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Abstract

Retrieval-augmented generation (RAG) is an approach that aims to tackle the problem
of LLMs having obsolete data or limited domain-specific knowledge. This is done by
storing external data into vector databases, and introducing a retriever module which
uses a nearest-neighbour approach to fetch the most relevant data for each user query,
and sending them both along to a large language model (LLM) known as a generator.
This approach, titled Naive RAG, still faced some challenges especially when faced with
ambiguous queries or noisy data, which is why advanced RAG methods were proposed
that enhance different areas of the RAG pipeline. This paper aims to discover whether
advanced RAG methods perform better than Naive RAG when faced with multiple
conversational, question-answer datasets. The research also looks to find what effect
the differences between the datasets have on the retriever and generator performance.

The Reranker and Hybrid BM25 approaches were found to have an increased
F1 performance regarding the answer quality, and HyDE was the leading approach
regarding MRR. However, Base RAG was a close third in terms of F1, showing that it is
still a worthwhile competitor, especially when its lower computing complexity is taken
into account. Certain features of the datasets were also found to have an effect on the
retriever quality, notably the total amount of contexts and the conversation lengths.
The research concludes that Naive RAG is still a beneficial method and advanced RAG
methods can improve the performance greatly although only when they are chosen
for and tailored to the dataset in question.
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1
Introduction

In recent years, the use of pre-trained Large Language Models (LLMs) has increased
exceptionally with the introduction of state-of-the-art models (SOTA) such as the GPT
[1], Llama [2], and PaLM [3] families. Althoughmany LLMs first started as an exploration
into natural language processing tasks such as text recognition and understanding, text
generation, and information retrieval [4], they are now used in applications in various
fields, not limited to software engineering [5], education [6], and medicine [7].

Despite the advancements mentioned above, there are still some issues that have
arisen. One of those is that after the LLMs are trained, it becomes much more computa-
tionally and financially difficult to retrain them with up-to-date data. This means that
for long periods of time, LLMs may be using inaccurate or obsolete data, thus reducing
their reliability for factual information and increasing the chance of generating false or
contradicting data [8]. Another problem that ties into this is the lack of domain-specific
knowledge, which can pose problems when LLMs are used in highly context-sensitive
fields such as law, medicine, or science. The problems can range from the generation
of ambiguous or incorrect information to the overstatement of the significance of
outliers or minor biases [9].

There are currently two main techniques that are used to combat the issues men-
tioned above, those being fine-tuning and Retrieval-Augmented Generation (RAG)
algorithms [10]. With fine-tuning, the LLM is trained on new data, which is typically
task-specific and narrower in scope and size. While this method has been shown to
optimize LLMs for specialized tasks and has improved data efficiency by leveraging
a pre-trained model, it is still quite resource inefficient, particularly when there is a
constant stream of new data that needs to be learned, and in some cases can lead to
overfitting, which occurs when the model becomes too specialized in the training data,
and is not able to perform as well on the test data [11].

This is where the second method, RAG, comes in, which aims to use external
data sources more quickly and efficiently. RAG uses various search and retrieval
methods to scan an external database, collect the documents that best match the given
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1. Introduction 1.1. Research Questions

user query, and use the information within those documents to generate a response
[12]. This core process of RAG, also known as Naive RAG, faces some significant
challenges. Retrieval problems such as inadequate text segmentation [13] or unclear
input queries may lead to imprecise or noisy retrieved contexts, which can distract
LLMs and impede their performance [14]. Furthermore, generation issues can arise,
in which the generated outcome might not be in the desired format or might include
hallucinated information [15].

These problems have led to the development of many advanced RAG algorithms,
which employmany pre- and post-retrieval enhancements, andmodular RAG algorithms,
which combine these enhancements, all the while transcending the traditional linear
structure using loops, conditions, and branching [16]. This paper looks into these
different techniques to determine whether they lead to an improvement in performance,
and if so, to what extent and in which manner.

1.1 Research Questions

• R1: How do advanced RAG methods impact answer quality in comparison to a
baseline Naive RAG?

The advanced RAG methods that will be looked at, all add extra layers of complex-
ity to the baseline RAG method, which can result in the need for more processing
power, insufficient time constraints, and an increase in LLM prompts, which, when
using proprietary models, lead to higher monetary costs. Therefore, to make some
of these drawbacks worthwhile, it must be shown that these advanced methods
achieve a significantly higher answer quality when compared to Naive RAG.

The focus is on token-level answer quality instead of retrieval ability, since it
provides a fair basis for comparing methods that enhance different aspects of the
RAG pipeline. For evaluation, the F1 metric will be used, since that can provide a
good, overall assessment as to the completeness and correctness of the generated
answer. The retrieval ability of the methods will also be analyzed, but only to
investigate if and how it affects the answer quality.

• R2: How do dataset characteristics influence the performance and behavior of
these RAG methods?

The experiment will focus on eight datasets, which focus on varying domains
ranging from the more commonly used Common Crawl or Wikipedia based
datasets to more specialized fields such as social welfare, travel or cooking. They
also have different sizes, structures, and formats; therefore, a comparison could
be done of not only the RAG methods against each other, but also of how their
performance changes for each dataset. The retriever performance would need
to compared across datasets with a larger total number of contexts, or lengthier
contexts, which might be more likely to have distracting information. Since
the conversation history is also provided during the prompting, it would also be

2



1. Introduction 1.2. Thesis Structure

notable to examinewhether havingmore QA turns is beneficial or disadvantageous
for the generator performance.
For future experiments, this would allow for a more informed decision to be made
regarding which approach best matches each dataset. While the F1 evaluation
metric will be used to assess which method performs best, other metrics such as
MRR and Recall@kwill be used to further investigate which dataset characteristics
affect which part of the RAG pipeline.

1.2 Thesis Structure
The structure of this paper is designed to provide an understanding of this research
topic’s importance. It also serves as an overview of recent research and developments,
before leading to the creation and analysis of an experimental study.

The first chapter, Introduction, aims to provide an understanding of the motivation
for the topic of this paper. It also briefly describes the more relevant terms, and delves
further into what the main research questions that will be answered are.

The second chapter, Literature Review, serves as a comprehensive foundation
behind the main concepts in the fields of natural language processing, transformers,
large languagemodels, and retrieval-augmented generation. It also documents how these
fields evolved, how they connect, and what the most important advancements were.

The third chapter, Related Work, provides an overview of the recent research done
into advanced RAG methods, discusses the format and style of the most commonly used
datasets, and ends by discussing any gaps present in the current research.

The fourth chapter,Methodology, starts by introducing the benchmark datasets that
will be used, including their structure and content creation, and discusses an important
package that will be used to facilitate the running of the experiment. The chapter
then continues by examining the chosen evaluation metrics along with the control
and RAG methods that will be implemented.

The fifth chapter, Experimental Study, discusses how the implementation of the
experiment was carried out and describes an analysis that was done to showcase the
effect that added contexts can have on the answer quality. It then continues by first
comparing the results of the RAG methods empirically and then having an in-depth
analysis as to how the methods or datasets could have affected these results.

The sixth chapter, Discussion, analyzes whether the research questions were suf-
ficiently answered by the experiment study, and discusses the limitations found and
how they could be solved in future research. Lastly, it ends by going over the overall
findings and what was learned from the thesis.

3



2
Literature Review

This chapter provides an overview of the history and development of the fields relevant
to this thesis. It introduces early foundational theories and methodologies that have
helped shape the progress and evolution of these fields. This then leads to detailing
the major advances and key turning points, and how they were affected by not only
technological advancements but also public attention.

Firstly, Section 2.1 starts by defining natural language processing (NLP), followed
by a discussion of its early stages and progress, leading to the creation of transformers,
detailed in Section 2.2. The chapter continues in Section 2.3 by outlining language
models from their elementary forms to the more advanced current models, and ends
in Section 2.4 by describing the main topic of this thesis, namely, retrieval-augmented
generation (RAG).

2.1 Natural Language Processing (NLP)

NLP is an area of computational research that focuses on the analysis, understanding, and
generation of natural language text or speech. The goal in NLP, as in many other fields of
machine learning, is to achieve human-grade language processing capabilities, whether
that is to improve human-machine communication, human-human communication,
or simply to perform better analyses.

In the late 1940s and early 1950s, before the term NLP was even in use, research
related to machine translation (MT) had already begun [17, 18]. A demonstration of
this was the Russian to English Georgetown-IBM experiment, which, although a small
experiment consisting of 250 words and six grammar rules, garnered widespread public
attention [19]. With two studies of linguistic structure, Chomsky argued for both the
use of finite-state Markov processes to represent grammar [20] and for the separation
of syntax (sentence structures) and semantics (sentence meanings), which he claimed
could exist independently from each other [21].

4



2. Literature Review 2.1. Natural Language Processing (NLP)

The research into MT and NLP continued with the creation of two major systems,
SHRDLU [22] and LUNAR [23], both of which facilitated the communication between
the user and the machine to be conducted in English. The two systems were both
rule-based and combined semantic and syntactic analysis using augmented transition
networks (ATNs) [24]. ATNs (similar to finite state machines) could generate deep
structure representations during sentence structure analysis by using recursive parsing
and without performing any reverse transformations [24], which were used to convert
sentences from their surface structure to their deep structure [21]. The popularity
of these systems only grew in the next decades [25–28], cementing the use of ATNs.
During this time, the infamous report by the Automatic Language Processing Advisory
Committee (ALPAC) [29, 30] and the British Lighthill report [31] were published, both
of which held a pessimistic outlook over the future of AI, stating the high cost and
lower-quality output of MT compared to manual human-translation and the discounting
of combinatorial explosions for complex problems. Whether or not their skepticism
was justified, the amount of funding for MT research was significantly reduced, heavily
affecting up-and-coming research projects, leading to an AI winter. Nevertheless, AI
research continued at a limited rate over the next decade, leading to developments that
would renew governmental and public interest.

In the 1980s, with the progress of machine learning, NLP moved from being rule-
based, which had its own set of limitations [32], towards more statistical techniques
aided by the development of large text corpuses (Brown [33], Lancaster-Oslo-Bergen
[34], CHILDES [35]). At the core of these techniques were estimators, which aimed
to estimate the probability of a word occurring in a given sentence by looking at the
words that had previously occurred [36]. Some estimators, such as N-gram models, use
Markov assumptions to group text histories by assuming that the probability of a certain
word depends only on the prior local context or the n words before it [37]. Developing
alongside them were Hidden Markov Models (HMM), double stochastic processes with
an unobservable Markov process, which became the basis for part-of-speech tagging.
HMMs are composed of the following components [38]:

• Set of states 𝑆 = {𝑆1, 𝑆2, ...𝑆𝑁 } = all the hidden states in the model

• State transition probability 𝐴 = 𝑎𝑖𝑗 = the probability of transition from one state
to another

𝑎𝑖𝑗 = 𝑃[𝑞𝑡+1 = 𝑆𝑖|𝑞𝑡 = 𝑆𝑗] 1 ≤ 𝑖, 𝑗 ≤ 𝑁

• Set of observations per state 𝑂 = {𝑜1, 𝑜2, ..., 𝑜𝑀} = visible observations

• Probability distribution 𝐵 = 𝑏𝑗(𝑘) = probability of a certain observation being
generated from state 𝑠𝑖

𝑏𝑗(𝑘) = 𝑃[𝑣𝑘𝑎𝑡𝑡|𝑞𝑡 = 𝑆𝑗] 1 ≥ 𝑗 ≤ 𝑁1 ≥ 𝑘 ≤ 𝑀

• Initial state distribution Π = 𝜋𝑖 = the probability that a sequence starts in state 𝑠𝑖
𝜋𝑖 = 𝑃[𝑞𝑖 = 𝑆𝑖] 1 ≥ 𝑖 ≤ 𝑁

5



2. Literature Review 2.1. Natural Language Processing (NLP)

Figure 2.1: A diagram of the architecture of a recurrent neural network recreated from Elman
[44]. The input and the state are processed together to produce a new hidden state. In this
variant, the output is also used to compute the previous hidden state, thus allowing the network
to include information about its past predictions.

Despite their widespread use, HMMs did suffer from some shortcomings, such as
failing to take into account contextual information or long-range dependencies and
poor discrimination due to their training algorithms, which optimize more to maximize
likelihoods than to classification. This is where artificial neural networks (ANN) came
into play. Inspired by the architecture of biological neural networks that are made up of
a multitude of interconnected neurons, each of which performs a task upon receiving
an input signal, ANNs are also made up of artificial neurons organized into layers [39].

Some of the earlier neural networks were feedforward in which information flows
from the input layer to the hidden layer(s) to the output. These were first used in
NLP by Bengio et al. [40] who proposed to tackle the "curse of dimensionality" that
results from word sequences during testing being different from sequences the model
has seen before, by learning a distributed representation of words. Convolutional neural
networks (CNN), which employ filter optimization and recurrent neural networks
(RNN), which allow information to move forward or backward through the layers,
and make use of a recurrent unit, a sort of memory that contains knowledge of the
previous state and the current inputs, as shown in Figure 2.1, also found widespread
use in many NLP tasks [41–43].

Although RNNs allow better handling of sequential data [44], they also suffer from
the vanishing gradient problem, a process in which, as error signals exponentially
decrease as they back propagate through the layers, slowing or completely stopping the
training process [45]. To combat this, a new method was introduced called Long Short-
Term Memory (LSTM), which has a memory cell containing a linear unit termed the
constant error carousel, which aims to disallow the decay of error signals. Connected
to the memory cell are two multiplicative gates: an input gate which decides what
information can enter the memory, and an output gate which decides what information

6



2. Literature Review 2.1. Natural Language Processing (NLP)

can leave, essentially what information will be used for the next output [46]. Gers et
al. [47] noticed that this architecture could lead to indefinite growth of the memory
cell and therefore introduced a forget gate, as shown in Figure 2.2, which would learn
to reset these cells, thus eliminating useless or outdated information. This model was
further advanced with the presentation of a bidirectional LSTM [48], thus when a point
in a sequence is being processed, the model can know the points before and after it.

Figure 2.2: A diagram of the architecture of a long short-term memory recreated from Greff et al.
[49]. The cell state is the memory cell that stores internal information, which can be controlled
by the input and output gates. A forget gate is also used to reset data from the cell state.

Returning to NLP, during this evolution of neural networks, many substantial
changes were also happening in word representations, such as the word2vec proposed by
Mikolov et al. [50] in 2013. Before this, sparse representation was the main method used,
one example being one-hot encoding, in which each word is assigned a vector the size
of the text, with all the elements being 0 apart from the one that indicates the position
of the word. The proposed models were Continuous Bag-of-Words (CBOW), which
focuses on predicting a word based on its past and future context, and Continuous
Skip-gram, which focuses on the inverse, predicting the context based on a certain
word. These models used neural networks to create continuous vector representations
of words, thus better capturing their semantic similarities [50]. Another significant
change came with the Sequence-to-Sequence (seq2seq) approach, which uses two LSTMs,
one to encode the input sequence to a vector representation and one to decode the
vector back into a text sequence. Although this did have success mapping sequences to
each other, the fixed lengths of the vectors would create a "bottleneck" problem, not
allowing long sequences to be processed correctly [51].

7



2. Literature Review 2.2. Transformers

Figure 2.3: A diagram of the architecture of a transformer [52]. Transformers consist of an
encoder (left) and decoder (right), which in turn use feedforward networks and multiple attention
mechanisms to process input data.

2.2 Transformers

Transformers marked the next key turning point, proposed in the 2017 paper “Attention
Is All You Need” [52]. LSTMs and RNNs, which processed sequences sequentially, one
at a time, were on the way out, with transformers introducing a new way to process
sequences all at once. Theywould also do away entirely with recurrence and convolution,
instead replacing them with various self-attention layers, which proved to require less
computational complexity, sequential operations, and would develop the learning of
long-range dependencies, by having shorter distances between any points in the input
or output sequence [52]. Transformers are made up of two major parts, an encoder and
a decoder, as shown on the left and right, respectively, in Figure 2.3.

Encoder

The encoder is made up of N=6 layers, in the original implementation, which themselves
are composed of two sublayers: a multi-head self-attention process and a feedforward
network. The input first goes through an embedding process, where the sequence is first
tokenized and then subsequently turned into a vector representation of those tokens.
In NLP, tokenization is the process in which a character sequence is fragmented into
so-called tokens, units of text that could be full words, characters, or word segments [53].
Tokenization for English texts started with the tokens being the words themselves, with
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(a) Multi-head Attention (b) Dot-Product Attention

Figure 2.4: A visualization of the multi-head attention and dot-product attention present in
transformers [52]. Multi-head attention is a series of self-attention mechanisms being performed
in parallel, after which they are concatenated and linearly transformed. Dot-product attention
first computes the attention weights of the keys and queries, which are then normalized, then
used to weigh the value vectors.

white spaces and non-alphanumeric characters acting as delimiters, but subword based
models have become more popular [54], creating a middle-ground between word-based
and character-based tokens. Tokenization approaches require more complex techniques
in specialized-domain texts or non-English languages with differing grammatical and
morphological structures. Positional encodings are also appended to the input sequence,
as a way of providing information about the token order and their relative position to
each other. These encodings take the form of sinusoidal and cosinusoidal functions
for even or odd indexes, respectively. This is shown

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (𝑝𝑜𝑠 ⋅ 10000
2𝑖/𝑑𝑚𝑜𝑑𝑒𝑙

) , 𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (𝑝𝑜𝑠 ⋅ 10000
2𝑖/𝑑𝑚𝑜𝑑𝑒𝑙

) (2.1)

with pos being the word position, i the dimension, and 𝑑𝑚𝑜𝑑𝑒𝑙 the model dimensions,
in the case of this transformer equal to 512 [52].

The input sequence then reaches the encoder layer, where it will be mapped to
a continuous representation that better grasps semantic context and uses attention
to focus on the most relevant parts of the sequence. First, there is a multi-head self-
attention module, which consists of multiple self-attention modules running in parallel,
as shown in Figure 2.4a.

Self-attention is based on three vector representations: query (Q), key (K), and value
(V), the dot products of which are computed according to Figure 2.4b. The dot products
of the queries and keys are first calculated to obtain the attention weights,

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√
𝑑𝑘

)𝑉 (2.2)

which are then divided by the square root of the keys’ dimensions, and normalized
through a softmax function.
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The multi-head attention splits the Q, K, and V vectors into N representations,
computes the self attention for each subset and concatenates them before passing them
through a linear transformation in

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊
𝑄

𝑖 , 𝐾𝑊
𝐾
𝑖 , 𝑉𝑊

𝑉
𝑖 )

(2.3)

with the parameter matrices𝑊𝑖 and𝑊 𝑂 . Through this attention mechanism, diverse
contextual relationships can be captured, thus enriching the models understanding
of the input sequence, all the while using less computational resources as a result
of its parallel processing.

The multi-head output is entered into a fully-connected feedforward network,
consisting of a ReLu activation sandwiched between two linear transformations. The
attention and feedforward networks are both followed by a residual connection ‘Add’
[55] and a normalization layer ‘Norm’ [56], to allow better gradient flow and stabilization.

Decoder

The decoder is similar to the encoder in that it consists of 𝑁 = 6 layers, and starts
with the embedding and positional encoding of the output sequence, followed by multi-
head attention layers and a feedforward network, with residual connections and layer
normalization. However, there are some differences between the two, such as the
encoder shifting the output sequence by one position to the right, ensuring that the
predictions for a token at index i are only based on tokens before index i. The first
multi-head attention layer is masked, which means that it does not have insight into
the next tokens in the sequence [57]. The output from this layer then goes into the
second layer together with the output from the encoder. After the final layer, the output
is passed along to a linear layer and a softmax function to compute probabilities.

2.2.1 Transformer based models

After the introduction of the first transformer model, many other models started using
and modifying the architecture. The BERT (Bidirectional Encoder Representations from
Transformers) [58] model seeked to improve the left to right processing of transformers,
through bidirectional processing of the context by removing the masked attention model
in the decoder. Replacing this, was a masking mechanism, through which, 15% of tokens
in a sequence would be masked. During its creation, BERT was pre-trained on unlabeled
data with the goal of masked language modeling and next-sentence prediction and
fine-tuned on task-specific labeled data.

BERT was used as a jumping point for many subsequent models, such as:

• RoBERTa, which suggested that BERT was undertrained and proposed a modified
training method, namely longer training times and longer sequences, dynamic
masking, in which the masking pattern is changed for every input sequence, and
the removal of next sentence prediction [59].
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• DistilBERT, proposes a method to pre-train a smaller, general-domain language
model, which can then be fine-tuned on domain-specific tasks [60]. Knowledge
distillation [61] is used for transfer learning, in which a smaller ‘student’ model
learns to behave similarly to a larger ‘teacher’ model.

• ELECTRA [62], which during its pre-training, trains a generator and a discrimina-
tor network. The generator first uses a similar masking mechanism as BERT to
replace certain tokens and then learns to predict the original values of the masked
tokens. On the other hand, the discriminator learns to classify which tokens
are from the original sequence and which have been generated, thus creating a
relationship similar to a generative adversarial network.

• DeBERTa [63] is based on both the BERT and RoBERTa models and introduces two
new techniques. The content and position of the input sequence are encoded in
two separate vectors, and a disentangled attention mechanism is used to compute
all pairwise relationships between the two. An improved mask decoder is also
used, which when decoding the masked words, takes into consideration not only
the relative position of a token but also the absolute position.

Another key model that uses Transformers as a foundational architecture is the
Generative Pre-trained Transformer (GPT), now also referred to as GPT-1. GPT-1
combines unsupervised pre-training, using large text corpora and a 12-layer, left-to-right,
decoder-only transformer, and supervised fine-tuning on a variety of tasks: natural
language inference, semantic similarity, text classification, and question answering
[64]. In recent years, GPT models have continued to evolve and have created notable
breakthroughs in NLP, as will be discussed in Section 2.3.

In 2019, Facebook AI presented a Bidirectional and Auto-Regressive Transformer
(BART) [65], which combines the bidirectional encoder from BERT, and the auto-
regressive decoder from GPT. BART is pre-trained as a denoising autoencoder, focusing
on tracing the original version of corrupted documents. The input sequences are
corrupted in various ways, ranging from token masking and deletion to sentence
permutation, text infilling, and sentence permutation. This allows BART to perform
well not only in discriminative tasks, but also in regards to text generation. The model
was then fine-tuned on a variety of downstream tasks, such as sequence classification
and generation, and machine translation.

The last transformer-based architecture that will be discussed is the Text-to-Text
Transfer Transformer (T5) [66], which treats every NLP task simply as processing a
text input and producing a text output. This means that a single model can perform a
variety of natural language tasks just by providing a task-specific prefix such as sst2
for sentiment analysis, translate English to German for translation, or summarization
for text summaries. For pre-training, the public, web-scraped data source Common
Crawl was cleaned up using a list of heuristics to create the Colossal Clean Crawled
Corpus (C4). Based on the BERT masking mechanism, a new masking objective was
created, in which consecutive masked tokens were replaced by a solitary sentinel
token, with the model being trained to predict sequences of tokens, thereby better
recognizing long-range dependencies.
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The subsequent GPT model (GPT-2) demonstrates that natural language tasks can be
learned even without supervision, when trained on a new datasetWebText [67]. WebText
was created by scraping webpages that were curated or filtered by humans, first starting
by using links on Reddit as a jumping-off point, resulting in a dataset compiled of text
from 45 million links. Byte Pair Encoding (BPE) [68] is used as a language segmentation
algorithm that acts as a middle ground between character and word splitting. BPE
creates a grouping of frequent character pairings, increasing the vocabulary of 50, 257,
allowing it to better understand unknown or misspelled words. The architecture is
largely based on the original model, with the addition of layer normalization at the
start of each of the sub-blocks and after the last attention block.

The introduction of the transformer was revolutionary in the world of NLP, with
Islam et al. [69] noting that of all the transformer models that are applied in various fields,
about 40% were involved in NLP tasks, ranging from text classification & segmentation,
language translation, question answering, and text summarization. It has also led to
the development of large language models.

2.3 Large Language Models

Prior to discussing the benchmark language models that have been launched in recent
years, it is necessary to first establish what makes a large language model. LLMs mainly
refer to transformer-based, pre-trained language models that are larger and demonstrate
a better understanding of natural language. In Figure 2.5, the main LLMs can be seen,
grouped by their foundational architecture styles [70], as will be discussed below.

Encoder-only: These architectures include only the encoder stack of transformers,
including a bidirectional self-attention mechanism that allows it to process tokens from
both the past and the future. During pre-training, the main objectives are masked
language modeling and next sentence prediction, which allow the model to establish a
good understanding of natural language, and as such tend to be used more for named
entity recognition or text classification. The main models built with this architecture
are BERT, RoBERTa, and DeBERTa, which are examined in Section 2.2.

Decoder-only: A type of architecture which only uses the decoder stack of transform-
ers, used mainly for text generation tasks, such as text completion or summarization,
due to these models being autoregressive. Some of the leading LLMs today belong to
this group, such as the LLaMa [71] or the OpenAI GPT [1] model families. Prefix-tuning
[72] can also be used with decoder-only models, in which a set of vectors relating to
the task is processed before the input sequence. This allows the model to be capable of
performing different NLP tasks, without necessarily needing to be fine-tuned separately.

Encoder-Decoder: Here, the full transformer architecture is used, the encoder being
able to process the entire input sequence and the decoder only processing the previous
tokens. This serves as a middle ground between the architectures mentioned above,
since it is able to perform well both in language understanding and text generation,
with the representative models being BART [65], T5 [66], or mT5 [73].
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Figure 2.5: A diagram showing the evolution of large language models over time, grouped by
their architecture type (Encoder Only, Encoder-Decoder, and Decoder Only) [74].

2.3.1 Model training

Modern language models go through twomain learning processes known as pre-training
and fine-tuning, which allows them to build a strong, general NLP foundation which
can then be directed to more specialized tasks [75]:

Pre-training, where the goal is to learn and understand general language represen-
tation. In this stage, larger text corpuses are used, and all model weights have to be
updated, making it much more computationally expensive and resource heavy. The
main pre-training techniques include:

• Autoregressive Language Modeling - the model only has access to past tokens,
which it uses to predict upcoming tokens.
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• Masked Language Modeling - masks randomly sampled tokens or sequences
of tokens, with the model predicting the masked tokens using past and future
context.

• Unified Language Modeling - combines both autoregressive and masked language
modeling, thus ensuring the model gains both language understanding and
generation.

• Mixture of Experts - is a less resource-heavy but scalable pre-training method, in
which a number of neural networks (experts) are trained to specialize in different
NLP fields. A router is also trained to decide which experts should handle each
input sequence, so that only a small amount of the available parameters are
activated during processing.

Fine-tuning, occurs after pre-training and aims to specialize the model for certain,
downstream tasks. In contrary to the aforementioned, since smaller, domain-specific
corpuses are used and not all model parameters will be updated, this stage is shorter
and less resource heavy.

• Instruction Tuning - also called supervised fine-tuning, involves training a model
using an (instruction, output) dataset, improving the understanding of human
instructions in a controlled environment. Some limitations include the difficulty
in creating diverse, meaningful instruction/output pairs, and the model potentially
learning only surface-level features of the output [4].

• Transfer Learning (TL) - is used to repurpose and adapt a model from its original
task to a related but new task. Inductive TL uses a general-domain model and
fine-tunes it on a related but more niche downstream task, thereby leveraging
the knowledge acquired in the pre-training stage, whereas in transductive TL the
original and new tasks are of the same nature but could exist in different domains
or there could be a insufficient data for the target domain [76].

• Alignment Tuning - is a technique used to align the text generated by models to
human values and standards. Shen et al. [77] suggests that it can be separated
into outer alignment, focusing on correcting the harmlessness, honesty, and
helpfulness of LLMs through human feedback, and inner alignment, which checks
whether what the model is optimizing for matches the model objective. There are
some limitations with both alignment method groups, such as the difficulty in
obtaining human feedback and in analysing the complex decision making of the
model.

2.3.2 Advancements in LLMs

GPT-3 is known as the first large language model, being much larger than its predecessor,
with 175 billion parameters [78]. The model performed the best when using few-
shot learning, which consists of giving the model K examples of context and desired
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output, and achieving high but not optimal performance with one-shot (akin to few-
shot with K = 1) and zero-shot (description of the task is given rather than examples).
However, this model along with previous ones, were found have serious problems with
creating discriminatory content, misleading or providing false information, or creating
environments where user trust could be exploited [79]. Reasons for this could be due to
the misalignment of objectives, one being the improvement of next word prediction,
the other being the following human instructions or intent [80].

In order to place more importance on the latter objective, the InstructGPT model was
created, which would fine-tune GPT-3 so that its outputs better align with those desired
by the users. The fine-tuning process uses a combination of supervised learning and re-
inforcement learning with human feedback (RLHF), and is completed in three steps [81]:

• Step 1: Human labelers demonstrate desired outputs for randomly sampled
prompts from the dataset. The outputs are then used to train a supervised policy.

• Step 2: Different outputs for the same prompt are collected from the model, and
are then ranked from best to worst by labelers. These rankings are then used to
train a reward model.

• Step 3: Reinforcement learning is used to improve the generated outputs by
calculating a reward from the reward model. The rewards are then used to update
the supervised policy.

On November 30th 2022, ChatGPT 1 was introduced to the public, using a GPT-3.5
model and fine-tuned using RLHF. It was created to behave in a conversational way,
allowing an easier dialogue with users, and it marked a notable uptick in the public
interest, seeing around 13 million unique, daily users [82] just months after launching.
This popularity not only reignited interest in the field of AI, especially relating to
generative models, but also led to the acceleration of progress in competing models. The
next year OpenAI released GPT-4 [1], with an improved natural language generating
ability, even in more nuanced and complex contexts, and multimodal processing, capable
of understanding text and image inputs. This model still suffered from limitations that
affected earlier models, albeit at a lesser amount, such as hallucinations, in which
plausible but unreliable or incorrect information is created, and the generation of
potentially harmful or offensive content.

The LLM family Claude 2 was introduced in early 2023, and was stated to be easier
to converse with than ChatGPT and more effective in filtering out harmful information.
This was done with the use of their Constitutional AI model [83], which is given a list
of principles or a constitution taken from sources such as the UN Declaration of Human
Rights 3, and goes through two training processes: a supervised learning stage, in which
the model takes sample outputs from earlier models, which are then critiqued based
on the constitution and then revised, and a reinforcement learning from AI feedback

1https://openai.com/index/chatgpt/
2https://www.anthropic.com/news/introducing-claude
3https://www.anthropic.com/news/claudes-constitution
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stage (RLAIF), in which the model is fine-tuned with AI feedback in order to favor
outputs that more align with the constitution.

Bard 4 was also launched by Google powered by their earlier model LaMDA 5. The
model was then rebranded as the multi-modal model Gemini, with the addition of
audio and video processing, and text and image generation, and available in three
models (Ultra, Pro, and Nano) each of which are tailored for different computational
and complexity levels [84]. Meta also released their own LLM family under the name
LLaMA (Large Language Model Meta AI) [2], the first model ranging from 7𝐵 − 65𝐵

parameters, with the later models reaching up to 405𝐵. The LLMs were made publicly
accessible through a community license, along with an Instruct version of each model
which were further fine-tuned to better follow instructions [71].

2.4 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) is a fine-tuning technique first introduced
by Lewis et al. [10] in 2020 to enable models to continuously learn and update their
information. Many language models are limited in their knowledge by the time when
their training data was collected, also known as the cutoff date [85], meaning that any
data created or updated after that date would not be accessible leading to the generation
of inaccurate, outdated or hallucinated information.

2.4.1 RAG Process

As shown in Figure 2.6, RAG works by analyzing a submitted query and searching
the given data sources to find the most relevant information, which is sent along with
the query to the language model.

Figure 2.6: A diagram, inspired by Shukla [86], showing the workflow of a RAG process.

4https://blog.google/technology/ai/bard-google-ai-search-updates/
5https://blog.google/technology/ai/bard-google-ai-search-updates/
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Indexing begins with the parsing and cleaning of the information from the given ex-
ternal sources, after which they are split into smaller chunks. These chunks are then also
converted into vector representations by the retriever and stored in a vector database.

Retrieval occurs with the submission of a user query, which is then transformed
into a vector representation by an embedding generation model or retriever. A similarity
search is then performed between the data chunks and the query embedding, which
determines the top N chunks that are the most semantically relevant to the query.

Generation is done with the use of a large language model, which is fed a prompt,
combining the original query and the relevant chunks. The formulation of the prompt
can then be altered, further optimizing it for the task at hand.

This core process is also known as Naive RAG, which has been shown to be effective
at updating the model without any additional training required, and combining the
parametric memory of an LLM with a non-parametric memory, i.e., vector database to
provide more diverse and factual language [10]. On the other hand, some limitations
also exist, especially in regards to the performance of the retriever, such as the fetching
of irrelevant or noisy contexts, which can be distracting to LLMs [14], or contexts that
are too long or too brief due to the chunk size. The structure and wording of the query
could also be inadequate, leading to false or misleading retrievals, all of which leads
to errors or hallucinations while generating. The solution for this was the creation
of more advanced RAG methods, which employ various techniques to enhance the
performance of the input, retrieval, or generation processes.

Input enhancement techniques

Input retrieval techniques focus on ensuring a higher-performing retriever, by improving
the data preparation and optimizing for a smoother similarity searching process. To
solve any issues with the query, query manipulation or refinement could be utilized
to reformulate the wording or to add more meaningful terms, making the aim of the
question clearer. Data augmentation could also be used to prepare the context data,
where the data is paraphrased and/or summarized, to increase the readability, or to
remove any irrelevant information. Some techniques also add information from other
data sources, to enrich the contexts, should the text be unclear or ambiguous.

Retrieval enhancement techniques

These techniques aim to make the job of the retriever easier, whether that is by
optimizing the chunk size to lower the chance of text being too large and including
unrelated information, or text being cutoff in the middle of sentences, which would
reduce semantic understanding. Other retrieval techniques work by optimizing the
ranking of the relevant chunks, ensuring the most relevant are given higher importance,
or by creating an adaptive retrieval process, which evaluates the query and decides
dynamically whether a simple context lookup is needed, or whether a more complex
method, such as recursive retrieval, is needed.
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Generator enhancement techniques

The focus of these techniques is on developing the performance of the generator, whether
that is through changing the generator itself, such as decoder tuning or generator fine-
tuning, which can increase the chances of receiving the desired results. The quality of the
generator inputs also factor in heavily in its performance, so using prompt optimization,
in which the prompt, the text that precedes the query and context, can be tinkered with,
to give the generator more information in how to answer the query. More complex
techniques also repeat the retrieval and generation stages a set number of times in
order to receive a more in-depth or cohesive answer. Iterative retrieval repeats the
two stages, with the hope that repeatedly searching the external data would lead to
better results. Recursive retrieval works similarly, but after each repetition, the original
query is slightly altered in a way that would fix any ambiguity in the original. Both
methods are followed by a judging module that decides whether the current answer
is sufficient or another repetition is needed.

This chapter presented the evolution of NLP from the earliest machine translation
to the benchmark LLMs of today. The architecture and key components of RAG were
also explored, along with its limitations and proposed improvement techniques. Some
of the more prominent techniques that have been introduced in recent years will be
discussed in the next section, where their architecture and their effect on the RAG
performance will be analyzed more in depth.
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3
Related Work

This chapter provides an analysis of recent research conducted in the field of optimizing
LLM performance using advanced RAG techniques with question-answer (QA) datasets.
Section 3.1 starts by looking at several research papers that have proposed new methods
of processing QA datasets, and examines the effect these methods have had on the
performance. Based on these papers, Section 3.2 also details and contrasts the format
and scope of the most frequently cited datasets with each other. Lastly, this chapter ends
with Section 3.3 which looks at the gaps in the research and the work that needs to be
done, and how this could be accomplished both by this thesis and by other future work.

3.1 Advanced RAG techniques

RQ-RAG

Refine Query for RAG (RQ-RAG) was proposed by Chan et al. [87] in order to combat
complex or ambiguous queries. For straightforward queries, the model learns to search
on demand, whereas the other queries are rewritten, decomposed, and disambiguated. A
dataset was created, according to Formula 3.1, where the original input-output pairs are
transformed using special tokens (𝑆𝑃𝐸𝐶𝐼𝐴𝐿𝑡𝑦𝑝𝑒) which specify the refinement action,
𝑄𝑖,𝑡𝑦𝑝𝑒 being the refined query, and the retrieved contexts [𝐷𝑖1, ...𝐷𝑖𝑘].

(𝑋𝑜𝑟𝑖𝑔𝑖𝑛, 𝑌𝑜𝑟𝑖𝑔𝑖𝑛) −→ (𝑋𝑜𝑟𝑖𝑔𝑖𝑛, 𝑆𝑃𝐸𝐶𝐼𝐴𝐿𝑡𝑦𝑝𝑒, 𝑄𝑖,𝑡𝑦𝑝𝑒, [𝐷𝑖1, ...𝐷𝑖𝑘], 𝑌𝑛𝑒𝑤)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

repeat i times

(3.1)

To facilitate this process, ChatGPTwas used to group queries in refinement categories
and to generate answers to the new queries, as seen in Figure 3.1. After the model
(Llama2-7B) was trained on this constructed dataset, it was then tested on multiple
single-hop and multi-hop QA datasets, with multi-hop referring to the answer of a
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Figure 3.1: A diagram showing the role of ChatGPT in categorizing queries used to train RQ-RAG
[87]. Queries would either be left as they are, or would be decomposed and rewritten to reduce
ambiguity.

query needing multiple retrieval and reasoning steps from text sources, with single-hop
questions typically needing one straightforward retrieval.

Model Single-Hop QA Multi-Hop QA
No Retrieval Baselines

Llama2-7B (Zero Shot) 25.8 8.5
Llama2-7B-Chat (Zero Shot) 43.9 4.4

With Retrieval Baselines

Llama2-7B (Zero Shot) 34.9 14.3
Llama2-7B-Chat (Zero Shot) 40.3 2.7

SAIL-7B 48.1 25.9
SELF-RAG 66.4 27.1
RQ-RAG 68.3 49.7

Table 3.1: Summarized table [87] showing the average results of multiple models with or without
retrieval techniques across single- and multi-hop QA datasets.

The performance of the trained model was then compared with two main model
groups: No Retrieval Baselines, which answer the question using their intrinsic knowl-
edge, and With Retrieval Baselines, which adjoin retrieval from external data sources.
Among these models are Llama2-7B and Llama2-7B-Chat, both the baseline version and
one fine-tuned on task-specific datasets, SAIL-7B [88], which uses search-augmented
instruction learning to give higher-quality responses by filtering out distracting search
results, and SELF-RAG [89], which critiques and selects the best of multiple generated
answers. Table 3.1 shows the performance of each model averaged across multiple
datasets in the single- and multi-hop groups. In most cases, the performance of
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the retrieval models is significantly higher than their counterparts, with multi-hop
datasets proving especially difficult for the Llama models. RQ-RAG exhibits the highest
performance, surpassing the others even in the complex, multi-step reasoning scenarios.

GraphRAG

Edge et al. [90] proposed GraphRAG to improve RAG performance when tasked with
so-called sensemaking questions, which require a deeper understanding of an entire
text. Unlike the prevalent RAG process shown in Section 2.4, GraphRAG uses graphs
instead of vectors to store knowledge. The text sources are split into chunks, after which
an LLM is used to process the text to obtain all possible entities, their relationships,
and related factual statements. These are then used to create a knowledge graph, with
nodes and edges representing entities and relationships, respectively, with the weight
of an edge being based on the occurrence of the relationship. Leiden communities
are also used to recursively partition the graph into similar, smaller communities,
which are then summarized using a template. During the generation process, multiple
answers along with helpfulness ratings are created in parallel for each community
summarization by the LLM. The summarizations are subsequently ranked in descending
order of their helpfulness and entered into a new context window, which is then used
to generate the global answer.

The model was then tested on a podcast transcript and news article dataset, each
having between 1 − 1.7 million tokens, with the answers evaluated by an LLM on their
comprehensiveness, diversity, empowerment, and directness. Six different approaches
are tested, including a “traditional” vector RAG, a direct summarization model, and
four graph-based methods using different levels of community summaries. The results
of the experiments were quite mixed, with the vector RAG having the highest direct-
ness score for both datasets, and the direct summarization model having the highest
empowerment rate for the podcast transcripts. The highest performers in the other
evaluators are spread out relatively evenly among the graph methods, summarizing
at deeper hierarchical levels.

Adaptive-RAG

Many different enhancement techniques have been proposed, each targeting specific
areas of the RAG process or task-specific scenarios, but there are cases where multiple
techniques could be beneficial for the same model. This is what Jeong et al. [91] aims
to do with Adaptive-RAG, which can dynamically decide the most suitable technique
for each query. There are three methods to choose from:

• Non-retrieval for QA: A traditional LLM that generates an answer based only on
the input query and its own intrinsic knowledge.

• Single-step approach for QA: Simple RAG-based method, where the query is
compared against an external knowledge source to find themost relevant segments,
which are then used to aid in the answer generation.
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• Multi-step approach for QA: Similar to RQ-RAG, the retriever and generator
collaborate over multiple rounds, each time taking into consideration additional
contexts and previous answers.

Adaptive Rag uses another language model (Classifier) to sequentially determine the
complexity levels (low, moderate, high) of each query taken from multiple single- and
multi-hop QA datasets. The model was then compared against the three aforementioned
techniques, Self-RAG [89], and Adaptive-RAG with an Oracle classifier. To evaluate the
performance, the metrics: F1, accuracy (Acc), exact match (EM), number of retriever-
generator steps (Step), and the average time taken to answer each question, the latter
two being relative to the single-hop approach.

Model EM F1 Acc Step Time

No retrieval 35.77 48.56 44.27 0.00 0.71
Single-step approach 34.73 46.99 45.27 1.00 1.00

Self-RAG 10.87 22.98 34.13 0.74 1.50
Multi-step approach 38.13 50.87 49.70 2.81 3.33

Adaptive-RAG 37.97 50.91 48.97 1.03 1.46
Adaptive RAG with Oracle classifier 47.70 62.80 58.57 0.50 1.03

Table 3.2: Summarized table [91] showing the average results of multiple models RAG approaches
across single- and multi-hop QA datasets using a GPT 3.5 (Turbo) LLM.

Table 3.2 shows the results of the listed models averaged over all datasets and using
GPT 3.5 (Turbo) as the backbone LLM. As can be expected, the simpler models (no
retrieval, single-step approach) had a lower performance than their more complex
counterparts. On the other hand, the multi-step approach did perform similarly well
to Adaptive-RAG, but the Step and Time show that this method comes not only at a
much higher computational cost, but also financially, since the LLM has to be accessed
repeatedly. Adaptive-RAG with an Oracle classifier is the best performer, both in terms
of answer validity and efficiency, thereby serving as an upper bound for Adaptive-
RAG since the Oracle classifier is an idealized model, always selecting the correct
complexity for each query.

3.2 Question-answer datasets
As described earlier, single- and multi-hop question-answer datasets seem to be the
most commonly used when testing RAG enhancement techniques. This section gives a
brief overview of the most prevalent datasets, their size, data sources, and format.

Single-hop datasets

SQuAD or Stanford Question Answering Dataset [92] is a single-hop dataset, consisting
of 107, 785 question-answer pairs taken from questions posed in 536 Wikipedia articles.
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Crowdworkers were hired to create the questions and select the text segment they
believe best answers them, leading to 19.2% of answers being dates or numerals, 32.6%
being nouns such as person, location, or other entities, 31.8% being common noun
phrases, and the rest being made up of other phrases or clauses.

TriviaQA [93] is a dataset made up of over 95, 000 unique question-answer pairs
and 650, 000 question-answer-evidence triples; the questions were gathered from trivia
websites, and the evidence was sourced from Wikipedia articles or Bing search results.
Since the evidence documents could be quite large, they are seen as a distant supervision
method, which could be used to train the model to wade through noisy environments.
The majority of answers (92.85%) are just the titles of Wikipedia pages, with numerals
and free text making up 4.17% and 2.98% respectively.

PopQA, introduced byMallen et al. [94], is a 14, 000 question-answer pair dataset that
aims to cover information that might not have been included in previous datasets. This is
done through traversing Wikidata, gathering knowledge triples and converting them to
QA pairs, and collecting the pageviews for each article, thus determining its popularity.

Multi-hop datasets

2WikiMultiHopQA [95] is a Wikipedia-based dataset spanning over 192, 000 triples in
the (subject,relation,object) format. To avoid overly straightforward single-hop questions,
four question templates were constructed [95]:

• Comparison question: Seeks to compare components of two or more entities.

• Inference question: Uses two related triples, such as (s1,r1,o1) and (s1,r2,o2) to
create a new triple (s1,r3,o2), a combination of the two properties is created.

• Compositional question: Similar to the above, but in this case, a new connection
cannot be created from r1 and r2. Both properties would then have to be mentioned
in the question to enable the connection of the triples.

• Bridge comparison question: Combines comparison and inference/compositional
questions, in which two or more data pieces taken from their respective composi-
tional questions are compared against each other.

The top five answer categories were found to be: yes/no (31.2%), dates (16.9%), films
(13.5%), persons (11.7%), and cities (4.7%), with the remaining being other entities.

HotPotQA [96] is another Wikipedia based dataset of 113, 000 QA pairs. It is made
up of comparison and yes/no questions, with many of them requiring chain reasoning,
which involves the identification and understanding of bridge or answer entities and
their respective properties. The main dataset can be used in two different settings:
distractor which mixes the two gold paragraphs, from which the answer can be deduced,
with 8 other distracting paragraphs; and full wiki, which provides the first couple of
paragraphs for all Wikipedia articles (over 5, 000, 0000).
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3.3 Gaps in current research
After discussing some recently presented RAG enhancement techniques and commonly
used datasets, it is clear that RAG-based models have expanded significantly in the last
years and will only continue to develop further. However, it can be seen that there are
still some unanswered questions and unexplored areas left.

Firstly, there is a lack of larger or medium-sized datasets that have long-form answers
requiring multi-step reasoning. The larger datasets [95, 96] that tend to be used in RAG
surveys tend to have more simplistic answers, such as short phrases, binary options,
or multiple-choice, for which less complex evaluation methods are needed. Datasets
that do have more in-depth answers are often smaller in size [97], or are not publicly
accessible, thus they are not able to be replicated by other researchers [98].

The comparison of RAGmethods across many different datasets is also missing, since
most studies focus on a smaller number of datasets and more tailored RAG methods.
These comparisons help in seeing how the different structures of each dataset affect
the performance, and seeing how flexible certain RAG methods are in this regard. This
would allow future researchers to not only know which datasets work well with certain
methods, but also, most importantly, which ones work especially poorly.
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4
Methodology

This chapter discusses the plan and setup for the experimental study, starting first with
describing the structure and content of the datasets that will be used in Section 4.1. It
then continues in Section 4.2 by discussing an important library that will be used to
facilitate the execution and management of the methods and datasets, followed by an
explanation of the evaluation metrics in Section 4.3 and the prompt design in Section
4.4. It ends on Section 4.5, with a thorough detailing of the control and RAG methods
that will be used, and how they will be implemented.

4.1 Data
The dataset that will be used in the experimental study is ChatRAG-Bench 1 compiled
by NVIDIA, and consisting of 10 QA conversational datasets covering varying QA
formats and topics. These datasets were all slightly modified from their original versions
to create a unified format and structure, leading to easier processing. The modified
datasets all contain three core columns:

• Messages - list the QA conversations regarding a specific topic, in which the user
asks questions and is answered by the assistant. Each entry contains the relevant
conversation history, which could also be left empty if a new conversation is
starting, and concludes with the latest question left unanswered. While the first
questions in the sequence are more direct and coherent, the questions that appear
later tend to be less understandable when removed from the general context, since
they often informally refer to the previous answers (which of those, how many of
them).

• Answers - contain the answer(s) of the last question in Messages in an array
format, the length of which varies depending on the dataset. As seen in Table 4.1,

1https://huggingface.co/datasets/nvidia/ChatRAG-Bench
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the multiple answers are there to compensate for question ambiguity or semantic
differences in phrasing.

• Contexts - consists of the pertinent context(s) regarding the conversation. The
format of this column is determined by whether the dataset contains another
column.

– Without Ground-Truth-Context - in this case, the column Contexts consists
of only one paragraph, which contains the answer to the latest question.

– With Ground-Truth-Context - in this case, Contexts consists of multiple
paragraphs which are partially related to the conversation, but which might
not necessarily hold the answer. The Ground-Truth-Contexts then contains
the most relevant of these contexts.

messages answers

User: What happened in the early 80’s? [Farina was cast in a film,
he got into acting,
he was a consultant,
got into acting]

User: What color was Cotton? [white,
white,
white,
white]

User: Whose paint was it? [the farmer,
the farmer’s,
the old farmer’s,
the farmer’s]

Table 4.1: Summarized table 2 showing the multiple answer format of the CoQA dataset.

The datasets HybriDial and ConvFinQA do not comply with the aforementioned
formatting rules and will therefore not be used in the experimental study. HybridDial is
a natural, conversation-based, multi-hop QA dataset, which would beneficial for the
study but since the Contexts column contains multiple paragraphs and no Ground-
Truth-Context exists, it would not be possible to verify the performance of the retriever.
ConvFinQA, unlike the other datasets that primarily focus on language reasoning and
text understanding, uses numerical-based tables from the finance sphere and aims to
test numerical reasoning and arithmetic calculations. Unfortunately, the conversion
of HTML tables to text creates certain formatting and alignment errors, which can
lead to the incorrect handling of data.
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Sequential Question Answering (SQA)

SQA [99] was developed to create question sequences, in which each answer depends on
its predecessor. This is done by decomposing questions from the WikiTableQuestions
dataset into more specific and comprehensible sub-questions, leading 17, 553 question-
answer pairs and 6, 066 unique contexts.

Question Answering in Context (QuAC)

The QuAC dataset [100] contains 14, 000 QA dialogues, created by crowdworkers acting
out conversations between a student and teacher. The conversations are centered around
a Wikipedia article, which the student knows only the title of but the teacher has
full access, and the interaction continues until one of three options is completed: 12
questions have been answered, the student or teacher decides to end the dialogue, or
two questions go unanswered.

Conversations Question Answering (CoQA)

Reddy et al. [101] introduced the 127, 000 CoQA dataset with the aim of including varied
data sources such children’s literature, school exams, and Reddit, and casual sounding
speech, in which questions often refer to the dialogue history and answers are direct
and without explanation. As in the paper introducing this dataset, evaluation metrics
will be performed between the generated answer and each of the reference answer, but
only the one having the highest F1 score will be selected.

Domain-specific Question Answering (DoQA)

The DoQA [102] dataset is built upon a continous dialogue between a user and a domain
expert relating to a certain topic, in this case cooking, travel or movie forums on Stack
Exchange. Similar to CoQA, there are four correct answers for each question, with DoQA
being a little bit smaller, 10, 917QA sets, and aiming for amore natural conversation, with
less clunky factoids and follow-up prompts. Since this dataset is comprised of multiple
sub-datasets, the subsequent results and findings will be averaged across all three.

Doc2Dial

IBM created doc2dial [103], a dataset consisting of 4800 conversations between a user
and an agent on topics related to social welfare in the United States. The conversations
were sorted into three different categories: D1, containing multiple questions relating
to the given context, D2, in which the conversation revolves around one main inquiry
with clarifying questions carried out by the agent, and D3, with question that are
irrelevant to the context.

Question Rewriting in Conversational Context (QReCC)

The QReCC [104] dataset incorporates questions from pre-existing datasets, including
the aforementioned QuAC, with information sourced from the Common Crawl dataset
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Inital question Q: Tell me about the benefits of Yoga?

Replacement Q: Does it help in reducing stress?
R: Does Yoga help in reducing stress?

Insertion Q: What are some of the main types?
R: What are some of the main types of Yoga?

Removal Q: Can you tell me about the C++ language mentioned?
R: Can you tell me about the C++ language?

Copy Q: What are common poses in Kundalini Yoga?
R: What are common poses in Kundalini Yoga?

Table 4.2: Summarized table [104] showing the process of rewriting pre-existing questions due
to anaphores or missing content in the QReCC dataset.

and web searches. Multiple methods of question rewriting were also used to "fix"
any inquiries which had references to the conversation history, see Table 4.2, thereby
preserving the natural-sounding sentence structure, while removing ambiguity.

Topic switching in Open-domain Conversational Question Answering (TopiOCQA)

This dataset [105] explores topic switching within 50, 000 conversational QA pairs,
by allowing the answerer access to links within the relevant Wikipedia article. The
textitquestioner is then also allowed to view the metadata (main segment and chapter
titles) of the linked articles, and can shift their inquiries accordingly. The answers were
unrestricted and free-form, facilitating easier topic switches every 3-4 questions and
enabling the handling of the changing context and long-term reasoning.

Information-Seeking Conversations with Mixed-Initiative Interactions (INSCIT)

Wu et al. [106] proposed an information-seeking dataset that would use a variety of
interactions to challenge hard-to-answer questions. These mixed-initiative interactions
are categorized into:

• Direct answers - the model finds information that it believes answers the question,
and relays that to the user.

• Relevant answers - the model does not believe it has found a valid answer but will
inform the user of information it believes is relevant.

• Clarifications - the user is prompted for further clarification on their question,
and often occurs when there are many related contexts available.

• No information - the model has no answer available for the user.
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Figure 4.1: A diagram of the EncouRAGe library, inspired by 5https://github.com/uhh-
hcds/encourage, showing its framework for executing RAG methods.

4.2 Encourage

To facilitate the management and execution of the various datasets and RAG methods,
the EncouRAGe library 3 is integrated into the code following its accompanying template
4. EncouRAGe is a modular and flexible framework, whose workflow is shown in Figure
4.1 that supports the RAG process by improving inference efficiency, storing results and
metadata, and enabling the use of multiple RAG methods and evaluation metrics.

EncouRAGe uses two important libraries (vLLM, MLflow) to streamline LLM infer-
ence and the monitoring of runs and results. vLLM [107] is an open-source, end-to-end
LLM serving engine that aims to optimize key-value (KV) cache memory usage. KV
cache memory is comprised of the key and value tensors necessary for the attention
function in transformers, and since it expands and shrinks dynamically based on the
request size, it can be prone to fragmentation and management complexity. vLLM
introduces PagedAttention, an algorithm that divides the KV cache memory into blocks
that hold a fixed number of key-value pairs. The more efficient memory management
allows for the successful batching of large amounts of requests. MLflow [108] is
also an open-source platform designed to streamline model deployment, experiment
execution, and reproducibility. The main features used in EncouRAGe are in regard to
experiment tracking, where the parameters of each experiment (RAG method, dataset
name, LLM model, etc), along with the evaluation metrics, and the full table of the
requests, contexts, and results.

Another important part of the RAG method is the vector database where all external
contexts are stored and subsequently retrieved. The one used in this case is the open-
source, embedding database Chroma [109] which has an easily accessible core API,
made up of four main functions. A ChromaDB client is created, and the collection
of contexts are added to it, along with the choice of embedding models and distance
function. While Chroma supports a variety of different embedding functions, the default
is the Sentence Transformers [110] all-MiniLM-L6-v2 model, which maps words and
sentences to 384-dimensional vector embeddings. The distance function is used to
calculate the approximate nearest neighbors (ANN) to the query vector, thus finding the

3https://github.com/uhh-hcds/encourage
4https://github.com/pesc101/exp-template

29



4. Methodology 4.3. Evaluation

Figure 4.2: A snapshot of the MLflow platform tracking the parameters and evaluation metrics
of experiments.

most relevant contexts, with Squared L2, Inner Product, and Cosine Similarity available.
The default distance function, Cosine Similarity, as shown below

d = 1 −
∑𝐴𝑖 × 𝐵𝑖

√
∑𝐴2

𝑖 ⋅
√
∑𝐵2

𝑖

(4.1)

will be used in the experiment since it places more focus on the vector’s direction rather
than its magnitude, thus giving priority to the texts semantic meaning.

4.3 Evaluation

There are a variety of different evaluation metrics available in the EncouRAGe platform
to evaluate the performance of both the generators and the retrievers. Among the
generator evaluation metrics considered were BLEU [111], GLEU [112], ROUGE [113]
and F1, whereas Recall@k andMean Reciprocal Rank (MRR) were both used for assessing
the retrievers performance.

Before discussing these metrics, it is important to explain two measures that are
widely encountered: Recall, which determines how many true positives are predicted
positive, and in terms of LLM generated answers it reflects the completeness of the
answer; and Precision, which calculates how many of the predicted positives are actually
true positives, and represents the correctness of the answer.

Generator evaluation metrics

The F1 score is calculated using the harmonic mean of the token-based precision and re-
call,

F1 = Precision × Recall
Precision + Recall (4.2)

thus creating a balance between correctness and completeness. BLEU [111], first used for
assessing machine translation, is based on the geometric average of generated answers
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n-gram precisions 𝑝𝑛 with an added brevity penalty (BP) for generations shorter than
the reference answer length. This is shown in

BLEU = 𝐵𝑃 × exp
(

𝑁

∑

𝑛=1

𝑤𝑛 ⋅ log 𝑝𝑛
)

(4.3)

with 𝑁 and 𝑤𝑛 representing the size and weights of the n-grams respectively. Using
this as a foundation, the GLEU [112] metric keeps the n-gram comparison but instead
using the harmonic mean of F1. On the contrary, ROUGE [113] is more recall-oriented
and is split into multiple varieties, with ROUGE-L used to determine the longest
common subsequence between the generated and reference answer, and ROUGE-N
being calculated as follows:

ROUGE-N =
∑gram𝑛∈Ref Countmatch(gram𝑛)

∑gram𝑛∈Ref Count(gram𝑛)
(4.4)

where 𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑛) is the total number of n-grams in the reference answer and
𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛) is the amount of n-grams occurring in both answers.

Ultimately, since the original paper [114] that introduced and experimented with
the ChatRAG-Bench dataset collection focuses its results on F1, in order to have a fair
comparison this study will also use F1 as the main evaluation metric to compare the
generated answer to the reference answer. As mentioned in 4.1, some of the datasets
have multiple correct answers, so similar to it is handled in their respective papers [92,
100, 101], the F1 score will be separately calculated for each possible answer, with the
one possessing the maximum score being chosen.

Retriever evaluation metrics

The performance of the retriever is evaluated on a two-pronged approach: first, does
the retriever fetch the correct context, and second, is the correct context ranked higher
than the others. Recall@k is a binary metric which outputs a 1 if it determines that the
ground truth context appears within the top k retrievals, or a 0 otherwise. MRR [115]
emphasizes the priority of the correctly retrieved context by averaging the reciprocal
of their ranking, as shown below,

MRR =
1

𝑁

𝑁

∑

𝑛=1

1

𝑟𝑎𝑛𝑘𝑖
(4.5)

where 𝑁 is the total number of retrieved contexts, and 𝑟𝑎𝑛𝑘𝑖 representing the rank of
the ground truth context(s). In the experiment study, both metrics will be essential
in order to determine how significant the effect of the ranking is on the performance
and to ease the comparison of the different RAG methods.

4.4 Data Preprocessing and Prompt Design
Before any RAG methods are implemented, the datasets must first be correctly fetched
and prepared, to ensure that the are correctly processed. The datasets are loaded
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from Hugging Face 6 and converted into a Pandas DataFrame, after which the queries,
answers, contexts, and ground truth contexts are extracted. The queries are structured
as a conversation between a user and an assistant, and this format is kept, not in the
original JSON format but rather in a more readable form shown in Table 4.3. The
collected contexts are also cleaned to remove any noisy formatting differences, with
the ground truth contexts added as reference_document to the metadata.

Original format New format

{"content": "how old was william shake-
speare when he wrote hamlet",
"role": "user"},
{"content": "Between 1589 and 1613 at the
age of 49.",
"role": "assistant"},
{"content": "who is he?",
"role": "user"}

Conversation history:
User: how old was william shakespeare
when he wrote hamlet
Assistant: Between 1589 and 1613 at the
age of 49.
User: who is he?

Table 4.3: Example of the conversation format processing, performed to remove any unnecessary
JSON syntax elements and enhance the clarity of the query. The data in this example is taken
from the TopiOCQA dataset.

Regarding the prompt design, a similar blueprint was used for each dataset in
which the LLM is told that that they are a helpful assistant whose goal is to try
and answer the questions to the best of their abilities, and the importance of the
contexts and conversation history is emphasized. The LLM is instructed to not rely on
internal knowledge, and to state if the answer cannot be found, rather than doing any
guesswork. The main difference among the prompts, which will be provided in full in
Appendix A, is the guidance on how the answer should be structured, whether in more
explanatory full sentences, succinct phrases or specific values. Since the addition of
the conversation history and contexts would already be quite lengthy, and to match
the ChatQA paper [114], zero-shot prompting was chosen, thus no ideal response
examples will be passed along.

4.5 RAG methods

This section delves into the RAG methods implemented in the EncouRAGe library,
and discusses their underlying mechanisms, including how they augment the basic
RAG process, and how these enhancements are predicted to affect the performance.
The first approach to be discussed is No RAG, which will be used as a control group
to test the performance and internal knowledge of the LLM. Followed by the base
implementation of RAG and the ideal retriever method (Known Context), since they will
serve respectively as a foundation for the more advanced methods and a performance

6https://huggingface.co/
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ceiling for the retriever. Then, the methods will be discussed in order of which aspect of
the RAG pipeline is enhanced: input-enhancing (HyDE and Query Rewriting), retriever-
enhancing (HybridBM25, Reranker RAG), a combination of the two (HyDE + Reranker),
and generator-enhancing (Context Summarization).

4.5.1 No RAG

In order to contextualize the effects that the following RAG methods will have on the
performance, the LLM itself must first be analyzed. The No RAG method will send the
user query and prompt directly to the LLM, without any additional context, in order
to observe its internal knowledge and how well it can answer the question. Although,
the prompt would still contain the conversation history, which would ideally provide
enough contextual information to enhance the clarity and comprehensibility of the
query. Since the experiment will be conducted with multiple datasets, all of which
have different query structures and formats, this method will also help in creating a
baseline performance value that is individually tailored to each dataset, so that the RAG
results are not in any way inflated or minimized.

4.5.2 Known Context

This method, also known as gold oracle, is used to simulate the performance of an ideal
retrieval, allowing for the isolated testing of the generator. Instead of the top relevant
contexts being passed along to the LLM, only the ground truth context(s) for each query
are relayed; by doing this, the performance ceiling of the generator can be ascertained.
This ceiling acts as a sort of baseline for better interpreting whether another methods
performance is strong or weak, and it puts into perspective the potential for any future
improvements. The system prompt and other optimization techniques can then also
be independently assessed and engineered.

4.5.3 Base Implementation

This technique, also known as Naive RAG, as described in Subsection 2.4.1 consists of
loading and processing the datasets from Hugging Face, storing the loaded contexts
into the Chroma vector database, retrieving the most relevant ones for each query and
using them to generate the appropriate responses. The BaseRAG class is instantiated
which starts by initializing the ChromaClient database and inserting the the context
documents after they have been filtered to remove any duplicates.

Then it is time to retrieve the relevant contexts for each query, which is done using
the Chroma query function which uses the aforementioned embedding model and
retrieval queries, in this case the conversation history, to find the top k contexts. K
could be set to a variety of different numbers, with the higher numbers ensuring a
larger chance that the correct context is fetched. However, retrieving a larger number
of contexts could cause the LLM to get distracted from the original question, or to get
overwhelmed with noisy data, so effort must be made to find a balance between the two.
Fortunately, Liu et al. [114] found k = 5 to be a happy medium, and found that lowering
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Context: {{ documents[0].content }}
{{ user_prompt }}
Assistant:

Figure 4.3: The template of the prompt setup which sets the placement of the context, user
prompt, and conversation history

Figure 4.4: A diagram [116] showing how the HyDE model uses the initial user query to generate
a hypothetical answer document, which will then in turn be encoded and used to search for the
relevant contexts in the vector database.

the value to k = 3 or raising it to k = 10 both hindered the F1 score. The retrieved
contexts along with the conversation history and system prompt, are then all collected
in the template shown in Figure 4.3 and sent to the LLM through an inference runner.

4.5.4 HyDE

Hypothetical Document Embeddings (HyDE) was first introduced by Gao et al. [116]
to improve the performance of zero-shot dense retrieval models. As shown in Figure
4.4, HyDE splits the retrieval process into two tasks:

• Generative task = the query is fed to the generator, which is then tasked to create
a hypothetical document that would answer the question. This document, while
it could contain errors and is unlikely to provide a full answer, would be able to
capture the themes of the query and provide a guideline for the next task.

• Document similarity task = the hypothetical document is encoded into an embed-
ding model, with the expectation that the dense bottleneck in the encoder would
filter out the smaller, incorrect details. This vector is then used to search for the
relevant contexts, on the basis of their similarity.

This process improves the efficacy of the retriever by working to bypass any noise
or ambiguity in the original query, and the new generated document expands the
query topic by adding contextual details. The HyDE function applies this process
by using an additional query to instruct the LLM to create a passage that answers
the provided question
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Rewrite the last user question to be fully self-contained and clearly answerable.
Include only the essential context from the conversation. Do not add information
that was not explicitly mentioned. The rewritten question should be short, precise,
and reflect exactly what the user wants to know. Output only the rewritten
question.

Figure 4.5: The prompt used to instruct the LLM into reformulating the conversation history in
one, more comprehensible question.

4.5.5 Query Rewriting

Another input enhancement method that will be used is query rewriting, which refor-
mulates the original query to aid in better retrieval results. Unlike HyDE, the goal of
this method is not to provide extra topical information or necessarily expand the query
itself, but to clarify any ambiguous coreferences, and perform entity disambiguation
or grammatical restructuring.

This method uses a separate function and a short prompt as seen in Figure 4.5, to
instruct the LLM to rewrite the last question of the conversation, which will then be
used instead of the conversation history when sending the final prompts. It would
be worthwhile to examine whether the extra background to the question that the
conversation history or HyDE provides is beneficial to answering the question or if
the more succinct, direct query allows for less noisy details.

4.5.6 Hybrid BM25

This method combines dense embedding retrieval, which is focused on capturing
semantic meaning between the query and documents, and sparse retrieval, in which
the relevance of document is heavily impacted by lexical similarity. As mentioned
previously, the dense embedding used will be the Chroma vector database, along with its
associated retrieval functions, whereas the Okapi BM25 will be used for sparse retrieval.

The Okapi BM25 (Best Matching) function, developed by Robertson et al. [117], is
used to rank the relevance of documents as pertaining to a given query. This ranking
score is calculated through the formula

∑

𝑡𝜖𝑄

𝑤
(𝑡) (𝑘1 + 1)𝑡𝑓

𝐾 + 𝑡𝑓
𝑞𝑡𝑓 (4.6)

where:

• 𝑡 is a term in the query 𝑄

• 𝑤(𝑡) is the term weight, which defaults to 𝐼𝐷𝐹 (𝑡) if the relevant documents are not
known ahead of time. IDF (inverse document frequency) is used to emphasize
the importance of words that appear in fewer documents overall, thereby giving
commonly used words less weight.
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• 𝑡𝑓 is term frequency, which determines how often a term appears in a document.

• 𝑞𝑡𝑓 is query term frequency, determining how often a term appears in the query.

• 𝐾 is equal to 𝑘1((1 − 𝑏) + 𝑏 ∗ 𝑑𝑙

𝑎𝑣𝑑𝑙
with the tuning parameters 𝑘1 and 𝑏 , document

length 𝑑𝑙 and average document length 𝑎𝑣𝑑𝑙.

To combine these two approaches, the dense and sparse retrievals are performed
in sequence, with the provided retrieval queries. The dense retrieved documents are
already sorted in order of relevancy, whereas for sparse retrieval the scores are calculated
separately and normalized. To determine how much emphasis is placed on each of the
approaches, two variables alpha 𝛼 and beta 𝛽 are used which control whether the
dense or sparse retrievals respectively are given more influence. After these variables
are set, the individual scores (inverted rank scores) can then be assessed based on
the normalized position of each document. The hybrid scores of the documents are
then calculated through

hybrid score = (dense score ∗ 𝛼) + (sparse score ∗ 𝛽) (4.7)

and sorted, with only the highest scoring k documents being selected.

4.5.7 Reranker

To optimize the retrieval process, the Reranker method tries to increase the chance of
fetching the ground truth context by retrieving more than the k documents needed,
assessing their relevance, then further refining them using a cross-encoder. Unlike bi-
encoders, which calculate the similarity score after encoding the queries and documents
separately, cross-encoders score them by first concatenating the two with a separator
token, as in the format below,

[CLS] query tokens [SEP] document tokens [SEP] (4.8)

with CLS representing the start of the sequence [118]. This means the model chosen
for the experimental study ms-marco-MiniLM-L6-v2 7, can process both queries and
contexts together, allowing for more subtle similarities to be picked up and a more
accurate relevance score to be calculated.

4.5.8 HyDE + Reranker

As it can be gathered from the name, this method is combination of the aforementioned
HyDE and Reranker methods. A Reranker instance is first instantiated which starts by
collecting a larger pool of contexts, according to the formula below

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑡𝑜𝑝_𝑘 = 𝑚𝑎𝑥(𝑖𝑛𝑡(𝑡𝑜𝑝_𝑘 ∗ 𝑟𝑒𝑟𝑎𝑛𝑘_𝑟𝑎𝑡𝑖𝑜), 𝑡𝑜𝑝_𝑘 + 2) (4.9)
7https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2
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Rewrite the context to keep all essential facts and remove only irrelevant or
redundant details, without adding new information.

Figure 4.6: The prompt used to instruct the LLM into condensing the contexts while still keeping
the essential information.

where the 𝑡𝑜𝑝_𝑘 is the desired number of contexts and the 𝑟𝑒𝑟𝑎𝑛𝑘_𝑟𝑎𝑡𝑖𝑜 is the
multiplier used to retrieve the larger initial amount of contexts. The HyDE instance
is then used to create a document that would aim to answer the query, which will
then be used to retrieve the top k contexts from the larger 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑡𝑜𝑝_𝑘 context pool.
The Reranker then uses its cross-encoder model to rerank the fetched contexts in
order of relevancy.

4.5.9 Summarization Context

This method aims to tackle the problem of querying noisy, unfocused contexts by
condensing them into their most necessary information. This is done through the
prompt shown in Figure 4.6, with which the LLM is prompted to summarize the contexts
by discarding any tangential information. These contexts will then be used by the
retrieval queries to find the top k documents, with the goal being that they will be
shorter and more efficient to sift through.

From here there are two approaches that could be taken, either the summarized
contexts retrieved could be sent along with the final user prompts to the LLM, or
they could be used to find the original, unmodified contexts which will be sent along
instead. The first method (SummarizationRAG) allows the retriever and generator to
both be working with the same view of the contexts, since including details that were
initially deemed distracting and were filtered out would be counterproductive. On
the other hand, the second method (SummarizationContextRAG) could be a best of
both worlds approach, utilizing the summarization when quicker and more efficient
retrieval is needed, all the while reducing the risk of critical details being left out or
external knowledge being included.
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5
Experimental Study

This chapter presents the experimental study conducted to compare the performance
of advanced RAG methods on multiple datasets of varying topics and formats. The
experiment is built upon the plan laid out in the Chapter 4, and starts with Section 5.1
outlining how the LLM model was setup for this design to be implemented. Section 5.2
continues with a discussion on the results that can be expected from the experiment,
based on a preliminary analysis. Afterwards, Section 5.3 continues by discussing the
experiment results, laying out the performance expectations that were set, and examining
whether the final results fit these predictions. Section 5.4 finishes by doing a deeper
analysis of any datasets or RAG method that displayed irregular outcomes.

5.1 Implementation
As mentioned in Chapter 4, the implementation of the experimental study was carried
out using the Python library EncouRAGe, with the Llama 3 8B Instruct model [71].
This model was chosen since it exhibits stronger language understanding than Llama
2 models [119] or smaller Llama 3 models such as Llama 3.2 1B 1, while requiring a
more manageable level of computational resources than larger models such as the 70B
or 405B [71] models. This model is also the one used by Liu et al. [114] to test the
ChatRAG-Bench datasets, so an easier comparison could be made between the results.

The Llama 3 models are developed using a pre-training stage which trains the
model for next-token prediction using various text corpuses This stage builds upon
the Llama 2 models by employing a larger tokenizer with a vocabulary of 128K tokens
resulting in a more time-efficient text input, improving inference speed using grouped-
query attention (GQA) [120], which acts as a middle ground between multi-head and
multi-query attention, and ensuring that self-attention does not get applied across
multiple documents by using an attention mask. The Instruct models add a post-training

1https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
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stage which uses a combination of supervised fine-tuning using a specially trained
reward model and direct preference optimization (DPO) to improve human preference
alignment and instruction following.

When setting up for the experiment, certain parameters of the model can be altered
so they are better tailored to the task at hand while still keeping efficient computing.
The temperature, which controls how deterministic the model is and how much of a
role randomness plays, was set to 0 since reproducible results are necessary in order to
have a fair comparison between the different RAG methods. The max_tokens parameter,
that decides the maximum length of the generated answer, was set to 1000 and the
max_model_len, which sets the maximum context length that the model can process,
was set to 40000.

The use of the LLM was assisted by the NVIDIA RTX A6000 GPU, which is used to
reinforce the heavy computational needs. The Ampere-based architecture is equipped
with 48 GB of ECC GDDR6 memory and over 10, 700 CUDA cores, which makes it ideal
for the large data processing and intensive inference needed for the experiment [121].

5.2 Preliminary dataset analysis

This section starts by discussing some of the main differences between the datasets
and how they could have an impact on the retriever or generator performance. It then
describes the results of a preliminary analysis that was conducted to provide further
insight into the results that can be expected for each dataset.

As can be seen in Table 5.1, the length of the answers varies considerably, from the
more concise answers of the CoQA dataset to the lengthier explanations of INSCIT,
which were already taken into account during the creation of the system prompts, shown
in Appendix A. While lengthier contexts risk containing more distracting content and
reducing generator performance, shorter contexts could be disadvantageous if they do
not provide sufficient contextual information. Another dataset characteristic which
could affect the performance of the retrieval is the number of total contexts, which, in
the case of INSCIT, QReCC, QuAC, and especially TopiOCQA, might cause difficulties
in retrieving the correct context.

Firstly, the internal knowledge and information searching capabilities of the LLM
had to be assessed. This was done using the No RAG method, which sends the queries to
the LLM without any additional contexts, and through which the baseline performance
can be established. In addition to this, the ceiling performance could also be determined
through the gold oracle or Known Context method, which attaches only the ground
truth context to the query. The ceiling value helps in ascertaining whether the appended
contexts actually improve the LLMs performance by a considerable amount, and if
so, by how much. It is also informative regarding whether the main obstacle lies in
retrieving the correct context or the reasoning ability of the model with the dataset
at hand. A high ceiling shows that improving the retriever is key in achieving more
accurate answers, whereas a lower ceiling reveals that the dataset may not be well
handled by the models inference capabilities.
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Token length
Dataset Size Nr. of Contexts Question Answer Context
CoQA 7.98k 8482 7.69 4.43 333.02
SQA 3.01k 3197 10.69 37.26 444.84

TopiOCQA 2.51k 171705 9.12 17.30 97.71
QReCC 2.79k 22067 8.12 28.16 512.88
DoQA 1.79k 2193 13.16 19.00 326.69
QuAC 7.35k 33669 8.81 19.91 486.98

Doc2Dial 3.94k 5177 12.52 22.77 376.77
INSCIT 502 29940 12.23 45.32 101.74

Table 5.1: Table showing the size and formats of the datasets used in the experimental study.

Figure 5.1: Plot showing the theoretical minimum and maximum ranges of F1 that can be
achieved with the LLM. The minimum is achieved through the No RAG method, in which no
contexts are retrieved, whereas the maximum is taken from the Known Context method, which
directly takes the correct context.

The performance difference of these two methods is shown in Figure 5.1, which
shows the range of F1 for each dataset. As one would expect, the retriever evaluation
metrics are not needed in this case since they would be valued at 1 for Known Context,
and would not be subject to evaluation for No RAG. It can be seen that for half of the
datasets, the ceiling F1 value lies under 40%mark and the entire F1 range is only 15−20%,
which shows that there is substantial headroom for retriever improvements, but also
shows that there are likely other bottlenecks hindering performance, such as generator
capability, or problems within the dataset itself. The other datasets show amore expected
F1 range, in which the lack of supplementary contexts is the main performance obstacle.
Though the RAG methods will be analyzed for all datasets, the retriever performance
will likely be more clearly shown in the ones with a wider F1 range.
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Figure 5.1 also shows that except for the QReCC and TopiOCQA datasets, the LLM
has approximately equal internal knowledge regarding the subject matters. The training
of many LLMs is done with a wide variety of publicly accessible or open-source data,
so the No RAG method functions as a suitable test of whether certain datasets may
have been used during the pre-training or fine-tuning phases.

5.3 Empirical result analysis

This section provides an overview analysis of the experiment results by illustrating
how the evaluation metrics were affected by the RAG methods described in Section 4.5.
It first lists the overall F1 and MRR results per dataset and RAG method and shortly
discusses the outcome of each method. It then analyzes the combination of the two
evaluation metrics and whether there is any correlation between their performance.

5.3.1 F1 performance by RAG Method and Dataset

This section discusses the performance of the RAG methods separately for each dataset,
as shown in Figure 5.2, and which can be listed in Table 5.2. Afterwards, it provides a
general overview of which methods improved the performance overall, and examines
any approaches that struggled to meet even the baseline performance.

CoQA SQA TopiOCQA QReCC DoQA (avg) QuAC Doc2Dial INSCIT

F1

Base 0.396 0.429 0.336 0.365 0.361 0.254 0.265 0.193
Context Summarization 0.277 0.255 0.339 0.361 0.217 0.189 0.203 0.209

Hybrid BM25 0.401 0.429 0.339 0.373 0.362 0.274 0.267 0.19
HyDE 0.278 0.256 0.34 0.361 0.216 0.189 0.202 0.208

HyDE Reranker 0.278 0.255 0.339 0.362 0.215 0.188 0.201 0.209
Query Rewriting 0.33 0.372 0.27 0.327 0.276 0.208 0.216 0.167

Reranker 0.427 0.45 0.344 0.362 0.368 0.293 0.284 0.191
Summarization 0.276 0.256 0.34 0.361 0.215 0.189 0.202 0.208

MRR

Base 0.059 0.07 0.051 0.191 0.35 0.101 0.08 0.055
Context Summarization 0.046 0.055 0.039 0.201 0.316 0.103 0.069 0.055

Hybrid BM25 0.108 0.059 0.051 0.193 0.365 0.128 0.086 0.056
HyDE 0.095 0.068 0.156 0.285 0.348 0.121 0.094 0.18

HyDE Reranker 0.037 0.059 0.101 0.212 0.327 0.122 0.088 0.113
Query Rewriting 0.06 0.075 0.047 0.193 0.355 0.102 0.075 0.06

Reranker 0.046 0.067 0.055 0.182 0.345 0.131 0.083 0.066
Summarization 0.051 0.058 0.036 0.197 0.313 0.106 0.071 0.054

Table 5.2: Table showing full F1 and MRR results for all datasets and RAG methods

The methods that improve upon the No RAG performance amongst all the datasets,
excluding INSCIT, QReCC, and TopiOCQA, are Reranker, Hybrid BM25, Base, and
Query Rewriting in the sequence presented. The approaches reached a similar level of
performance even across datasets with varying F1 ranges, with Reranker consistently
reaching a 40 − 45% score. It was hoped that the CoQA and SQA datasets would have
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Figure 5.2: Visualization of the F1 performance of all RAG methods for each dataset, overlaid
onto the F1 range calculated through the No RAG and Known Context methods.

the widest F1 range, would provide clearer canvases on which the methods could be
more evenly dispersed, but this was proved otherwise.

Query Rewriting is a technique that relies on the Base implementation and alters it
by editing the query to clarify any ambiguous references. On one hand, the efficiency
of this method seems to be conditioned even more on the dataset than the others, as
shown by its fluctuating performance with the INSCIT, QReCC, and TopiOCQA datasets,
where it lies significantly below No RAG. The retrieval scores for Query Rewriting, as
listed in Table 5.2, for these datasets show no deviation from the other values, which
leads to the conclusion that the low performance is caused not by poor retrieval, but
by the altered question deviating from the original.

The subsequent Section 5.4 discusses some of the points of interest shown here, such
as the methods that have a high F1 score despite their inaccurate retrieval, and on the
contrary, those that had a smoother retrieval process but lower F1 scores.

5.3.2 Association of F1 and MRR scores

The experiment analysis begins with an overview of the RAG methods performance
on each of the datasets, firstly based on the F1 and MRR metrics. Figure 5.3 is used to
show whether a link exists between these two metrics, and while the data point cluster
on the bottom left supports the connection between poor retriever performance and
inadequate answer generation, much of the other data shows that this connection is not
as clearly defined. Additionally, the wide distribution of each RAG method demonstrates
that there is no definite leading approach, and that the performances of each method
are intrinsically linked with the datasets themselves.

At first glance, it can be seen the Reranker, Base, and Hybrid BM25 methods have
among the highest F1 performance scores, which is notable since the latter two have
relatively simple retrieval processes. Previously, the range of F1 scores per dataset
was discussed, which showed that even with no context information the performance

42



5. Experimental Study 5.3. Empirical result analysis

Figure 5.3: Scatter plot showing the relationship between F1 and MRR for each RAG method.

Figure 5.4: Scatter plot showing the relationship between F1 and MRR for each dataset.

never wavered below the 20% threshold, which does not seem to be the case for some
of these methods. Thus, in some cases, inadequate retrieval could lead to even less
favourable results than without any retrieval. Figure 5.3 also shows that the retriever
performance as a whole was on the lower end, with the highest performing methods
reaching 35% accurate ground-truth context retrieval.

To better understand these results, Figure 5.4 shows the same distribution, but this
time separated by dataset, which provides more insight into the results. The point
clusters here are easily identifiable, indicating that, in most cases, all the RAG methods
yield relatively similar results regarding both F1 and MRR. It can be seen that the
Reranker method seems to take the lead for F1, which could be caused by the Rerankers
ability to prioritize context ranking, and similarly HyDE for MRR, since it provides
additional contextual information.
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5.4 Ablation studies

This section provides a deeper insight into the empirical results discussed above by first
looking into the highest performing RAG methods, and analyzing in detail how each
methods pipeline enhancements affect the performance. Then it continues by discussing
a group of datasets that had poor performance across all RAG methods, and looking
into whether it could have been caused by other factors such as conversation length.
Lastly it ends on a short analysis into the two context summarization methods and
the effect that their differences had on the performance.

5.4.1 Analysis of high-performing RAG methods

A look into the overall F1 and MRR values shown in Table 5.2, showed that the RAG
methods, which showed the most accurate retrieval, did not necessarily always translate
to the highest F1 values. The standout method in both the MRR and Recall retrieval
metrics was HyDE, which, to restate, generates a document that would hypothetically
answer the prompt question, which is then used to map to the ground truth contexts
during retrieval. Evidently, this proves to be a successful approach, since it combines the
supplementary information given by the contexts, while making sure it is tailor-made
only to the latest question instead of the topic in general. The second best performer
was Hybrid BM25, which integrates both dense and sparse retrieval, thus searching
for both lexical and semantic matches. This shows that the contexts of some datasets
have quite a considerable lexical overlap with the query and conversation history, and
using only dense retrievers might lead to more generalized terms being searched and
less priority given to those using the exact terminology.

Transitioning to the F1 values, it could be assumed that HyDE and Hybrid BM25
are among the highest performers, but that is only the case for the latter, which, on
average, has the second-highest F1 performance across all datasets. On the other hand,
the former achieved much lower scores, despite its high retrieval rate. This shows that
Hybrid BM25 works as a good middle-ground between the two metrics, demonstrating
the effectiveness of the sparse encoder in both precision and recall. The top performer
in terms of answer quality across five out of the eight datasets was the Reranker method,
which showed relatively moderate retrieval scores.

To take a closer look at why the Reranker could outperform HyDE, although its
MRR scores are higher, Recall@k could also be analyzed, which shows whether the
ground truth contexts appear in the top k scores, the full scores of which can be seen
in Appendix B. Figure 5.5 shows a comparison between Recall@1 and Recall@5, and
it can be seen that while Reranker has a lower chance of finding the correct context
among all the retrieved ones, when it does find it, it is more likely to boost it up to
the highest placement. Since each prompt has only one ground truth context, not
much can be analyzed about the contexts that do not contain the correct answer but
are topically related, but it is conceivable that Reranker might also place these higher,
thus reducing the amount of unrelated contexts.
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Figure 5.5: Plot showing the comparison of Recall values for the HyDE and Reranker methods,
across the datasets where Reranker has the highest F1 performance. Recall@1 measures whether
the correct context was retrieved in the first position whereas Recall@5 measures whether it
occurs in the top 5 contexts.

5.4.2 Analysis of low-performing datasets

As could be seen in Figure 5.2, no RAG methods showed any improvement on the
No RAG performance for the INSCIT, QReCC, and TopiOCQA datasets. An analysis
was done into whether this could have been the effect of the number of conversation
turns. Each prompt consists of the current question and the question-answer pairs that
took place earlier in the conversation, which is sent to the LLM and used for context
retrieval. A longer conversation history poses as a double-edged sword, since it can add
much-needed contextual information, especially in the case of ambiguously phrased
questions, but the slight change of topic between questions can lead to the attention
being diverted from the main question. It would be expected that the datasets each have
different levels as to when the drawbacks start to outweigh the benefits, and vice versa.

The analysis looked into the F1 and MRR results of these three datasets when using
the Base RAG implementation, since it was planned to be used as a control group, and
did surpassed the No RAG performance on the other datasets. Firstly, the F1 results of
the datasets were examined, as seen in Figure 5.6, and as expected, in the case of QReCC
and TopiOCQA, they steadily decrease as the conversation history increases. Even at
the earliest points in the conversation history, the performance is still comparable to the
No RAG performance, which indicates that the issue could lie with the context retrieval.

The performance of the retriever is shown in Figure 5.7, in which it can be seen that
for QReCC and INSCIT, the MRR values drop sharply after the first couple of questions.
This reveals that the larger conversation history does make it more difficult to fetch
the correct retrieval, especially for these datasets that have a total of 22, 000 and 30, 000
contexts, respectively. This means that the distraction that the conversation history
creates during the retrieval outweighs any benefits that this contextual information
might provide. For TopiOCQA, the drop is less steep, but the consistent, low MRR is to
be expected given the over 171, 000 contexts, which would increase the likelihood of
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Figure 5.6: Plot showing how the Base RAG F1 performance of the TopiOCQA, QReCC, and
INSCIT changes over each conversation turn. A conversation turn consists of the addition of a
new question to the pre-existing conversation history.

Figure 5.7: Graph showing how the MRR performance of the TopiOCQA, QReCC, and INSCIT
changes over each conversation turn.

related but inaccurate contexts being fetched. In both figures, a small uptick in the F1
and MRR values is seen toward the higher end of the question amount, which could be
attributed to anomaly cases, since they are far from the average conversation lengths.

5.4.3 Summarization versus Context Summarization

Subsection 4.5.9 discussed the design of the Summarization and Context Summarization
methods, which begin similarly by making the LLM generate more concise contexts
but later differ, with the former using the altered contexts in the final prompts and the
latter using the original versions. The question arose as to how these two methods
would perform with the datasets and whether the use of different contexts would affect
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CoQA Doc2Dial DoQA (avg) INSCIT QReCC QuAC SQA TopiOCQA

Summarization 0.051 0.071 0.313 0.054 0.197 0.106 0.058 0.036
Context Summarization 0.046 0.069 0.316 0.055 0.201 0.103 0.055 0.039

Table 5.3: Table showing the difference of the MRR values between the Summarization and
Context Summarization values.

CoQA Doc2Dial DoQA (avg) INSCIT QReCC QuAC SQA TopiOCQA

Summarization 0.276 0.202 0.215 0.208 0.361 0.189 0.256 0.34
Context Summarization 0.277 0.203 0.217 0.209 0.361 0.189 0.255 0.339

Table 5.4: Table showing the difference of the F1 values between the Summarization and Context
Summarization values.

said performance. Table 5.3 shows the correctness of the retriever as measured with
MRR, which, as expected, is quite similar, since both techniques use the same retrieval
process. The values only differ by a few percent, which is well within the bounds of
random error, and could be due to noise.

It is worth noting that even the F1 values were very similar between the twomethods,
as shown in Table 5.4, despite their differences. Through these results, the effect of
the summarized or non-summarized context is unclear. One possibility is that both
versions contribute a similar amount of contextual information, thus the negligible
performance difference between the two. Another explanation could be that the fault
lies in the retriever, which is supported by the relatively low MRR scores, and the
fact that the F1 values resemble those of the No RAG method. Essentially, the LLM
is not getting sufficient contextual information and is instead relying on its internal
knowledge to answer the question.

The summarization process is handled by the LLM, which condenses the contexts,
and while the prompt can be finetuned to a certain level, this process cannot be fully
controlled. Therefore, while the contexts of some datasets may benefit by the removal
of tangential information, this does not seem to be the case for the datasets looked
at in this experiment.
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6
Discussion

This chapter concludes this thesis by going over the research questions mentioned in
Chapter 1 and discussing whether they have been sufficiently answered and including
any limitations that were faced during the implementation in Section 6.1. Section 6.2
then continues by giving an overview of the main findings from the experiment and
how this study might be used in future research.

6.1 Research questions
This section examines the research questions introduced at the beginning of the thesis,
discusses how the experimental study attempted to answer them, and determines
whether any conclusive findings were achieved.

• R1: How do advanced RAG methods impact answer quality in comparison to a
baseline Naive RAG?

As observed from the experiment analysis in the previous chapter, the results
varied considerably across the datasets and RAG methods, making it difficult to
form a unified finding. The top three methods in terms of F1 performance were
Reranker, Hybrid BM25, and Base Implementation, respectively, showing that
the Naive RAG is undoubtedly outperformed across all datasets by two advanced
RAG methods. Therefore, in one respect, the two advanced methods can be
recommended to future researchers as better performance alternatives.
On the other hand, it is essential to look at what the advanced RAGmethods add to
the computing complexity and runtime in comparison to the base implementation.
Reranker retrieves proportionally more contexts and then runs them through a
cross-encoder to create relevancy scores. In contrast, Hybrid BM25 adds a sparse
retrieval function and creates a hybrid dense/sparse relevancy score. All in all,
while both methods do not add too much in terms of computing complexity,
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observing the experiment runs shows that the double retrieval process and score
calculation of Hybrid BM25 does lead to slightly more inflated runtimes.

In conclusion, while Naive RAG is not the best performer overall, its high F1
values and relatively easy implementation make it a worthwhile option to try, as
it serves as a good baseline. Since the advanced methods do not stray far from
the baseline, they would also provide a good indication as to how other methods
might perform.

• R2: How do dataset characteristics influence the performance and behavior of
these RAG methods?

Even before the RAG methods were implemented, it was observed that the No
RAG and Known Context methods demonstrated noticeable variations among
the various datasets, which could be due to the models internal knowledge on
specific topics or to the structure of the conversations and contexts. For example,
the Doc2Dial dataset, which includes dialogue-style, open-ended questions that
rely heavily on the conversation history, shows a very narrow F1 range unlike
CoQA, which contains factoid or entity-based questions.

The total number of contexts ultimately affected retriever performance by reducing
the likelihood of choosing the correct context, but dataset size and amount were
not necessarily positively correlated, as smaller datasets like TopiOCQA, with a
size of around 2500, ended up having over 170, 000 contexts. Additionally, the
effect of the number of conversation turns did not have any conclusive positive or
negative effects on the F1 values, but it did significantly decrease the MRR, which
could have canceled out any benefits of the extra conversation history.

All in all, while specific RAG methods did perform well across most datasets, it
is still essential that the datasets are analyzed in advance if optimal F1 or MRR
values are sought. While the dataset characteristics had more of an impact on the
retriever performance and MRR, the conversation histories and contexts especially
may heavily affect the generator and F1 values in ways that are more difficult
to observe at the offset. Thus, even if the dataset is studied beforehand, RAG
methods might still have unexpected results, so a sampling of various methods
might be the best approach.

6.1.1 Limitations and future work

This section discusses any obstacles or problems that hindered the execution of the
experiment and how they could be solved or bypassed in future research. Firstly, themain
problem was the wide variety of both RAG methods and datasets, which led to excessive
time spent on pre-processing the data, as each dataset had its own prompt requirements,
answer formats, and context structures. This also made in-depth analyses quite difficult
to perform since all combinations of methods and datasets would have to be taken into
account. In future research, this could be adjusted so that a smaller subsection of these
components is chosen since there is some redundancy in the RAGmethod enhancements.
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6. Discussion 6.2. Overall findings

Another obstacle that was present during the retrieval process was the large amount
of contexts, which often resulted in the ground truth context being difficult to fetch,
especially in the TopiOCQA, QuAC, and INSCIT datasets. There are two main ways that
this issue could be fixed: first, by grouping the contexts during pre-processing using
their titles found in the metadata; second, by using other methods that aim to iterate
over the retrieval or generation processes multiple times, thus increasing the likelihood
of fetching the ground truth context and of generating a fitting answer.

6.2 Overall findings
In conclusion, based on the comparison between the No RAG and Known Context
methods, it was found that adding the correct context to the prompt can improve the
performance significantly by anywhere from 15% to 50%. Doing this analysis beforehand
provided a good ceiling as to which values could be expected from the RAGmethods, and
the floor values were used to compare some of the lower-performing methods. Around
half of the RAG methods had values comparable to No RAG, even with added contexts,
showing that in most cases, an inefficient RAG pipeline works the same as no RAG at all.
A bad RAG pipeline could be categorized by many features, such as retrieving contexts
from various unrelated topics that could distract the LLM, or retrieving relevant contexts
but not being able to push the ground truth context to a high enough position.

An analysis was also done into how methods that augment parts of the prompt
affect performance. Query Rewriting, which aims to condense the conversation history
and query had relatively good performance across five datasets, but in the other three
it actually performed worse than No RAG, leading to the conclusion that this method
is highly dataset specific, and the length and format of the prompts should be taken
into consideration. On the other hand, the two Summarization methods, which aim to
summarize the contexts by keeping the key data and removing tangential information,
had quite poor performance across all datasets.

This performance disparity is challenging to investigate since the only way to do
so is to modify the secondary prompt and observe how a sample of the data points are
affected. While this can inform future decision making, a small sample may not fully
represent the entire dataset, and there may be a lot of cases where prompt augmentation
causes the dilution of important information or the misinterpretation of the original
question leading to factual inaccuracies and model hallucination.

The Reranker and Hybrid BM25 methods achieved the two highest average perfor-
mances in answer quality, showcasing the efficiency of both promoting relevant contexts
to higher ranks and combining dense and sparse encoders. While these methods proved
to be effective, the Naive RAG approach remained a competitive alternative. Overall,
the key finding of this thesis is that advanced RAG methods can lead to significant
performance improvements when data structures and formats are thoroughly analyzed,
underscoring the importance of aligning retrieval strategies with dataset characteristics.
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A
Expanded prompts

CoQA: You are a helpful assistant who will try to answer the following question to
the best of your abilities. Use only on the given context and conversation history
and do not use any assumptions or external information. Make the answers as
direct as possible without using any redundant information and without using
full sentences. Indicate if you cannot find the answer based on the context.

Doc2Dial: You are a helpful assistant. Answer the question strictly based on the
given context. Do not use prior knowledge, make assumptions, or introduce any
information not present in the context. If the answer is clearly stated, respond
in a complete and concise sentence. If the context does not provide enough
information, respond with a relevant follow-up question to clarify the user’s
intent.

CoQA: You are a helpful assistant who will try to answer the following question to
the best of your abilities. Use only on the given context and conversation history
and do not use any assumptions or external information. Make the answers as
direct as possible without using any redundant information and without using
full sentences. Indicate if you cannot find the answer based on the context.

Doc2Dial: You are a helpful assistant. Answer the question strictly based on the
given context. Do not use prior knowledge, make assumptions, or introduce any
information not present in the context. If the answer is clearly stated, respond
in a complete and concise sentence. If the context does not provide enough
information, respond with a relevant follow-up question to clarify the user’s
intent.
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A. Expanded prompts A. Expanded prompts

DoQA: You are a helpful assistant trying to answer the questions to the best of
your abilities. Use only the given context to answer the question. and do not use
any assumptions or external information. Keep your answer relevant, direct and
in one sentence. Do not explain the background, context or reasoning behind the
answer. Do not refer to the context in your response. Indicate if you cannot find
the answer based on the context.

INSCIT: You are a helpful assistant. Answer the question strictly based on the
given context. Do not use prior knowledge, make assumptions, or include any
information not present in the context. Do not refer to the context in your
response. If the answer is not available, say so clearly. Respond in one full and
complete sentence.

QReCC: You are a helpful assistant. Answer the question strictly based on the
given context. Do not use prior knowledge, make assumptions, or introduce any
information not present in the context. If the answer is not available, clearly state
that. Respond in a single, clear, and complete sentence whenever possible.

QuAC: You are a helpful assistant who will try to answer the following question
to the best of your abilities. Use only the given context and conversation history
and do not use any assumptions or external information. Keep your answer short,
direct and in one sentence. Do not explain the background, context or reasoning
behind the answer. Indicate if you cannot find the answer based on the context.

SQA: You are a helpful assistant. Use only the given table and conversation history
to answer the question. Do not rely on outside knowledge or make assumptions.
Return the exact answer from the table. Use brief phrases or values and no full
sentences.

TopiOCQA: You are a helpful assistant who will try to answer the following
question to the best of your abilities. Use only the given context and conversation
history and do not use any assumptions or external information. Make the
answers as direct as possible without using any redundant information and
without using full sentences. Indicate if you cannot find the answer based on the
context.

Figure A.1: Showing a list of the system prompts used for the ChatRAG-Bench datasets. The
prompts are designed to instruct the LLM on how best to answer the question and to emphasize
the focus that should be placed on the previous conversation history and the contexts provided,
and if they do not provide the answer then the LLM should indicate as such, instead of relying
on internal information. A segment of the prompt is used to guide the LLM on how the answer
should be formatted whether it be multiple sentences or short phrases.
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B
Experiment results

CoQA SQA TopiOCQA QReCC DoQA (avg) QuAC Doc2Dial INSCIT

Recall@1

Base 0.025 0.029 0.019 0.079 0.163 0.032 0.032 0.016
Context Summarization 0.02 0.023 0.014 0.075 0.143 0.033 0.027 0.018

Hybrid BM25 0.055 0.027 0.016 0.074 0.165 0.039 0.036 0.02
HyDE 0.043 0.03 0.068 0.121 0.16 0.04 0.038 0.076

HyDE Reranker 0.015 0.024 0.048 0.1 0.149 0.05 0.037 0.05
Query Rewriting 0.027 0.032 0.015 0.082 0.16 0.031 0.03 0.024

Reranker 0.02 0.028 0.019 0.077 0.156 0.052 0.035 0.02
Summarization 0.021 0.024 0.013 0.072 0.141 0.036 0.027 0.02

Recall@5

Base 0.127 0.157 0.115 0.418 0.735 0.255 0.182 0.135
Context Summarization 0.101 0.12 0.089 0.453 0.665 0.26 0.159 0.129

Hybrid BM25 0.207 0.125 0.117 0.438 0.765 0.327 0.185 0.125
HyDE 0.208 0.15 0.317 0.587 0.731 0.298 0.211 0.359

HyDE Reranker 0.082 0.136 0.193 0.41 0.688 0.27 0.194 0.207
Query Rewriting 0.128 0.165 0.113 0.426 0.738 0.259 0.168 0.133

Reranker 0.101 0.149 0.121 0.381 0.732 0.298 0.181 0.139
Summarization 0.113 0.132 0.084 0.448 0.661 0.266 0.162 0.127

Table B.1: Table showing full Recall@1 and Recall@5 results for all datasets and RAG methods

64


	List of Figures
	List of Tables
	Introduction
	Research Questions
	Thesis Structure

	Literature Review
	Natural Language Processing (NLP)
	Transformers
	Transformer based models

	Large Language Models
	Model training
	Advancements in LLMs

	Retrieval-Augmented Generation
	RAG Process


	Related Work
	Advanced RAG techniques
	Question-answer datasets
	Gaps in current research

	Methodology
	Data
	Encourage
	Evaluation
	Data Preprocessing and Prompt Design
	RAG methods
	No RAG
	Known Context
	Base Implementation
	HyDE
	Query Rewriting
	Hybrid BM25
	Reranker
	HyDE + Reranker
	Summarization Context


	Experimental Study
	Implementation
	Preliminary dataset analysis
	Empirical result analysis
	F1 performance by RAG Method and Dataset
	Association of F1 and MRR scores

	Ablation studies
	Analysis of high-performing RAG methods
	Analysis of low-performing datasets
	Summarization versus Context Summarization


	Discussion
	Research questions
	Limitations and future work

	Overall findings

	References
	 Expanded prompts
	 Experiment results

