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Abstract

Multimodal machine translation (MMT) aims to improve translation quality by incor-
porating visual information. However, prior studies in MMT suggest that the gains
of multimodal models over language-only models are often marginal, raising the core
question of whether models truly exploit visual cues in the translation process. With
the advent of Large Vision Language Models (LVLMs), this work revisits this question
through the lens of ambiguity resolution in MMT, to directly assess whether LVLMs
effectively leverage visual information during translation.

Addressing the role of visual cues in translation through ambiguity resolution necessi-
tates datasets with sufficient instances that are irresolvable from text alone but resolvable
with visual information. This consideration motivates the first research question RQ1: Do
existing datasets sufficiently support multimodal machine translation disambiguation? The
analysis in this work reveals fundamental limitations of current resources, motivating
the construction of the VIDA (Visually-Dependent Ambiguity) dataset, a high-quality
dataset curated via a three-stage semi-automatic pipeline. The VIDA dataset specifically
targets visually dependent instances and comprises three subsets that cover diverse
disambiguation scenarios, ranging from word-level to sentence-level ambiguities.

Beyond suitable datasets, evaluating whether LVLMs exploit visual cues for dis-
ambiguation further requires appropriate evaluation metrics to assess if models truly
resolve ambiguities in translation, this work raises RQ2: Are standard translation metrics
adequate for assessing disambiguation performance? The analysis shows that both
lexical- and semantic-level metrics fall short in capturing disambiguation accuracy. In
response, this work proposes Disambiguation-Centric Metrics which directly measure
whether models correctly resolve ambiguous expressions, complementing standard
translation metrics that primarily reflect overall translation quality rather than targeted
disambiguation.

Having established both a suitable dataset and appropriate evaluation metrics for
MMT disambiguation, this work next addresses RQ3: Do LVLM:s effectively utilize visual
information for disambiguation? This work address RQ3 by comparing LVLMs with their
language-only backbone models on the VIDA test set using both standard translation
metrics and Disambiguation-Centric Metrics. The results show modest gains on
standard metrics but substantial and consistent improvements on Disambiguation-
Centric Metrics, confirming that visual input is effectively leveraged to resolve ambiguity
and highlighting the necessity of Disambiguation-Centric Metrics.

Building on the findings from RQ3, this work further explores how to enhance the
capability of LVLMs in leveraging visual information for MMT disambiguation, and
presents Disambiguation-Driven Chain-of-Thought Supervised Fine-Tuning (DDCoT-
SFT). This training strategy combines a synthetic Disambiguation-Driven Chain-
of-Thought (DDCoT) template with CoT-based supervised fine-tuning to internalize
explicit, visually grounded reasoning for MMT disambiguation. Experimental results
show that DDCoT-SFT yields stronger semantic adequacy and higher disambiguation



accuracy than conventional SFT settings, particularly on out-of-distribution subsets
and the aggregated All-Test set, highlighting superior generalizability beyond the
training domain.

Finally, this work evaluates the impact of synthetic versus native reasoning traces
in training for MMT disambiguation. Specifically, the DDCoT-SFT model, trained with
structured DDCoT traces, is compared against the same backbone fine-tuned with
unstructured native traces extracted from a reasoning model. Results show that DDCoT-
SFT consistently outperforms the native-CoT fine-tuned model across datasets and
metrics, indicating that synthetic reasoning traces—concise, structured, and tailored
to the MMT task—offer clearer supervision and yield superior performance over the
unstructured and often excessively long native reasoning traces.

In summary, this work contributes the VIDA dataset and Disambiguation-Centric
Metrics as foundational resources, demonstrates that LVLMs can effectively leverage
visual cues when appropriately evaluated, and introduces DDCoT-SFT as a reasoning-
based fine-tuning strategy to strengthen visual utilization, thereby providing both
essential resources and a novel perspective for advancing MMT disambiguation research.
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Introduction

Multimodal machine translation (MMT) extends conventional neural machine transla-
tion (NMT) by incorporating visual information alongside text to improve translation
quality (Lala and Specia, 2018; Yao and Wan, 2020). The ability to leverage visual
information opens up important applications where text alone is often insufficient. For
example, vision-language translation (Wang et al., 2025) is an important application,
where accurate recognition of in-image text (e.g., street signs, product labels, or ad-
vertisements) and contextually grounded translation are crucial. Another emerging
application is Multimodal Sentiment Chat Translation (Liang et al., 2022; Shen et al.,
2024), where translation systems leverage both dialogue history and visual context to
not only ensure semantic accuracy but also preserve sentiment polarity in bilingual
conversations. These applications highlight the importance of effectively integrating
textual and visual modalities, which has been the central focus of MMT research.

Early works (Calixto et al., 2017; Huang et al., 2016; Specia et al., 2017; Yin et al.,
2020; Yao and Wan, 2020) focused on optimizing model architectures to effectively
integrate visual and textual representations, achieving superior performance compared
to language-only models. With the emergence of Large Vision Language Models (LVLMs)
(Bai et al., 2025; Zhu et al., 2025), recent studies (Gao et al., 2025; Lu et al., 2025) have
demonstrated the substantial potential of LVLMs in MMT research. For example, Gao et
al. (2025) report state-of-the-art results by enabling deeper text-image interactions, while
Lu et al. (2025) show that an LVLM-based translation agent significantly outperforms
prior baselines in subtitle and general translation tasks.

Although LVLMs demonstrate impressive performance on MMT benchmarks, the
core question remains unresolved: do LVLMs truly and effectively leverage visual informa-
tion during the translation process? Prior studies (Elliott, 2018; Wu et al., 2021) questioned
whether visual inputs genuinely contribute to performance gains. For instance, Elliott
(2018) showed that adversarially replacing images with unrelated ones had little effect
on translation results, while Wu et al. (2021) found that performance improvements
often stemmed from regularization effects rather than meaningful visual grounding.
These findings from prior studies suggest that the role of visual information in MMT
remains unclear. This work revisits whether LVLMs truly and effectively leverage
visual information in translation, and approaches the question from the perspective
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of ambiguity resolution, a scenario in which textual context alone is insufficient and
visual cues are essential for disambiguation.

Ambiguity in translation can manifest at multiple levels. At the word level, a single
word can admit multiple possible meanings or translations when textual context alone
is insufficient (Elliott et al., 2017; Bawden et al., 2018). At the sentence level, ambiguity
arises from structural complexities, idiomatic usage, or abstract expressions, leading to
multiple plausible interpretations even when individual words are unambiguous (J Lee
et al., 2023). illustrates concrete cases of both word-level and sentence-level
ambiguity. In the word-level example, the English word instruments can be interpreted
either as musical instruments or as scientific equipment, with the image providing the
necessary cue for correct disambiguation. In the sentence-level example, the phrase
top with stickers on it can refer to either the laptop itself or the table surface, and the
visual context clarifies the intended meaning.

Resolving translation ambiguities, specifically those that are irresolvable from
textual context alone but can be resolved through visual cues, offers a direct assessment
of whether LVLMs genuinely exploit visual information. As illustrated in ,
both cases cannot be disambiguated without images: with textual context alone, either
musical or scientific equipment is a reasonable interpretation of instruments, and either
the laptop or the table could be described as the top with stickers on it. However, once
images are provided, the intended meanings become unambiguous, revealing that the
correct interpretations are musical equipment and stickers on the laptop, respectively.
Therefore, if a model can successfully resolve such ambiguities with the assistance
of images, this success constitutes strong evidence that the visual modality is being
effectively leveraged in the translation process.

To examine whether LVLMs genuinely make effective use of visual information
in translation from the perspective of ambiguity resolution, it is essential to rely on
datasets that contain sufficient instances where disambiguation can only be achieved
through visual cues. This consideration leads to the first research question (RQ1):
Do existing datasets sufficiently support MMT disambiguation? Several datasets have
been proposed to explore the disambiguation task. The 3AM dataset (Ma et al., 2024)
targets English—Chinese translation and contributes valuable word-level ambiguity
cases, particularly enriching Chinese translation scenarios. The MMA dataset (R Wang
et al., 2024) primarily focuses on sentence-level ambiguity, aiming to assess whether
models can leverage visual context to interpret ambiguous information within sentences.
While both datasets provide useful resources, they also present limitations: the 3AM
dataset is hindered by issues of data quality, and MMA, being primarily designed for
visual question answering, is not fully aligned with MMT scenarios.

To address the lack of suitable data resources, this work curates a new dataset,
VIDA (Visually-Dependent Ambiguity) dataset, through a rigorous three-stage semi-
automatic pipeline. The VIDA dataset is characterized by high ambiguity complexity and
strong visual dependency. The dataset encompasses both word-level and sentence-level
cases that can only be resolved through visual cues, and is organized into three subsets: (i)
VIDA-Base, which contains 1,932 samples and primarily targets word-level ambiguities
that require visual context for disambiguation. (ii) VIDA-ColIN, which includes 256
samples focusing on the disambiguation of collective nouns, where the abstract notion
of a group is grounded through associated visual information. (iii) VIDA-Sent, which
provides 312 samples and involves more complex, sentence-level semantic ambiguities.
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/ Type Image Source sentence Possible Chinese Translation \
s,
..@ - g
—NEFBRHFERRWB AEEH/NE RS
Word-level A man in bright clothing is (musical instrument)
Ambiguity carrying small instruments. @ e . o
—NEFRFERRISB AEFEH/NE S
(science equipment)
* Instrument could refer to musical
or scientific equipment
e,
= FRE—BIEA LA LA
Sentence-level A laptop sits on a table top (stickers on laptop)
Ambiguity with stickers on it. @ - N o
— B AR BN AL S
(stickers on table)
* Top with stickers on it could refer
\ to stickers on laptop or on table /

Figure 1.1: Examples of word-level and sentence-level ambiguities in MMT. At the word level,
the term instrument may refer to a musical instrument or scientific equipment; at the sentence
level, top with stickers on it may describe stickers on a laptop or on a table. Visual context is
necessary to select the correct translation.

Establishing the VIDA dataset provides a data basis for investigating the central
challenge of determining how effectively LVLMs make use of visual information for
resolving ambiguity in MMT. However, without appropriate evaluation metrics to
determine whether a model’s translations successfully resolve ambiguities, it remains
unclear whether the improvements of LVLMs stem from genuine disambiguation. Most
existing works (Futeral et al., 2023; Ma et al., 2024) rely on standard translation metrics
for evaluating MMT performance, which primarily capture overall translation quality,
raising doubts about whether these metrics can adequately assess disambiguation per-
formance. Accordingly, the second research question (RQ2) is: Are standard translation
metrics adequate for assessing disambiguation performance? In addressing RQ2, this
work finds that both lexical-level and semantic-level translation metrics, such as BLEU
(Papineni et al., 2002) and COMET (Rei et al., 2020), are not well aligned with the
disambiguation task. BLEU prioritizes surface-level n-gram overlap, while COMET
emphasizes holistic semantic coherence. Although BLEU and COMET are widely used
to evaluate translation quality in NMT and MMT, these metrics are inherently designed
to assess overall quality rather than disambiguation accuracy.

In response, this work adopt an LLM-as-a-judge (Gu et al., 2024) approach, where an
LLM evaluates whether the ambiguous spans in the source are correctly resolved in the
corresponding disambiguated translations and outputs a binary classification. To quan-
tify model performance from these judgments, this work proposes two Disambiguation-
Centric Metrics, Disambi-Term and Disambi-Inst., which are designed to directly assess
whether models accurately resolve ambiguous expressions. Specifically, Disambi-Term
measures the accuracy of individual annotated ambiguous terms across the dataset,
while Disambi-Inst. applies a stricter sentence-level criterion, counting a prediction as
correct only if all ambiguous terms within a sentence are correctly resolved.

With the proposed Disambiguation-Centric Metrics serving as the evaluation basis,
and the VIDA dataset providing the data foundation, this work is now positioned
to investigate the role of visual information in supporting disambiguation during
translation. Therefore, the third research question (RQ3) is formulated as: Do LVLMs
effectively utilize visual information for disambiguation? To investigate RQ3, this work
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compares three state-of-the-art LVLMs—LLaVA-OneVision-7B (Li et al., 2024), Qwen2.5-
VL-7B (Bai et al., 2025), and InternVL3-8B (Zhu et al., 2025)—with their language-
only backbones, serving as text-only baselines on the VIDA dataset, evaluated using
both standard translation metrics and the proposed Disambiguation-Centric Metrics.
The results indicate that more advanced LVLMs are better able to leverage images to
improve general translation quality; however, even for these advanced models, the gains
captured by standard translation metrics remain modest and do not reveal whether
improvements actually come from successful disambiguation. In contrast, Disambi-
Term and Disambi-Inst. show substantial and consistent gains across models, directly
reflecting the contribution of visual input through its role in resolving ambiguity. Overall,
the results highlight (i) the necessity of Disambiguation-Centric Metrics for assessing
the contribution of visual information to the disambiguation task in MMT, and (ii) the
strong evidence that LVLMs genuinely leverage visual cues to resolve ambiguities
during translation.

Building on the finding that LVLMs are capable of leveraging visual information
for disambiguation, this work further investigates how their performance on the MMT
disambiguation task can be enhanced through specialized fine-tuning strategies. Inspired
by the idea of the explicit reasoning paradigm and prior works on Chain-of-Thought
Supervised Fine-tuning (CoT-SFT) (Magister et al., 2022; Hsieh et al., 2023; Muen-
nighoff et al., 2025), this work introduces Disambiguation-Driven Chain-of-Thought
Supervised Fine-Tuning (DDCoT-SFT), a training strategy that incorporates structured
reasoning traces explicitly tailored for resolving translation ambiguities. DDCoT-SFT
comprises two key components: (i) a disambiguation-oriented reasoning template
(DDCoT), and (ii) a CoT-SFT procedure that enables models to internalize and apply
this reasoning during inference. Specifically, DDCoT provides a six-step structured
reasoning template that explicitly aligns ambiguous expressions with visual evidence to
guide accurate disambiguation. In addition, the CoT-SFT training strategy embeds the
structured reasoning patterns of DDCoT, enabling the model to internalize the template
during inference. As a result, DDCoT-SFT performs explicit step-by-step reasoning
when resolving translation ambiguities, which not only improves disambiguation
accuracy but also provides interpretability and transparency into the model’s decision-
making process.

Experiments are conducted on the VIDA test set, evaluating InternVL3-8B (Zhu
et al., 2025) and Qwen2.5-VL-7B (Bai et al., 2025) under three training settings: Vanilla,
SFT, and the proposed DDCoT-SFT. Evaluation is carried out on three subsets: the
in-distribution set (VIDA-Base-Test), the out-of-distribution sets (VIDA-Sent and VIDA-
ColIN), and the union All-Test set. Performance is assessed with standard translation
metrics and the proposed Disambiguation-Centric Metrics, enabling a comprehensive
evaluation of overall translation quality as well as disambiguation accuracy. Building on
these settings, the experimental results show that DDCoT-SFT achieves substantial and
consistent improvements on the proposed Disambiguation-Centric Metrics compared
to standard SFT, specifically on the OOD subsets and the aggregated All-Test set. The
OOD subsets evaluate whether models can generalize disambiguation ability to unseen
ambiguity types, while the All-Test set provides a comprehensive assessment across
diverse ambiguity cases. These improvements indicate that DDCoT-SFT adapts well to
varied ambiguity types and demonstrates superior generalization in visually grounded
disambiguation.
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The experimental results demonstrate that DDCoT-SFT, which leverages a synthetic,
structured reasoning approach, is highly effective for MMT disambiguation, presenting
an interesting contrast to the findings of Muennighoff et al. (2025), who showed that
using unstructured, native reasoning traces yields superior improvements on mathe-
matical reasoning tasks. This contrast raises the question of how such native traces
perform in the context of MMT disambiguation. Native reasoning traces are raw, free-
form chains of thought generated by a reasoning model without external design or
template constraints, whereas synthetic reasoning traces are deliberately crafted under
human guidance with explicit task goals. To this end, this work compares synthetic
traces (DDCoT) with native traces sampled from a strong reasoning model. Under the
same backbone and inputs, DDCoT-SFT consistently outperforms native-CoT fine-tuned
model across datasets and metrics. These results suggest that while native reasoning
traces reflect spontaneous reasoning, they are often unstructured and excessively long,
which obscures the critical steps required for translation disambiguation. In contrast,
DDCoT provides concise, structured reasoning explicitly tailored to the MMT task,
yielding clearer supervision and superior performance.

The main contributions of this work are summarized as follows:

« This work introduces VIDA (Visually-Dependent Ambiguity), a dataset charac-
terized by high ambiguity complexity and strong visual dependence, curated via a
rigorous semi-automatic pipeline and covering both word-level and sentence-level
ambiguities.

« To quantitatively evaluate disambiguation performance, Disambiguation-Centric
Metrics (Disambi-Term and Disambi-Inst.) are proposed to directly measure
a model’s ability to resolve ambiguous expressions, complementing standard
translation metrics for MMT disambiguation.

« This work further provides empirical evidence that LVLMs leverage visual in-
formation for disambiguation by comparing LVLMs with their language-only
backbone models on the VIDA test set. The results validate the necessity of the
Disambiguation-Centric Metrics and confirm that LVLMs effectively use visual
cues to resolve ambiguities.

+ A novel training strategy tailored to the MMT disambiguation task is presented:
DDCoT-SFT (Disambiguation-Driven Chain-of-Thought Supervised Fine-Tuning).
By guiding models to perform explicit reasoning that aligns ambiguous text with
visual evidence, DDCoT-SFT yields consistent improvements in disambiguation
accuracy across VIDA subsets.

« A comparative analysis is conducted between DDCoT-SFT model and native CoT-
SFT model on the MMT disambiguation task. The results show that DDCoT-SFT
consistently outperforms the native CoT-SFT model, indicating that using concise,
step-wise DDCoT reasoning traces as supervision yield more reliable and effective
visually grounded disambiguation.



Related Work

2.1 Large Vision Language Models

Large Language Models (LLMs) demonstrate remarkable proficiency in various language
understanding and generation tasks (Bai, Bai, Chu, et al., 2023; Touvron et al., 2023).
These advances have spurred the development of Large Vision Language Models
(LVLMs), which extend LLM capabilities to multimodal settings (H Liu et al., 2023;
Bai, Bai, Yang, et al., 2023). LVLMs employ a cross-modal fusion module to integrate
visual and textual inputs, enabling them to perform a wide range of multimodal tasks,
including captioning (Junnan Li et al., 2023), visual question answering (Antol et al.,
2015), and translation (Jiaoda Li et al., 2021), in a unified manner.

In the early development of multimodal models, architectures were generally divided
into single-tower and dual-tower designs (Fields and Kennington, 2023). Single-tower
structures unify visual and textual inputs into the same Transformer encoder for end-to-
end joint modeling, as in VisualBERT (LH Li et al., 2019) and UNITER (YC Chen et al.,
2020). Formally, the single-tower model can be expressed as a function

fsingle : (Xtext: Ximage) = ha (21)

where both modalities are concatenated and jointly encoded into a shared representation
h. This unified encoding enables unconstrained modality interaction but the quadratic
self-attention over concatenated tokens makes the model computationally expensive,
and parameter sharing reduces modularity compared to dual-encoder designs (Fields
and Kennington, 2023).

In contrast, dual-tower architectures adopt separate encoders for vision and lan-
guage and align them in a shared representation space, with CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021) as prominent examples. In this case, dual-tower
architecture computes

fdual : (Xtexb Ximage) = (htexts himage)’ (22)
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Figure 2.1: Illustration of two representative fusion modules in LVLMs: (Above) Q-Former,
which generates learned query tokens from image features, and (Below) MLP-Projector, which
directly maps vision embeddings into the LLM embedding space.

and relies on a contrastive objective

Z O eXp(SIm(htext’ 1mage)/T)

eXp(SIm(htext’ 1mage)/ ) (23)

contrast

to align the two modality-specific embeddings in a joint space. Here, i indexes a matched
text-image pair, while j ranges over all images in the mini-batch, so that the denominator
contrasts the true pair against both positive (j = i) and negative (j # i) candidates.
The function sim(-, -) denotes a similarity measure such as cosine similarity, and 7 is a
temperature hyperparameter that controls the sharpness of the softmax distribution.

Dual-tower architectures are more efficient than single-tower to train and easier to
scale, but the cross-modal interactions are relatively shallow, limiting the performance
on complex reasoning tasks, for which deeper fusion is typically required (Fields and
Kennington, 2023). Overall, single- and dual-tower architectures laid an important
foundation for subsequent large vision language models, which have progressively
evolved toward more sophisticated fusion strategies and stronger multimodal align-
ing capabilities.

To overcome the limitations of early single- and dual-tower models, subsequent
works introduced lightweight alignment modules to better connect visual encoders with
LLMs. A representative design is the Q-Former (Junnan Li et al., 2023; Zhu et al., 2023),
which employs a query-based Transformer to distill visual features into a compact set
of tokens before feeding them into an LLM. Formally, given visual features Z, = g(X,)
extracted from an image X,, Q-Former generates a compact representation through
cross-attention with a set of learnable query tokens Q:

H, = QFormer(Z,, Q), (2.4)

where H, are the distilled visual tokens aligned with the LLM input space.
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Another line of work adopts a simpler yet effective MLP-based projection to map
image features into the embedding space of the LLM. LLaVA (Zhu et al., 2025) exemplifies
this approach by projecting visual features into the language model’s token space and
fine-tuning the alignment through instruction-following data. In this case, the mapping
can be implemented as a linear projection:

H=W-Z,. (2.5)

illustrates these two representative designs: Q-Former generates learned
query tokens through cross-attention with image features, while MLP projectors directly
map visual embeddings into the language model space. Both Q-Former and MLP-based
projectors enable more effective vision-language interaction while significantly reducing
the computational burden compared to direct fusion. Compared with early single- and
dual-tower structures, these lightweight alignment designs strike a balance between
efficiency and interaction depth, thereby marking an important step toward the scalable
integration of vision encoders with pretrained LLMs (H Liu et al., 2024).

More recent efforts have further advanced the research by refining lightweight
connectors and strengthening the visual encoder to produce high-fidelity visual features.
While both Q-Former and MLP connectors are lightweight, many state-of-the-art LVLMs
(Bai et al., 2025; Zhu et al.,, 2025; Li et al., 2024) increasingly standardize on a simple
MLP-based projector to align vision and language embeddings, and pair it with stronger
vision backbones to capture fine-grained visual features. For example, Qwen2.5-VL
(Bai et al., 2025) employs native-resolution ViTs with spatial-temporal tokenization
to capture fine-grained spatial cues. Similarly, InternVL3 (Zhu et al., 2025) follows
the ViT-MLP-LLM paradigm but pushes toward leveraging tiling and pixel-unshuffle
strategies to preserve high-resolution image details. Compared with earlier models such
as BLIP-2 and LLaVA, the modern LVLMs demonstrate a stronger capacity to retain
high-resolution visual details while keeping the alignment process efficient.

Despite the impressive advancements of modern LVLMs, many models still face
challenges in generating responses that are faithfully grounded in the visual input. One
of the most critical issues is hallucination (Xintong Wang et al., 2024; Leng et al., 2024),
where models produce textual descriptions inconsistent with the actual visual content,
thereby limiting their reliability in real-world applications. Our work (Xintong Wang
et al., 2024) analyze hallucination in LVLMs and attribute it primarily to language priors
and statistical biases, which lead models to generate text weakly grounded in the visual
input. To mitigate hallucination, we propose Instruction Contrastive Decoding (ICD),
which deliberately amplifies hallucinations via disturbed instructions and employs
contrastive decoding to suppress unstable components, thereby reducing hallucinations
in both discriminative and generative benchmarks.

Another challenging task is Vision-Language Translation (VLT), which requires
accurate recognition of in-image text and contextually grounded translation into the
target language (Wang et al., 2025). Our work (Wang et al., 2025) highlight major
obstacles of current research on VLT including low-quality datasets with OCR noise
and culturally inconsistent references, strong OCR dependency in existing models,
and unreliable evaluation metrics under varying text density in the image. To address
these three issues, we introduce AibTrans, a human-verified multilingual dataset, and
propose a Density-Aware Score (DA Score) for fairer evaluation, together with balanced
multilingual fine-tuning to improve cross-lingual performance.
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This work also points to another challenge for LVLMs, namely Multimodal Machine
Translation (MMT), which raises the question of whether LVLMs truly leverage visual
information during the translation process. More details on the task will be provided
in the next section.

2.2 Multimodal Machine Translation

Multimodal machine translation (MMT) is an increasingly important area of research
that seeks to improve translation quality by leveraging modalities beyond text (Elliott
et al., 2016). Compared with conventional neural machine translation (NMT) (Bahdanau
et al., 2014), MMT faces additional challenges, as the model must not only align source
and target languages but also effectively integrate visual information, which requires
accurate cross-modal grounding as well as robustness to irrelevant or noisy visual cues.

A variety of approaches have been proposed for multimodal machine translation,
focusing on how to effectively integrate visual information with textual representa-
tions. Early work (Calixto et al., 2017; Huang et al., 2016) explored attention-based
architectures that allow the model to selectively attend to both textual and visual
features. For example, the doubly-attentive decoder of Calixto et al. (2017) extends
the neural machine translation framework with dual attention over source words and
image regions, while Huang et al. (2016) introduce an attention-based MMT model
that jointly learns alignments across modalities.

However, several studies (Elliott, 2018; Wu et al., 2021) critically examine whether
visual information truly contributes to translation quality. Elliott (2018) performed
adversarial evaluations by replacing input images with unrelated ones, showing that
many systems remained largely unaffected, thus questioning the sensitivity of MMT
models to visual signals. Similarly, Wu et al. (2021) revisited the role of visual context
with interpretable model designs, revealing that performance gains often stem from
regularization effects rather than genuine use of visual cues.

Formally, this distinction can be expressed by comparing a translation model that
generates the target translation t from the source sentence s:

P(t]|s), (2.6)
with a model that additionally conditions on the paired image v:
P(t|s,v). (2.7)

If visual information is genuinely exploited, then conditioning on v should alter the
predictive distribution, i.e.,

P(t|s,v) # P(t]s), (2.8)

These studies highlight the need for careful analysis when attributing improvements
to multimodal integration and raise a critical question: do LVLM:s truly and effectively
leverage visual information during translation? This motivates the present work, which
investigates MMT from the perspective of ambiguity resolution, a scenario where visual
cues are indispensable for disambiguation.

Ambiguity often emerges in translation when the same source expression can be
understood in different ways, and it is precisely in such cases that visual context can be
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most helpful (Shen et al., 2024). At the word level, ambiguity arises from polysemous
words, morphology (Shen et al., 2024). For example, the English word bank could denote
either a financial institution or the side of a river; similarly, a form like book can be
interpreted as a noun or as a verb. Beyond individual words, ambiguity also manifests
at the sentence level, where structural or pragmatic factors lead to multiple possible
readings (Berzak et al., 2016). A classic case is syntactic attachment, as in I saw the man
with a telescope, where the prepositional phrase could describe either the man or the act
of seeing. Pragmatic phenomena like irony, sarcasm, or context-dependent pronouns
add yet another layer of complexity, requiring knowledge that goes beyond text alone.

To support the research of ambiguity resolution in MMT, several datasets exist.
The Multimodal Lexical Translation (MLT) dataset (Lala and Specia, 2018) specifically
targets lexical ambiguity, providing fine-grained annotations where image informa-
tion is essential for selecting the correct translation. Building on this line, Jiaoda Li
et al. (2021) introduced the Ambiguous Captions (AmbigCaps) dataset, which con-
structs gender-related ambiguities through back-translation and requires visual cues
for correct disambiguation. Futeral et al. (2023) proposed the CoMMuTE benchmark,
which provides contrastive pairs of ambiguous sentences and corresponding images,
enabling fine-grained evaluation of whether models genuinely use visual information
in disambiguation. More recently, 3AM (Ma et al., 2024) offers an ambiguity-aware
multimodal benchmark in the English—Chinese translation setting, explicitly designed
to evaluate how models exploit visual context to resolve ambiguous expressions.

However, while 3AM extends the scope beyond European languages and contributes
valuable word-level ambiguity cases in Chinese translation scenarios, it suffers from data
quality issues that restrict its reliability for disambiguation analysis. This limitations
of data quality, motivate the construction of my proposed VIDA (Visually-Dependent
Ambiguity) dataset, which features higher ambiguity complexity and stronger visual
dependency. Notably, all the aforementioned benchmarks evaluate disambiguation
indirectly by relying on standard translation metrics such as BLEU (Papineni et al.,
2002) or COMET (Rei et al., 2020), which assess the similarity between the system
output and reference translations as a proxy for translation quality. This evaluation
paradigm raises an important question, corresponding to RQ2 of this work: Are standard
translation metrics adequate for assessing disambiguation performance? A more detailed
discussion will be provided in

2.3 Chain-of-Thought Reasoning

Large language models (LLMs) often struggle with tasks that require multi-step rea-
soning, such as arithmetic, logic, and multi-hop question answering (S Wang et al.,
2024; Boye and Moell, 2025). To enhance the logical thinking ability, Chain-of-Thought
(CoT) prompting was introduced by Wei et al. (2022), where models are encouraged to
generate intermediate reasoning steps before producing the final answer. This approach
significantly improves performance on complex reasoning tasks, and later work showed
that even simple prompts such as "Let’s think step by step” can elicit reasoning chains
in a zero-shot setting (Kojima et al., 2022). A series of extensions followed, including
self-consistency (Xuezhi Wang et al., 2022) and Tree-of-Thoughts (Yao et al., 2023),
which improve robustness by aggregating multiple reasoning paths or exploring tree-
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structured search spaces. However, all these methods remain prompt-based and operate
only at inference time.

Beyond prompt-based methods, recent advances have focused on training dedicated
reasoning models that are explicitly optimized for multi-step reasoning. Reinforce-
ment learning strategies such as GRPO (Shao et al., 2024) have been applied to align
models toward generating coherent and verifiable reasoning steps, while models like
DeepSeek-R1 (Guo et al., 2025) and OpenAl’s o1 series (Jaech et al., 2024) are trained
with specialized objectives and large-scale reasoning traces, achieving much stronger
reasoning performance than standard instruction-tuned LLMs. Importantly, the native
reasoning traces generated by these reasoning models have also been leveraged for
supervised fine-tuning (SFT) of smaller models.

Formally, given training pairs (x;, y;), standard SFT minimizes

N
Lopr = — Z log Po(yi | %), (2.9)

i=1

where the model is directly optimized to predict the target output y; from input x;.
By contrast, approaches that incorporate reasoning traces augment each pair with a
chain of thought generated by a reasoning model,

nat

r Prtenn (7 | X3) (2.10)

and optimize

N
Lspricor = — Z log Po(r™, yi | %), (2.11)

i=1

thus encouraging the model to reproduce not only the final output but also the in-
termediate reasoning steps.

Works such as R1-Distill (H Zhao et al., 2025) and s1 (Muennighoff et al., 2025)
demonstrate that exposing compact models to such native reasoning traces—with as few
as 1K carefully curated examples—can significantly boost their reasoning performance,
particularly on math-heavy benchmarks, highlighting a growing trend of using reasoning
models and their native reasoning traces as supervision for distillation.

Nevertheless, native reasoning traces often produce excessively long chains of
thought (Sui et al., 2025). While such extended reasoning paths can be beneficial
for logic-intensive domains such as mathematics (Muennighoff et al., 2025), they also
increase inference latency and cause models to "overthink" in tasks that do not inherently
require complex reasoning (She et al., 2025), such as machine translation task. To address
the drawbacks of native traces, an alternative is to employ synthetic reasoning chains-
manually designed or automatically generated traces that are shorter, more controllable,
and tailored to specific tasks. In this case, the reasoning trace is constructed via a
deterministic mapping under a CoT template T¢,71:

n"" = g(xi, yis Teor)s (2.12)

where g denotes a generation function that takes the input—output pair (x;, y;) and
produces a structured reasoning trace following template 7¢,7.

Early works (Magister et al., 2022; Hsieh et al., 2023) have demonstrated the effective-
ness of fine-tuning on synthetic reasoning traces as a means of transferring reasoning
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capabilities. For example, Magister et al. (2022) fine-tuned small models on teacher-
generated reasoning traces, significantly boosting performance on arithmetic and sym-
bolic reasoning. Hsieh et al. (2023) extended this idea by incorporating teacher rationales
in distillation, enabling compact models to outperform larger ones with fewer samples.

In the context of using synthetic reasoning traces in translation task, ] Wang et
al. (2025) show that constructing synthetic reasoning chains via a multi-agent pipeline
and training MT models on them leads to substantial improvements, particularly for
challenging literary texts. For multimodal machine translation, D Liu et al. (2025)
introduce synthetic disambiguation rationales into the training process, demonstrating
that explicitly modeling a reasoning step for visual disambiguation yields superior
handling of ambiguous inputs and improved translation quality. These findings from
prior work on translation and MMT indicate that synthetic reasoning traces, compared
with native CoT, are more effective for task-specific applications.

Motivated by the idea of synthetic reasoning traces in translation task, this work
proposes DDCoT, a synthetic CoT specifically designed for disambiguation in MMT,
which guides models to perform explicit reasoning that aligns ambiguous text with
visual evidence. Furthermore, this work systematically compare the proposed synthetic
CoT (DDCoT) with native CoT. More details are provided in and



Dataset Curation

3.1 Limitations of Current Disambiguation Datasets

A central objective of this work is to determine whether LVLMs genuinely exploit
visual information in translation through the lens of ambiguity resolution. Advanc-
ing this objective requires datasets that contain visually dependent instances where
textual context alone is insufficient but the image provides decisive evidence. This
motivates RQ1: Do existing datasets sufficiently support multimodal machine translation
disambiguation? To address RQ1, this section investigates the limitations of existing
multimodal disambiguation datasets.

Two representative datasets currently available for multimodal disambiguation
research are 3AM (Ma et al.,, 2024) and MMA(R Wang et al., 2024). The 3AM dataset
targets English-to-Chinese translation scenarios and primarily focuses on word-level
ambiguity, but suffers from overall poor data quality with the following two issues:

« Data Integrity and Noise: Including extensive image-text mismatches, grammati-
cal errors in English source texts, chaotic punctuation usage, frequent noise words,
etc., which compromise the reliability of model training and evaluation.

« Insufficient ambiguity: Not all samples exhibit ambiguities that depend on
multimodal context; rather, some ambiguities are linguistically resolvable and
can be accurately translated without any visual support. The presence of such
samples reduces the dataset’s sensitivity to the contribution of visual information,
thereby limiting its representativeness for MMT disambiguation research.

Additionally, MMA is a benchmark constructed in Visual Question Answering (VQA)
format, primarily focusing on sentence-level ambiguity to assess whether models can
leverage visual context to interpret ambiguous information within sentences. The
benchmark achieves this by pairing a single question with two different images that
suggest divergent interpretations. Although this task relates to semantic ambiguity, it is
not tailored for translation scenarios and thus cannot be directly applied to evaluating
ambiguity resolution in multimodal machine translation task.

13
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Figure 3.1: Dataset Curation Pipeline

3.2 Dataset Curation Pipeline

To address the limitations discussed in . I curated a new dataset, VIDA
(Visually-Dependent Ambiguity) dataset, through a rigorous, three-stage semi-automatic
pipeline, as illustrated in . The pipeline is specifically designed to extract
visually dependent ambiguities from large-scale data and to produce high-fidelity
disambiguated translations.

3.2.1 Source Dataset and Pre-filtering for MMA

The process began with two source dataset: the 3AM dataset, containing 26,000 English-
Chinese parallel sentences, and the MMA dataset, with an initial 521 VQA samples.
While the 3AM dataset could be directly used in the pipeline, the MMA dataset re-
quired a specific pre-filtering step to align its VQA-style content with the translation-
focused objectives.

For the MMA dataset, I identified and removed samples that function as standard
VQA tasks, which rely on finding direct visual cues for an answer. In these cases, a
simple question (e.g., "Who holds the crown in this scenario?") becomes ambiguous
only because of the image content, not the language itself. Since this work focuses on
resolving linguistic ambiguity through visual context, these samples were filtered out,
preserving 256 entries where the ambiguity originates in the text.

3.2.2 Stage 1: Data Preprocessing and Filtering
The primary objective of this initial stage is to obtain an image—text aligned and textual-

error-free collection of ambiguous source captions.

Task 1: Image-Text Alignment Filtering. To reduce noise from mismatched image-text
pairs, I first conduct a data cleaning process. Specifically, GPT-4o0 (Hurst et al., 2024)
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is employed to determine whether the source caption is semantically aligned with the
corresponding image. Pairs identified as inconsistent are discarded, ensuring that the
subsequent processing is performed on a corpus of aligned image-text samples.

Task 2: Text Standardization. To prevent textual errors from interfering with subse-
quent ambiguity detection, the source captions are standardized using GPT-40. This
process corrects grammatical mistakes, spelling errors, and punctuation issues.

Task 3: Ambiguity Detection via Dual-Model Consensus. The goal of this task is to
isolate captions with visually-dependent ambiguities, removing those that are either
unambiguous or whose ambiguities can be resolved linguistically without visual support.
To achieve this goal, I employ two models for cross-checking, retaining only captions
on which they reach consensus. This mitigates single-model bias and ensures that
only captions consistently judged as ambiguous are retained, thereby improving the
precision and reliability of the dataset.

« Parallel Independent Detection: I utilize two distinct Large Language Models,
Qwen-Max (Team, 2024) and DeepSeek-v3 (Liu et al., 2024), to independently
analyze each standardized caption. Each model is prompted to assess whether
the English sentence, considered in the context of translation into Chinese and
without access to any visual information, contains ambiguous expressions that
could yield multiple valid translations.

+ Consensus Filtering: A caption is retained only if both models concur in identify-
ing it as ambiguous. Such samples, along with their model-generated "Ambiguity
Rationale", are preserved for the dataset.

3.2.3 Stage 2: Disambiguated Translation Generation

Task 4: Disambiguated Translation Generation. As the core stage of the pipeline, this
task produces high-quality, disambiguated translations for each filtered source caption.
To achieve this, GPT-40 is guided with a structured tripartite input: (1) the Cleaned
Ambiguous Caption as the source text, (2) the Image as the essential visual context, and (3)
the Ambiguity Rationale from Task 3, explicitly directing the model to the specific point
of ambiguity that must be resolved. The output is twofold: Disambiguated Translation
that accurately resolves the ambiguity, and Resolution Rationale explaining how visual
information was utilized to resolve the ambiguity.

For instance, using the word-Level ambiguity case illustrated in , when
presented with the ambiguous caption "Two trunks stacked next to an open door on a side-
walk", the model is also given the rationale that "trunks" could refer to suitcases or trees.
By observing the accompanying image of two leather suitcases, GPT-40 correctly gener-
ates the disambiguated Chinese translation for "suitcases" and a Resolution Rationale
explaining that the visual context ruled out the alternative meaning. This demonstrates
how the triplet input guides the model to a precise, visually-grounded translation.
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Figure 3.2: Examples of Word-Level, Sentence-Level, and Collective Noun ambiguities from the
dataset. Each panel demonstrates how the visual context is used to resolve the issue described
in the Ambiguity Rationale (Ambiguous) and derive a correct, disambiguated translation (Ref).

3.2.4 Stage 3: Dual-Tier Quality Assurance and Validation

This final stage implements a rigorous quality control process that incorporates both a
"Model-as-a-Judge" strategy and a human-in-the-loop approach to ensure the reliability
and overall quality of the dataset.

Task 5: Automated Quality Evaluation In this task, Qwen-Max is prompted to
compare the disambiguated translations from Task 4 against the original translations
and determine which translation is superior by considering two key dimensions:

« Semantic Preservation: whether the translation faithfully conveys the intended
meaning of the source text.

+ Fluency: the linguistic quality of the translated text, including grammatical
correctness and naturalness.

The evaluation reports from this task identify cases in which GPT-40’s disambiguated
translation is judged inferior, and these are flagged for subsequent human verification.

Task 6: Human Verification and Final Adjudication To guarantee the ultimate quality
of the dataset, human verification is conducted only for cases in which the automated
judge deems the new translation inferior to the translation from the original dataset.
These selected cases are forwarded to a expert annotator, who then adjudicate by
either selecting the superior translation or providing a corrected version based on
a holistic evaluation.

Notably, during the human verification phase of Task 6, I identified a distinct category
of samples containing collective nouns that GPT-40 from Task 3 contextualizes into



3. Dataset Curation 17

Subset Ambiguity Focused Size Avg. Length (words) Avg. Ambi. Terms
VIDA-Base Word-Level 1,932 11.12 1.7826
VIDA-Sent Sententence-Level 312 6.00 1.00
VIDA-ColIN Word-Level 256 10.08 1.20

Table 3.1: Statistical summary of VIDA subsets

specific entities based on visual cues, such as rendering "third-party person" as
(street vendor), as illustrated in . While this produces semantically precise
translations, Qwen-Max from Task 5 flagged these as over-translations due to lexical
divergence from the source text. I contend that such vision-guided semantic specification
is both necessary and appropriate in multimodal translation, as literal translations
often yield incomplete or unnatural outputs. Consequently, I designated these samples
as the Collective Noun Subset.

3.3 VIDA: A New Dataset for Multimodal Machine Trans-
lation Disambiguation

The rigorous pipeline outlined in results in the construction of a new dataset,
VIDA (Visually-Dependent Ambiguity). In total, VIDA comprises 2,500 instances
specifically curated to feature high ambiguity complexity and visual dependency. The
dataset comprehensively covers both word-level and sentence-level ambiguities and
is organized into the following three subsets:

« VIDA-Base: Curated from the 3AM dataset, this subset contains 1,932 samples,
primarily focusing on word-level ambiguities that require visual context for
resolution.

« VIDA-ColIN (Collective Noun Subset): This specialized subset consists of 256
samples focusing on the disambiguation of collective nouns, where the abstract
nature of the group is made concrete by the associated visual information.

« VIDA-Sent: Adapted from the MMA dataset, this subset provides 312 samples.
These instances tend to exhibit more complex, sentence-level semantic ambiguities
that necessitate a holistic understanding of the image for correct interpretation
and translation.

A complete statistical summary of these subsets is provided in . For
each subset, the column Ambiguity specifies the primary ambiguity focus (word-level,
sentence-level, or mixed). Size denotes the total number of samples in each subset. Avg.
Length (Words) gives the average sentence length measured by the number of words,
and Avg. Ambi. indicates the average number of ambiguities per sentence. Finally,
Ambiguity Ratio (Word-Level) and Ambiguity Ratio (Sent.-Level) represent the proportion
of ambiguities occurring at the word-level and the sentence-level, respectively.

VIDA-Base is the largest subset (1,932 samples), consisting primarily of word-level
ambiguities. It contains relatively longer sentences, averaging 11.12 words, and exhibits
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the highest ambiguity density (1.78 ambiguous terms per sentence). VIDA-Sent (312
samples) specifically focuses on sentence-level ambiguities, with shorter sentences
averaging 6.00 words and exactly one annotated ambiguity per instance. Finally, VIDA-
ColIN (256 samples) also targets word-level ambiguities, specializing in collective
nouns. Compared to VIDA-Base, VIDA-ColIN features shorter sentences (10.08 words
on average) and a lower ambiguity density (1.20 per sentence).



Evaluation Metrics for Disambiguation

4.1 Limitations of Standard Translation Metrics

Establishing the VIDA dataset provides a solid data basis for investigating the core
question of whether LVLMs truly and effectively leverage visual information in translation.
However, addressing this core question through the lens of disambiguation requires
evaluation metrics that determine whether source-side ambiguous spans are correctly
resolved, rather than merely reflecting overall translation quality. This section therefore
addresses RQ2: Are standard translation metrics adequate for assessing disambigua-
tion performance?

Standard translation metrics such as BLEU (Papineni et al., 2002) and COMET (Rei
et al., 2020) are widely used in translation assessment. BLEU is a lexical-level metric
that measures the degree of surface-level n-gram overlap between the system output
and reference translations. In contrast, COMET is a semantic-level metric trained
with neural networks, emphasizing the overall semantic adequacy and fluency of the
translation. Both metrics are suited for evaluating general translation quality, as they
capture surface similarity and semantic coherence, respectively.

However, both lexical- and semantic-level metrics are not well suited for assessing
disambiguation accuracy in MMT. In the context of MMT disambiguation, success is
defined as whether the ambiguous spans in the source are translated into unambiguous
expressions in the target language. BLEU, while effective at measuring surface-level
lexical overlap between the system output and the reference, fails to capture cases where
ambiguous terms are correctly resolved but expressed with synonyms, or where word
order is altered without changing the meaning. On the other hand, COMET prioritizes
global semantic coherence and fluency, making it insufficiently fine-grained to evaluate
whether specific ambiguous spans have been correctly disambiguated.

The limitations from standard translation metrics highlight the necessity of metrics
that directly evaluate whether ambiguities are properly resolved in the model outputs.
To this end, I propose a Disambiguation-Centric Metrics, which will be presented
in the next section.

19
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4.2 Disambiguation-Centric Metrics

To overcome the limitations of standard translation metrics, an evaluation measure
should explicitly target disambiguation accuracy, i.e., determining whether ambiguities
are correctly addressed and resolved in translation. For this purpose, I adopt an LLM-as-
a-judge approach (Gu et al., 2024). Specifically, I employ Qwen3-8B (Yang et al., 2025), a
state-of-the-art large language model, which is fine-tuned on the VIDA dataset to serve
as the classifier. Since the task of evaluation only involves verifying whether a system’s
translation aligns with the annotated gold-standard resolution of predefined ambiguous
terms, a text-based language model is sufficient. Incorporating a multimodal model
would unnecessarily entangle evaluation with visual reasoning and risk introducing
biases from image misinterpretation (Chang et al., 2024).

The fine-tuning process was designed to enable the classifier to detect whether
ambiguous expressions in the source sentence were correctly resolved in the corre-
sponding system translation. Each training instance consisted of the source sentence
x, the candidate translation y, and the associated ambiguous spans A = {ai, ..., an}.
Formally, the classifier fp predicts a binary label z € {0, 1}, where z = 1 denotes that all
ambiguous terms in A are correctly disambiguated in y, and z = 0 otherwise:

z = fo(x,y,A). (4.1)

Ambiguous spans were automatically derived using GPT-40, which extracted ambiguous
entities and their gold-sense interpretations from the resolution and ambiguity rationales
in the VIDA dataset.

For training data, positive examples were taken directly from the annotated gold-
standard translations. Negative examples were constructed from candidate translations
generated during Task 3 of the dataset curation pipeline ( ), selecting those
that failed to resolve ambiguity in Task 4. This contrastive setup ensured that the
model learned to discriminate correct from incorrect disambiguation outcomes rather
than relying on superficial lexical similarity. Concretely, the classifier was trained
with a binary cross-entropy loss:

1
N “

i=1

N
L) =- [zilog z; + (1 — z;) log(1 — 2))],

where z; = fp(x;, yi, A;) is the predicted probability that the ambiguous terms in instance
i are correctly resolved.

Building on this classifier, I introduce two complementary metrics for a compre-
hensive evaluation of disambiguation performance:

Term-level Disambiguation Accuracy (Disambi-Term) This metric evaluates the
accuracy of each annotated ambiguous term in the entire dataset, measuring how often
the model translate the ambiguous terms to the correct disambiguated translation. This
metric reflects the model’s overall disambiguation ability at the individual term level,
independent of sentence context.

Instance-level Disambiguation Accuracy (Disambi-Inst.) This metric considers a
sentence correct only if all ambiguous terms within the sentence are correctly dis-
ambiguated. It therefore offers a stricter, per-sentence evaluation of disambiguation
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performance, capturing whether the model can resolve all ambiguities in a given context
simultaneously.

4.3 Evaluating Visual Information Utilization in LVLMs
with Disambiguation Metrics

With these proposed Disambiguation-Centric Metrics established, it becomes possible to
accurately assess how effectively models leverage visual cues for ambiguity resolution
and quantitatively address the RQ3: Do LVLMs effectively utilize visual information
for disambiguation?

Specifically, I conducted an experiment comparing three LVLMs against their cor-
responding language base models on the All-Test—the union set of the three test sets
(VIDA-Base-Test, VIDA-Sent, VIDA-ColIN)—to examine whether the visual modality
contributes meaningfully to disambiguation performance. In particular, the evaluation
involves three LVLM-LLM pairs: LLaVA-OneVision-7B (Li et al., 2024) with its language
backbone Qwen2-7B (Yang et al., 2024), InternVL3-8B (Zhu et al., 2025) with Qwen2.5-
7B (Team, 2024), and Qwen2.5-VL-7B (Bali et al., 2025) with Qwen2.5-7B. These pairs
were selected to ensure a fair comparison between each LVLM and its corresponding
language-only backbone, thereby isolating the contribution of the visual modality.

All three pairs were evaluated under identical conditions: the input consisted of the
English source sentence with the instruction "Translate the following English sentence into
Chinese". The only difference was that the LVLMs were provided with the paired image in
addition to the text input, whereas their LLM backbones processed text only. Evaluation
was conducted using standard translation metrics (BLEU (Papineni et al., 2002), chrF
(Popovi¢, 2015), chrF++ (Popovi¢, 2017), TER (Snover et al., 2006), BERT-F1 (Devlin et al.,
2019), METEOR (Banerjee and Lavie, 2005), COMET (Rei et al., 2020)) alongside the
proposed Disambiguation-Centric Metrics (Disambi-Term and Disambi-Inst.).

Model BLEU chrF chrF++ TER BERT-F1 METEOR COMET Disambi-Term Disambi-Inst.
LLaVA-OV-7B vs. Qwen2-7B

LVLM 40.88 35.08 28.19 4891 83.92 51.34 82.15 47.65 37.89
1 vision?  2.79 1.00 0.82 -6.19 -0.09 0.15 0.50 4.99 7.06
LLM 38.09 34.08 27.37 55.10 84.01 51.19 81.64 42.66 30.84

InternVL3-8B vs. Qwen2.5-7B

LVLM 48.04 4195 3298  40.29 86.63 58.47 84.49 50.86 39.81

tvision? 688  6.47 2.26 -5.83 2.03 6.63 2.52 8.03 8.54

LLM 41.16 3547 30.72 46.12 84.60 51.84 81.98 42.83 31.27
Qwen2.5-VL-7B vs. Qwen2.5-7B

LVLM 4543 39.06 31.61 44.36 86.36 57.81 83.71 56.18 43.45

T visionT 6.69  6.19 340  -3.37 1.96 7.04 2.85 7.26 8.54

LLM 41.16 3547 30.72 46.12 84.60 51.84 81.98 42.83 31.27

Table 4.1: Performance comparison between LLaVA-OneVision and Qwen2-7B on VIDA-Base
subset

reports the translation performance of each LVLM-LLM pair. For each pair,
I show the results of the LVLM (with visual input), its backbone LLM (language-only),
and the difference between them (denoted as 1 vision 1), which reflects the contribution
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of the visual modality. Positive values in the 1 vision 1 column denote performance
gains from visual input, except for TER where negative values indicate improvements.

In the case of LLaVA-OneVision-7B vs. Qwen2-7B, incorporating visual information
leads to consistent but relatively modest improvements across standard translation
metrics. For example, BLEU improves by +2.79, while COMET increases by only +0.50. In
contrast, for the stronger LVLMs InternVL3-8B and Qwen2.5-VL-7B, the visual modality
yields higher improvements on most automatic metrics compared to LLaVA-OneVision-
7B, with both models achieving over +6 points on BLEU and more than +2 points on
COMET. These comparisons suggest that stronger LVLMs are better able to leverage
visual input to improve the general translation quality, yet the improvements captured
by standard metrics remain limited and do not reveal whether the added value truly
arises from successful disambiguation.

On the proposed Disambiguation-Centric Metrics (Disambi-Term and Disambi-Inst.),
the impact of visual input becomes much clearer in disambiguation task. Across all
three pairs, the visual modality consistently brings substantial gains on these measures,
far exceeding the relative improvements observed on standard translation metrics. For
example, in LLaVA-OneVision-7B, Disambi-Inst. increases by +7.06, compared to only
+0.50 in COMET; in InternVL3-8B, Disambi-Inst. rises by +8.54, while COMET gains are
+2.52; and in Qwen2.5-VL-7B, Disambi-Inst. improves by +8.54, again much larger than
the COMET increase of +2.85. The comparison between standard translation metrics and
Disambiguation-Centric Metrics demonstrates that the latter metrics are more sensitive
to the benefits of incorporating visual information and directly reflect the contribution
of visual input through its role in resolving ambiguity.

In summary, while standard translation metrics show that visual information brings
modest gains—especially for stronger LVLMs—the improvements on standard trans-
lation metrics remain insufficient to verify whether such gains result from successful
disambiguation. In contrast, the Disambiguation-Centric Metrics consistently reveal
substantial benefits from incorporating visual input, underscoring the necessity of
Disambiguation-Centric Metrics for assessing the contribution of visual information
to the disambiguation task in MMT. Based on the role of the Disambiguation-Centric
Metrics and the results obtained, RQ3 can be answered affirmatively: LVLMs effec-
tively leverage visual information for disambiguation during translation, consistently
outperforming their language-only counterparts.

Building on the finding that LVLMs are capable of utilizing visual information
for MMT disambiguation, the next step is to explore how this ability can be further
enhanced through specialized fine-tuning strategies.. This motivation underlies the
design of DDCoT, which is introduced in the following section.



Method

5.1 Preliminary

5.1.1 Supervised Fine-tuning

Supervised fine-tuning (SFT) is a standard approach for adapting pretrained large
models to downstream tasks. Let D = {(x;, y;)}Y, denote a training dataset, where
x; is the input and y; = (¥4, ..., yi1.) is the corresponding target sequence of length
T;. Following the autoregressive generation paradigm, the conditional probability of
producing y; given x; is factorized as:

T;
Po(yi | %) = [ [ Poie | yicrn %0, (5.1)

t=1

where y;<; = (i1, .-, ¥i—1) denotes the previously generated tokens. To train the
model, SFT minimizes the negative log-likelihood (NLL) of the ground-truth outputs
over the training set:

N T

1
Lorr(0) = = > D108 Po(yie | yico, %), (5.2)

i=1 t=1

The objective encourages the model to generate outputs that closely match the
annotated references, thereby adapting the pretrained backbone to the requirements
of the downstream task.

In the case of multimodal machine translation (MMT), the input x; typically consists
of a source sentence s; and a paired image v;. The model is trained to generate the
target translation y; conditioned on both modalities. Accordingly, the training objective
is extended as:

T:

1
N “

i=1 t=1

Lsprmmr(0) = — log P@(yi,t | YVi<ts Sis v;). (5.3)
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Figure 5.1: Illustration of Chain-of-Thought Supervised Fine-tuning (CoT-SFT). A reasoning
model generates CoT traces for training data, which are then used to fine-tune the target model
alongside standard input-output pairs.

5.1.2 Chain-of-Thought Supervised Fine-tuning

Chain-of-Thought Supervised Fine-tuning (CoT-SFT) has been explored in several prior
works (Magister et al., 2022; Hsieh et al., 2023; Muennighoft et al., 2025). For example,
Magister et al. (2022) and Hsieh et al. (2023) demonstrated that small models can acquire
reasoning ability through supervised training on teacher-generated chains of thought,
while more recent efforts such as Muennighoff et al. (2025) leverage native reasoning
traces from reasoning models for effective distillation. As illustrated in , CoT-
SFT first uses a reasoning model to generate chains of thought for training data, and
then fine-tunes the target model on both the reasoning traces and final outputs.

Unlike standard SFT, which directly aligns the input (s;, v;) with the target output
¥i» CoT-SFT introduces an intermediate reasoning trace r;. Given training instances as
quadruples (s;,v;, 13, yi), where s; is the source text, v; is the corresponding visual input,
r; is the reasoning trace, and y; is the final translation, a single target sequence is built
by concatenating the reasoning trace and the answer with delimiter tokens:

L= concat((think), r;, (/think), (answer), y;, (/answer)). (5.4)

For a decoder-only model trained with CoT-SFT, the likelihood factorizes as

L
po(ti | si,v) = Hpe(ti,l ‘ Si> Ui ti,<l)~ (5.5)
t=1

where t; = (1, ..., t;,) denotes the target token sequence, L; is its length, t;; is the I-th
token, and t;; = (t;1, ..., t;;—1) is the prefix up to position [ — 1. Accordingly, the CoT-SFT
loss is defined as the negative log-likelihood over the target sequence:

T;
1 1
Leorser(0) = —— log Pe( i ‘ Sis Vi ti,<l)- (5.6)
N i=1 t=1
The Equation enables the model to learn not only the final outputs but also

the intermediate reasoning steps, thereby providing a general mechanism for injecting
explicit reasoning into supervised fine-tuning. The CoT-SFT method lays the foundation
for improving tasks that benefit from structured reasoning. In the task of disambiguation
in MMT, CoT-SFT serves as the basis for the proposed method, which will be described
in detail in the following sections.
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5.2 Explicit Reasoning for Multimodal Generation

Conventional vision-language models (VLMs) typically adopt an implicit generation
paradigm, where visual features are projected into the same embedding space as textual
tokens through a multimodal fusion module, and outputs are directly produced by
the language model backbone. While effective in practice, this "black-box," single-step
process (Shen et al., 2024; Ferrando et al., 2022; Q Zhao et al., 2025) limits interpretability,
making it difficult to assess how visual information is utilized or whether it contributes
to task-specific reasoning.

In contrast, explicit reasoning paradigm decompose generation into structured
intermediate stages rather than collapsing all information into a single-step output.
By externalizing such intermediate steps, explicit reasoning not only reveals how
visual information contributes to decision-making but also provides a more systematic
pathway for integrating textual and visual cues. This design enhances transparency
and interpretability, and more closely mirrors human cognitive strategies for complex
semantic processing.

Recent advances have demonstrated the effectiveness of explicit reasoning paradigm.
Chain-of-Thought (CoT) prompting encourages models to generate step-by-step inter-
mediate inferences, while supervised fine-tuning on curated datasets with CoT traces
enables models to acquire inherent reasoning capabilities (Zhang et al., 2024; Y Chen
et al., 2023; Wei et al., 2022; Balasubramanian et al., 2025). Inspired by the idea of explicit
reasoning, this work adapts the paradigm to the multimodal machine translation setting
by introducing a synthetic disambiguation-oriented CoT, specifically designed to guide
models in resolving translation ambiguities through stepwise reasoning with visual
cues. The details of this approach are introduced in the next section.

5.3 Disambiguation-Driven Chain-of-Thought Supervised
Fine-tuning

Building upon the paradigm of explicit reasoning introduced in , this section
tailor the approach to the specific challenge of disambiguation in MMT. Specifically, this
section propose Disambiguation-Driven Chain-of-Thought Supervised Fine-tuning
(DDCoT-SFT), a method that incorporates structured reasoning traces explicitly designed
for resolving translation ambiguities. DDCoT-SFT consists of two key components: (i) a
disambiguation-oriented reasoning template (DDCoT), and (ii) a supervised fine-tuning
procedure that enables models to internalize and apply this reasoning during inference.
Section introduces the DDCoT template, while Section explains how DDCoT
is integrated into the model through fine-tuning.

5.3.1 DDCoT: Disambiguation-Driven Chain-of-Thought

The first component of DDCoT-SFT is the Disambiguation-Driven Chain-of-Thought
(DDCoT), a task-specific structured reasoning template that guides models in articulating
the alignment between ambiguous expressions and visual evidence. Unlike mathematical
reasoning, which typically involves long and intricate chains, disambiguation requires
models to attend closely to fine-grained visual details and resolve ambiguous textual
expressions through precise visual grounding.
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Inspired by J Wang et al. (2025), who demonstrated that translation quality can be
enhanced by decomposing the process into structured intermediate steps through a
reasoning template, DDCoT extends this principle to the task of MMT disambiguation.
To this end, DDCoT adopts a fixed six-step structure that systematically guides the model
from visual grounding to disambiguation in a concise manner. Each synthetic trace is
therefore constructed according to the following standardized reasoning template:

1. Visual Grounding: Examine the image carefully and identify the visual elements
that correspond to key words or phrases in the source sentence. Describe how
these elements connect to the text.

2. Initial Translation: Generate a preliminary translation based on both the text and
the grounded visual evidence.

3. Ambiguity Check: Review the initial translation and highlight any terms that
remain ambiguous—those whose meanings are unclear or context-dependent
when relying on text alone.

4. Visual Disambiguation: This step is critical. While visual grounding establishes
a mapping between the image and the text, the initial translation can still leave
some ambiguities unresolved. The model explicitly revisits the image, not only
to strengthen the connection between ambiguous terms and their corresponding
visual evidence, but also to refresh its access to visual information while mitigating
the risk of visual token attention decay during long-sequence generation (Xing
et al., 2024; Chu et al., 2025). Through this re-examination, the model is better
guided to ground its disambiguation decisions in the most relevant visual cues.

5. Localized Refinement: Update only the ambiguous parts of the initial transla-
tion while keeping the rest unchanged. This constraint prevents unnecessary
modifications to the sentence structure and helps maintain overall translation
fluency.

6. Repeat Check: Reassess the updated translation. If ambiguities remain, iterate
steps 3-5 until the translation is fully disambiguated.

To illustrate how the six-step template operates in practice, an example in
shows the source sentence “He watched the workers on the bridge” with its corresponding
image, where the ambiguity arises from the syntactic structure of the phrase “on the
bridge”. The gold translation indicates that “He” is on the bridge, not the workers. Based
on the image, the first step, Visual Grounding, identifies the relevant visual elements,
after which an Initial Translation & &M LA T A (the workers are on the bridge)
is produced. In the Ambiguity Check step, the phrase “on the bridge” is recognized
as ambiguous: it could describe either the man’s position or the workers’ position.
During Visual Disambiguation, the model revisits the image and determines that the
workers are in the trench rather than on the bridge, so the phrase must refer to the
man. Localized Refinement then rewrites the initial translation as f7EHT %2 T
A ("He" is on the bridge), modifying only the ambiguous span while keeping the rest
unchanged. Finally, in the Repeat Check, the updated translation is reassessed, and no
further ambiguities remain. This example demonstrates how DDCoT systematically
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DDCoT Six-step Reasoning

Think: VISUAL GROUNDING In the image, a man in a suit stands on a

raised platform or bridge overlooking a construction site below. Many

workers wearing hard hats are working in an open trench, and the man is
visually above them from his vantage point on that bridge. INITIAL

{SRC: E‘? d‘”atChEd the workers on the } TRANSLATION “fiE 45 (9T A. AMBIGUITY CHECK The phrase

{ ridee. “on the bridge” can be ambiguous. It could mean: \ne He is on the

REF: i fE1; EINZZ T A (He is on the bridge watching the workers e The workers are on the bridge, and he is
bridge.) watching them. VISUAL DISAMBIGUATION From the image, we see that

the man is the one standing on the bridge-like platform. The workers are

below in a trench, not on the bridge. Therefore, “on the bridge” refers to

Ambi. Rationale: “on the bridge” is
ambiguous, which could either describe

the workers’ location or the man’s the man’s position, not the workers’. LOCALIZED REFINEMENT Update
. — - the ambiguous part to make it clear that the man is the one on the
Disambi. Rationale: The image clearly bridge: “fb7ZERf EXEET A, ” (The man on the bridge) REPEAT

shows that it is “He” on the bridge, not

workers. CHECK No further ambiguities remain.

/

Figure 5.2: Example of DDCoT six-step reasoning resolving the ambiguity and the inputs for
synthesizing DDCoT.

guides the model from grounding to disambiguation, ensuring that translation decisions
are explicitly supported by visual evidence.

Having defined the DDCoT, the next step is to integrate this paradigm into the
training process so that models can internalize and utilize it during inference.

5.3.2 DDCoT-SFT: Internalizing DDCoT into the Model

To enable the model to internalize the disambiguation-oriented reasoning paradigm
defined by DDCoT, I adopt Chain-of-Thought Supervised Fine-tuning (CoT-SFT), as
introduced in . CoT-SFT integrates the explicit reasoning structure into the
model, allowing it to learn not only the final translation but also the intermediate
disambiguation process during training. Combining DDCoT with the CoT-SFT training
procedure yields the proposed DDCoT-SFT method.

Synthesizing DDCoT Traces. To construct the DDCoT for each training sample, I
leverage GPT4-o01 (Jaech et al., 2024), a Large Vision-Language Reasoning Model with
strong visual understanding capability. Formally, the training dataset is represented
as D = {(s;, v, yi, p amb, o) ‘S)}, » Where s; is the source sentence, v; the paired image, y;
the disambiguated translation, p™ denotes the ambiguity rationale that identifies the
ambiguous span in s;, and pd* denotes the disambiguation rationale that specifies how
the ambiguity should be resolved based on v;.
Given these inputs, the reasoning trace is synthesized as

rDDCOT - g(su Vi, Vi, plamb, ,Dldls T]SDCOT);
where g(-) denotes the generation process instantiated by GPT4-o01, and Tppcor specifies
the six-step DDCoT reasoning template. Each rPPT strictly follows the six-step
template described in Section . From the example again in , the source
sentence s; “He watched the workers on the bridge” together with the paired image
v; and the gold translation y; form the training instance. The ambiguous span p*™
corresponds to “on the bridge”, while the disambiguation rationale p%* specifies, based
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on the image, that it refers to the man rather than the workers. By defining the task for
each step in the DDCoT reasoning template 7ppc,7, GPT4-01 is used to instantiate the
generation process g(; Tppcor), producing the synthetic reasoning trace r°°¢°T,
With the DDCoT established, the subsequent step is to embed it into the training
process, enabling models to internalize the disambiguation-oriented reasoning and

apply it effectively during inference.

Preparing the Training Data. Given the synthesized reasoning traces, the target
sequence for each sample is constructed by concatenating the reasoning trace and the
translation with special delimiter tokens:

t; = concat((think), r°°%T, (/think), (answer), y;, (/answer)). (5.7)

Accordingly, the final training set is reformulated as T = {(s;, v;, ;)}~,, where the model
is trained to generate t; autoregressively conditioned on (s;, v;). In contrast to standard
SFT, the target sequence t; contains not only the final translation y; but also the reasoning
trace rPP°T, thereby enforcing explicit disambiguation reasoning during training.
Training Objective. Given the reformulated final training dataset T = {(s;, v;, t;)}~,, the
training objective of DDCoT-SFT follows the standard autoregressive supervised fine-
tuning paradigm. Specifically, the model is optimized to maximize the conditional
likelihood of the target sequence #; given the input (s;,v;), which is equivalent to
minimizing the negative log-likelihood loss:

L
1 1
N Z Z log Po(tis | ti<t, si,01), (5.8)

i=1 I=1

EDDCOT—SFT(G) = -

where t;; denotes the [-th token in the target sequence t, t;; represents all previously
generated tokens, and L; is the total length of t;.

Although Equation 5.8 defines the full autoregressive training objective, the joint
likelihood can be more clearly interpreted by decomposing it into two complementary
components: reasoning supervision and translation supervision. Concretely, the factor-
ization separates the probability of generating the reasoning trace from the probability
of producing the target translation conditioned on reasoning trace:

N
1
£cot = _N Z 10g PG(riDDCOT | Si, Ui)> (59)

i=1

N
1
£trans = _N Z 10g Pﬁ(yi | Sis Ui, riDDCOT), (510)

i=1

and the overall training objective is then written as:

Lppcorser = Leot T Lirans- (511)
In Equation , the objective encourages the model to generate the disambiguation-
driven reasoning trace r°>°“T given the source sentence and the image, and constrains

it to produce the correct target translation y; conditioned on the generated reasoning
trace together with the original inputs.
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Overall, unlike standard SFT which directly learns to map inputs to translations,
DDCOoT-SFT explicitly supervises the model with disambiguation-driven reasoning
traces. This dual supervision requires the model not only to produce the final translation
but also to reproduce intermediate steps such as ambiguity identification, visual ground-
ing, and context-sensitive refinement. As a result, the model internalizes structured
reasoning patterns for disambiguation, transforming text-vision disambiguation into
an explicit and inherent capability, rather than leaving the disambiguation process
implicit within end-to-end generation.



Experiments

6.1 Experimental Settings

6.1.1 Dataset and Metrics

Dataset Partitioning To apply the proposed method, the VIDA dataset was split into
training and test sets. Since VIDA-ColIN and VIDA-Sent contain relatively few samples,
they are insufficient to support training and are therefore used only as out-of-distribution
(OOD) settings for evaluation. As VIDA-Base provides a substantially larger number of
samples, it was divided into training and test sets with a ratio of 7:3, resulting in 1,352
training samples and 580 test samples. The partitioning was performed using stratified
sampling to ensure that the training and test sets maintain comparable distributions of
sentence lengths and ambiguous terms, preserving statistical consistency. In total, 1,352
samples from VIDA-Base-Train are used for training, while evaluation is conducted
on 1,148 test samples obtained by combining VIDA-Base-Test with VIDA-ColIN and
VIDA-Sent, which are collectively referred to as All-Test.

Metrics Following previous work (Yadav et al., 2024; Xu et al., 2024; B Lee et al., 2024), I
evaluate fluency using a set of standard translation metrics. BLEU (Papineni et al., 2002),
chrF (Popovi¢, 2015), chrF++ (Popovi¢, 2017), and METEOR (Banerjee and Lavie, 2005) are
surface-level metrics that rely on lexical overlap with reference translations. TER (Snover
et al., 2006) complements them by measuring the number of edits required to transform
the system output into the reference. To capture semantic similarity beyond surface
matching, I also employ BERT-FI (Devlin et al., 2019) and COMET (Rei et al., 2020), which
leverage contextual embeddings to evaluate context preservation. More importantly, I
adopt the proposed disambiguation-specific metrics, Disambi-Term and Disambi-Inst.,
for evaluating disambiguation quality, which were introduced in

6.1.2 Model and Baseline

Model Iadopttwomodern LVLMs of comparable size (7B and 8B parameters): Qwen2.5-
VL-7B (Bai et al., 2025), InternVL3-8B (Zhu et al., 2025). These models represent strong

30
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open-source backbones with competitive performance on multimodal understanding
and translation tasks. InternVL3-8B emphasizes high-resolution visual encoding through
tiling and pixel-unshuffle with InternViT encoders and an MLP projector. Qwen2.5-
VL-7B employs a native-resolution ViT with spatial-temporal tokenization to capture
fine-grained spatial and temporal information. Both models utilize MLP modules to
project and align visual features with textual representations.

Baseline In the experiments, I use the vanilla Qwen2.5-VL-7B and InternVL3-8B mod-
els without task-specific fine-tuning as baselines. In addition, I include these two models
trained with standard supervised fine-tuning (SFT) as an additional strong baseline. Both
settings serve as reference points for evaluating the proposed Disambiguation-Driven
Chain-of-Thought Supervised Fine-Tuning (DDCoT-SFT).

Across all model settings, the input consists of the source sentence paired with the
corresponding image. For the vanilla and SFT models, the instruction is kept simple:
"Translate the following English sentence into Chinese." In contrast, the DDCoT-SFT
setting augments the instruction with additional prompts that explicitly guide the model
to generate "thinking process" before producing the final translation.

6.2 Experimental Results

This section reports the results of InternVL3-8B and Qwen2.5-VL-7B under three
experimental settings: Vanilla, SFT, and DDCoT-SFT. The analysis is divided into
three parts, focusing first on the in-distribution dataset (VIDA-Base-Test) to assess
how well the models fit the training distribution, and then on the out-of-distribution
datasets (VIDA-Sent and VIDA-ColIN) to evaluate their generalization ability on unseen
data. Finally, the analysis considers the union dataset (All-Test), which aggregates all
subsets into a single evaluation set, providing a comprehensive view of overall model
performance across heterogeneous ambiguity types.

Translation quality is evaluated using both lexical and semantic measures. Lexical
metrics, including BLEU, chrF, chrF++, and METEOR, assess surface-level fidelity by
quantifying overlap with reference translations. Semantic metrics, such as BERT-F1 and
COMET, capture meaning preservation by modeling contextual similarity. Together,
these lexical and semantic metrics provide a comprehensive assessment of both form
and meaning in translation outputs.

To address the limitations of standard translation metrics, which do not explicitly
evaluate whether ambiguous words, phrases, or sentences are correctly disambiguated in
translation, I additionally employ two Disambiguation-Centric Metrics. Disambi-Term
measures the accuracy of individual annotated ambiguous terms across the dataset,
while Disambi-Inst. provides a stricter sentence-level criterion, counting a prediction as
correct only if all ambiguous terms within a sentence are correctly resolved.

The detailed results are presented in and

6.2.1 Analysis on In-Distribution Dataset

Evaluation on the in-distribution dataset (VIDA-Base-Test) serves to examine how well
the models adapt to the training data distribution (VIDA-Base-Train). Since VIDA-Base-
Test dataset is aligned with the data used during fine-tuning, VIDA-Base-Test provides a



6. Experiments 32

Dataset Model Setting BLEU  chrF  chrF++ TER BERT-F1 METEOR COMET Disambi-Term Disambi-Inst.
Vanilla 48.04 41.95 32.98 40.29 86.63 58.47 84.49 50.86 39.81
All-Test SFT 49.20 42.73 32.82 43.44 87.07 58.95 85.55 54.36 43.77
DDCoT-SFT 47.64 41.16 32.99 41.61 87.18 58.78 85.88 58.45 48.78
Vanilla 53.51 46.76 36.87 35.66 88.84 65.24 86.08 60.18 46.55
VIDA-Base-Test SFT 55.31 48.31 37.13 34.28 89.61 66.55 87.30 62.67 50.17
DDCoT-SFT 51.10 44.41 35.75 38.06 88.56 63.25 86.44 64.89 51.38
Vanilla 42.51 36.85 33.01 44.76 84.31 52.54 84.21 50.00 50.00
VIDA-Sent SFT 36.99 35.69 31.96 67.93 83.93 51.67 84.70 55.45 55.45
DDCoT-SFT 44.22 38.19 34.28 45.27 85.70 55.32 86.39 58.97 58.97
Vanilla 36.56 31.66 27.14 49.24 84.63 48.79 81.39 18.36 12.16
VIDA-ColIN SFT 37.97 32.92 28.22 49.11 85.11 50.56 82.60 22.62 14.90
DDCoT-SFT 39.26  33.89 25.70 48.52 85.70 51.05 83.96 38.36 32.55

Table 6.1: Performance of InternVL3-8B under Vanilla, SFT, and DDCoT-SFT settings on All-Test,
VIDA-Base-Test, VIDA-Sent, and VIDA-ColIN. Box highlights the best performance for standard
translation metrics, while Box highlights the best Disambiguation-Centric Metrics.

Dataset Model Setting BLEU  chrF  chrF++ TER BERT-F1 METEOR COMET Disambi-Term Disambi-Inst.
Vanilla 47.85  41.67 34.12 42.74 86.56 58.88 84.83 50.08 39.81
All-Test SFT 49.13  42.85 34.58 40.34 87.38 59.51 85.82 52.81 42.46
DDCoT-SFT 47.59  41.39 33.26 42.49 87.06 58.60 85.84 55.51 46.08
Vanilla 52.38  45.66 37.66 37.64 88.53 64.45 86.30 58.49 46.38
VIDA-Base-Test SFT 53.88 47.09 3835 36.17 89.11 65.48 87.07 61.42 49.31
DDCoT-SFT 50.41 44.57 36.00 39.44 88.32 62.75 86.35 60.71 46.90
Vanilla 44.46  38.92 34.97 50.95 84.21 54.78 84.41 51.28 51.28
VIDA-Sent SFT 4512 39.52 35.59  42.66 85.86 55.41 86.06 52.56 52.56
DDCoT-SFT 45.54 39.79 35.43 45.17 85.66 55.02 86.41 60.26 60.26
Vanilla 38.06  32.83 24.63 50.54 84.87 51.16 82.06 19.02 12.16
VIDA-ColIN SFT 39.02 33.71 25.28  49.24 85.30 50.96 82.69 21.31 14.51
DDCoT-SFT 38.21 32.49 24.51 50.71 85.32 51.34 83.39 33.77 27.45

Table 6.2: Performance of Qwen2.5-VL-7B under Vanilla, SFT, and DDCoT-SFT settings on
All-Test, VIDA-Base-Test, VIDA-Sent, and VIDA-ColIN. Box highlights the best performance for
standard translation metrics, while Box highlights the best Disambiguation-Centric Metrics.

direct measure of whether the models are able to effectively internalize the supervision
signals introduced by different training strategies.

Standard Translation Metrics Both InternVL3-8B and Qwen2.5-VL-7B show that the
SFT setting achieves the strongest overall performance. SFT yields the highest scores on
lexical-overlap metrics (BLEU, chrF, chrF++, METEOR) and semantic similarity metrics
(BERT-F1, COMET), along with corresponding reductions in TER. This indicates that
SFT effectively adapts the models to the linguistic and semantic patterns of the training
distribution, improving both fluency and adequacy of translations.

The effect of DDCoT-SFT on VIDA-Base-Test is more nuanced. On the seman-
tic metric COMET, DDCoT-SFT consistently outperforms Vanilla. For example, on
InternVL3-8B, COMET rises from 86.08 to 86.44 on VIDA-Base-Test. A similar trend is
observed with Qwen2.5-VL-7B, where COMET improves from 86.30 to 86.35 on VIDA-
Base-Test. These results suggest that DDCoT-SFT helps preserve semantic adequacy,
bringing performance close to that of SFT.

However, DDCoT-SFT tends to underperform on lexical overlap compared with
the Vanilla baselines. For instance, on VIDA-Base-Test, the BLEU scores of InternVL3-
8B (51.10 vs. 53.51) and Qwen2.5-VL-7B (50.41 vs. 52.38) are both lower. This can
be attributed to the sensitivity of surface-form measures to word order and phrasing.
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( DDCoT-SFT: FH#58%1-(lemon) )
RS ZOXE AL (salad) -

N J

SRC: A squeeze of lemon to
top off a type of dish.

” : FERCHSEF(dish)r— e |

FrE5 Hlemon) iy 4% -

Figure 6.1: Example illustrating the divergence between lexical-overlap and semantic-similarity
metrics.

Since DDCoT-SFT is explicitly optimized for MMT disambiguation, it often restructures
translations to resolve ambiguity, which inevitably diverges from the reference wording
while still preserving meaning or using synonyms. This interpretation is further
supported by the contradictory trends observed on VIDA-Base-Test. For InternVL3-8B,
while Vanilla achieves higher BLEU than DDCoT-SFT, the latter surpasses Vanilla on
COMET. A similar pattern is observed with Qwen2.5-VL-7B, where DDCoT-SFT lags
behind in BLEU but maintains better semantic adequacy.

The divergence between BLEU and COMET scores can be illustrated with the
example in . Under the DDCoT-SFT setting, the model correctly grounds
the ambiguous phrase “a type of dish” to the specific referent “salad,” whereas SFT
produces a literal translation of “dish” in Chinese. This demonstrates that DDCoT-SFT
achieves higher semantic similarity than SFT by resolving the ambiguity correctly.
However, the word order in the SFT translation is closer to the reference, with “dish”
appearing before “lemon,” while DDCoT-SFT places “lemon” before “salad”. On the
other hand, the Chinese translation of “salad” can take multiple forms. Although these
forms convey the same meaning, BLEU fails to capture their semantic equivalence. As a
result, DDCoT-SFT obtains lower lexical-overlap scores despite preserving the intended
meaning more faithfully. This example highlights that successful disambiguation leads
to structural variations in the translation, which improve semantic adequacy but reduce
lexical alignment.

Disambiguation-Centric Metrics SFT consistently improves over Vanilla on the in-
distribution dataset. For example, on VIDA-Base-Test, InternVL3-8B improves from
60.18 to 62.67 in Disambi-Term and from 46.55 to 50.17 in Disambi-Inst. when moving
from Vanilla to SFT, while Qwen2.5-VL-7B shows similar gains (58.49 to 61.42 and 46.38
to 49.31, respectively). These results demonstrate that SFT effectively learns to leverage
the training distribution to resolve word-level ambiguities more accurately.

For InternVL3-8B, DDCoT-SFT further pushes disambiguation performance to the
highest level, achieving 64.89 on Disambi-Term and 51.38 on Disambi-Inst., surpassing
both SFT and Vanilla. The improvements of DDCoT-SFT indicates that incorporating
explicit reasoning steps provides additional benefits for ambiguity resolution beyond
standard SFT.Combined with the earlier observation that DDCoT-SFT tends to score
lower on lexical overlap metrics—likely because the model restructures translations
when resolving ambiguities—the improvements in disambiguation accuracy provide
strong evidence that this restructuring, while reducing surface-form similarity to the
reference, it does not compromise semantic consistency and in fact facilitates accurate
disambiguation.
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In contrast, for Qwen2.5-VL-7B, DDCoT-SFT still outperforms the Vanilla baseline in
disambiguation, achieving 60.71 on Disambi-Term and 46.90 on Disambi-Inst. compared
to 58.49 and 46.38 with Vanilla. However, its performance is slightly lower than SFT,
which reaches 61.42 and 49.31 on the two metrics, respectively. Closer inspection
suggests that this underperformance is linked to an overthinking phenomenon, where
the model introduces unnecessary reasoning beyond what is required to resolve am-
biguities, which can override initially adequate translations. More detailed analysis
of this behavior will be presented in

6.2.2 Analysis on Out-of-Distirbution Dataset

Evaluation on the out-of-distribution (OOD) datasets (VIDA-Sent and VIDA-ColIN)
serves to test whether the models can generalize the disambiguation ability to unseen
types of ambiguity that were not covered in training distribution. Specifically, VIDA-Sent
introduces sentence-level ambiguities, where entire sentence or idiomatic expressions
require visual context interpretation, while VIDA-ColIN focuses on collective noun
ambiguities, where collective nouns must be concretized in translation according to the
visual context. Performance on OOD datasets provides a direct measure of generalization,
showing how effectively the models can extend learned disambiguation strategies to
unseen ambiguity types.

Standard Translation Metrics On the OOD datasets, the trend contrasts with the
in-distribution results: while SFT dominated on VIDA-Base-Test, it is DDCoT-SFT
that consistently achieves the best performance on VIDA-Sent and VIDA-ColIN. This
advantage of DDCoT-SFT is particularly evident in terms of semantic adequacy. For
example, InternVL3-8B under DDCoT-SFT attains a COMET score of 86.39 on VIDA-Sent,
surpassing the SFT setting (84.70). Qwen2.5-VL-7B also shows a similar pattern, reaching
86.41 under DDCoT-SFT compared to 86.06 with SFT. These results indicate that DDCoT-
SFT better preserves meaning when facing ambiguity types unseen during training.

In terms of lexical-overlap metrics, InternVL3-8B under DDCoT-SFT also surpasses
SFT on both OOD datasets, with higher BLEU scores on VIDA-Sent (44.22 vs. 36.99) and
VIDA-ColIN (39.26 vs. 37.97). For Qwen2.5-VL-7B, DDCoT-SFT achieves the strongest
lexical results on VIDA-Sent (BLEU 45.54 vs. 45.12 with SFT), though it falls slightly
behind SFT on VIDA-ColIN (38.21 vs. 39.02). This divergence observed on VIDA-ColIN
with Qwen2.5-VL-7B further reinforces the earlier observation from the in-distribution
analysis: explicit disambiguation reasoning restructures translations, which reduces
lexical overlap with the reference but does not compromise meaning, as evidenced
by DDCoT-SFT’s highest COMET scores.

Overall, the results highlight that DDCoT-SFT demonstrates stronger generaliza-
tion to OOD datasets compared to SFT. Since OOD datasets differ from the training
distribution, these out-of-distribution data require models to extend beyond patterns
directly learned during training. DDCoT-SFT maintains higher semantic adequacy
under the distribution shifts, showing that explicit reasoning helps the model adapt its
disambiguation strategies to unfamiliar data. In contrast, SFT—though effective within
the training distribution—shows weaker generalization when the test data deviates from
the training data, revealing its limitations in handling unseen conditions.
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Disambiguation-Centric Metrics Both models exhibit consistent improvements of
SFT over the Vanilla baseline on OOD datasets, with disambiguation scores increasing
by a moderate but stable margin of around 2-5 points. For instance, on VIDA-Sent,
InternVL3-8B improves from 50.00/50.00 (Disambi-Term/Inst.) in Vanilla to 55.45/55.45
under SFT, while Qwen2.5-VL-7B rises from 51.28/51.28 to 52.56/52.56. This improvement
demonstrates that supervised fine-tuning enables the models to learn more effective
ambiguity resolution strategies from the training data.

In comparison, DDCoT-SFT delivers substantially larger improvements over Vanilla
across all test sets, with the most pronounced gains observed in OOD scenarios. For
InternVL3-8B, DDCoT-SFT raises the Disambi-Term/Inst. scores to 58.97/58.97 on VIDA-
Sent and 38.36/32.55 on VIDA-ColIN, representing improvements of around +9 and
+20 points over the Vanilla baseline, respectively. For Qwen2.5-VL-7B, DDCoT-SFT
achieves 60.26/60.26 on VIDA-Sent and 33.77/27.45 on VIDA-ColIN, corresponding to
gains of around +9 on VIDA-Sent and more than +14 on VIDA-ColIN compared to
Vanilla. When compared directly with SFT, DDCoT-SFT also shows clear advantages
on OOD datasets. For InternVL3-8B, DDCoT-SFT raises disambiguation accuracy by
about +3.5 points on VIDA-Sent and by more than +15 points on VIDA-ColIN. For
Qwen2.5-VL-7B, the gains are even clearer, with improvements of around +7.5 points
on VIDA-Sent and over +12 points on VIDA-ColIN.

Overall, SFT primarily captures disambiguation patterns tied to the training distribu-
tion and shows weak generalization when the data deviates and introduces unfamiliar
ambiguity types. In contrast, DDCoT-SFT demonstrates stronger generalization beyond
the training distribution. Even without explicit supervision on particular ambiguity
types, DDCoT-SFT can adapt its reasoning to new cases. For example, on VIDA-
ColIN, although the model is not explicitly instructed to concretize collective nouns,
DDCoT-SFT generalizes by leveraging visual evidence through explicit reasoning to
produce correct concretizations., achieving stronger semantic adequacy and higher
disambiguation accuracy than SFT on OOD data.

6.3 Analysis on All-Test Dataset

The All-Test dataset is constructed as the union of in-distribution set and out-of-
distribution set (VIDA-Base-Test, VIDA-Sent, and VIDA-ColIN). Importantly, the All-
Test results are not obtained by taking a simple arithmetic average of the three subsets.
Instead, all instances from the subsets are merged into a single evaluation set, and
the metrics are recalculated on this combined data. This distinction matters because
averaging would assign equal weight to each subset regardless of its size, whereas the
All-Test results reflect overall performance across the entire test distribution, with each
subset contributing proportionally to its number of examples. As a result, the All-Test
setting provides a more comprehensive evaluation of a model’s aggregate translation
and disambiguation performance across diverse ambiguity types.

Standard Translation Metrics Both InternVL3-8B and Qwen2.5-VL-7B show consistent
gains of SFT over the Vanilla baseline on both lexical and semantic metrics. For example,
InternVL3-8B under SFT achieves higher BLEU (49.20 vs. 48.04) and COMET (85.55
vs. 84.49), while Qwen2.5-VL-7B similarly improves BLEU from 47.85 to 49.13 and
COMET from 84.83 to 85.82. DDCoT-SFT further strengthens performance, particularly
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on semantic metrics compared with SFT. For InternVL3-8B, COMET rises from 85.55
(SFT) to 85.88 (DDCoT-SFT), while for Qwen2.5-VL-7B it improves from 85.82 to 85.84.

The trend of DDCoT-SFT yielding consistently higher semantic adequacy than
SFT demonstrates that, when tested on the comprehensive All-Test set, DDCoT-SFT
preserves meaning more reliably across diverse ambiguity cases than SFT. Since All-Test
reflects the aggregate distribution rather than equal-weighted averages of subsets,
the improvement results on DDCoT-SFT indicate that explicit reasoning provides
advantages in maintaining semantic fidelity at scale, reinforcing its effectiveness under
distributionally diverse conditions.

Disambiguation-Centric Metrics The strongest advantage of DDCoT-SFT emerges
in Disambiguation-Centric Metrics, where aggregate performance across all subsets is
substantially higher than both Vanilla and SFT. For InternVL3-8B, Disambi-Term and
Disambi-Inst. increase by over 4-5 points relative to SFT, while Qwen2.5-VL-7B shows
a similar trend, improving from 52.81 to 55.51 and from 42.46 to 46.08 respectively. The
All-Test setting, by merging all subsets rather than averaging them, provides a holistic
assessment of performance under diverse ambiguity types. Interestingly, while DDCoT-
SFT on Qwen2.5-VL-7B performs slightly below SFT on the in-distribution subset, it
achieves the best results on All-Test. The contrast between in-distribution and All-Test
outcomes suggests that DDCoT-SFT is particularly effective at handling ambiguity
when faced with a broader and more heterogeneous test distribution, reinforcing its
generalization advantage beyond the training domain.

Overall, since All-Test merges all subsets into a single evaluation rather than
averaging their scores, it reflects a comprehensive measure of model performance under a
mixture of in-distribution and out-of-distribution ambiguities. On this combined setting,
DDCOoT-SFT delivers the most balanced performance, achieving stronger semantic
adequacy and substantially higher disambiguation accuracy than both Vanilla and SFT.
While SFT mainly captures patterns tied to the training distribution, its advantages
weaken when evaluated over the full distribution. By contrast, DDCoT-SFT scales
more effectively to the diverse ambiguity types represented in All-Test, highlighting
its superior capacity for generalization beyond the training domain.

6.4 Impact of Synthetic Structured Reasoning Traces

The previous has demonstrated that DDCoT-SFT achieves strong gains in
disambiguation performance. At the core of this method is DDCoT, a task-specific struc-
tured reasoning template designed to guide models in aligning ambiguous expressions
with corresponding visual evidence through a concise, step-by-step process. While
Muennighoff et al. (2025) show that incorporating native reasoning traces into CoT-SFT
yields superior improvements on mathematical reasoning tasks, it remains unclear how
native traces perform in the context of MMT disambiguation.

6.4.1 Native vs. Synthetic Reasoning Traces

Native reasoning traces are the raw chains of thought generated by large reasoning
models such as QvQ-Max ' during inference, which capture the spontaneous step-by-step

1. https://qwen.ai/blog?id=913c68f0cf26db671f39114a6fdce48d961fc08b&from=research.research-list
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Dataset Model Setting BLEU  chrF  chrF++ TER BERT-F1 METEOR COMET Disambi-Term Disambi-Inst.
All-Test DDCoT-SFT 47.59 41.39 33.26 42.49 87.06 58.60 85.84 55.51 46.08
QvQCoT-SFT 45.99 39.32 30.49 44.22 86.20 56.89 84.92 52.96 42.60
VIDA-Base-Test DDCOoT-SFT 50.41 44.57 36.00 39.44 88.32 62.75 86.35 60.71 46.90
QvQCoT-SFT 48.98 42.50 32.91 41.07 87.76 61.83 85.77 59.73 46.03
VIDA-Sent DDCoT-SFT 45.54 39.79 35.43 45.17 85.66 55.02 86.41 60.26 60.26
QvQCoT-SFT 42.88 37.26 33.22 46.51 84.37 52.90 85.51 54.49 54.49
VIDA-ColIN DDCoT-SFT 38.21 32.49 24.51 50.71 85.32 51.34 83.39 33.77 27.45
QvQCoT-SFT 38.05 32.44 24.47 50.51 84.90 50.55 82.25 30.98 20.31

Table 6.3: Performance of Qwen2.5-VL-7B under DDCoT-SFT and QvQCoT-SFT settings on
All-Test, VIDA-Base-Test, VIDA-Sent, and VIDA-ColIN.

reasoning process produced by the model when solving a task, without external design or
template constraints. Although native reasoning traces often follow some internal order,
the sequence and granularity of steps are not predefined. As a result, native reasoning
traces are relatively unstructured: their length and format vary across instances, and the
reasoning path depends on how the model chooses to articulate its thoughts in each case.
In contrast, synthetic reasoning traces are deliberately designed under human
guidance, with the explicit goal of aligning the reasoning process to the requirements
of a given task. Rather than emerging freely, they follow a predefined structure that
decomposes the task into a fixed sequence of semantically meaningful steps. For example,
DDCoT provides synthetic reasoning traces tailored for disambiguation in multimodal
machine translation, organized into successive stages such as ambiguity detection, visual
cue integration, and localized refinement. Compared to the flexible but variable form of
native traces, synthetic structured design ensures that each step directly contributes to
solving the task, making the reasoning process more consistent and interpretable.

6.4.2 Comparative Evaluation

To evaluate the impact of synthetic versus native reasoning traces in training for
MMT disambiguation, I compare DDCoT-SFT, where Qwen2.5-VL-7B is fine-tuned with
structured DDCoT traces, against QvQCoT-SFT, where the same backbone is fine-tuned
with unstructured native traces extracted from QvQ-Max. Both models take as input
the source sentence together with the corresponding image, and both are instructed to
perform disambiguation during translation and to articulate its reasoning process.

The results in show that DDCoT-SFT achieves overall stronger performance
than QvQCoT-SFT across both translation quality and disambiguation metrics. On the
All-Test set, DDCoT-SFT obtains higher BLEU (47.59 vs. 45.99) and COMET (85.84
vs. 84.92), indicating more accurate and fluent translations. On VIDA-Sent, which
focuses on sentence-level disambiguation, DDCoT-SFT reaches a COMET score of 86.41
compared to 85.51, and produces higher disambiguation accuracy (60.26 vs. 54.49).
Even on the more challenging VIDA-ColIN benchmark, DDCoT-SFT maintains better
disambiguation accuracy (33.77 vs. 30.98, and 27.45 vs. 20.31).

The comparative evaluation shows that synthetic structured reasoning traces con-
sistently outperform native traces in MMT disambiguation. DDCoT-SFT achieves
consistent gains across all evaluation dimensions, including both standard translation
metrics and disambiguation accuracy. These results demonstrate that explicitly struc-
tured reasoning not only improves overall fluency but also enables precise ambiguity
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[ SRC: He's in the driver's seat ]

(He’s in control of the situation.)

/ DDCoT-SFT QVQCoT-SFT \

Think: VISUAL GROUNDING: In the image, a soccer player Think: Okay, let's tackle this translation step by step. The English sentence is ... The
wearing a red jersey is celebrating on the field... INITIAL user wants a Chinese translation... First, | need to look at the image. The person in

TRANSLATION: M%Eggﬁf@_t - AMBIGUITY CHECK: “driver’s the picture is wearing a red jersey with ... Now, driver's seat directly could be
seat” can mean either literally sitting in a car or being in control of ambiguous. It usually refers to the position where the driver sits, ... it might mean

REF: {1212 53 - ’

a situation... VISUAL DISAMBIGUATION: From the image, the being in control or leading. However, given the image shows a footballer ... The
player is clearly on a soccer field, so “driver’s seat” must be used phrase in the driver's seat can have multiple interpretations... Therefore, the correct
figuratively to mean “in control” or “in charge.” LOCALIZED translation should reflect that he's the captain rather than just sitting in a car.
REFINEMENT: Replace A6 fEZ 3R | with 7EZ5 30 | to However, the standard answer is fi 822 4 |, which seems to contradict the
emphasize that he is in the driver’s seat of a car but clarify the image. Wait, maybe the standard answer is incorrect? ......Therefore, the correct
figurative meaning: fEEIE o « translation should be ft;2 A4 instead of fth AL ZE I Z . Wait, but the standard
Output: flifFEIE F - answer should be fi A8 254 B . Hmm. Maybe there's a misunderstanding. Let

me recheck... we might need to accept that as the correct answer despite the visual
evidence. Therefore, the final answer is fth 84 FE 2 IP & |.

\ Output:fbA B | -

Figure 6.2: Case study on the ambiguous phrase "in the driver’s seat" The reference adopts the
figurative meaning "in control of the situation."" DDCoT-SFT applies structured reasoning to
reach the correct figurative translation, while QvQCoT-SFT produces a long, unstructured trace
and outputs the literal meaning.

resolution, underscoring the advantages of synthetic CoT over unconstrained native
traces in MMT disambiguation.

6.4.3 Case Study

To provide a more intuitive comparison between the two models, presents
a case study analyzing their reasoning processes on an ambiguous input. The English
phrase "in the driver’s seat" can be interpreted literally as "sitting in the driver’s seat
of a car" or figuratively as "being in control of the situation." The reference translation
adopts the figurative meaning.

For DDCoT-SFT, the reasoning process follows a well-defined structure. The model
first grounds the visual context (a soccer player celebrating on the field), then explicitly
checks for ambiguity, and finally applies visual disambiguation to conclude that the
figurative interpretation is more appropriate. A localized refinement step further adjusts
the expression to match the figurative sense, producing the correct output il 7E %
£ 2 " (He’s in control of the situation).

By contrast, QvQCoT-SFT generates an unstructured and excessively long reasoning
trace. Although it identifies the ambiguity and considers both literal and figurative
interpretations, its reasoning is meandering and repetitive, filled with backtracking
markers such as "wait" and repeated re-evaluations. Despite acknowledging the figu-
rative possibility, the model ultimately adheres to the literal translation ftAA7EZ; %0
JfE £ (He’s in the driver’s seat), which misaligns with the intended meaning.

Summarizing all results, both the quantitative evaluation and the case study highlight
the limitations of native QvQCoT traces. While they reflect spontaneous reasoning,
the traces are relatively unstructured and often excessively long, which obscures the
critical steps for translation disambiguation. In contrast, DDCoT provides concise
and structured reasoning tailored to the disambiguation in MMT task, yielding clearer
supervision and superior performance across metrics as well as qualitative analysis.
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s VIDA-CN N VIDA-Adv N VIDA-Base-Test N\

- Src: A female has an object with her. - Src: She's got a green thumb. - Src: A thermostat with an iPod's touch.
-Ref:—ZLMEE—FIZ (Paddle), « Ref: #iEKFEZE . (Sheis good at gardening)| | + Ref:—/NgiPod = (iPod-like)fiiE RV IEIE 28
- Thinking: VISUAL GROUNDING: In the image, a « Thinking: VISUAL GROUNDING: In the image, a » Thinking: VISUAL GROUNDING: In the image, there is
woman is holding a white paddle. INITIAL woman in a garden.... INITIAL TRANSLATION: #1755 —X around device... The phrase “with an iPod's touch”
TRANSLATION: “—A & H#E—NE, " fgﬂsﬁ’er:r;?;g::gﬁ::z;;ﬁ::?;z:r:s' cauld visually corresponds to someone physically touching...
;::;G:;:thhr:‘zgk\;geuvxt'gIs:::;;: (;U A‘;‘l’(‘;lﬁ' VISUAL DISAMBIGUATION: From the image, she is INITIAL TRANSLATION: — /5 Pod i ST RERISIRER
! y - X . gardening with purple gloves, so “green thumb” must AMBIGUITY CHECK: with an iPod’s touch: Could mean
From the image, we see she is holdlng“a Pf\ddle--': refer to her skill in gardening rather than any literal the thermostat has iPod-like functionality or someone is
LOCALIZED REFINEMENT: Replace “—MIj{& color.. LOCALIZED REFINEMENT: Replace &5 #9F literally touching it... VISUAL DISAMBIGUATION: From
with “—3E3" toreflectthatitisindeed a with BZ&F. the image, we see a hand physically touching the
paddle... thermostat... LOCALIZED REFINEMENT: Replace #7%
. . . ) .
- COT-SFT: —fir &tz — 4022 (Paddle), - CoT-SFT: #ih/2 [7] %5 F (Gardening expert), | | TPodf$ETIHE with HATEAERMRE

) ) smimie « COT-SFT: — M5 A [E A fitiZ A fEiRas.
\'SFT- —ANETHHE—NIE (Object), / KSFI’: M —WEEiIE, (Green thumb) / \SFI': PRt BT IER ., /

Figure 6.3: Case study of DDCoT-SFT vs. SFT

6.5 Qualitative Analysis

As discussed in , DDCoT-SFT exhibits a strong ability to enhance disambigua-
tion performance, particularly on challenging OOD subsets (VIDA-Sent, VIDA-ColIN).
This raises a key question: how does explicit reliance on visual information shape the
model’s reasoning? (left and middle) illustrates two case studies that shed
light on this process, showing how DDCoT-SFT aligns ambiguous terms with visual
evidence in VIDA-ColIN and VIDA-Sent.

The VIDA-ColIN example (left of ) illustrates the collective noun ambiguity,
which the source sentence contains the ambiguous noun "object", which requires a
concrete translation ("paddle"). The SFT model, without reasoning, outputs the literal
"object," which fails to capture the intended meaning. In contrast, the DDCoT-SFT shows
that the model first generates an initial translation ( #J14 ), maintaining the literal
meaning. During the ambiguity check, the model detects that "object" is ambiguous.
In the subsequent visual disambiguation step, it grounds the word to the image and
identifies that the woman is holding a paddle. Finally, in localized refinement, the model
updates the translation to "paddle”, producing the correct disambiguated output.

The VIDA-Sent example (middle of ) demonstrates sentence-level ambi-
guity where an idiomatic expression could be misunderstood literally. The phrase "got
a green thumb" could be interpreted literally or idiomatically. The SFT model again
produces a literal output of the color of thumb in Chinese. In contrast, the DDCoT-SFT
first provides a literal initial translation ( £k .#)F ). Through visual disambiguation,
it recognizes from the image that the woman is gardening, and therefore refines the
output to "Gardening expert", correctly capturing the idiomatic meaning.

Together, the two cases highlight the role of structured reasoning in bridging lin-
guistic ambiguity with visual grounding, showing that explicit articulation of reasoning
steps supports more reliable disambiguation outcomes.



6. Experiments 40

Model Overthinking Rate Pearson
Qwen3-Max 0.84 0.72
GPT-5 0.82

Table 6.4: Overthinking rates identified by Qwen3-Max and GPT-5, along with Pearson
correlation indicating inter-evaluator agreement.

6.6 Analysis of Overthinking in DDCoT

While the quantitative and qualitative analyses confirm the effectiveness of DDCoT
for MMT disambiguation, its rigid multi-step structure can also introduce unnecessary
complexity. In particular, applying elaborate reasoning to straightforward inputs can
cause the model to overthink, leading to degraded outputs. As shown in ,
DDCOoT-SFT performs slightly worse than SFT on standard translation metrics in
VIDA-Base-Test, which is consistent with the overthinking issue. This overthinking
phenomenon typically emerges after the second step of generating the initial translation:
instead of preserving an adequate initial output, the model introduces unnecessary
reasoning, such as incorporating irrelevant visual context or misinterpreting idiomatic
expressions literally, resulting in flawed revisions and ultimately poorer translations.

To examine whether the performance drop of DDCoT-SFT on standard translation
metrics is indeed caused by overthinking, I randomly sampled 100 samples from the
results of VIDA-Base-Test where DDCoT-SFT underperformed SFT in both BLEU and
COMET. These samples were then evaluated by two LLMs, Qwen3-Max (Yang et al.,
2025) and GPT-5 -, to verify the presence of overthinking in the reasoning traces. For
each case, the evaluator was given the source sentence, the reference translation, and
the full reasoning trace. The assessment followed a two-step procedure: (1) examine the
initial translation generated in the second step of the reasoning chain and compare it
with the final translation; if the final output diverged further from the reference than the
initial one, then (2) check whether subsequent reasoning steps contained unnecessary
or excessive interpretations that directly led to the degradation. Cases meeting both
conditions were labeled as instances of overthinking.

The overthinking analysis is presented in . Both evaluators, Qwen3-Max
and GPT-5, identified a high proportion of overthinking cases, with rates of 0.84
and 0.82 respectively, indicating that the majority of instances where DDCoT-SFT
underperformed SFT can indeed be attributed to overthinking. Moreover, I use Pearson
correlation to validate the agreement of overthinking identification between the two
evaluators. The resulting correlation of 0.72 suggests a strong level of agreement
between the two evaluators, indicating that the identification of overthinking cases
is consistent across two evaluators.

To further illustrate how overthinking traces can affect translation quality, I provide
an actual case in the right of . In this example, the phrase “iPod’s touch”
should be interpreted as “iPod-like touch screen.” During the visual grounding stage,
the model correctly describes the image, and in the ambiguity check, it identifies the
possible meaning of iPod-like functionality. However, in the visual disambiguation stage,
the model begins to over-interpret: instead of leveraging the appropriate visual cue, it
associates the ambiguous phrase with the mention of “someone physically touching”

2. https://openai.com/en/index/gpt-5-system-card/
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from the grounding step. This misalignment leads the model to revise the initial adequate
interpretation into an incorrect final translation. This example highlights the risk of
overthinking as a key factor behind the observed performance drop, showing that
excessive reasoning can overwrite adequate initial translations and thereby reduce
overall performance.



Conclusion

This work revisited the core question of whether LVLMs truly and effectively leverage
visual information in multimodal machine translation (MMT). By approaching the
problem through the perspective of ambiguity resolution, three research questions were
addressed. First, this work demonstrated that existing datasets fall short of supporting
visually dependent disambiguation, leading to the creation of the VIDA dataset, which
specifically targets word- and sentence-level ambiguities that can only be resolved
through visual cues. Second, the investigation revealed that standard translation metrics
such as BLEU and COMET are not aligned with the disambiguation task, motivating the
introduction of Disambiguation-Centric Metrics (Disambi-Term and Disambi-Inst.) that
directly measure whether ambiguous spans are correctly resolved. Third, experiments on
the VIDA dataset demonstrate that while standard metrics showed limited improvements,
the proposed Disambiguation-Centric Metrics captured substantial and consistent
gains, highlighting the necessity of Disambiguation-Centric Metrics for assessing the
contribution of visual information to the disambiguation task in MMT and directly
reflecting the role of visual input in resolving ambiguity.

Building on the findings that LVLMs can leverage visual information for MMT disam-
biguation, this work introduced Disambiguation-Driven Chain-of-Thought Supervised
Fine-Tuning (DDCoT-SFT), which integrates a structured Disambiguation-Driven
Chain-of-Thought (DDCoT) template with CoT-SFT training method. Experiments
show that DDCoT-SFT achieves stronger semantic adequacy and higher disambiguation
accuracy than conventional fine-tuning, particularly on out-of-distribution subsets and
the aggregated All-Test set, underscoring its superior generalization to diverse ambiguity
types beyond the training distribution. Furthermore, the comparison of the impact of
synthetic DDCoT traces and native, free-form reasoning traces in training for MMT
disambiguation reveals that the DDCoT-SFT model consistently outperforms native-CoT
fine-tuned model, demonstrating that concise, task-structured reasoning supervision
provides clearer guidance and more reliable visually grounded disambiguation than
unstructured and excessively long native traces.

Beyond quantitative results, qualitative analysis illustrated how DDCoT-SFT sys-
tematically aligns ambiguous terms with visual evidence through explicit reasoning
steps, enabling accurate resolution of both word-level and sentence-level ambiguities.

42



7. Conclusion 43

At the same time, analysis also revealed a limitation: the rigid multi-step structure
could lead to overthinking, where excessive reasoning overwrites already adequate
translations and degrades performance. These qualitative analyses highlight both the
promise and challenges of structured reasoning for MMT disambiguation, suggesting
that future work should explore adaptive reasoning strategies that retain the benefits
of explicit visual grounding while mitigating overthinking.
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