, CLS classification seemed more
challenging for lower-performing models but allowed higher-performing models to
achieve exceptional results more readily.

Question: "Which prompting strategy shows the most potential?"
Answer: For the stronger performing models, we tested several prompting strategies
to evaluate their impact on classification performance. One key conclusion from these
experiments is that no single prompting strategy consistently outperforms the others
across all models. For example, in the case of Gemma3, step-by-step prompting led
to a notable performance increase in both classification categories. In contrast, for
the OpenAI models, step-by-step prompting was never the best approach; for GPT-4o
in particular, it even caused a significant drop in performance. Interestingly, GPT-4o
achieved its best CLS results using a simple zero-shot baseline prompt, and the ML
results for this model improved by only about 1% with alternative prompting strategies.
This suggests that highly optimized models may derive limited benefit from advanced
prompting techniques.

However, this hypothesis was challenged by the results for o3, where few-shot
prompting improved CLS classification accuracy by up to 4%. These findings indicate
that while no single prompting strategy dominates, tailoring the prompting approach
to the specific model can lead to meaningful performance gains.

Further illustration for the effectiveness of the different prompting strategies can be
found in the appendix.



6
Model Application and Data Exploration

6.1 Model Application and Data Exploration
In the previous chapter we evaluated different large language models (LLMs) for
their ability to extract and classify relevant information. From these experiments we
established a baseline that shows how well our models perform at this task. In this
chapter we intend to go further and move towards a more practical application of our
best performing model from the previous chapter. The experiments presented in this
chapter aim to illustrate how our model may be used to aid in the creation of high-quality
scientific survey papers.

We start our with a brief section showing our attempts at clustering our data, using
our best-performing model, in order to possibly observe and analyze certain trends
within the data. The main part of this chapter focuses on reproducing sections of survey
papers, specifically tables as they are filled with large amounts of structured information
about scientific papers, and evaluate how effectively our model performs this task.
Afterwards, we extend this approach by prompting our model to return the required
information for a new table based on an updated dataset. Finally, we aim to judge how
well our model generalizes and test our same approach in a different field than CLS.

6.1.1 Research Questions

Through the experiments conducted, we aim to answer the following research questions:

1. How good are the information extraction qualities of different LLMs?

2. Does an increase in context help our best-performing model improve?

As previously mentioned in Chapter 5 the first question is being revisited here, in
greater depth, as these experiments allow us to provide a more detailed answer. The
second question will be answered for the first time here, since these sets of experiments

28
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offered us the best opportunity to use the full text of our papers and not just the abstracts.

6.2 Charting the Data
Before attempting to recreate parts of established survey papers, we first explored
our datasets to identify potential patterns or trends using our best-performing model,
OpenAI’s o3. The first dataset we use is based on the survey paper by Hatzel et al. (2023),
for more information see Chapter 4. As a starting point, we prompted the model to
extract the main topic of each paper from its abstract, following the approach used in
Chapter 5. The resulting topics were collected into a CSV file and subsequently used for
clustering. For our clustering we used embeddings together with the all-MiniLM-L6-v2
sentence transformer.1

To properly create and assign clusters, we established groups of predefined clusters
with names and values. The following is an example of one such cluster:

"Sentiment and Emotion Analysis":
["sentiment analysis", "emotion detection", "opinion mining"]

We encoded the representative terms for each cluster and computed an average
embedding to serve as the cluster vector. Similarly, the extracted main topics were
normalized, encoded, and compared against the cluster vectors using cosine similarity.
A topic was assigned to the cluster with the highest similarity score, provided the
score exceeded a threshold of 0.35. Otherwise, the topic was labeled as “Uncategorized.”
After assignment, cluster vectors were recalculated to account for the newly added terms.

To possibly increase our coverage and minimize the amount of "Uncategorized"
terms we additionally sent all "Uncategorized" topics, along with the predefined cluster
names to our model using a separate prompt. The model was prompted to suggest new
potential clusters based on the group of uncategorized terms, keeping in mind that
clusters should not be either overly broad or overly specific. The output of this prompt
was then put into a cluster suggestion list where we manually reviewed them to see if
we should add any new predefined clusters.

The first result of this clustering process can be seen in the following graph. Here
we decided to simply show the spread of main topics within our data in a bar chart.

From Figure 6.1 we observe that, the largest cluster within our data is "Literary and
Textual Studies", which is characterized by terms such as "narrative analysis" or "style
analysis". This outcome is expected, as 48 out of 77 papers in this dataset belong to the
field of CLS, a field which focuses heavily on literary and textual studies. The second
largest cluster is "Uncategorized". Due to the relatively small dataset size, we were not
able to find any new potential predefined clusters from these uncategorized terms, that
were not either overly broad or under-populated and highly specific for our dataset.

1. Sentence Transformers (Hugging Face), 2025.
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Figure 6.1: Main topic clusters for original CLS survey paper dataset by Hatzel et al. (2023)
measured by count of entries per cluster

This resulted in about 19% of our dataset not falling into a predefined cluster. The rest
of our data follows a relatively even distribution, though the more CLS adjacent clusters
seem to be at the forefront, which is consistent given our data.

While this bar chart shows us a decent visualization of how our data is distributed, it
does not show us any trends. Therefore, we further attempted to map our clusters using
dimensionality reduction techniques such as PCA and UMAP to potentially see some
patterns emerge. Unfortunately, these visualizations did not reveal any meaningful
structure and produced uncorrelated spreads. For this reason, we decided to omit these
results and proceed towards the next dataset.

The second dataset we analyzed was an updated version of the previous dataset,
using the same conference papers but from 2023 and 2024 instead. It is further outlined
in Chapter 4. Since this dataset still uses the same sources as the previous one, just with
updated data from 2023 and 2024, we should see similar distributions here. This dataset
is also more than double the size, thus ideally allowing us to create new predetermined
clusters that should now be more populated. The results can be seen in Figure 6.2.

In this dataset, the largest cluster once again corresponds to Literary and Textual
Studies, followed by Uncategorized. However, unlike in the previous analysis, the un-
categorized portion was reduced through the introduction of two new model-suggested
categories: Authorship and Stylometry andMusic andAudio Analysis. This adjustment
lowered the proportion of uncategorized data to about 17%. We also observe a slight
increase in "Historical and Cultural Studies" with a minor decrease to "Religious and
Classical Text Studies", though these changes are not substantial enough to indicate a
trend.

As with the first dataset, applying clustering to this data did not provide us with
any more discernible trends or patterns. While this visualization helps us get a better
look at the data; to truly retrieve more details from our datasets, we need to dig deeper
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Figure 6.2: Main topic clusters for updated CLS survey paper dataset measured by count of
entries per cluster

into the data.

6.3 Survey Paper Table Recreation

Although our clustering efforts did not produce any visible trends, they provided a
useful overview of our data as well as a distribution of the main topics presented in our
papers. However, to gain more detailed insights into the papers and to explore how such
findings could aid in the creation of survey papers, we need to examine the data more
closely. As such, we use this section to search and extract more details in our papers.
Specifically, we start by looking for the information that is present within Table 3 of the
paper by Hatzel et al. (2023) and attempt to recreate it. Thus, we are able to assess how
well our model can extract specific information relevant to survey paper creation.

6.3.1 Original survey paper

Table 3 in the original survey paper by Hatzel et al. (2023) contains data for all papers
that have a score of 1 in both CLS and ML. For these papers several attributes are
listed: "Machine learning method", "Model name", "LS question/topic", "Annotations",
and "Rules". The "machine learning method" and "model name" columns are relatively
straight-forward while the "LS question/topic" column "denotes the question or topic of
the paper with regard to literary studies."2 "Annotations" and "Rules" is a simple yes/no
column that indicates which approach the paper used; if it was more of a rule-based
approach with pre-trained models or an annotation one with the authors training their
own model and scaling their annotations.

2. Hatzel et al., 2023.
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To recreate this table, we first prompted our model for each quality with a zero-shot
approach, providing our model with the abstract of the papers it previously scored as 1
in both the categories of CLS and ML as per the classification in Chapter 5, as well as
the definitions for our qualities in accordance to the ones given in the original survey
paper. We leave out the "Features" column for now as it is rather undefined. We do
expect a difference in papers mentioned in our recreated table, since our accuracy is
not at 100%, however, the overlap is big enough that we can use it to judge how well
our model performed. Using just the abstract of our papers, our results can be seen in
Table 6.4. For improved readability, we have moved it to the end of this chapter.

When we examine Table 6.4 and compare the entries for the papers that are also
present in Table 3 of the original paper by Hatzel et al. (2023) we can already see a
number of differences. Some of these can be attributed to variation in writing style
between the original authors and our model; for example, classifying a method as
“Supervised learning” rather than “Transformers.” Others, however, are genuine errors.
As mentioned earlier, some papers that should be included in this recreation are missing,
due to the model’s imperfect classification accuracy, such as the paper "‘This book makes
me happy and sad and I love it’. A Rule-based Model for Extracting Reading Impact from
English Book Reviews" by Koolen et al.3 Conversely, due to the inaccuracy during our
model’s scoring, a couple of new papers are included that should not be present such
as "‘Entrez!’ she called: Evaluating Language Identification Tools in English Literary
Texts" by Ketzan et al.4

A recurring pattern is our model’s preference to use the term "Supervised learning" in
the "Machine learning method" columnwhere the original table had used "Transformers".
While this identification is not false, we do notice that our model often defaults to this
term even when more specific methods are mentioned that should be written down
instead. In those cases, we are not working with a matter of preference anymore but
rather a false classification. One example of this is the paper by Steg et al., which is
classified as "Supervised learning" within the "Machine learning method" column with
more specifically "Linear Regression" in the "Model name" column. In comparison, the
original table classifies the machine learning method as "Theil-Sen regressor, doc2vec"
with no specific model name.

We also notice inaccuracies in the other columns, most notably in the "Annotations"
and "Rules" columns. Here, our model overwhelmingly defaults to a score of neither and
performs very poorly. This poor performance, together with the lackluster performance
in the machine learning and model name category, can most likely be attributed to a
lack of information for these categories within just the abstract of each paper. We create
this hypothesis since our model’s performance in the "LS question/topic" column is very
strong. After manually reviewing this category, we noticed that most of the time our
model correctly identifies the topic. To support this claim, we ran a function to calculate
the BERT score between our generated "LS question/topic" and the one in the original
table. The results are as follows: no pair of topics received a score lower than 0.8 and
many went over 0.85 with the highest being at 0.94. Since it is more likely that the main

3. Koolen et al., 2022.
4. Ketzan and Werner, 2022.
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topic of a paper is referenced within the abstract of the paper, we assume that the lack
of context is the cause for our poor results in the other categories and our model is
indeed capable of extracting more complex information as long as the relevant details
are present.

We decided to put this hypothesis to the test and run the same task, but providing
our model with the full text for each paper this time rather than just the abstract. Thus,
we are able to see whether an increase in context has a big impact on our model’s
performance.

However, since the move from abstract to full text is a big jump in total token length
for each input, we were unable to use our best performing model, o3, since the costs are
too high. Therefore, we decided to switch to the best alternative that would decrease
cost, preserve performance as best as possible and be similar enough in architecture to
our current model. The alternative we landed on was the o3-mini model. Since it is part
of the same model series, the architecture is similar and being a smaller model, the costs
per input token are halved. To see how well it performs, we decided to run a baseline
test for this model in a similar fashion to the ones ran in Chapter 5. While o3-mini
did not perform as well as o3 the results are within an acceptable range. In the ML
category, we observed a 5% decrease in accuracywhile the accuracy for CLS stayed stable.

Having established this trade-off, we proceeded with o3-mini for the extraction
of column entries, while retaining the entries o3 procured for the classification step.
Therefore, we reduce the impact of performance differences between models, as we stay
with the same set of papers and only change models for the analysis itself.

Table 6.5 displays the results of our full text testing approach. Immediately, we notice
improvements in many columns that we struggled with beforehand. The two columns
with the weakest results in the abstract-only setting, "Annotation" and "Rules" show
major improvements. While previously our model overwhelmingly defaulted to a score
of neither, only sparsely going for a different outcome, our model now demonstrates a
much better accuracy. Considering only the papers that are in both our recreated table
and in the original table by Hatzel et al. (2023), we achieve an accuracy of about 70% for
the "Annotation" and "Rules" columns.

As for the "Model name" and "Machine learning method" columns, we do see
improvements as well. Often times in the abstract-only table the model would generate
a method that does fit but was more general, such as supervised learning, and would
fail to provide a specific model name. This is not the case here. For example, one paper
by Schmidt et al. has the following properties for the "Machine learning method" and
"Model name", in our original table: "Transformer" and "c2f". In the previous Table 6.4 it is
classified as "Neural Network Approach" and "None". While "Neural Network Approach"
is fine and works in this context and is not necessarily a misclassification, "None" is a
misclassification. Our newer Table 6.5, improves this and does assign the correct value
of "c2f" to the Model name column. This also happens again with "bookNLP" in the
case of the Piper et al. paper where the previous model struggled with finding a correct
model name while this one manages to find the correct classification.
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The only category where we do not improve much is the "LS question/topic" column.
Since our performance within this column was already high, increasing the context to
the full text of the paper does not provide much more additional information to our
model for this category, as the main topic of the paper is, in most cases, already laid
out in the abstract. Thus we achieve a similar BERT score here as we had previously at
about 0.86.

Overall, these results support our earlier hypothesis: increasing the available context
allows the model to retrieve more detailed information and substantially improves
accuracy in categories that are not always well represented in abstracts.

6.3.2 Updated Dataset

After making this discovery and generating good quantitative data that shows how our
model performs at this task, we proceeded to evaluate it on an updated CLS dataset, using
the same method. This updated dataset, introduced earlier in the chapter, comprises
newly added papers from the conferences included in the original dataset by Hatzel
et al. (2023). Since no prior results or tables exist for this updated dataset, we create a
new table to present our findings and offer a qualitative assessment of their plausibility.
Our goal is to explore how the model can assist in generating tables commonly used in
survey papers. The resulting tables are again presented at the end of this chapter.

Table 6.6 displays the results of our experiment. At first glance, no obvious trends
emerge, but our results seem solid and reliable. The split between Annotation and
Rule-based approaches is roughly 50/50 which is in line with our previous results in
Table 6.5. While many classic ML methods are present here in this table, we do notice
a slight upwards trend of more specific methods and models such as YOLO. To that
extent, our model tends to describe these specific methods in more detail, increasing the
content within each machine learning method column entry. Nevertheless, transformer
models remain the predominant subset.

Topics on the other hand range wildly from a more literary focus to historical events
to emotional analysis. To conclude this section, the results shown here seem authentic
for our dataset and aim to prove that LLMs can aid in the recreation of parts of high-
quality survey papers. However, because we created this table from an updated dataset
that has no previous ground-truth table associated with it, we are unable to verify
the authenticity of these results. While we would expect a 80-90% accuracy, based on
previous results, we do not know which parts of this table are accurate and which are
not. This is a crucial challenge and will be addressed, though for now we leave this table
here to show the capabilities of our model and move onto the next section, which takes
place in a different domain, to test our generalization capabilities.

6.3.3 Table Recreation in a Different Domain

After experimenting with our two datasets based on the paper by Hatzel et al. (2023),
we decided to explore a different domain to evaluate how well our approach generalizes
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beyond CLS-focused papers. To this end, we created a dataset from a different survey
paper: “Neural entity linking: A survey of models based on deep learning” by Sevgili
et al. (2022). The dataset was constructed from the entries in Table 2 of that paper. More
details about this dataset can be found in Chapter 4.

Our goal with this new dataset remains similar: to reconstruct the table given only
the column names, their definitions, and the papers we analyze. We used the same
model as before, o3-mini, testing with both abstracts and full texts to investigate the
impact of increased context on model performance. Due to token limitations, we limited
this experiment to a single column of the table.

We chose the column “Encoder type” for this experiment because it contains a diverse
set of labels, each defined by the authors, making it well-suited for our prompting
approach. We prompted the model to identify the encoder type and provided the list of
expected labels along with their definitions as short descriptions. We first tested using
only the abstracts, then proceeded to testing with full texts. The results can be seen in
Table 6.2 and Table 6.3

To evaluate accuracy, we assigned a score of 1 for correct classifications and 0 for
incorrect ones. Partial matches, such as identifying “CNN” when the correct label is
“LSTM + CNN,” received a score of 0.5. Scores were adjusted proportionally when
multiple types were present. Using abstracts only, the model achieved a score of 25.25/55
(45.91%). Although better than random guessing, this score is below expectations,
likely due to the limited context in abstracts. Testing with full text was very effective,
increasing the score to 40.55/55 (73.73%), indicating a substantial improvement from
increased context. This result demonstrates that our model can effectively assist in
creating survey papers, even across different domains.

Table 6.1: Performance of using the o3 and o3-mini models to recreate the "encoder type" column
of Table 2 in the neural entity linking survey paper by Sevgili et al. (2022). Results are shown for
using only the abstract during prompting compared to the whole text.

Method Accuracy (%) Score

Abstract only 45.91% 25.25/55
Full text 73.73% 40.55/55

6.4 Conclusion
From these experiments, we gained valuable insights as well as qualitative and quantita-
tive results that demonstrate the capabilities of our best-performing model in aiding in
the creation of high-quality survey papers. We were able to see what our data looks like
as well as recreate tables from our datasets and even create a completely new table from
an updated dataset. However, with the creation of a new table comes a new challenge as
well. Since we do not have a ground-truth to compare to, we are unable to verify how
accurate our resulting table is. While it does look convincing and reflects trends that
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we expect, a certain amount of human investigation is necessary to fully prove that the
results are sound. We come back to this challenge in the following Chapter 7 and now
turn our attention towards our research questions.

Question: How good are the information extraction qualities of different LLMs?
Answer: This question was first addressed in Chapter 5, where we compared multiple
LLMs and evaluated their performance. In this chapter, we extended that investigation
by focusing specifically on our previously best-performing model, o3, and its more
cost-efficient variant, o3-mini. Here, the models were tasked with extracting detailed
information from both abstracts and full-text papers across multiple categories, such as
main topic, machine learning method, encoder_type, and others. This task differed from
that in Chapter 5, where we only asked the broader questions of whether a paper used
ML methods and/or belonged to the field of CLS.

From these experiments, we find that the models can accurately extract structured
information from scientific texts. Broader categories remain easier to identify, as
reflected by the strong performance in the LS question/topic column, but the models also
perform well in more nuanced categories, such as differentiating between rule-based
and annotation-based approaches, where o3-mini achieved 70% accuracy, with o3 likely
performing slightly better, though we were unable to test that assumption. These results
suggest that while LLMs excel at high-level categorization, they can also achieve strong
performance on fine-grained information extraction, particularly when applied to well-
structured scientific writing.

Question: Does an increase in context help our best-performing model improve?
Answer: The experiments in this chapter allowed us to examine whether increasing
the available context for our model would enhance its performance or potentially
overwhelm it. The rationale for this increase was straightforward: since we were
seeking fine-grained information that was often absent from abstracts, we needed to
provide the model with sections of text where it could actively locate the relevant details.
As this information was not confined to any specific section in the papers, the most
reliable approach was to supply the full text. This significantly expanded the context
and token count, which, due to cost constraints, required switching from o3 to its more
cost-efficient variant, o3-mini. The overall results of this increase in context are as
follows.

Working with the full text rather than just abstracts allowed the model to retrieve
more detailed and accurate information. Performance improved across multiple cate-
gories, particularly those involving information too specific to appear in the abstract.
For example, in the neural entity linking paper (Section 6.3.3), accuracy for identifying
the encoder type increased from about 46% to 74%. We also observed an improvement
in the quality of the reproduced table in Section 6.3.1. Overall, these results indicate
that higher-end models like o3 and o3-mini not only handle large context windows
effectively, but can also deliver improved accuracy when extracting fine-grained details
from full-length scientific texts.
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Table 6.2: Neural entity paper table recreation
with abstracts

author predicted encoder type actual encoder type score received
Sun et al CNN, Tensor net. CNN, Tensor net. 1

Francis-Landau et al CNN CNN 1
Fang et al n/a word2vec-based 0

Yamada et al word2vec-based word2vec-based 1
Zwicklbauer et al n/a word2vec-based 0
Tsai and Roth word2vec-based word2vec-based 1
Nguyen et al CNN CNN 1
Globerson et al Atten. n/a 0

Cao et al n/a word2vec-based 0
Eshel et al n/a GRU + Atten. 0

Ganea and Hofmann Atten. Atten. 1
Moreno et al n/a word2vec-based 0
Gupta et al n/a LSTM 0
Nie et al Atten. LSTM + CNN 0

Sorokin and Gurevych n/a CNN 0
Shahbazi et al n/a Atten. 0
Le and Titov n/a Atten. 0

Newman-Griffis et al word2vec-based word2vec-based 1
Radhakrishnan et al n/a n/a 1

Kolitsas et al n/a LSTM 0
Sil et al CNN, Tensor net. LSTM + Tensor net. 0.5

Upadhyay et al n/a CNN 0
Cao et al Atten. Atten. 1

Raiman and Raiman n/a n/a 1
Mueller and Durrett Atten., CNN GRU + Atten. + CNN 0.75

Shahbazi et al ELMo ELMo 1
Logeswaran et al BERT BERT 1

Gillick et al n/a FFNN 0
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Table 6.2: Neural entity paper table recreation
with abstracts (cont.)

author predicted encoder type actual encoder type score received
Peters et al BERT, Atten. BERT 0.5
Le and Titov n/a LSTM 0
Le and Titov n/a Atten. 0
Fang et al n/a LSTM 0

Martins et al LSTM LSTM 1
Yang et al Atten. Atten. 1
Xue et al n/a CNN 0
Zhou et al n/a n/a 1
Broscheit BERT BERT 1
Hou et al n/a Atten. 0

Onoe and Durrett n/a ELMo + Atten. +
CNN + LSTM 0

Chen et al BERT BERT 1
Wu et al BERT BERT 1

Banerjee et al Atten. fastText 0
Wu et al n/a ELMo 0
Fang et al Atten. BERT 0
Chen et al Atten., BERT Atten., BERT 1
Botha et al n/a BERT 0
Yao et al BERT BERT 1
Li et al n/a BERT 0

Poerner et al BERT BERT 1
Fu et al n/a M-BERT 0

Mulang’ et al BERT Atten. or CNN
or BERT 1

Yamada et al BERT BERT 1
Gu et al n/a BERT 0
Tang et al BERT, Atten. BERT 0.5
De Cao et al BERT BART 0
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Table 6.3: Neural entity paper table recreation
with full text

author predicted encoder type actual encoder type score received
Sun et al CNN, Tensor net. CNN, Tensor net. 1

Francis-Landau et al CNN CNN 1
Fang et al n/a word2vec-based 0

Yamada et al word2vec-based word2vec-based 1
Zwicklbauer et al word2vec-based word2vec-based 1
Tsai and Roth word2vec-based word2vec-based 1
Nguyen et al CNN, GRU CNN 0.5
Globerson et al Atten. n/a 0

Cao et al word2vec-based word2vec-based 1
Eshel et al GRU, Atten. GRU, Atten. 1

Ganea and Hofmann Atten. Atten. 1
Moreno et al word2vec-based word2vec-based 1
Gupta et al LSTM, CNN, FFNN LSTM 0.33
Nie et al LSTM LSTM + CNN 0.5

Sorokin and Gurevych CNN CNN 1
Shahbazi et al Atten. Atten. 1
Le and Titov FFNN Atten. 0

Newman-Griffis et al word2vec-based word2vec-based 1
Radhakrishnan et al word2vec-based n/a 0

Kolitsas et al LSTM LSTM 1

Sil et al CNN, LSTM, and
Tensor net. LSTM + Tensor net 0.67

Upadhyay et al CNN CNN 1
Cao et al FFNN Atten. 0

Raiman and Raiman LSTM n/a 0
Mueller and Durrett GRU + Atten. + CNN GRU + Atten. + CNN 1

Shahbazi et al ELMo ELMo 1
Logeswaran et al BERT BERT 1

Gillick et al FFNN FFNN 1
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Table 6.3: Neural entity paper table recreation
with full text (cont.

author predicted encoder type actual encoder type score received
Peters et al BERT BERT 1
Le and Titov LSTM LSTM 1
Le and Titov FFNN Atten. 0
Fang et al LSTM LSTM 1

Martins et al LSTM LSTM 1
Yang et al CNN, Atten. CNN, Atten. 1
Xue et al CNN CNN 1
Zhou et al LSTM n/a 0
Broscheit BERT BERT 1
Hou et al n/a Atten. 0

Onoe and Durrett ELMo + Atten. +
CNN + LSTM

ELMo + Atten. +
CNN + LSTM 1

Chen et al BERT BERT 1
Wu et al BERT BERT 1

Banerjee et al LSTM fastText 0
Wu et al ELMo. Atten ELMo 0.5
Fang et al BERT BERT 1
Chen et al BERT Atten. + BERT 0.5
Botha et al BERT BERT 1
Yao et al BERT BERT 1
Li et al BERT BERT 1

Poerner et al BERT BERT 1
Fu et al BERT M-BERT 1

Mulang’ et al LSTM, BERT Atten. or CNN
or BERT 0.5

Yamada et al BERT BERT 1
Gu et al BERT BERT 1
Tang et al BERT BERT 1
De Cao et al BERT BART 0



6. Model Application and Data Exploration 41

Ta
bl
e
6.
4:

O
rig

in
al
CL

S
su
rv
ey

pa
pe
rt
ab
le
re
cr
ea
tio

n
w
ith

ab
st
ra
ct
su

sin
g
o3

(c
on

t.)

A
ut
ho

r
M
ac
hi
ne

le
ar
ni
ng

m
et
ho

d
M
od

el
na

m
e

LS
qu

es
ti
on

/t
op

ic
A
nn

o.
Ru

le
s

Ku
ni
lo
vs
ka
ya

et
al

Su
pe
rv
ise

d
le
ar
ni
ng

N
on

e
Tr
an
sla

tio
ne
se

in
Ru

ss
ia
n
lit
er
at
ur
e

Co
op

er
et

al
Su

pe
rv
ise

d
le
ar
ni
ng

;T
op

ic
m
od

el
in
g

N
on

e
St
or
yt
el
le
rp

er
so
na
lit
ie
si
n
Bo

cc
ac
cio

’s
D
ec
am

er
on

Ti
an

et
al

Su
pe
rv
ise

d
le
ar
ni
ng

(te
xt

cl
as
sifi

ca
tio

n)
N
on

e
La
ng

ua
ge

ch
an
ge

in
Ch

in
es
e
Bi
ji

x

Cr
an
en
bu

rg
h

et
al

Su
pe
rv
ise

d
le
ar
ni
ng

Co
sin

eD
el
ta
-

ba
se
d

St
yl
o-

m
et
ric

Cl
as
-

sifi
er

St
yl
om

et
ric

m
ea
su
re
m
en
t
of

lit
er
ar
i-

ne
ss

St
eg

et
al

Su
pe
rv
ise

d
le
ar
ni
ng

Li
ne
ar

Re
gr
es
sio

n
N
ar
ra
tiv

ity
de
te
ct
io
n
in

te
xt
s

Vö
lk
le
ta

l
To

pi
cm

od
el
in
g

N
on

e
Ge

nd
er

in
Sp

ec
ta
to
rp

er
io
di
ca
ls

Br
ot
tr
ag
er

et
al

Au
to
m
at
ed

se
nt
im

en
t
de
-

te
ct
io
n
(S
en
tim

en
tA

na
ly
-

sis
)

N
on

e
Te
xt
ua
lf
ea
tu
re
sa

nd
hi
st
or
ica

ll
ite

ra
ry

re
ce
pt
io
n

D
u
et

al
Cl
as
sifi

ca
tio

n
N
on

e
D
isp

er
sio

n-
ba
se
d
ke
yn

es
sm

ea
su
re
s

Sc
hr
öt
er

at
al

To
pi
cm

od
el
in
g

N
on

e
Va

lid
at
io
n
of

to
pi
c
m
od

el
in
g
fo
r
th
e-

m
at
ic
an
al
ys
is
in

na
rr
at
iv
e
fic
tio

n
A
bd

ib
ay
ev

D
ee
p

le
ar
ni
ng

la
ng

ua
ge

m
od

el
in
g

N
on

e
Co

m
pu

ta
tio

na
lp

oe
tic

so
fl
im

er
ic
ks

Eh
rm

an
nt
ra
ut

N
eu
ra
l
se
nt
en
ce

em
be
d-

di
ng

s
N
on

e
Ea

rly
m
od

er
ni
sm

in
Ge

rm
an

po
et
ry

x

W
ei
m
er

et
al

Su
pe
rv
ise

d
le
ar
ni
ng

N
on

e
Li
te
ra
ry

co
m
m
en
ti
n
na
rr
at
iv
e
te
xt
s

Sh
in

et
al

Un
su
pe
rv
ise

d
le
ar
ni
ng

W
or
d2
Ve

c
Us

ag
e
of

"q
ue
er
"i
n
M
od

er
ni
st

lit
er
a-

tu
re

x



6. Model Application and Data Exploration 42
Ta

bl
e
6.
5:

O
rig

in
al
CL

S
su
rv
ey

pa
pe
rt
ab
le
re
cr
ea
tio

n
w
ith

fu
ll
te
xt

us
in
g
o3

an
d
o3
-m

in
i

A
ut
ho

r
M
ac
hi
ne

le
ar
ni
ng

m
et
ho

d
M
od

el
na

m
e

LS
qu

es
ti
on

/t
op

ic
A
nn

o.
Ru

le
s

Pa
rig

in
ie
ta

l
Fi
ne
-tu

ni
ng

BE
RT

fo
r

Na
m
ed

En
tit
y
Re

co
gn

iti
on

Ita
lia
n-
xx
l-

ca
se
d

Co
m
pu

ta
tio

na
ld

et
ec
tio

n
of

du
bi
ta
tiv

e
te
xt

x

Zh
an
g

Fi
ne
-tu

ne
d

tr
an
sf
or
m
er
-

ba
se
d
te
xt

cl
as
sifi

ca
tio

n
EC

CO
-

BE
RT

D
et
ec
tin

g
ge
nr
e
sh
ift
si
n
te
xt
s

x

Pi
pe
re

ta
l

Pr
ed
ic
tiv

e
m
od

el
in
g
us
in
g

BE
RT

-b
as
ed

ta
gg

in
g

bo
ok

N
LP

Ro
le
of

th
in
gs

in
fic
tio

n
x

Pe
rr
ie
ta

l
Gr

ap
h
N
eu
ra
lN

et
w
or
ks

N
on

e
G
ra
ph

an
al
ys
is
of

To
lk
ie
n’
sl
eg
en
da
r-

iu
m

x

Ko
nl
e
et

al
To

pi
c

M
od

el
in
g

(L
at
en
t

D
iri
ch
le
tA

llo
ca
tio

n)
N
on

e
Pl
ot

m
od

el
in
g
w
ith

te
m
po

ra
lg

ra
ph

s
x

Ke
tz
an

et
al

Su
bw

or
d
em

be
dd

in
g
te
xt

cl
as
sifi

ca
tio

n
fa
st
te
xt

Ev
al
ua
tin

g
la
ng

ua
ge

id
en
tifi

ca
tio

n
in

lit
er
at
ur
e

x

Ed
er

et
al

Co
sin

e
D
el
ta

cl
as
sifi

er
Gl
oV

e
O
pt
im

iz
in
g
w
or
d
fre

qu
en
ci
es

fo
r
au
-

th
or
sh
ip

x

Zu
nd

er
te

ta
l

To
pi
cM

od
el
in
g
(T
op

2V
ec
)

St
an
da
rd

m
ul
til
in
gu

al
un

iv
er
sa
l

se
nt
en
ce

en
co
de
r

To
pi
cm

od
el
sa

sg
en
re

pr
ox
y

Gr
ot
ti
et

al
Su

pp
or
t
Ve

ct
or

M
ac
hi
ne

(S
VM

)
N
on

e
Co

lla
bo

ra
tiv

e
au
th
or
sh
ip

in
G
oo

d
O
m
en
s

x

Sc
hm

id
te

ta
l

N
eu
ra
ln

et
w
or
ks

c2
f

Au
to
m
at
ed

ex
tra

ct
io
n
of

ch
ar
ac
te
rn

et
-

w
or
ks

x
x

W
öc
ke
ne
re
ta
l

Co
nd

iti
on

ed
re
cu
rr
en
t

ne
ur
al

ne
tw

or
k

(R
N
N
)

la
ng

ua
ge

m
od

el

GP
T-
2

Le
ar
ni
ng

po
et
ic
st
yl
e
fro

m
ex
am

pl
es

x

Sc
hm

id
te

ta
l

Tr
an
sf
or
m
er
-b
as
ed

la
ng

ua
ge

m
od

el
fin

e-
tu
ni
ng

gb
er
t-l
ar
ge

Em
ot
io
n
cla

ss
ifi
ca
tio

n
in
Ge

rm
an

pl
ay
s

x

Sc
hn

ei
de
re

ta
l

Lo
gi
st
ic

re
gr
es
sio

n
cl
as
si-

fie
r

de
_c
or
e_
ne
w
s_
lgA
ut
om

at
ic
ch
ia
sm

us
de
te
ct
io
n
in

lit
er
-

at
ur
e

x
x



6. Model Application and Data Exploration 43

Ta
bl
e
6.
5:

O
rig

in
al
CL

S
su
rv
ey

pa
pe
rt
ab
le
re
cr
ea
tio

n
w
ith

fu
ll
te
xt

us
in
g
o3

an
d
o3
-m

in
i(
co
nt
.)

A
ut
ho

r
M
ac
hi
ne

le
ar
ni
ng

m
et
ho

d
M
od

el
na

m
e

LS
qu

es
ti
on

/t
op

ic
A
nn

o.
Ru

le
s

Ku
ni
lo
vs
ka
ya

et
al

Su
pp

or
t
Ve

ct
or

M
ac
hi
ne

(S
VM

)w
ith

RB
F
ke
rn
el

N
on

e
Tr
an
sla

tio
ne
se

in
Ru

ss
ia
n
lit
er
ar
y
te
xt
s

x

Co
op

er
et

al
Lo

gi
st
ic
Re

gr
es
sio

n
N
on

e
Di
st
in
ct
st
or
yt
el
le
rp

er
so
na
lit
ie
si
n
De

-
ca
m
er
on

x

Ti
an

et
al

SV
M

G
uw

en
-

Ro
Be

rtA
Co

m
pu

ta
tio

na
ld

at
in
g
of

Ch
in
es
et

ex
ts

x

Cr
an
en
bu

rg
h

et
al

Re
gu

la
riz

ed
lo
gi
st
ic
re
gr
es
-

sio
n

N
on

e
Qu

an
tif
yi
ng

Ki
ng

’s
lit
er
ar
in
es
sv

ia
st
y-

lo
m
et
ry

x

St
eg

et
al

Th
ei
l-S

en
Re

gr
es
so
r

N
on

e
Co

m
pu

ta
tio

na
l
na
rr
at
iv
ity

th
ro
ug

h
re
ad
er

pe
rc
ep
tio

n
x

Vö
lk
le
ta

l
La
te
nt

Di
ric

hl
et
Al
lo
ca
tio

n
(L
DA

)
N
on

e
Ge

nd
er

di
sc
ou

rs
ei
n
18
th
-c
en
tu
ry

pe
ri-

od
ic
al
s

Br
ot
tr
ag
er

et
al

Su
pp

or
t
Ve

ct
or

M
ac
hi
ne

(S
VM

)
Se
nt
en
ce
-

BE
RT

Pr
ed
ict

in
gl
ite

ra
ry

re
ce
pt
io
n
fro

m
te
xt
s

x

D
u
et

al
M
ul
tin

om
ia
lN

ai
ve

Ba
ye
s

N
on

e
Ev

al
ua
tin

gm
ea
su
re
so

fl
ite

ra
ry

di
st
in
c-

tiv
en
es
s

Sc
hr
öt
er

at
al

La
te
nt

Di
ric

hl
et
Al
lo
ca
tio

n
(L
DA

)
N
on

e
To

pi
cm

od
el
in
g
an
d
lit
er
ar
y
ab
ou

tn
es
s

x
x

A
bd

ib
ay
ev

Tr
an
sf
or
m
er
-b
as
ed

la
ng

ua
ge

m
od

el
s

us
in
g

pr
ob
ab
ili
st
ic
se
qu

en
ce

(lo
g-

pr
ob
ab
ili
ty
)e
va
lu
at
io
n

GP
T-
2

Ev
al
ua
tin

g
la
ng

ua
ge

m
od

el
s’

po
et
ic

ab
ili
tie

s
x

Eh
rm

an
nt
ra
ut

Si
am

es
e

ne
ur
al

ne
tw

or
k

us
in
g
tr
ip
le
t
m
ar
gi
n
lo
ss

fo
rs

im
ila
rit
y
le
ar
ni
ng

pa
ra
ph

ra
se
-

m
pn

et
M
ea
su
rin

g
sim

ila
rit
y
in

G
er
m
an

po
-

et
ry

x

W
ei
m
er

et
al

Su
pe
rv
ise

d
cl
as
sifi

ca
tio

n
us
in
g
de
ci
sio

n
tre

e
an
d
lo
-

gi
st
ic
re
gr
es
sio

n

N
on

e
Li
te
ra
ry

co
m
m
en
tc
on

ce
pt

co
ns
ist
en
cy

x

Sh
in

et
al

W
or
d2
Ve

c
H
ist
W
or
ds

W
oo

lf’
sq

ue
er

se
nt
im

en
ta

na
ly
sis

x



6. Model Application and Data Exploration 44
Ta

bl
e
6.
6:

Up
da
te
d
CL

ss
ur
ve
y
pa
pe
rd

at
as
et

Ta
bl
e
cr
ea
tio

n
w
ith

fu
ll
te
xt

us
in
g
o3

an
d
o3
-m

in
i

A
ut
ho

r
M
ac
hi
ne

le
ar
ni
ng

m
et
ho

d
M
od

el
na

m
e

LS
qu

es
ti
on

/t
op

ic
A
nn

o.
Ru

le
s

La
ng

et
al

YO
LO

ob
je
ct
de
te
ct
io
n

YO
LO

v8
D
et
ec
tin

g
al
ch
em

ic
al

ap
pa
ra
tu
s

in
pr
in
ts

x

Zh
ou

et
al

M
ac
hi
ne

le
ar
ni
ng

-b
as
ed

ev
en
t

ex
tr
ac
tio

n
fro

m
au
di
o
de
sc
rip

tio
n

N
on

e
Ev

al
ua
tin

g
M
L
na
rr
at
iv
e
ev
en
te

xt
ra
c-

tio
n

Sa
rb
ac
h-

Pu
lic
an
ii

SV
M

N
on

e
Pr
ofi

lin
g
an
on

ym
ou

sC
or
sic

an
au
th
or
s

x

Ve
rk
ijk

et
al

O
nt
ol
og

y-
dr
iv
en

ru
le
-

ba
se
d
re
as
on

in
g

N
on

e
H
ist
or
ic
al
ev
en
tr
ec
on

st
ru
ct
io
n
on

to
l-

og
y

x

Ka
še

et
al

M
on

te
Ca

rlo
Si
m
ul
at
io
n

N
on

e
Te
m
po

ra
lu
nc
er
ta
in
ty

in
hi
st
or
ica

ld
at
a

Cr
ai
g
et

al
Se
nt
en
ce

al
ig
nm

en
tv

ia
dy

-
na
m
ic

pr
og

ra
m
m
in
g

on
pr
e-
tr
ai
ne
d
se
nt
en
ce

em
-

be
dd

in
gs

La
BS

E
Se
nt
en
ce

al
ig
nm

en
tf
or

cl
as
sic

al
te
xt
s

x

Ba
m
ba
ci
et

al
D
ee
p

Le
ar
ni
ng

–b
as
ed

H
an
dw

rit
te
n

Te
xt

Re
co
gn

iti
on

Kr
ak
en

En
ha
nc
in
g
H
TR

vi
a
sc
ho

la
rly

ed
iti
on

s
x

x

N
ie
lb
o
et

al
La
te
nt

Di
ric

hl
et
Al
lo
ca
tio

n
an
d

se
nt
im

en
t
cl
as
sifi

ca
-

tio
n

BE
RT

w
ee
t

O
sc
ill
at
or
y
dy

na
m
ic
si
n
Te
re
sa
’s
w
rit
-

in
gs

x

Ca
m
ps

et
al

do
c2
ve
c

N
on

e
M
ed
ie
va
lF
re
nc
h
lo
ve

an
d
w
ar

x
Zu

nd
er
te

ta
l

St
an
fo
rd

M
ul
ti-
Pa
ss

Si
ev
e

Co
re
fe
re
nc
e
Re

so
lu
tio

n
N
on

e
Ch

ar
ac
te
r
de
te
ct
io
n
an
d
ge
nd

er
dy

-
na
m
ic
s

x

Ko
ol
en

et
al

H
ie
ra
rc
hi
ca
l

cl
us
te
rin

g
(u
ns
up

er
vi
se
d

cl
us
te
rin

g
on

co
sin

e
di
st
an
ce
s

of
w
or
d
n-
gr
am

s)

N
on

e
Co

m
pu

ta
tio

na
la

na
ly
sis

of
fo
rm

ul
ai
c

ex
pr
es
sio

ns
x

St
rö
be
le
ta

l
G
en
er
at
iv
e
te
xt
-to

-im
ag
e

m
od

el
DA

LL
-E

3
Ev

al
ua
tin

g
A
IH

ist
or
ic
al
Im

ag
e
Re

en
-

ac
tm

en
t

x

La
ss
en

et
al

Ra
nd

om
Fo
re
st

N
on

e
Ge

nd
er

bi
as

in
lit
er
ar
y
ca
no

ni
ci
ty

x



6. Model Application and Data Exploration 45
Ta

bl
e
6.
6:

Up
da
te
d
CL

ss
ur
ve
y
pa
pe
rd

at
as
et

Ta
bl
e
cr
ea
tio

n
w
ith

fu
ll
te
xt

us
in
g
o3

an
d
o3
-m

in
i(
co
nt
.)

A
ut
ho

r
M
ac
hi
ne

le
ar
ni
ng

m
et
ho

d
M
od

el
na

m
e

LS
qu

es
ti
on

/t
op

ic
A
nn

o.
Ru

le
s

Vi
da
l-G

or
èn
e

et
al

W
or
d-
ba
se
dC

on
vo
lu
tio

na
l

Re
cu
rr
en
tN

eu
ra
lN

et
w
or
k

RA
SA

M
En

ha
nc
in
g
A
ra
bi
c
ha
nd

w
rit
te
n

te
xt

re
co
gn

iti
on

x

Ga
ba
y
et

al
O
bj
ec
t

de
te
ct
io
n

us
in
g

YO
LO

-b
as
ed

de
ep

le
ar
ni
ng

YO
LO

v8
L

Co
m
pu

ta
tio

na
la
na
ly
sis

of
Fr
en
ch

or
-

th
og

ra
ph

y
x

Be
kk

er
-

N
ie
lse

n
D
um

ba
re

ta
l

M
in
im

um
Ed

it
D
ist
an
ce

(L
ev
en
sh
te
in

D
ist
an
ce
)

N
on

e
In
ve
st
ig
at
in
g
in
flu

en
za

vs
.g

rip
pe

na
m
-

in
g

x

Sc
hö

ch
et

al
Su

pp
or
t
Ve

ct
or

M
ac
hi
ne

cl
as
sifi

er
N
on

e
La
ng

ua
ge

eff
ec
ts
on

st
yl
om

et
ric

at
tr
i-

bu
tio

n
x

Ba
m
m
an

et
al

Cl
as
sifi

ca
tio

n
Ll
am

a
3
8B

LL
M
sf
or

lit
er
ar
y
cl
as
sifi

ca
tio

n
se
ns
e-

m
ak
in
g

x

A
rn
ol
d
et

al
M
ul
tim

od
al

LL
M
-b
as
ed

ca
pt
io
n

ge
ne
ra
tio

n
co
m
bi
ne
d

w
ith

co
sin

e
sim

ila
rit
y–

ba
se
d

te
xt

em
be
dd

in
g

GP
T-
4
Tu

rb
o

Ex
pl
ai
na
bl
e
vi
su
al
he
rit
ag
e
se
ar
ch

x

Ku
ra
r-
Ba

ra
ka
t

et
al

M
ul
ti-
la
be
lC

on
vo
lu
tio

na
l

N
eu
ra
lN

et
w
or
k

VG
G-

19
Co

m
pu

ta
tio

na
l
Pa
le
og

ra
ph

y
of

H
e-

br
ew

M
an
us
cr
ip
ts

x

Ja
co
bs
en

et
al

Ru
le
-b
as
ed

te
xt
ua
la

na
ly
-

sis
us
in
g
pr
ed
efi

ne
d
m
et
-

ric
sa

nd
se
nt
im

en
ts
co
rin

g

sp
aC

y’
s

la
rg
eE

ng
lis
h

pr
e-
tr
ai
ne
d

m
od

el
an
d

VA
D
ER

Fa
nfi

ct
io
n
vs

pu
bl
ish

ed
na
rr
at
iv
eq

ua
l-

ity
x

Zi
eg
le
r

Se
qu

en
ce

ta
gg

in
g
w
ith

a
sin

gl
e-
la
ye
re
d
Bi
-L
ST

M
+

CR
F
de
co
de
r

Fi
ne
tu
ne
d

de
-m

od
el

(F
la
irN

LP
co
nt
ex
tu
al

ch
ar
ac
te
r

em
be
dd

in
gs
)

Ev
en
te

xt
ra
ct
io
n
in

hi
st
or
ic
al
re
co
rd
s

x
x

A
be
le
ta

l
N
on

e
N
on

e
Q
ua
nt
ify

in
g
liv

e
se
tli
st
va
rie

ty
x



6. Model Application and Data Exploration 46
Ta

bl
e
6.
6:

Up
da
te
d
CL

ss
ur
ve
y
pa
pe
rd

at
as
et

Ta
bl
e
cr
ea
tio

n
w
ith

fu
ll
te
xt

us
in
g
o3

an
d
o3
-m

in
i(
co
nt
.)

A
ut
ho

r
M
ac
hi
ne

le
ar
ni
ng

m
et
ho

d
M
od

el
na

m
e

LS
qu

es
ti
on

/t
op

ic
A
nn

o.
Ru

le
s

So
bo

tk
ov
a

et
al

N
on

e
N
on

e
Re

gi
on

al
bu

ria
lm

ou
nd

si
nt
er
vi
sib

ili
ty

an
al
ys
is

x

Vo
zh
ik

et
al

La
te
nt

Di
ric

hl
et
Al
lo
ca
tio

n
(L
DA

)
N
on

e
Ce

ns
or
sh
ip

an
d
lit
er
ar
y
to
pi
ca
ld

iss
o-

ci
at
io
n

Ry
an

et
al

Fi
ne
-tu

ne
d
BE

RT
fo
r
te
xt

cl
as
sifi

ca
tio

n
be
rt
-b
as
e-

m
ul
til
in
gu

al
-

ca
se
d

Tr
ac
ki
ng

m
ul
til
in
gu

al
ism

in
bo

ok
tit
le
s

x

Ill
m
er

et
al

N
on

e
N
on

e
St
at
ist
ic
al
an
al
ys
is
of

on
e-
ac
tp

la
ys

x
M
ak
sim

ov
a
et

al
Ze

ro
-s
ho

tc
la
ss
ifi
ca
tio

n
CL

IP
Ze

ro
-s
ho

t
cl
as
sifi

ca
tio

n
of

hi
st
or
ic
al

ph
ot
os

x

N
gu

ye
n
et

al
Tr
an
sf
or
m
er
-b
as
ed

Cr
os
s-

En
co
de
r

Bi
gB

ird
Tr
an
sf
or
m
er

m
od

el
s
fo
r
au
th
or
sh
ip

ve
rifi

ca
tio

n
x

Bi
zz
on

ie
ta

l
Ad

ap
tiv

e
Fr
ac
ta
lA

na
ly
sis

N
on

e
Fr
ac
ta
la
na
ly
sis

of
sc
ie
nt
ifi
cw

rit
in
g

Co
rta

le
ta

l
D
isc

re
te

em
ot
io
n

cl
as
si-

fic
at
io
n
us
in
g
fin

e-
tu
ne
d

Ca
m
em

BE
RT

Ca
m
em

BE
RT

Em
ot
io
n
co
m
po

ne
nt

dy
na
m
ic
si
n
na
r-

ra
tiv

es
x

La
ss
en

et
al

Na
m
ed

En
tit
y
Re

co
gn

iti
on

D
aC

y-
la
rg
e

In
te
rs
ec
tio

na
lb

ia
si
n
N
ER

m
od

el
s

x
Ö
hm

an
et

al
Le
xi
co
n-
ba
se
d
em

ot
io
n
de
-

te
ct
io
n
us
in
g
aff

ec
ti
nt
en
-

sit
y
le
xi
co
ns

an
d
w
or
d
em

-
be
dd

in
gs

Ro
BE

RT
a

Em
ot
io
na
la
rc
sa

nd
lit
er
ar
y
qu

al
ity

x

Tu
do

re
ta

l
Su

pe
rv
ise

d
tr
an
sf
or
m
er
-

ba
se
d

N
am

ed
En

tit
y

Re
co
gn

iti
on

RA
H
ist
or
ica

lS
w
ed
ish

na
m
ed

en
tit
y
re
co
g-

ni
tio

n
x

St
üs
sii

et
al

Tr
an
sf
or
m
er
-b
as
ed

fin
e-

tu
ni
ng

fo
r

se
qu

en
ce

ta
gg

in
g

G
PT

-3
.5
-

Tu
rb
o

La
tin

PO
S
ta
gg

in
g
vi
a
GP

T
x

Lö
fg
re
n
et

al
Fi
ne
-tu

ni
ng

a
pr
e-
tr
ai
ne
d

tr
an
sf
or
m
er

m
od

el
fo
r

se
qu

en
ce
-to

-s
eq
ue
nc
e
te
xt

co
rr
ec
tio

n

By
T5

O
CR

co
rr
ec
tio

n
fo
rh

ist
or
ic
al
te
xt
s

x



6. Model Application and Data Exploration 47

Ta
bl
e
6.
6:

Up
da
te
d
CL

ss
ur
ve
y
pa
pe
rd

at
as
et

Ta
bl
e
cr
ea
tio

n
w
ith

fu
ll
te
xt

us
in
g
o3

an
d
o3
-m

in
i(
co
nt
.)

A
ut
ho

r
M
ac
hi
ne

le
ar
ni
ng

m
et
ho

d
M
od

el
na

m
e

LS
qu

es
ti
on

/t
op

ic
A
nn

o.
Ru

le
s

D
ek
ke
re

ta
l

Co
nd

iti
on

al
Ra

nd
om

Fi
el
d

BE
RT

A
nn

ot
at
ed

ea
rly

m
od

er
n

ch
ro
ni
cl
es

co
rp
us

x

A
rn
ol
d
et

al
N
eu
ra
l

ne
tw

or
k

bi
na
ry

cl
as
sifi

ca
tio

n
us
in
g

a
fin

e-
tu
ne
d
la
ng

ua
ge

m
od

el

G
er
m
an

un
-

ca
se
d
BE

RT
Sh

or
tq

uo
ta
tio

n
lin

ki
ng

in
lit
er
at
ur
e

x

Sz
em

es
et

al
k-
m
ea
ns

al
go

rit
hm

N
on

e
Se
nt
en
ce

st
ru
ct
ur
e
in

H
un

ga
ria

n
no

v-
el
s

x

W
ag
ne
re

ta
l

Su
pe
rv
ise

d
te
xt

cl
as
sifi

-
ca
tio

n
us
in
g
tr
an
sf
or
m
er
-

ba
se
d

m
od

el
s

w
ith

dy
-

na
m
ic

pr
og

ra
m
m
in
g
se
g-

m
en
ta
tio

n
ba
se
d
on

PM
I

D
ist
ilr
ob

er
ta

To
pi
ca
ls
eg
m
en
ta
tio

n
of

H
ol
oc
au
st
te
s-

tim
on

ie
s

x

Ch
en

et
al

IB
M

M
od

el
2
w
or
d
al
ig
n-

m
en
t

IB
M

M
od

el
2

Vi
su
al
izi
ng

co
nn

ot
at
io
n
in

cla
ss
ica

lp
o-

et
ry

x

W
ije
rs

et
al

Cl
us
te
r

an
al
ys
is

(D
el
ta

m
et
ho

d)
an
d

pr
in
ci
pa
l

co
m
po

ne
nt

an
al
ys
is
(P
CA

)

N
on

e
M
an
ke
ll
st
yl
e
ev
ol
ut
io
n
an
d
tr
an
sla

-
tio

n
x

Ku
gl
er

et
al

Su
pe
rv
ise

d
to
ke
n
cl
as
sifi

-
ca
tio

n
us
in
g
a
ne
ur
al

ne
t-

w
or
k

BE
RT

Re
co
ns
tru

ct
in
g
te
xt
sf
ro
m

em
be
dd

in
gs

x

Gu
hr

et
al

Tr
an
sf
er

Le
ar
ni
ng

-b
as
ed

Na
m
ed

En
tit
y
Re

co
gn

iti
on

be
rt
-b
as
e-

ca
se
d

A
m
bi
en
ts
ou

nd
in

Go
th
ic
fic
tio

n
x

Sz
em

es
et

al
Se
nt
en
ce

em
be
dd

in
gs

w
ith

co
sin

e
sim

ila
rit
y

us
in
g

SB
ER

T

al
l-M

in
iL
M
-

L6
-v
2

M
ea
su
rin

g
in
no

va
tio

n
in

dr
am

at
ic
di
a-

lo
gu

e
x

M
él
an
ie
-

Be
cq
ue
te

ta
l

Bi
LS

TM
-C
RF

Ca
m
em

BE
RT

Co
m
pu

ta
tio

na
la
na
ly
sis

of
Fr
en
ch

lit
-

er
at
ur
e

x



7
Conclusion

7.1 Conclusion

In this thesis, we have tackled the overarching question: "Are LLMs capable of aiding in
the creation of high-quality scientific survey papers?". To do so, we constructed several
datasets as outlined in Chapter 4 and used them for our experiments in the two following
chapters. Chapter 5 sets a baseline for us and provides quantitative results regarding the
capabilities of different LLMs to extract information from scientific papers. This aims
to show how different LLMs may gather information to aid authors in survey paper
creation. We take this approach one step further in Chapter 6, where we retrieve more
fine-grained information and use the results of this extraction to reconstruct tables in
the same manner they appear in our survey papers. We then compare our reconstructed
tables to the ground-truth tables and evaluate our best-performing model’s performance.
Further, we also create a table from the ground up without having a ground-truth table
to compare to, thus showing a real application for our model in this field.

From these experiments, we have gained a multitude of insights into LLM per-
formance in aiding the creation of high-quality scientific survey papers. Higher-end
models such as o3 and GPT-4o show promising performance in the field of information
extraction, with accuracies of up to 90% in our field of CLS. While they perform better at
high-level categorization, o3 in particular is also able to extract fine-grained information
from large context fields, such as full scientific papers, with decent accuracy. To this
extent, when given the full context of each paper, o3 was able to reconstruct tables for
our survey paper with only a few errors in both the field of CLS and neural entity linking.

While these results show promise for LLMs in this field, we do wish to raise concern
regarding one challenge when using these models in real-life applications. As we noticed
during the creation of a completely new table based on an updated dataset from an
existing survey paper, if no ground-truth table or similar reference is available, we are
unable to confirm the accuracy of the resulting output without manual review. While
we may achieve an accuracy of 70–80% in the individual columns beforehand, and thus
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expect this accuracy to hold in the future, we are unable to identify errors in our output
at first glance. Therefore, we highlight that while the actual performance of LLMs in
aiding the creation of high-quality scientific survey papers is solid, future work into the
verification of results is needed.

7.1.1 Limitations

While our results are promising, several limitations of this thesis should be highlighted.
First, our datasets are relatively small in scale and domain specific. As such, results
may vary if larger or more diverse datasets were used, and we cannot guarantee that
the observed accuracies generalize across different fields of research. Second, while we
evaluated general-purpose LLMs such as o3 and GPT-4o, specialized domain specific
models (e.g., biomedical or legal LLMs) may achieve stronger performance in their
respective areas of expertise. Finally, hallucination remains a challenge in using LLMs
for scientific text generation. Although our results show strong accuracy in information
extraction and decent accuracy in table construction, errors may still occur without
being immediately visible, as mentioned in the previous section. In future iterations of
this work, hallucination detection mechanisms, such as KnowHalu by Zhang et al. (2024)
or HaluCheck by Heo et al. (2025) could be integrated into the pipeline to reduce the
likelihood of unnoticed errors.

7.1.2 Future and Current Work

We are not the first to ask this question or to test the information extraction capabilities
of LLMs. In February 2025, OpenAI announced "Deep Research," an update to ChatGPT
that aims to provide users with information from credible online sources, including
scientific papers.1 OpenAI leverages o3, the same model we conducted our research with,
to "interpret and analyze massive amounts of text, images, and PDFs on the internet,
pivoting as needed in reaction to information it encounters." While this deep research
mode provides a detailed output with references included, cases of the model providing
inaccurate information are still prominent, as described in Derek Lowe’s article2 and
OpenAI’s own technical report on o3’s hallucination tendencies.3

Similar tools to deep research, and to a lesser extent the results of this thesis, also
exist, such as "Ai2 ScholarQA,"4 which aims to provide users with help for literature
reviews. Similar to deep research by OpenAI, it uses Retrieval-Augmented Generation
(RAG), so sources are provided for each claim. While hallucinations are reduced here in
comparison to deep research, as this tool relies on an "evidence-first" pipeline, meaning
citations are gathered before statements are made, errors still occur, as there is no
contradiction detection or similar mechanism built in.

1. OpenAI, 2025a.
2. Lowe, 2025.
3. OpenAI, 2025c.
4. Allen Institute for AI, 2025.
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7.1.3 Outlook

Overall, progress is clearly being made in this field; however, human verification of
model output remains essential. Despite innovations that reduce hallucinations and
contradictions, errors can still slip through. As outlined in Section 7.1.1, improvements in
dataset size, specialized models, and hallucination detection could increase reliability, but
only when models achieve human-level accuracy across diverse datasets can we begin
to consider skipping human oversight. This may be realistic for simpler classification
tasks, as demonstrated by Goh et al. (2020) and our 90% accuracy in Chapter 5. Yet, for
more fine-grained information retrieval, such as in Chapter 6 and Dasigi et al. (2021),
significant challenges remain. Even large-scale efforts like OpenAI’s “Deep Research”
continue to struggle with hallucination. We therefore conclude that while LLMs can
meaningfully support the creation of scientific survey papers, especially in surface-level
or supporting tasks, their output must still be verified and cannot yet be trusted blindly.
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A
Additional Material

A.1 Prompts

We present some of the prompts used during our testing in Chapter 5.

CLS Baseline Prompt for LLaMMA2, Deepseek, and Gemma3

You are an expert in Computational Literary Studies (CLS).
**CLS Definition:**
CLS applies computational methods (e.g., text mining, stylometry,
sentiment analysis) to literary texts (e.g., novels, poetry, drama).
It excludes studies focused on historical records, cultural trends, or
linguistic change unless literature is central.
Your task is to analyze the text below and determine if it falls under
computational literary studies or not. Return only your analysis.
**Text:**
"{content}"
**Analysis:**
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ML Baseline Prompt for LLaMMA2, Deepseek, and Gemma3

You are an expert in Machine Learning (ML).
**ML Definition:**
ML focuses on the development of algorithms that improve automatically
through experience. It includes methods such as supervised learning,
reinforcement learning, and natural language processing. Simple
rule-based algorithms and statistical evaluation are not machine
learning.
Your task is to analyze the text below and determine if it mentions
machine learning techniques or not. Return only your analysis.
**Text:**
"{content}"
**Analysis:**

CLS Zero Shot Prompt for Gemma3

You are an expert in Computational Literary Studies (CLS).
Analyze the following text and determine whether its **main topic** falls
under CLS.
**CLS Definition:**
CLS applies computational methods (e.g., text mining, stylometry,
sentiment analysis) to literary texts (e.g., novels, poetry, drama).
It excludes studies focused on historical records, cultural trends, or
linguistic change unless literature is central.
**Task:**
1. Classify the text as **1** or **0** where 1 represents a score of
’CLS’ and 0 a score of ’Not CLS’.
2. Provide a **one-sentence explanation** justifying your decision.
**Text:**
"abstract"
**Output Format:**
CLS Score: [1 or 0]
[Brief Explanation]
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ML Zero Shot Prompt for Gemma3

You are an expert in Machine Learning (ML).
Analyze the following text and determine whether it uses **Machine
Learning** methods.
Machine Learning methods are defined as follows:
**ML Definition:**
Machine Learning (ML) focuses on algorithms that improve automatically
through experience. It includes supervised learning (e.g.,
classification, regression),unsupervised learning (e.g., clustering),
and reinforcement learning. Algorithms that do not learn from data
(e.g., rule-based systems) are not considered ML.
**Task:**
1. Classify the text as **1** or **0** where 1 represents a score of ’ML’
and 0 a score of ’Not ML’.
2. Provide a **one-sentence explanation** justifying your decision.
**Text:**
"abstract"
**Output Format:**
ML Score: [1 or 0]
[Brief Explanation]
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CLS Few Shot Prompt for Gemma3

You are an expert in Computational Literary Studies (CLS).
Analyze the following text and determine whether its **main topic** falls
under CLS.
**CLS Definition:**
CLS applies computational methods (e.g., text mining, stylometry,
sentiment analysis) to literary texts (e.g., novels, poetry, drama).
It excludes studies focused on historical records, cultural trends, or
linguistic change unless literature is central.
**Task:**
1. Classify the text as **1** or **0**, where **1** represents ’CLS’ and
**0** represents ’Not CLS’.
2. Provide a **one-sentence explanation** justifying your decision.
**Text:**
"abstract"
**Output Format:**
CLS Score: [1 or 0]
[Brief Explanation]
**Examples:**
Input:
"Poem generation with language models requires the modeling of rhyming
patterns. We propose a novel solution for learning to rhyme, based on
synthetic data generated with a rule-based rhyming algorithm."
Output:
1
"Computational methods are applied to a literary text (poem generation)."
Input:
"This paper explores the capacity of computer vision models to discern
temporal information in visual content, focusing specifically on
historical photographs."
Output:
0
"The study is centered on historical photographs, not literary texts."
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ML Few Shot Prompt for Gemma3

You are an expert in Machine Learning (ML).
Analyze the following text and determine whether it uses **Machine
Learning** methods.
Machine Learning methods are defined as follows:
**ML Definition:**
Machine Learning (ML) focuses on algorithms that improve automatically
through experience. It includes supervised learning (e.g.,
classification, regression), unsupervised learning (e.g., clustering),
and reinforcement learning. Algorithms that do not learn from data (e.g.,
rule-based systems) are not considered ML.
**Task:**
1. Classify the text as **1** or **0** where 1 represents a score of ’ML’
and 0 a score of ’Not ML’.
2. Provide a **one-sentence explanation** justifying your decision.
**Text:**
"abstract"
**Output Format:**
ML Score: [1 or 0]
[Brief Explanation]
**Examples:**
Input:
"We fine-tune a GPT-2 English model with 124M parameters on 142 MB of
natural poems and find that this model generates consecutive rhymes
infrequently (11
Output:
1
"The study involves fine-tuning a language model, which is a machine
learning method."
Input:
"We find a statistically significant correlation between violent
discourse and emotional expression throughout the analyzed period."
Output:
0
"The study only mentions a focus on statistical correlation, not
necessarily machine learning methods."
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CLS Step-by-step Prompt for Gemma3

You are an expert in Computational Literary Studies (CLS).
Analyze the following text and determine whether its **main topic** falls
under CLS.
**CLS Definition:**
CLS applies computational methods (e.g., text mining, stylometry,
sentiment analysis) to literary texts (e.g., novels, poetry, drama).
It excludes studies focused on historical records, cultural trends, or
linguistic change unless literature is central.
**Task:**
Analyze the text below step by step:
1. Identify computational methods used if any.
2. Determine if the text focuses on literary texts.
3. Classify the text a CLS (1) or Not CLS (0) based on your findings.
4. Provide a brief explanation justifying your decision.
**Text:**
"abstract"
**Output Format:**
CLS Score: [1 or 0]
[Brief Explanation]

ML Step-by-step Prompt for Gemma3

You are an expert in Machine Learning (ML).
Analyze the following text and determine whether it uses **Machine
Learning** methods.
Machine Learning methods are defined as follows:
**ML Definition:**
Machine Learning (ML) focuses on algorithms that improve automatically
through experience. It includes supervised learning (e.g.,
classification, regression), unsupervised learning (e.g., clustering),
and reinforcement learning. Algorithms that do not learn from data (e.g.,
rule-based systems) are not considered ML.
**Task:**
Analyze the text below step by step:
1. Identify machine learning methods used if any.
2. Consider whether the methods used are explicitly ML and not rule-based.
3. Classify the text as ML (1) or Not ML (0) based on your findings.
4. Provide a brief explanation justifying your decision.
**Text:**
"abstract"
**Output Format:**
ML Score: [1 or 0]
[Brief Explanation]

The OpenAI API prefers prompts to be given through instructions and prompts
separately, so it received the same instructions for every task with only the prompt part
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changing.

CLS instructions for GPT-4o and o3
You are an expert in Computational Literary Studies (CLS).
Definition:
CLS applies computational methods (e.g., text mining, stylometry,
sentiment analysis) to literary texts (e.g., novels, poetry, drama).
It excludes studies focused on historical records, cultural trends, or
linguistic change unless literature is central.

ML instructions for GPT-4o and o3
You are an expert in Machine Learning (ML).
Definition:
ML focuses on the development of algorithms that improve automatically
through experience. It includes methods like supervised learning,
reinforcement learning, and natural language processing.It does NOT
include studies focused only on statistical modeling, data visualization,
or database management unless they involve ML-specific techniques.

CLS Zero Shot Prompt for GPT-4o and o3

Task:
1. Classify the text as 1 (CLS) or 0 (Not CLS).
2. Provide a brief explanation justifying your decision.
Text:
"abstract"
Return your answer *exactly* in this format:
CLS Score: [1 or 0]
CLS Explanation: [Brief explanation in one paragraph, no Markdown or
formatting]

ML Zero Shot Prompt for GPT-4o and o3

Task:
1. Classify the text as 1 (ML) or 0 (Not ML).
2. Provide a brief explanation justifying your decision.
Text:
"abstract"
Return your answer *exactly* in this format:
ML Score: [1 or 0]
ML Explanation: [Brief explanation in one paragraph, no Markdown or
formatting]
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CLS Few Shot Prompt for GPT-4o and o3

Task:
1. Classify the text as 1 (CLS) or 0 (Not CLS).
2. Provide a brief explanation justifying your decision.
Text:
"abstract"
Return your answer *exactly* in this format:
CLS Score: [1 or 0]
CLS Explanation: [Brief explanation in one paragraph, no Markdown or
formatting]
**Examples:**
Input:
"Poem generation with language models requires the modeling of rhyming
patterns. We propose a novel solution for learning to rhyme, based on
synthetic data generated with a rule-based rhyming algorithm."
Output:
1
"Computational methods are applied to a literary text (poem generation)."
Input:
"This paper explores the capacity of computer vision models to discern
temporal information in visual content, focusing specifically on
historical photographs."
Output:
0
"The study is centered on historical photographs, not literary texts."
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ML Few Shot Prompt for GPT-4o and o3

Task:
1. Classify the text as 1 (ML) or 0 (Not ML).
2. Provide a brief explanation justifying your decision.
Text:
"abstract"
Return your answer *exactly* in this format:
ML Score: [1 or 0]
ML Explanation: [Brief explanation in one paragraph, no Markdown or
formatting]
**Examples:**
Input:
"We fine-tune a GPT-2 English model with 124M parameters on 142 MB of
natural poems and find that this model generates consecutive rhymes
infrequently (11
Output:
1
"The study involves fine-tuning a language model, which is a machine
learning method."
Input:
"We find a statistically significant correlation between violent
discourse and emotional expression throughout the analyzed period."
Output:
0
"The study only mentions a focus on statistical correlation, not
necessarily machine learning methods."

CLS Step-by-step Prompt for GPT-4o and o3

Task:
Analyze the text below step by step:
1. Identify computational methods used if any.
2. Determine if the text focuses on literary texts.
3. Classify the text a CLS (1) or Not CLS (0) based on your findings.
4. Provide a brief explanation justifying your decision.
Text:
"abstract"
Return your answer *exactly* in this format:
CLS Score: [1 or 0]
CLS Explanation: [Brief explanation in one paragraph, no Markdown or
formatting]
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ML Step-by-step Prompt for GPT-4o and o3

Task:
Analyze the text below step by step:
1. Identify machine learning methods used if any.
2. Consider whether the methods used are explicitly ML and not rule-based.
3. Classify the text as ML (1) or Not ML (0) based on your findings.
4. Provide a brief explanation justifying your decision.
Text:
"abstract"
Return your answer *exactly* in this format:
ML Score: [1 or 0]
ML Explanation: [Brief explanation in one paragraph, no Markdown or
formatting]

Figure A.1: Prompting Techniques compared for different models on the original CLS dataset
using accuracy and F1-scores
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