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Abstract

As podcasting developed from a passion project for hobbyist to a vastly popular entertain-
ment medium, advertiser spending increased to nearly $2 billion by 2024. Today, podcasting is
a popular form of entertainment, with close to 100 million users in the United States. Adver-
tisement identification in podcasts is a challenging tasks due to the heterogeneous nature of
content and advertisements. Being directly embedded into the audio stream, ad identification
requires the segmentation of content based on features extracted from the raw audio signal as
well as the transcriptions. For a lack of readily available podcast datasets with advertisement
annotations, we create a dataset of popular podcast shows in the U.S, manually annotating
over 150 episodes. As manual dataset annotation is tedious and time-consuming, we leverage
annotations from an open source ad database for YouTube videos to build a second, larger
dataset of podcast-like YouTube videos. Upon exploration of the created dataset, we find
differences in ad-related statistics between sources, e.g. number of advertisements per episode,
number of advertisements in a row and advertisement type and duration. We introduce the
local classifier model architecture that uses the multimodal Transformer model LanguageBind
to generate embeddings from audio and text data to classify single-sentence input samples
from the in-domain audio podcat dataset. Multimodal embeddings outperform embeddings
computed from single modalities. We also concatenate input samples to increase model context
in the superlocal architecture, unable to meaningfully improve of single-sentence results. Due
to factors like subpar annotation quality and lack of advertiser-produced advertisements in
the out-of-domain YouTube dataset, training models on out-of-domain data to transfer learned
feature characteristics for in-domain inference proved to be unsuccessful.
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Introduction

Once started as a passion project for hobbyist in the early 2000s, podcasting has
turned into a multi-billion-dollar market over the last 25 years. Joe Rogan’s recent
renewal of his Spotify partnership, reportedly valued at $250 million USD, highlights
podcasting’s evolution into a major and lucrative industry (Spangler 2024). As the
industry continues to grow, more creators, advertisers, and media companies are in-
vesting in podcasts, making it a significant force in the global entertainment landscape.

Podcasts as a medium are audio documents containing speech content. They are
typically distributed over really simple syndication (RSS) feeds and consumed via
dedicated podcast players or more generic music distribution services like Spotify and
Apple Podcasts. Watching video podcasts on video platforms like YouTube is increas-
ingly popular. Podcasts are characterized as covering “[...] a wide range of topics
in a highly flexible format that contains monologues, multi-dialogues, interviews, or
discussions” (Feldstein Jacobs 2022).

The history of podcasts is closely related to that of several technologies in the early
2000: portable music players (mp3 players), audio compression and the RSS feed (Pot
2013). In late 2000, the proposed specifications for the RSS standard introduced the
ability to include audio or video files, allowing users to subscribe to more than just
text content. In 2001, Apple introduced the iPod, a portable music player that would
accelerate several shifts in the music industry. Apple would sell close to 500 Million
products of the iPod family (Mickle 2022). In 2005, podcasts were added as a category
to the Apple iTunes Store, cementing its popularity (Pot 2013). The term podcast is a
blend of the words ‘iPod’ and ‘broadcast’, hinting at its root in the Apple ecosystem
and the technology behind it (Dictionary.com 2025).

For most of its history, listening to a podcast meant listening to an audio file
distributed via RSS and consumed by a podcast player. Nowadays, podcasts are not just
limited to the audio format, with video podcasts steadily rising in popularity (Mayer
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1. Introduction 2

and Riismandel 2023; Escandon 2024). This change is pushed on one hand by young
consumers who prefer video over audio (Coats 2024) and on the other by the fact that
the video format offers additional monetization opportunities over audio only such
as visual advertisements and sponsorships (Steele 2024). With the prevalence of video
podcasts, distribution of podcasts today is typically done via these channels: YouTube,
Spotify, Apple Podcasts and traditional RSS feeds.

Over the past five years, the popularity of podcasts in the U.S. has steadily risen,
from 50 million users of podcast in 2020 to 76 million in 2024 and the number of users
is predicted to exceed 100 million by 2029 (Statista 2024). In addition, the number of
available podcast shows listed on public servers have doubled from 2019 to 2021 to a
total of 48 million episodes (Feldstein Jacobs 2022). The growing popularity of podcasts
has turned them into a valuable platform for advertisers, as they also often target niche
and highly engaged audiences. In the U.S., advertising spending on podcasts surged 2.5
times, rising from $840 million in 2020 to $1.9 billion in 2023 (PwC; IAB (U.S.) 2024).

1.1 Motivation

As podcasts popularity increases and advertisers rightly identify podcasts as a prof-
itable advertising medium, the study of advertising in podcast and possible detection
mechanisms can be motivated from several directions.

First, it involves challenges similar to related fields of research, such as audio
classification and content segmentation, speaker diarization and NLP, as podcasts are
inherently spoken language documents, with advertisements often being different in
content, speaker, tone and background music. Second, advertisers have an economical
interest in the question of how often their ads are played and where they appear,
as modern technologies like dynamic ad insertion (DAI) obfuscate this information.
Third, podcast users are set to benefit from improved user experience and accessibility
features, as automatic ad detection in podcasts could be used to skip ads altogether,
allowing users to listen to their podcasts without interruptions. Accessibility wise,
podcasts, like every audio medium, are difficult to index, as one cannot skim over a
podcast episode like it can be done with a piece of text. Therefore, summaries of podcast
are highly useful, which in turn should be content-agnostic from their ads.

Altering episode content and skipping advertisements introduce legal and ethical
considerations, as the ever-ongoing cat-and-mouse game between ad blockers and ad
agencies in web browsers show (Igbal, Shafig, and Qian 2017). This thesis explores
possible machine learning architectures to detect advertisements in podcast data and
will not consider legal and ethical concerns, as no ready-made application is provided.

In modern-day podcasts, characteristic of both content and advertisements are
highly heterogeneous. Content can be anything from professionally told stories with
sound effects and background music to informal conversations between multiple
speakers and everything in between. Ads typically included in podcasts differ in length,
style and topic, making them an interesting source of material for speech processing.
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This master’s thesis explores podcasts as a resource for language science related
tasks. The main focus lies on creating a novel dataset of timestamped advertisements in
podcasts, fetched from two different sources. The dataset is used to train basic as well
as advanced classification algorithms, drawing conclusions from received results. We
will also discuss how OOD data can be leveraged to train models for in-domain tasks.

1.2 Research Questions

To guide us through the topic, the following three central research questions (RQs)
were formulated:

RQ1: How can advertisements in podcasts be characterized and what differentiates
advertisements in audio podcasts from advertisements in video podcasts?

RQ2: How does model performance vary when using audio, text, or multimodal
training data?

RQ3: Can training data from video podcasts be used to detect advertisement in audio
podcasts?

1.2.1 RQ1: Advertisement Characteristics

This question involves inspecting the generated dataset and gaining insights about key
advertisement metrics, like the position within an episode, the length and whether
the advertisement is part of a longer ad break. We will visualize the metrics for better
interpretability.

1.2.2 RQ2: Modality Information Gain

Since podcasts are not text document but rather audiovisual, it begs the question if we
can use the information contained in the audio-signals to improve the classification
of the text modality and vice versa. If the advertisements inspected in RQ1 not only
differ from the content on the text level but also in the signal level, we can expect a
performance increase when using the audio modality as additional features for our
models. We will test this hypothesis by using the multimodal, Transformer-based
model LanguageBind (Zhu et al. 2024) and comparing classifiers trained on embeddings
generated from only text, only audio or multimodal input data.

1.2.3 RQ3: Out-of-Domain Training Data

To our knowledge, there is no dataset available of timestamped advertisements in
podcasts. Researchers at Spotify released a dataset of 100,000 podcast episode transcrip-
tions in 2020 in an effort to provide the scientific community with data to solve NLP
tasks like chapterization (Clifton et al. 2020). The company has since ceased providing
access to the dataset (Spotify 2023a) and it is unclear whether and to what extent it
contained advertisements.

In this thesis, we will create our own dataset. A smaller subset of the data will
be manually labeled podcast data sourced from RSS feeds, while the majority of the
data will be crawled from YouTube, utilizing the community sourced advertisement
annotation from the SponsorBlock project (Ajay Ramachandran 2024).
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While using YouTube to build the dataset is efficient, it has to be evaluated if
YouTube-sourced data is suitable as a replacement for real podcast data for training.
To answer this, we will train classifiers on both real podcast data and YouTube-sourced
videos and compare model performances.

Throughout the thesis, we will often make the distinction between audio podcasts
from RSS feeds and YouTube videos covering mostly, but not exclusively, video pod-
casts. Going forward, we will call podcasts from RSS feeds audio podcasts and podcasts
from YouTube video podcasts.

1.3 Overview

This thesis is structured as follows: Chapter 2 covers key concepts that are used in
the thesis. In Chapter 3, we provide an overview of the previous work in the field of
automatic ad detection in long form audio. Subsequently, in Chapter 4, we define the
precise problem statement. Chapter 5 introduces the approach performed in this thesis
to tackle the problem and answer the three outlined research questions. In Chapter 6,
we explore the built dataset. In Chapter 7, the results of this thesis are presented.
Chapter 8 holds the discussion and limitations of the results, before Chapter 9 will end
with the conclusion.



Background

This chapter introduces key concepts employed throughout the thesis. We start by
looking at how natural language processing (NLP) has evolved over the years, before
diving deeper into neural networks, evaluation metrics and advertisements.

2.1 Natural Language Processing - A Brief History

The history of NLP and therefore the understanding and processing of natural language
can be divided into the era of rule-based systems, the era of statistical methods and
the still current era of artificial intelligence (Hirschberg and Manning 2015; Johri et
al. 2021).

NLP “is the subfield of computer science concerned with using computational tech-
niques to learn, understand, and produce human language content” (Hirschberg and
Manning 2015). The first notable event was in the 1950s, when the Georgetown-IBM
system demonstrated machine translations of more than 60 sentences from Russian to
English (Hutchins 2004), motivated by the need of understanding the enemy during
the Cold War.

The first period of NLP research was defined by researchers manually writing
down vocabularies and rules of human languages. This proved to be difficult due
to the inherent ambiguity and context-dependent interpretation of human languages
(Hirschberg and Manning 2015). The goal was aiding human-human communication,
especially via machine translation.

In the late 1980s and starting in the 1990s, researchers began to build statistical
models over larger quantities of empirical language, creating so-called language
corpora. This point in time marks the “first notable successes of the use of big data,
long before the power of ML was more generally recognized or the term ‘big data’
even introduced” (Hirschberg and Manning 2015). The central objective during this
time has been the research in tasks like part-of-speech (PoS) tagging and named-entity
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recognition (NER), essentially understanding the semantics of languages on the word
level. Training statistical models via large corpora proved to be highly effective, with
many classifiers today being based on those methods.

The method of leveraging machine learning (ML) to enhance NLP marked a signif-
icant turning point. With the advent of ML techniques, particularly deep learning,
the field of NLP was revolutionized (LeCun, Bengio, and Hinton 2015). In the early
2010s, researchers began developing models that could automatically learn from large
datasets, removing the need for manual feature engineering. ML, and specifically
techniques like artificial neural networks (ANNs), allowed systems to handle complex
language tasks such as sentiment analysis, translation and question-answering with
high accuracy.

Leveraging vast amounts of readily available textual data and the increasing
power of computational resources, these learning algorithms enabled NLP systems to
generate richer and more nuanced representations of linguistic content. Implementa-
tions of such models, notably recurrent neural networks (RNNs) (Schmidt 2019) and
Transformers (Vaswani et al. 2017), demonstrated the ability to capture long-range
dependencies in text, understanding context beyond individual words or sentences.

The emergence of pre-trained language models, such as BERT (Devlin et al. 2019)
and GPT, further improved the power of transfer learning in NLP. These models are
trained on comprehensive corpora and fine-tuned for specific tasks, achieving state-of-
the-art results by understanding not only the syntax but also the underlying semantics
of language. The implementation of these models in various applications, from voice
assistants (Jin et al. 2023) to automated customer service bots (Yu, Chen, and Zaidi
2021), highlights the ongoing evolution and impact of artificial intelligence on the field
of NLP.

2.2 Artificial Neural Networks

An artificial neural network (ANN) (later referred to as NN) is a computational model
designed similar to the biological brain (Goodfellow, Bengio, and Courville 2016). It
consists of multiple artificial neurons that work together to accomplish a task. In the
broadest sense, the task is the approximation of some function f*. A classifier y =
f*(x) maps an input x to a category y. The network defines a mapping y = f(x; ) and
learns the values of the parameters 6 that best approximate the relationship between
x and y (Goodfellow, Bengio, and Courville 2016).

The neurons in a neural network (NN) are often grouped together in layers. A
network typically has an input and an output layer, with a variable number of hidden
layers between the input and the output. The neurons in the different layers have
connections to neurons on the same or other layers, depending on the network’s
architecture. Artificial neurons take real numbers as input and produce real numbers
as outputs.
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Figure 2.1: An artificial neuron (green) with inputs x4, ..., 24, a transfer function ) |
and an activation function ¢, producting an activation o; if ¢ > 6.
Inspired by (Yacim and Boshoff 2018).

Figure 2.1 illustrates the typical structure of an artificial neuron: Their inputs are
multiplied by their weights, the results are passed to the transfer function. Commonly,
the transfer function sums the weighted inputs and applies a bias term. The function’s
output is evaluated in the activation function, a often non-linear function that produces
the output 0; (Goodfellow, Bengio, and Courville 2016; Yacim and Boshoff 2018).

When speaking of a NN’s parameters, we usually mean each neuron’s weights and
biases. It’s these parameters that determine how well the network can approximate a
specific function. While these parameters can be handcrafted, they are almost always
initialized randomly and iteratively adjusted by the training process. This is done by
calculating the deviation from the desired results using a loss function. The deviation
is then used to go back through the network and adjust the weights. This is called
backpropagation. Essentially, “Neural networks are, in the simple case, trained in a
supervised manner, where the network’s parameters are adjusted to match the known,
desired output for a given input” (Hatzel 2020).

Once the training process is complete, the network is used on previously unseen
inputs, predicting the expected value. A network’s predictive accuracy depends not
only on the dataset’s size and how well it represents the unseen inputs, but also
on factors such as model complexity, feature quality, the training process and data
preprocessing. This accuracy is assessed using performance evaluation metrics, which
are discussed in more detail in Section 2.3.

2.2.1 Traditional Architectures

After covering the fundamentals of NNs, we will briefly discuss different architectures.
The simplest neural network architecture is the feedforward neural network (FNN)
architecture, named after the flow of information in the network going from one layer
to the next without loops (Goodfellow, Bengio, and Courville 2016). Since there are no
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Inputs Hidden Layer Output Inputs Hidden Layer Output

(a) A feedforward neural network (b) A recurrent neural network (RNN). It

(FNN). Information flows strictly from has connections within the same layer,
left to right. highlighted in red.

Figure 2.2: Exemplary architecture of a FNN (a) and a RNN (b)

loops in the data flow, each input value is processed independently, making it unfeasible
to capture sequential relationships. When neurons can activate themselves or other
neurons within their layer to reflect on the previous state, we speak of recurrent neural
network (RNN). Figure 2.2 illustrates how the two architectures differ from each other.

FNNs work with fixed-length input values, meaning variable-length inputs must be
adjusted to fit. This can be done by either padding shorter inputs with placeholder
values or trimming longer inputs to the required length. In contrast, RNNs can operate
on variable length input, as for each timestep ¢, they operate on the input ¢, and last
timestep’s output o"! (Hatzel 2020). They maintain a hidden state, that serves as the
memory to store information about previous inputs.

While RNNs are able to capture sequential relationships better than feedforward
networks, long-term relations are still difficult to capture due to the problem of
vanishing / exploding gradients (Goodfellow, Bengio, and Courville 2016). In RNNs, we
use a variation of backpropagation in the training process, backpropagation through
time (BPTT), to unfold a network in time and compute the gradients (Werbos 1988).
Since the gradient of a single weight can be calculated many times due to the recurrent
nature of the network, the gradients of earlier weights will be exponentially smaller
(or larger) than the gradients of later weights. While vanishing gradients lead to only
small weight adjustments, prolonging the training process, exploding gradients make
the training process unstable (Goodfellow, Bengio, and Courville 2016).

To capture longer sequential relationships and mitigate the vanishing / exploding
gradient problem, Vaswani et al. (2017) introduce the Transformer architecture, mark-
ing a turning point in the field of machine learning.

2.2.2 Transformer Architecture

The Transformer architecture, introduced by Vaswani et al. (2017), is a non-recurrent
approach to sequence modeling that differs from RNNs, which rely on sequential
processing where each step depends on the previous one. By eliminating recurrence,
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Transformers can utilize parallelization, leading to performance improvements over
recurrent models. This architecture has achieved state-of-the-art results in machine
translation tasks with the BERT model family (Devlin et al. 2019) and has had a large
impact on machine learning and language processing.

Transformers generally follow an encoder-decoder structure, where the encoder
generates a hidden state from the input, and the decoder uses this hidden state to
produce the output. The model processes input through multiple layers, transforming
it into a hidden representation before another set of layers generates the final output.
Both input and output consist of a fixed number of tokens, known as the context size. A
key feature of this architecture is attention, which allows the model to focus on relevant
elements within the input, rather than processing the entire sequence uniformly.

2.2.3 Word Embeddings

While using real numbers as input for a neural net might be straight forward in appli-
cations where the data is already numerical, there are areas where the initial input first
requires conversion into the numerical space, such as in language processing. One way
of representing a word as a real number is by using one-hot encoding (Goodfellow,
Bengio, and Courville 2016). One-hot encodings are vectors the size of the vocabulary,
where each index in the vector corresponds to a fixed word in the vocabulary. To encode
a word w, all entries in the vector are set to 0 except the value at index i, is set to a
non-zero value (typically 1).

One-hot encodings as word representations are easy to compute but have downsides:
The vectors are sparse, with most of the values being 0, and therefore memory-
inefficient. They are also unable to capture the order if words in a given sentence. To
overcome these issues, more sophisticated embedding techniques were developed, such
as Word2Vec (Mikolov et al. 2013). Word2Vec produces dense vector representations
of words by training a next-word-prediction tasks over large amounts of data. The
produced vectors have a lower dimensionality than one-hot encodings and capture
meaning and relationship, as related words are close to each other in the vector space by
measures such as cosine similarity. The vectors can be used for arithmetic operations,
such as the well-known king — man ~ queen — women, as seen in Figure 2.3 (Sutor
et al. 2019).

Transformers often use subword tokenization techniques, such as byte-pair encod-
ing (BPE) (Gage 1994) and WordPiece (Schuster and Nakajima 2012). Here, the input
is not split into words but rather smaller, reusable subwords in an effort to reduce
vocabulary size. Additionally, this largely avoids the out-of-vocabulary (OOV) error, as
at least parts of new, unseen words will be recognized by the tokenizer. Word-token-
mappings are created during a separate training process of the tokenizer.

2.3 Evaluation Metrics
In this section, we will discuss different evaluation metrics and their effectiveness for
evaluating the performance classification systems.
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Figure 2.3: Cosine similarity of king — man 4+ women ~ queen word embeddings in

2D. It must follow that king — man ~ queen — women, as shown in red arrows. Sim-

ilar direction of red arrows indicate similar relational meaning. Idealized illustration.
(Sutor et al. 2019)

2.3.1 Accuracy, Recall, Precision, and F 3 Score

When performing a binary classification task, we assign elements one of two groups.
In the case of ad detection, we classify text samples into AD and NO _AD classes. By
design, classifying a sample in a binary classification task has four possible outcomes,
as shown in Table 2.1: true positive (TP), false positive (FP), true negative (TN) and
false negative (FN).

Predicted Positive Negative
Actual
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 2.1: The four possible outcomes of a binary classification decision.

They are multiple performance metrics for (binary) classification tasks, each measuring
different aspects of the classifier’s performance.

- TS TP + TN
Accuracy is used to measure the number of correct predictions: 75— Fp 7N

(Sammut and Webb 2011; Hatzel 2020). While accuracy works well for balanced
datasets, where each class has roughly the same number of elements, it is less mean-

ingful in imbalanced datasets. If the positive class appears a lot less than the negative
class, the classifier can always predict the negative and achieve a high accuracy score.
To better evaluate classifiers on imbalanced datasets, we use precision and recall.

Precision (TPT—EFP) measures how many of the predicted positive classes were

actually positive, thus indicating how many elements that are retrieved by the classifier
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are indeed relevant (Sammut and Webb 2011). In the example above, where a classifier
would only predict negatives to achieve a high accuracy score, its precision would be
0 as 0 elements were retrieved.
Recall, also true positive rate, measures how many of the positive elements a classi-
. TP
fier correctly predicts: 15— - i
elements the classifier can find. We also know the false positive rate (FPR) (57 7x)-

which measures incorrectly predicted negative elements in relation to the total number

In other words, it measures how many of the positive

of negative elements.

Precision and recall are often combined in the F'5 Score to obtain a single variable for

precision * recall . oy
B2+ precision) 1 recall where [ is a positive real number. 3

is chosen such as recall is considered 3 times as important as precision. When precision

easier comparability: (1 + 82) * 0

and recall are of equal importance, 3 is set to 1. We know this as the F] score.

2.3.2 ROC Curve

Output layers of NN based classifiers often consist of a single neuron. When using the
classifier for inference, the neurons real-numbered output is mapped to either class
(0,1) using a threshold, e.g. 0.5. In an ideal scenario, the classifier produces outputs for
one class that are easily separable from outputs of the other class. Most of the time,
classifiers do not achieve perfect scores. In this case, the threshold’s value is a trade-
off between precision and recall. Figure 2.4 visualizes the two scenarios.

In Figure 2.4b, the two classes cannot be predicted perfectly, regardless of the chosen
threshold. If we increase the threshold to > 0.65, we increase the precision, since more

(ilgssification Example - Perfect Classification Cliagsification Example - Imperfect Classificatior
. . & L Y . | J ) - - ®
'0:. % . .:.,- e Positive Class & ® Positive Class
® . [ ° .
o | ® o Negative Class o 0.0 o Negative Class ¢
0.8 o i Lie ® 08{% ° °® s T
8 1e be® N g e ® . .. o ..
o0 o ° ° ° ®| e ¢ o O o % © ® L
o ° J Y e . o ° 0 g o © ° Py P
El 1l e °. ® ® ® D [ = i o 0 i ® °
g 0 6 LAJ ® .' PY .... ® [ ] ° rid .. h g 06 (< 2 e L J [ . ow ".
3 g L oe o XY
c c | ) ° «®
g o i
2 0.4+ 3 0.4
£ =
0.2 1 0.2
0.0 T T T T 0.0 T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Element Index Element Index

(a) A classifier perfectly predicting all (b) Classifier predicting overlapping val-
samples. Chosen threshold (red line) ues for both classes. Threshold unable to
splits classes correctly. perfectly separate the two classes.

Figure 2.4: Two classifiers predicting the class of elements. The true class is denoted
by color. Elements with values above the threshold (red line) are interpreted to be
predicted positive, all elements below as negative.
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(a) Classifier deci- decisions in a). Best performing points on curved indicated by
green squares, calculated by maximizing the Youden index over
all thresholds of the curve.

sion results. Red line
denotes exemplary

threshold of 0.5.
Predicted
Threshold Positive | Negative
Actual
Positive TP: 7 FN: 3
Cl - 0.5 R
Negative FP: 3 TN: 7
Positive TP: 7 FN: 3
c; = 0.57 .
Negative FP: 2 TN: 8

(c) Confusion Matrix for classifier decisions.

Figure 2.5: Classifier result (a)) with corresponding ROC curve, indicated Youden
indices (b)) and confusion matrix (c)). Inspired by Sammut and Webb (2011)

of our predicted positive values are actual positive, but decrease the recall, since we
miss more of the actual positive elements. If we lower the threshold, say to < 0.4, we
capture all our actual positive elements, thus increasing the recall, but also decreasing
the precision, as more of our predicted positive elements are actually negative.

This trade-off between precision and recall over a range of threshold values can be
visualized using a ROC curve (Figure 2.5). In Table 2.5a, the true class and a classifier’s
prediction is shown. The dashed red line represents a threshold of 0.5. To the right in
Figure 2.5, we see the resulting ROC curve for all thresholds from 0 to 1. Each threshold
corresponds to a specific true positive rate and true negative rate. The exemplary
threshold of 0.5 is marked as the red dot.
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The performance of the model expressed as Tpr(c) — Fpr(c) is also referred as the
Youden index J(c) (Drumond et al. 2024). The best performing threshold c* is the point
on the curve that maximizes

¢* = argmax Tpr(c) — Fpr(c)

2.1
= argmax J(c).
C

For the given data in Table 2.5a, two thresholds yield the same performance (marked
as green squares), which are ¢] = 0.57 and ¢5 = 0.67

Why these thresholds perform better than ¢ = 0.5 is also apparent if we compare
the confusion matrices for ¢; and ¢ in Table 2.5¢c. In summary, we use the ROC curve
and it’s Youden indices to evaluate a classifier’s performance over multiple decision
thresholds.

2.4 Imbalanced datasets

As we will see in Chapter 6, advertisements in podcasts make up less than 10% of an
average episode’s duration. This is similar to many other fields of research, where the
target class occurs less often than the other class, such as computer vision (Huang
et al. 2016), text classification (Estabrooks, Jo, and Japkowicz 2004), fraud detection
(Estabrooks, Jo, and Japkowicz 2004) or medical science (He and Garcia 2009). In most
cases, we speak of an imbalance if one class occurs three times more than the other,
but in extreme cases, imbalance can be as high as 1:5000 (He and Garcia 2009).

The reason for the imbalance can be both intrinsic and extrinsic (He and Garcia
2009). Intrinsic imbalances are a direct result of the nature of the data space, e.g. when
training a classifier to detect a rare disease, the disease is naturally less occurring than
non-disease images (given a medical diagnosis dataset of normal distribution). Extrinsic
imbalance on the other hand can stem from various factors, such as the time the dataset
was created.

Training on imbalanced data with canonical ML algorithms that assume an equal
sample distribution over all classes leads to biases towards the majority classes (He and
Garcia 2009). This is because the algorithms are designed to minimize the overall error
rate, rather than paying extra attention to the positive, minority class (Chen, Liaw, and
Breiman 2004). This poses a problem as the minority class is often the class of higher
importance.

The scientific domain of working with datasets where class frequency is imbalanced
is referred to as learning from imbalanced data and has been researched for well over
two decades (Japkowicz and Stephen 2002). The consensus is that while class imbalance
might not be the only factor in learning difficulties, it certainly is an important point to
address when building robust ML systems (He and Garcia 2009). In general, the means
to overcome the class imbalance problem are either resampling the dataset or assigning
custom class weights to the training algorithm’s loss function (He and Garcia 2009).
We will briefly look at their workings as well as when to use which strategy.
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2.4.1 Resampling

Resampling describes the strategic of oversampling the minority class or the under-
sampling of the majority class in order to adjust the class distribution. Oversampling
the minority class can either mean to feed the algorithm samples of the minority class
more than once or creating additional, artificial minority class samples. Duplicating
samples has the risk of overfitting, while creating artificial samples might not always be
possible (e.g. if the data is hard to produce, like medical imagery (He and Garcia 2009)).

Undersampling usually entails selecting fewer majority class samples in training.
This strategy can become problematic when the dataset is small and further limiting
the sample size via undersampling can lead to a performance decrease due to small
sample size. Estabrooks, Jo, and Japkowicz (2004) find that neither oversampling nor
undersampling is always the best strategy to use, as it is data and problem dependent.

In summary, resampling strategies can work well if the given dataset is large enough
to support the redistribution.

2.4.2 Weighted Loss Function

Weighted loss functions, as used in cost-sensitive learning, describes assigning custom
weights to the loss function of a ML algorithm, which results in higher misclassification
costs of the minority class (Huang et al. 2016). This can be a viable approach if the
dataset is rather small and reducing the sample size via undersampling would lead to
too little data. Chen, Liaw, and Breiman (2004) found that when comparing random
forest algorithms with either resampling or cost-sensitive learning, both adaption
performed better than algorithms without any imbalance strategy. But, they note that
paying closer attention to minority class members via cost-sensitive learning makes
the algorithm more vulnerable to noise in the minority class samples. They also observe
the algorithm using resampling to be more computationally efficient as it operates on
a smaller subset of the dataset.

2.5 Advertisements

The American Marketing Association (AMA) defines advertising as “[...] the placement
of announcements and messages in time or space by business firms, nonprofit organi-
zations, government agencies, and individuals who seek to inform and/or persuade
members of a particular target market or audience regarding their products, services,
organizations or ideas” (American Marketing Association 2025). A single announce-
ment or message is commonly called advertisement. Nowadays, advertisements are a
significant component of social and entertainment media, playing an important role
in marking strategies, often as the primary revenue source, e.g. in radio broadcasts
(Alvarez et al. 2024).

According to Spotify, the top monetization strategy for podcast is advertisements,
followed by subscriptions and merchandising (Spotify 2023b). Since podcasts are
usually distributed to listeners for free, advertising is an effective mean of monetiza-
tion, as proven in other free online media, such as videos on YouTube. Generally,
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advertisements in podcasts can be classified into either traditional advertisements or
sponsorships (Ritter and Cho 2009; Bulakh et al. 2023; Brinson and and 2023; Moe 2023).

In this section, we will provide the first answer to
RQ1: How can advertisements in podcasts be characterized and what differentiates
advertisements in audio podcasts from advertisements in video podcasts?

While the findings in this section are taken from literature, we will revisit the question
in Chapter 6 with practical insights when exploring the generated dataset.

2.5.1 Advertisements in Audio Podcasts

Advertisements in podcasts follow the aforementioned classification of traditional
advertisements and sponsorship. Traditional advertisements are prerecorded advertise-
ments as found on TV and radio broadcasts. They are often 15 seconds or 30 seconds
long and produced by the advertiser. We will call traditional advertisements inserted
ads, as they are inserted into the content.

Sponsorships are affiliations of the podcast’s host with a brand. Sponsorship ads are
read by the host and or their team members. We will call these self-voiced ads. They are
produced at the podcast producer’s end, allowing for a ‘look and feel’ that is close to
the regular content.

Ritter and Cho (2009) find that while inserted ads often contain direct selling
messages, while self-voiced ads indirectly deliver sponsor information. This might be
one of the reasons why podcast listeners prefer self-voiced ads over inserted ads, with
62% of participants stating they prefer self-voiced over inserted advertisements in a
study in the U.S. in 2023 (Cumulus Media, Signal Hill Insights 2024). This is in contrast
to 15% preferring inserted ads and 23% or participants have no opinion.

According to a study from 2022, self-voiced advertisements account for more than
half (55%) of the revenue of podcasts in the U.S. (IAB (U.S.) 2022), while some sources
indicate that self-voiced advertisements are also more expensive for the advertiser
to place in a podcast than running inserted ads (SiriusXM Media 2024). This might
be because studies have found that people generally have more goodwill towards
sponsorships compared to traditional advertisements, increasing their effectiveness
(Meenaghan 2001).

While inserted ads were often statically ‘baked into’ the audio a few years ago, these
days they are usually distributed using dynamic ad insertion (DAI) systems. These
systems dynamically insert advertisements into the content, usually when the podcast
is requested via the RSS feed consumer (Acast 2023). This is used to always embed
new and relevant advertisements into podcast episodes, regardless of when they were
produced. DAI systems can leverage consumer data to ensure close ad targeting and
relevance. When comparing audio podcasts to video podcasts as found on YouTube,
the use of DAI is not possible as videos are fixed in content from the moment they are
uploaded.
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2.5.2 Advertisements in Video Podcasts

The first major difference between advertisements in audio podcasts and those in video
podcast is that in the case of video podcast, the distribution platform might have their
own, separate ad logic employed. YouTube, as the leading platform for video podcasts
(Mayer and Riismandel 2023), offers three different ad formats, varying in style, length
and whether the user can interact (skip) with the ad. They can appear before, during
or after the video (YouTube Help 2025a).

YouTube highlights their ads when running them by differently coloring the progress
bar and showing information about the advertiser where the regular video’s discription
would be. When crawling YouTube videos for corpus generation done by automated
tools like YT-DLP (yt-dlp 2025), these types of ads are not fetched, as they are not part of
the video (although YouTube has experimented with embedding ads more natively into
videos in an effort to combat ad blockers (Anu Adegbola 2024)). Furthermore, as they
are strictly not part of the podcast episode, uploading a podcast to a different distributor
would not include them. We therefore exclude these kinds of advertisements from our
research and focus on advertisements directly embedded into the episode. This means
that all ads shown as part of the YouTube ad program are ignored.

When analyzing advertisements in video podcasts embedded by the creator, we
observe notable differences from traditional audio podcasts. A significant distinction is
the absence of inserted ads in video podcasts on YouTube. This lack of inserted adver-
tisements can be directly attributed to YouTube’s policy, which explicitly prohibits such
ads in its terms of service (YouTube Help 2025b) (Listing 2.1).

Does this mean I can burn video ads (pre-rolls, mid rolls, and post rolls)
into my videos?

No. YouTube's ads policies don't let you burn or embed advertiser-created and supplied
video ads or other commercial breaks into your content.

Listing 2.1: Excerp from YouTube’s terms of service prohibiting embedded adver-
tisements. (YouTube Help 2025b)

Consequently, as YouTube has become the leading platform for video podcast con-
sumption in recent years (Mayer and Riismandel 2023), this restriction contributes to
the overall landscape of advertising in video podcasts.

Another difference between advertisements in audio and video podcasts is the lack
of DAI systems for YouTube advertisements. Here, advertisements are still ‘baked in’,
as YouTube does not support changing a video once it has been uploaded. This leads
to static ad content in video podcast.



Related Work

The task of identifying advertisements in podcasts is closely related to tasks in
other fields of research, such as speech recognition, content detection and content
segmentation. In a broad sense, ad detection in podcasts can be generalized to the task
of content detection in long form audio. In this section, we will discuss research on
advertisement detection in long form audio, its related tasks and how this thesis fits
into the existing landscape.

3.1 Content Detection in Long-Form Audio

Content detection in long-form audio refers to the segmentation and classification
of different content types in an audio stream. Content types include speech, music,
advertisement and silence. The task has been studied in a variety of domains, such as
speaker diarization, music information retrieval and speech-to-text transcriptions.

In the beginning, researchers utilized handcrafted, low-level audio features for
analysis. Lu, Zhang, and Jiang (2002) propose a content detection algorithm that first
discriminates between speech and non-speech content before further categorizing non-
speech content into music, environmental sounds and silence. Distinction between
speech and non-speech is largely done via analyzing handcrafted signal processing
features, such as the “high zero-crossing rate ratio (HZCRR), low short-time energy
ratio (LSTER) [...] [and] spectrum flux (SF) [...]” (Lu, Zhang, and Jiang 2002) and using
classifiers such as K-nearest-neighbor (KNN) and linear spectral pairs-vector quanti-
zation (LSP-VQ). They achieve promising results with precision and recall metrics
between 0.8 and 0.9.

Speech / non-speech (SNS) detection is also examined by Zibert, Vesnicer, and
Mihelic (2007). They differentiate between SNS classification and segmentation, stating
that classifying non-speech content is especially hard as it can be produced by
various acoustic sources. They mark that most approaches process the audio signal
by extracting low level acoustic audio features such as mel-frequency cepstral coeffi-

17



3. Related Work 18

cients (MFCCs) (e.g. in Logan and others (2000)) to perform the detection tasks. They
introduce a higher-level approach using phoneme-recognition features designed to be
language agnostic, slightly approaching the problem from a NLP point of view. They
conclude that they expect the most suitable representation of audio signals for the SNS
segmentation tasks is a combination of acoustic and recognition-based features.

Zibert, Vesnicer, and Mihelic (2007) employed hidden Markov models (HMM:s) for
the evaluation of their approach, a statistical model architecture that is widely used
in the field of content detection a few years ago. The domain of speech detection has
seen heavy use of HMMs, e.g. in Rabiner (1989) Juang and and (1991) and Gales and
Young (2008). In short, HMMs are statistical models operating on sequential data, such
as speech, that are assumed to follow the properties of a Markov chain with hidden
states, which states that the probability of each event depends only on the state at the
previous event. In speech recognition, the underlying phonemic and linguistic units
can be modelled as the hidden states and the temporal dependencies of speech can be
effectively modelled with HMMs due to the Markov chain.

With the introduction of the Transformer architecture by Vaswani et al. (2017),
content detection especially in text but also in audio format has seen a shift from the
proven probabilistic models like the HMM and neural methods like long short-term
memorys (LSTMs) to Transformer-based approaches.

Zaman et al. (2025) give an overview how the Transformer architecture is used in
the field of audio detection tasks. They elaborate how the Transformer architecture,
originally designed for the field of NLP, has been successfully used in audio detection
tasks, due to its ability to capture “[...] long-range dependencies and complex patterns
in audio signals” (Zaman et al. 2025), made possible by the self-attention mechanism.
Additionally, the end-to-end nature of the Transformer eliminates the need for exten-
sive preprocessing of the signal. While having set new benchmarks in complex audio
detection tasks, the architecture does come with its downsides, notably higher compu-
tational cost and complexity, significant training resource requirement and expertise
in deep learning.

In summary, we see that approaches in content detection have evolved over the
last two decades from using handcrafted, low level audio features to processing using
probabilistic models like the HMM and more advanced neural network architectures
like LSTMs, to finally adopting the more performant but also more resource intensive
Transformer architecture. In this thesis, we will follow the latest development and
leverage the Transformer in our model architecture. This choice allows us to achieve
high-performance results while preprocessing minimizing complexity and simplifying
the development process, thanks to the end-to-end capabilities of Transformer models.
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3.2 Advertisement Detection in Digital Media

The detection of advertisement in digital media has been a topic of interest since the
start of the millennium. The existing work is mostly focused on detection in the context
of radio and television broadcasts. We will examine the strategies employed in the
following paragraphs.

In the early 2000s, researchers at Dublin City University were building a digital video
system to efficiently record, analyze, browse and view digitally captured television
programms (Marlow et al. 2001). Upon users requesting the option of automatically
deleting advertisement breaks, they begin to developed solutions for the problem of
advertisement detection. As many popular TV stations used a series of black, silent
image frames to separate advertisements from regular content and separate single
advertisements within larger ad blocks, they propose a system relying on the detection
of said frames for content segmentation. While achieving an average F; Score of 0.97
for ads of stations using black frames, the proposed solution is not resilient against
stations not using black frames for segmentation. Here, they measure the average shot
length, hypothesizing that commercials have a higher shot cut rate to maximize the
visual impact of ads. This proves to be less reliable, averaging a F; of 70.6. Marlow
et al. (2001) try to exploit specific knowledge about how ads are embedded into the
broadcast, which proves unreliable when the expected criteria are not met. It is unclear
how this method transfers to the domain of podcast.

In 2006, Covell, Baluja, and Fink (2006) utilize acoustic and visual fingerprinting
in order to detect and replace advertisements in television broadcast streams. They
motivate the replacement of ads to insert advertisements that are more tightly targeted
to the viewer. Their two stage approach first builds acoustic fingerprints for possible
match detection with fingerprints of known advertisements, before a computationally
expensive visual verification is performed. While they achieve high results, they rely
on the fact that most advertisements in television are “re-purposed footage” (Covell,
Baluja, and Fink 2006), meaning an advertisement is produced once and broadcasted
multiple times. This is not necessarily the case for podcasts, as self-voiced advertise-
ments are cheap to produce, resulting in some advertisements to be recorded on an
episode basis.

Cardinal, Gupta, and Boulianne (2010) take a similar approach to Covell, Baluja, and
Fink (2006), developing a system to monitor the shown advertisements in television
broadcast. They motivate their work by stating that it’s hard for advertisers to know
if their advertisements are broadcasted as requested and paid for. Computing a finger-
print of both audio and video of each frame, they slide the known advertisement over
the content and count the number of matched frames. This way, the task procedure
for “searching specific ads in an audio stream is very similar to the copy detection
task” (Cardinal, Gupta, and Boulianne 2010). But, as previously noted, we cannot
assume advertisements being repeatedly used in the domain of podcasts, given the
prevalence of self-voiced advertisement segments.
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Ramires, Cocharro, and Davies (2018) propose a different approach that is closer
to Marlow et al. (2001) by listening for short silences as segment boundary markers
between regular programming and advertising. They state that they can differentiate
between proper segment boundary silences and silences in regular content by examin-
ing the frames before and after the silence, as a boundary silence is expected to be “short
in duration, have a low minimum value, and be surrounded by regions of much higher
energy” (Ramires, Cocharro, and Davies 2018). They feed the signal data to a multiple
linear regression model, outperforming a freely available audiovisual approach.

All the work discussed so far have approached the problem from a signal processing
perspective. In 2024, Alvarez et al. (2024) introduce a novel approach by utilizing a
customized RoBERTa (Liu et al. 2019) model to solve the task via text classification.
Their solution removes the need for prior knowledge of the broadcast content, having
performed extensive supervised training of audio broadcast material. The training data
is sourced from high-audience Spanish radio stations and self-annotated using open
source annotation software. The annotation process is overseen by a computational
linguist in an effort to secure precise and accurate annotations.

The annotated audio is segmented by either exact or non-exact segmentation. The
former segments the audio into chunks of n seconds before transcribing, the latter does
the transcription first and segments the text afterward. Transcription is done using
OpenATI's Whisper (Radford et al. 2023). Before training on the transcriptions, the text
is split into window lengths of z, x € {10, 20,40} seconds. They find that their model
performs best when training with a window length of 10 seconds and evaluating with
a window length of 40 seconds, with transcriptions coming from Whisper’s medium-
sized model. With a F] Score of 0.87, they outperform approaches of prior studies.

Concluding, we see that advertisement detection in audio media in the past has
been done using primarily signal processing, until the introduction of the Transformer
architecture, which enabled text classification approaches to outperform previous
attempts. The source data was mostly from television, with Alvarez et al. (2024) using
radio broadcasts as input. In our study, we will combine the audio and text modalities
in an effort to capitalize on a wider feature space. Additionally, we will apply this
approach to in-domain and out-of-domain podcast data.

3.3 Advertisement Detection In Podcasts

Now that we have looked at advertisement detection in the domain of television and
radio, we will turn to podcasts, as other studies have previously suggested approaches
specific to this domain.

In 2010, Nguyen, Tian, and Xue (2010) propose an efficient method for unknown
(but repeated) advertisement discovery in podcast using a two-step process: Candidate
segmentation and sampled search. They split the podcast into potential candidates
and non-candidates by classifying one-second windows of audio data based on signal
features (e.g. energy-entropy block (EEB) and high-zero-crossing-rate ratio (HZCRR))
using a fuzzy neural network (FCMAC-BYY). Afterward, they fingerprint the candi-
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dates and compare them with other candidates’ fingerprints. This work, similar to
others in the domain of television broadcast, uses signal processing, as it was the de
facto approach at the time.

Reddy et al. (2021a) use the Spotify podcast dataset (Clifton et al. 2020) (see
Section 3.4) to introduce classifiers to detect extraneous content in podcast, such as
“sponsor advertisements, promotions of other podcasts, or mentions of the speakers’
websites and products” (Reddy et al. 2021a). Extraneous content is a source of noise for
NLP tasks, which motivates the removal. They first fine-tune pretrained BERT (Devlin
et al. 2019) models on podcasts descriptions and transcriptions (one model each) and
then train the obtained models for classification on self-annotated podcast data. On
the sentence level, they measure higher classification performance for the description
corpus compared with the transcription corpus. They speculate that incorporating
audio features might improve performance as extraneous may appear as pre-recorded
audio or with difference speaking pitch and cadence.

In his bachelor’s thesis Dahlin (2024) explores the idea of an adblocking system for
podcasts, similar to adblockers for web browsers. His idea is to exploit the fact that
many podcasts use DAI to inject targeted ads based on the user’s location, among other
features. By fetching an episode by two different IP addresses using a proxy, the two
files can be compared and checked for dissimilarities. He states that while his solution
suffers from several limitations, it’s lightweight in nature and capable of removing 100%
of ads in a podcast, given the podcasts contains only geolocated, dynamically inserted
advertisements.

With our third research question, we analyze how models trained on video podcast
perform when evaluated on audio podcasts:

RQ3: Can training data from video podcasts be used to detect advertisement in audio
podcasts?

We find that previous studies have not tried to classify advertisements in podcasts with
classifiers that were trained on OOD data. They used either the Spotify dataset (Clifton
et al. 2020) or created their own. Since data annotation is a labor-intensive task, using
possibly pre-annotated OOD data could reduce the required effort.

Using transcriptions of YouTube videos to train a neural network identifying
advertisement segments is not a new idea. GitHub user Andrew Lee has built a
neural network to predict timecodes of ad segments in YouTube videos (Lee 2023).
The project uses a bi-direction LSTM network trained on automatically generated
video subtitles with user-generated advertisement timecodes from SponsorBlock (Ajay
Ramachandran 2024) (see Section 5.1.2). The “YouTube Transcript APT’ python package
is used to source the subtitles. The package uses an “undocumented part of the YouTube
API, which is called by the YouTube web-client”(Depoix 2024).

It is unclear how accurate the transcripts are in terms of word error rate or how
they are generated, other than likely by Google Cloud’s automatic speech recognition
(ASR) tools. Performance data of NeuralBlock’s LSTM model is not available. The
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author hints at using different transcription techniques as a means of improving the
system, as YouTube creators can disable the generation of closed captions altogether
and the quality of the available captions is unknown (Lee 2023). The project had its last
meaningful changes in September 2020.

3.4 Podcasts As A Research Resource

Podcasts have been used as a research basis by numerous studies, albeit not for ad
detection. In 2020, researchers at Spotify released a dataset of 100,000 audio files and
their respective transcription of English podcast episodes (Clifton et al. 2020). They
demonstrate the complexity of the domain with two exemplary tasks: Passage search
and summarization. Later released research on podcasts often use this dataset as a basis
(Reddy et al. 2021a; Vaiani et al. 2022). It has since been pulled and is no longer available
(Spotify 2023a). It seems also unlikely that it contained advertisement time codes.

Reddy et al. (2021b) use the Spotify dataset to investigate how linguistic style and
textual attributes in podcasts relate to listener engagement in a quantitative analysis.
They extract multiple linguistic features such as episode length, vocabulary diversity,
proportion of ads, swearing etc. using term frequency-inverse document frequency
(TE-IDF), latent Dirichlet allocation (LDA) and other means. These features are com-
pared with Spotify streaming numbers of first time listeners. They find that engaging
podcasts tend to contain positive sentiments, are longer, have fast speaking creators
and are less likely to contain swearing. The correlation between ads and engagement
is mixed, as large amounts of ads in transcripts are associated with lower engagement,
but ads in podcast transcriptions don’t seem to have a large impact.

Zhu et al. (2023) propose the first spoken language identification (SLI) system using
speaker embeddings from podcast data. Previous SLI systems are primarily designed for
short audio clips, showing low performance when applied to long-form audio. Gener-
ating VGGVOX (Chung, Nagrani, and Zisserman 2018) speaker embeddings during
unsupervised speaker diarization, they train a multi-class FNN, achieving F] scores of
0.91 and 0.81 for long-form and short-form audio respectively.

Lastly, Ghazimatin et al. (2024) present a fine-tuned encoder-decoder Transformer
model to segment conversational data as found in podcasts. Podcast pose a difficult
source for segmentation tasks, as episodes tend to be less structured than written text
and often contain spontaneous side tracks before returning to a larger topic (Figure 3.1).
By providing the podcasts metadata and previously generated chapter titles, their
model generates chapter transitions and titles simultaneously, augmenting input text
samples with global context. Doing this, they are able to outperform existing long-
dependency text segmentation approaches (e.g. CATS as in (Glavas and Somasundaran
2020)).
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00:00 - 05:40 Peter’s background @) Training methods @

05:40 - 15:00 Peter’s exercise goals @) Nutriti d
utrition an

@

O  supplementation
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Effects @)
15:00 - 30:30 Peter’s exercise framework @
30:30 - 55:50 Peter’s training advice @) History @)
(a) (b)

Figure 3.1: Chapters (purple circles) for (a) an episode about training tips vs. (b) a

structured Wikipedia article about training. The episode chapters have short tangential

discussions (gray circles), shared context (Peter’s experience), and a consistent title

style. In contrast, Wikipedia chapters focus on the main topic with short titles that lack
global context. (Ghazimatin et al. 2024)

3.5 Existing Podcast Ad Detection Systems

In this section, we will briefly look at an existing podcast ad detection system: Adblock
Podcast (Engle-Eshleman 2025). Created by Engle-Eshleman as a side project, Adblock
Podcast is a paid podcast player that automatically detects and skips advertisement for
the user. User payments are shared with creators whose ads were skipped as means
of compensation. During brief e-mail correspondence, the creator explained that he
had looked into several techniques to detect advertisements, prioritizing speed and effi-
ciency. Ultimately, he employs “simple heuristics layered on top of each other” (Engle-
Eshleman (2025) E-mail to Felix Wolf, 1. April). He states that the most annoying ads
are often the easiest to detect, with his system struggling with self-voiced ads. He is
planning to possibly employ a large language model (LLM) to improve the service.

3.6 Advertisement Type Categorization

Bulakh et al. (2023) have examined podcast advertising and propose a classification of
podcast advertising. Advertisements in podcasts can be classified according to multiple
overarching categories, such as the method of providing advertising information, the
location of the advertisement in the podcast as well as the method of insertion of
the ads. An excerpt of their classification is shown in Table 3.1. While they come up
with seven categories for types of advertisements in podcasts, only the first two are
of relevance for this thesis, as they describe the types of short, content-interrupting
segments we try to identify:

1. Pre-recorded segments produced by the advertiser (inserted)
2. Host-read advertising announcements (self-voiced)

These two types of advertisements are also present in other research (Brinson and
and 2023; Moe 2023; Ritter and Cho 2009). In addition to the type of advertisements,
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Classification criteria

Types of advertising

Characteristics

According to the method of pro-
viding advertising information

re-recorded commercial audio

clip

the video is recorded by the host
which starts automatically before
the podcast. Usually such videos
are professionally recorded, they
are only inserted into the podcast
in the right place

spoken by the host

an announcement delivered by
the podcast host

an invited expert

the interlocutor of the podcast
who is a representative of the
company

native advertising

advertising embedded in the pod-
cast (mentioning a product or ser-
vice in the context of the podcast
topic)

sponsorship/partnership presen-
tation

mentioning the company as a
sponsor/partner of the program.
The listeners’ loyalty to the brand
and its recognition is increased

branded podcast/ season

podcasts are created under a sep-
arate brand, by the brands them-
selves usually

advertising modules / thematic
episode

these are mini-podcasts on var-
ious topics within the main re-
leases, the leitmotif of which is
a certain brand. The brand can
participate in the recording of the
module and/or choose a topic that
suits both the brand and the pod-
cast

According to the method of ads in
podcast location

pre-roll ad it appears at the beginning of the
podcast and lasts 10-15 seconds
mid-roll ad it appears in the middle of the

podcast and lasts 30-90 seconds

post-roll ad

it appears at the end of the pod-
cast and lasts 15-30 seconds

According to the method of inser-
tion ads into podcasts

dynamic insertion

advertising is recorded separately

embedded advertising

recorded in the main audio file of
the episode

Table 3.1: Classification of podcast advertising. Except from Bulakh et al. (2023).

they categorize the placement in pre-, mid- and post-roll ads as well as the method of
insertion that can be either dynamic or statically embedded.

In this thesis, we will follow the distinction of inserted and self-voiced advertise-

ments, as they appear also in other research can be found in our dataset (see Chapter 6).



Problem Statement

In this chapter, we will summarize the problem of advertisement detection in
podcasts and define a formal problem statement.

4.1 Problem Context

As the related studies in the previous chapter have shown, working with long form
audio in general and with podcast in particular for classification tasks is difficult due to
the medium’s heterogeneous characteristics. To recap, podcasts as a media format come
in many different flavors, from formal news formats to true-crime stories, comedy and
many more. Each genre differs in speaking style, number of participants and structure.

Regarding the advertisements included in the data, there is neither a guaranteed
position within the podcast nor is the length of an ad segment fixed. Segments can be
inserted or self-voiced, with inserted advertisements often being distributed via DAL
The use of DAI systems makes the creation of datasets and corpora non-deterministic,
as it is highly dependent on factors that are relevant to the advertiser, such as the date,
the geographical location and other user specific data. Bulakh et al. (2023) show that
advertisements can be categorized using different criteria, like how they convey the
advertising information, the ad’s position in the episode as well as how it is inserted
(Table 3.1). They find that inserted segments differ from self-voiced segments in style
and production. This diversity in style complicates classification tasks, as there is no
clear blueprint for what content and advertisements can look like.

Before one can classify advertisements in podcasts, the input data first has to be
segmented into chunks that are large enough to capture needed context, but small
enough as to not exceed an algorithm’s input size limit. Some studies have proposed
approaches to chapterize podcast data (Ghazimatin et al. 2024), which is a difficult task
on its own, due to podcast’s non-linear structure. If segmentation were to be done
by time, segments could be cut mid-sentence or mid-chapter, resulting in decreased
coherence. Text-level segmentation on the other hand requires the decision of how
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many utterances / words / sentences should be considered as a single input, with the
aforementioned tradeoff between large context and small input size in mind.

Lastly, the approaches looked at in Chapter 3 have most often used signal data as
model inputs (e.g. Ramires, Cocharro, and Davies (2018)), with only the most recent
studies leveraging the Transformer model architecture to efficiently compute and use
word embeddings (e.g. Alvarez et al. (2024)). Combining both modalities in an efficient
model architecture is desired.

4.2 Research Questions
We have defined the following research questions in Chapter 1:

RQ1: How can advertisements in podcasts be characterized and what differentiates
advertisements in audio podcasts from advertisements in video podcasts?

RQ2: How does model performance vary when using audio, text, or multimodal
training data?

RQ3: Can training data from video podcasts be used to detect advertisement in audio
podcasts?

We will use our research questions to structurally investigate the problem. Answering
RQ1 will give us insights into the structure of podcasts, RQ2 will help us understand
how much information audio and text features in podcast hold. With RQ3, we inves-
tigate how well learned features can be transferred to video podcasts and the space of
YouTube videos.

4.3 Formal Problem Statement

This thesis investigates the problem of automatically identifying advertisement seg-
ments in audio podcasts using machine learning. The central challenge lies in designing
a model that can distinguish between ad and non-ad content across diverse podcast
genres, formats, and insertion styles.



Methodology

After outlining the problem in the previous chapter, this chapter describes the prac-
tical approach taken to tackle the issue. We will describe the employed technologies
and considerations for the dataset creation, the model selection, training as well as the
evaluation.

5.1 Data Collection

As previously mentioned, a dataset of labeled ad segments in podcasts transcriptions
and their audio source is not readily available. The Spotify Podcast Dataset (Clifton et
al. 2020) did provide transcriptions of 100,000 episodes of English podcasts, but it is
unclear whether they contained advertisements and the dataset has since been pulled
from the internet.

To address this issue, we will create our own dataset. Since we want to explore how
OOD data from video podcasts can be used to detect advertisements in audio podcasts
(RQ3), the dataset will be composed audio and video podcasts. We will leverage the
SponsorBlock database (Ajay Ramachandran 2024) to automate the annotation of the
video podcasts. The audio podcast dataset will be annotated manually, as there is no
database to use, thus having less episodes. From now on, we will speak of either the
audio podcast or the video podcast dataset.

5.1.1 Audio Podcasts

The audio podcast dataset represents podcasts as they are listened to by most users,
with 60% of Spotify users streaming a new show choosing an audio podcast (Spotify
for Creators 2024). The first step in creating the dataset is selecting shows and episodes
to download. To eliminate biases in the selection of podcasts, we select first 100 shows
in Apple Music’s top podcasts charts in the United States as of the 10th October 2024.
The list was sourced from chartable.com (Chartable.com 2024), a service that has since
been phased out. For reference, the shows as well as their order can be found in
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Figure 5.1: A podcast episode loaded into Audacity. From the waveform, we instantly
see parts of the audio that are different from others. Placement and length hints that
these parts might be advertisements.

Appendix A. For each of the 100 shows, all available, but no more than five episodes
were downloaded, sorting by release date and selecting the latest episodes.

The next step is the annotation. Each episode is manually annotated. The process
here is to open the episode in Audacity' and examining the waveform. In many
cases, possible ad breaks are visually distinguishable from regular content, as shown
in Figure 5.1. Skipping through the episode, we ensure that no advertisements are
missed and also very that possible candidates identified by visual inspection are indeed
advertisements. Start and end timecodes of advertisements are retrieved by hand and
saved in a JSON file, as well as the type of advertisement (inserted / self-voiced). Audio
loading, data entry and saving is streamlined by a custom python script.

The final step is the transcription of the audio files. This is described in Section 5.2.
In total, 160 of the 480 downloaded audio podcast episodes were annotated, due to time
limitations.

5.1.2 Video Podcasts

Using in-domain audio podcasts for training and evaluation is the canonical way when
ultimately seeking inference on audio podcasts. The appeal for creating a dataset from
OOD data to train ML models is in the possibility to skip the tedious data annotation
step, allowing us to create larger datasets with less effort in less time. Essentially, we are
looking for a database with existing advertisement timecodes for podcast-like material.
On YouTube, this database is part of the SponsorBlock project.

SponsorBlock is an “[...] open-source crowdsourced browser extension and open
API for skipping sponsor segments in YouTube videos” (Ajay Ramachandran 2024).

thttps://www.audacityteam.org/
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Heuristic Attribute | Condition Description

Segment Category = ‘sponsor’ Must be labeled as a sponsor segment
Video Duration 1hr < duration < 3hr | Podcast-like video length

Segment Length > 10 seconds Filters out very short segments

Table 5.1: Heuristics used to extract podcast-like video from SponsorBlock’s database
of YouTube-videos.

Users submit timecodes and appropriate category tags (e.g. ‘sponsor’, ‘unpair / self-
promotion’, ‘exclusive access’ etc.) for their currently watched YouTube video using
buttons embedded into the YouTube player. If a user watches a video that happens to
already have timecodes submitted by another user, the ‘sponsor’ segment is automati-
cally skipped by the video player. SponsorBlock can be understood as an adblocker for
in-video advertisements. The project is available on most browsers and as of April 2025,
the SponsorBlock database has data for 10,040,141 videos, although only 2,793,476 have
timecodes for ‘sponsor’ type segments (data taken from downloaded database).

Since the SponsorBlock database does not only contain the advertisement time-
stamps for each video, but also metadata like the video’s duration in seconds, the
type of segment and the length of the segment, we can create a simple heuristic to
retrieve videos that are most likely podcast-like (Table 5.1). We use these heuristics to
query the SponsorBlock database for podcast-like videos. Tools to download YouTube
videos programmatically are readily available, we choose YT-DLP (yt-dlp 2025). The
downloaded videos are stored as audio files in 16 kHz mono to reduce storage footprint.
We download 1,000 videos using our outlined heuristics. Chapter 6 will explore the
created dataset.

5.2 Transcription

The transcription process is the same for the downloaded audio and video podcasts.
We use OpenAl’s Whisper (Radford et al. 2023) to create transcriptions of our audio
data, as it is freely available, performant and low in word error rate. Whisper is a
Transformer sequence-to-sequence model trained on a large dataset of diverse audio,
enabling it to perform multilingual speech recognition, translation and speech identi-
fication (Radford et al. 2023).

When creating the final dataset for training, our goal is to generate samples labeled
either AD or NO AD, with no overlaps (mixed labels). While we can split the audio
data along the timecodes to ensure no overlaps, we lack any information about the
corresponding text content. We need to align the advertisement timecodes with the
audio transcriptions.

For this, we use the whisper-timestamped fork of Whisper (linto-ai 2023), which
enhances the original model by adding word-level timestamps and confidence scores
to the transcriptions. This enables us to accurately split the transcription based on the
advertisement timecodes.
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When using Whisper and whisper-timestamped, we can choose between six model
sizes, from the 39 million parameter tiny model to the 1.5 billion parameter large
model. An increase in model parameter increases accuracy but also required VRAM
and processing speed. For comparison, the large model is 10 times slower than the
tiny model (OpenAl 2022). Facing time and computing constraints, we choose the base
model with 74 million parameters, hoping to achieve a balance between transcription
accuracy and resource and time requirements. We will examine obtained transcription
quality in the data exploration chapter (Section 6.11).

5.3 Segmentation

As discussed in the problem statement in Chapter 4, segmenting the raw audio stream
is a difficult task. We are looking for a tradeoff between small samples being easy to
digest by models, but holding little information regarding its context and large samples
holding a lot of (not necessarily monothematic) context, but being potentially too large
for specific model input limitations.

On the text level, if we assume that the topics of advertisements differ from regular
content, we ideally split the audio along changes in topic. But to do so, we would have
to employ some kind of chapterization technique as presented by Ghazimatin et al.
(2024) (Glavas and Somasundaran 2020) and Feldstein Jacobs (2022). Traditionally, text
segmentation is done using the LDA topic model as presented by Hearst (1997) and
later Riedl and Biemann (2012), but it is likely that these methods perform worse given
the less linear structure of podcasts compared to traditional texts (see Figure 3.1). Using
more advanced methods like the mentioned exceeds the scope of this thesis.

On the audio level, we could use cues and characteristics found at content borders
to segment along, as showcased by e.g. Marlow et al. (2001) in television broadcasts
using silent frames. However, it is unclear whether these characteristics are similarly
present and consistent.

Ultimately, we've decided to employ sentence level segmentation, splitting the
transcription along sentence borders. Using the timestamped transcription obtained
through whisper-timestamped, we can split the audio accordingly. Since single sen-
tences might hold too little contextual information, we can concatenate sentences to
increase the context.

5.4 Feature Selection

While traditional approaches in content classification (as discussed on Chapter 3)
would use hand-crafted features extracting specific data characteristics (e.g. MFCCs) as
their classifier’s input, the emergence of the Transformer architecture (Vaswani et al.
2017) and pre-trained Transformer models (like the generative pre-trained Transformer
(GPT) model family) enables us to use pre-trained model embeddings as features for
downstream tasks, such as classification. As these pre-trained models have been trained
on vast inputs, their embeddings can be expected to be feature-rich. Additionally, where
traditional approaches necessitate a pipeline of multiple models each solving a specific
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step (e.g. topic modelling and segmentation), modern models are build in an end-to-
end architecture, unifying the tasks of multiple models in a single models, decreasing
setup and training complexity.

In this thesis, we will use multimodal input embeddings computed from audio and
text input produced by the LanguageBind Transformer model as feature representa-
tions for our classification layers. The model is further described in the next section.

5.5 LanguageBind

LanguageBind as presented by Zhu et al. (2024) is a multimodal Transformer model,
designed to align input representations between language and audio, video, image,
depth and thermal modalities into a unified embedding space. The unified embedding
space enables zero-shot and few-shot transfer across tasks and modalities.

Architecturally, LanguageBind uses a multi-encoder approach, in which each modal-
ity is processed by a dedicated encoder. Before the input is being processed by the
encoder, transformation is done. For text, this is done by a BPE tokenizer. For other
modalities, they employ patch embedding, transforming the inputs into Transformer-
digestable patched vectors. Specifically for audio, the transformation step entails
downsampling to 16 kHz.

LanguageBind uses a contrastive learning objective, feeding pairs of text and another
modality into the model. Pairs of semantically aligned inputs are encouraged to have
similar embeddings, while non-matching pairs are pushed apart. To enable this, they
present a novel five-modality dataset (VIDAL-10M), holding three million pairs of
video-language, infrared-language and depth-language and one million pairs of audio-
language. The resulting learned input embeddings serve as semantic representations
of the raw input.

Since we pursue a multimodal approach for our classification, in which we want to
capture information in text and audio, using LanguageBind to source aligned embed-
dings is a logical choice.

5.6 Model Architecture

As outlined in the previous sections, we segment the raw input on the sentence level
and feed the aligned samples of both audio and text into the LanguageBind Transformer
model to obtain multimodal feature embeddings, which we use in a classification layer.

Figure 5.2 illustrates the model architecture. Each episode consists of an audio file
as well as corresponding timestamped transcription. The segmentation step uses the
timestamped transcription to split the text into sentences. As LanguageBind expects to
receive whole audio files as inputs, we could split the audio into sentence-long chunks
and use those as our input, since we want to the model to pay attention only to the part
of the episode’s audio data that aligns with the current sentence. I/O operations such as
loading audio data into memory is computationally expensive, encouraging a different
approach than doing thousands of I/O operations for tiny audio pieces per episode.
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Figure 5.2: Model architecture of local classifier. LanguageBind audio and text embed-
dings are fed through a FNN classifier.

Instead, we do not split the audio into sentence chunks, but rather create timecode
pairs of sentence start and end times. During training, we load the entire episode into
memory once and use the timecode pairs to splice the audio data for our desired data
chunk. Making LanguageBind accept preloaded audio data and timecode pairs as input
required an interface change.

Feeding raw text and audio data and timecode pairs to LanguageBind, we receive the
feature embeddings from text and audio encoders. Before handing them to the down-
stream classifying layers, we concatenate the two vectors of size 768 to a single vector
of size 1536. The concatenated vector is passed to the classification layers, consisting of
two hidden layers and the output layer. The architecture can also be configured to only
work on single-modality embeddings from text or audio. In this case, the concatenation
step is skipped, and the first linear layer takes in input vector of size 768 and produces
an output vector of size 512.

The above presented architecture processes multiple samples at once, in batches,
but the samples have no information about surrounding samples. Therefore, we
can feed the samples randomly into the model, increasing robustness. We call this
architecture local, as the context is limited to the local sample. Figure 5.3 presents
another architecture employed in the thesis, which uses multiple intermediate sample
representations from a local classifier as input to introduce contexts. We will call this
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Figure 5.3: Model architecture of superlocal classifier. Intermediate representations of

local classifier are concatenated to create context.

architecture superlocal, as it’s still limited, but exceeds local context. The intermediate
representations produced by the local classifier are concatenated into a single vector
and subsequently reduced in dimensionality in the classification layers. The output
layer produces a single vector with a real number for each input sample.

5.7 Training Process

We choose binary cross-entropy as our error metrics, as it is well suited for binary
classification tasks. We will experiment with undersampling of the majority class to
overcome the imbalanced class problem. Here, we test different class splits, as well as
training on the original distribution and see their impact. Using backpropagation, we
update the weights on our classification layers, but leave the weights in the Language-
Bind encoders as-is. In our classification layers, we use a dropout probability of 0.3 and
the RELU activation function.

In the local classifier, where samples are not logically connected to each other, we
input samples into the model out-of-order. The batch size is set to 32. In the superlocal
classifier, samples are fed into the local classifier in order (otherwise, the context
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would be meaningless), before being concatenated. Here, we experiment with different
segment size values.

To retain comparability between different models when using random sample
selection, we use the same random seed throughout all experiments. Additionally, we
perform a train test split of 70%/30%, that also uses a fixed seed.

We will train local classifiers on audio and video podcasts separately, in an effort to
compare the performance similarities and since we want to answer RQ3, in which we
examine how OOD data can be used to train models running inference on in-domain
data.

Superlocal classifiers use a local classifier model as for their input transformation.
Here, we use the best performing model obtain in the process of local classifier training.
Due to scope constraints, we will only train superlocal classifiers on in-domain audio
podcast data.

To recap, Table 5.2 summarizes the experiments we will carry out. While the first
two are designed to answer our remaining research questions, the third experiment
is designed to overcome possible downsides of our chosen architecture, namely the
missing context between samples. We will also investigate if different advertisement
types have different classification performances. After the experiments are carried out,
we will experiment with decision thresholds, look at ROC curves and evaluate the
models in a real-world application scenario.

5.8 Performance Evaluation

We will evaluate models by computing their precision, recall, F] and Fj 5 scores. We
motivate the evaluation of Fj 5 scores by stating that advertisement detection is a pre-
cision-oriented task. When an advertisement detection system is used to automatically
remove advertisements from podcasts to improve user experience, removing content

Name Description
Modality Train models on embeddings of text data, audio data
Information Gain and combined data. Evaluate performances.
Answers RQ2.
Out-of-domain Train models on in-domain and out-of-domain data,
Training Data compare performance when evaluated on in-domain
data.
Answers RQ3.

Superlocal Context Introduce superlocal context by concatenating embed-
dings of single sentences. Evaluate how performance is
influenced.

Advertisement Type Train classifier on only self-voiced or inserted ads,
Classification Performance | evaluate performance differences.

Table 5.2: Experiment overview.



5. Methodology 35

due to false positives (low precision) is far worse than not removing advertisements due
to false negatives (low recall). The Fj 5 scores values precision as twice as important as

recall.

Additionally, we employ cross-evaluation, evaluating a model that is trained on
audio podcasts both on audio podcasts and video podcasts and vice versa. This will
help us answer our third research question:

RQ3: Can training data from video podcasts be used to detect advertisement in audio
podcasts?

For selected models, we will examine how the choice of the decision threshold value
in inference influences the model’s performance. We will use the ROC curve and its
true positive and false positive rate to illustrate a model’s performance in a real-
world scenario with an example. Lastly, we will examine faced errors and try to find
hypotheses for their causes.



Data Exploration

In this chapter, a comprehensive analysis of the datasets will be provided. Using
various plots, we will gain insights on how advertisements are used in podcasts. We will
look at the position of ads in an episode, how the number and length of ads correlate
with the episode’s length as well as general information regarding the entries in the
dataset. This will lead us to the answer of the RQ1 (see Section 6.13). Throughout the
data exploration, data related to audio podcast is colored blue, while video podcast data
is colored orange.

6.1 General Statistics

First, Table 6.1 holds general statistics about the dataset. As discussed in Chapter 5, the
dataset consists of 160 annotated audio podcasts and 1000 annotated video podcasts.
Since video podcasts were converted to 16 kHz mono, they have only a slightly larger
storage footprint than audio podcasts, which we store in 44.1 kHz stereo. Measuring
how much of an episode’s duration is attributed to advertiser content, we see that
audio podcasts have more than double the advertisement percentage compared to video
podcasts (8.95% vs. 3.43%).

6.2 Timeline Distribution
Next, we will look at the date of upload of the entries in the dataset, which is shown
in Figure 6.1. The x-axis holds the relevant months and years, the y-axis denotes

Source Number Storage Total Ad Ad

of Items Size | Duration | Duration Percentage

Audio Podcast 160 | 13.85 GB 171h 15h18m 8.95%
Video Podcast 1000 | 15.50 GB 1,481h 50h44m 3.43%
Total 1160 | 29.35 GB 1,652h 66h03m 4.00%

Table 6.1: General dataset statistics.
36
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Figure 6.1: Timeline distribution of dataset entries.

the number of videos uploaded in a particular month. In our video podcast dataset,
entries are distributed from 2012 until 2024, with the majority of data points from 2021
onwards.

Audio podcast data on the other hand is only available for the years 2023 and
2024. This is caused by the way the audio podcasts were sourced, since we’ve selected
podcasts that were popular in mid of October 2024 and of those podcasts, the 5 most
recent episodes were downloaded. That way, a podcast releasing once a week would
have no episode older than September 2024. Some podcasts release new episodes less
frequently than weekly, which is why we have some data points that are released in
2023. Also, it could be the case that a podcast is popular in late 2024 that stopped airing
in late 2023.

Video podcasts were chosen randomly from all entries in the SponsorBlock (Ajay
Ramachandran 2024) database. Here, we see a bias towards recent years. The hypothe-
sis here is the project gained users over the years and people might watch and therefore
annotate primarily new videos.
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6.3 Episode Length

Looking at the episode’s duration in the dataset (Figure 6.2), we see that on average,
audio podcasts are shorter than video podcasts. The minimum length in video podcasts
is 60 minutes, which is a slightly more than the median value of the audio podcasts.
Here, it’s important to note that the used heuristics in the video podcast dataset
generation (see Section 5.1.2) required the videos to be at least 60 minutes in length.
This heavily influences the statistic, as one can assume that most YouTube videos are
shorter than one hour. Another heuristic limits our query to videos no longer than 3
hours, which is why no video is longer than that.

We see that in the case of video podcasts, most episodes have a length between 60
and 100 minutes, with the majority of those being between 60 and 70 minutes in length.
Audio podcasts on the other hand seem to follow a normal distribution, with most of
the episodes being between 30 and 70 minutes in length.

6.4 Genres

Next, we examine the episodes’ genres. In all cases, the podcast’s RSS file contained
the <itunes:category> tag, holding the specified genre. Some podcast have multiple
entries, in that case the first entry is used. Video podcasts sourced from YouTube have
no RSS file, but we are able to process the video tags provided by the creator, as they are
returned to us by YT-DLP (yt-dlp 2025). We therefore have genre data for both sources,
but cannot directly compare them as their categorization differ. Figure 6.3 shows the
found genres.

While the two sources share only a few common genres, such as comedy, education
and sports, we can also look at what is included in one part of the dataset but absent
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Figure 6.2: Episode lengths in minutes. On average, audio podcasts are shorter.
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Figure 6.3: Genre frequencies of audio and video podcasts. As they come from different
sources, they cannot be directly compared.

in the other. For example, the genre of true-crime has the second-highest frequency
among audio podcasts and is not found in video podcasts. This either means that true-
crime is not popular on YouTube or that true-crime videos are categorized differently,
for example under entertainment. In video podcasts, entertainment is the most-
frequent genre, but it’s not listed for audio podcasts.

6.5 Number of Ads per Episode

Turning to advertisement-related observations, we first examine the number of adver-
tisements per episode. Figure 6.4 shows that one to twelve individual advertisement
can be found in a typical audio podcast, with seven segment being the most common.

In a study published by Westwood one, 600 participants where questioned for the
acceptable number of advertisements in a podcast of a specified length (Westwood One
2021). For a 60-minute-long podcast, 3.8 advertisements were deemed to be appropriate.
Compared to our findings, we conclude that today’s audio podcasts now contain, on
average, twice as much advertising as was deemed acceptable in 2021.

Video podcasts usually contain one to three segments, with about 75% of episodes
containing one or two individual advertisements. While we can ensure that individual
advertisements are annotated as such (as opposed to marking multiple ads in a row
as a single annotation) for audio podcast, we cannot say the same for video podcasts,
as the annotations are crowdsourced. Users contributing to the SponsorBlock project
have little incentive to label multiple, consecutively shown advertisements as single



6. Data Exploration 40

Ads Per Episode

Source
[ Audio Podcast

[ Video Podcast
0.5 1

Relative Frequency
o ©
w >

o
IN)
)

0.1 ] r

0.0 _.:[. J — —"{:l'_'__'__‘zz——'——bf—'
5 6

7 8 9 10 11 12 13 14 15 16 17 18 19 20
Figure 6.4: Number of ads per episode.

Number of Ads

blocks. They are likely to annotate them as one segment, as the goal is to skip the
complete block.

In an attempt to answer whether video podcasts contain no consecutive advertise-
ments, we have sampled 10 random advertisements from our dataset. Out of those
10, 7 ad breaks did only contain a single advertisement and three samples contained
2 advertisements. From this experiment, we conclude that video podcasts contain on
average 1.3 advertisements per annotation, rounded to 1.

If we now compare the number of advertisement blocks (opposed to individual
advertisements) between audio and video podcasts, the two domains are more closely
aligned, as shown in Figure 6.5. While the video podcast data did not change (we
assume that every annotation is a complete block), audio podcasts now most frequently
hold four advertisement blocks. About 80% of audio podcasts have three to five
advertisement blocks. This is closer in line with the aforementioned study, stating that
participants find 3.8 advertisements per 60-minute podcast appropriate.

6.6 Number of Consecutive Advertisements

Another way to look at whether advertisements come in blocks or individually is to
examine the number of ads presented in a row. Figure 6.6 shows that while we assume
video advertisements mostly come individually, most advertisements in audio podcasts
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Figure 6.5: Number of ad blocks per episode.

come in blocks of at least two. In nearly 10% of the cases, four consecutive advertise-
ments are played.

Between blocks of consecutive advertisements, regular content is played. Figure 6.7
illustrates that while both sources follow a similar trend, video podcasts have a ten-
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Figure 6.6: Number of ads in a row per episode.
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Figure 6.7: Time between ad blocks.

dency to have longer content segments between ad breaks compared to audio podcasts.
But as we have learnt in Section 6.5, video podcasts only contain a single ad block in
most cases. These episodes do not occur in the data for Figure 6.7, as we need at least
two ad breaks to measure the distance.

6.7 Advertisement Location

Next, we examine the location of an advertisement in its episode, beginning with
individual advertisements. Figure 6.8a shows that both audio and video podcasts have
most of their advertisements at the beginning of an episode.

Over the course of the episode, both sources have a similar distribution, with video
podcasts having a tendency to have more advertisements in the earlier part of the
episode. Noticeable is the fact that in audio podcasts, many episodes have trend to have
advertisements at the end. While this can also be observed for the YouTube data, it is
not as significant. Both sources share the characteristic that few ads are shown close
to the end, around the 90% mark.

If we aggregate individual advertisements into blocks of consecutive advertisements,
we see that in both sources, advertisements are typically placed at the beginning, in
the middle and at the end of an episode (Figure 6.8b). Right after the beginning or just
before the end, few advertisements can be expected.
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Figure 6.8: Analysis of beginnings of advertisements. We visualize the beginning of
individual advertisement (top) and the beginning of advertisement blocks (bottom).
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6.8 Advertisement Type

As stated in Section 5.1.1, where we de-
scribe the creation of the audio podcast
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Bulakh et al. (2023) and categorize adver-
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durations. Figure 6.10a visualizes that in
audio podcasts, individual advertisement
segments are on average 30 seconds long,
with half of the segments being between
25 and 61 seconds in length.

Figure 6.9: Distribution of inserted and

self-voiced ads. We assume that video

podcasts only contain self-voiced ads as

YouTube prohibits the use per their terms
of service.

This is in stark contrast to video podcasts, where the average segment is ~75 seconds
long. Additionally, advertisement length in video podcasts exhibits greater variability,
with some segments being longer than five minutes. In audio podcasts, the longest
advertisement has a duration of about three minutes (~190 seconds).

Taking into consideration that advertisements in audio podcasts come in blocks, we
can examine the advertisement block length and compare that to the video podcast
data. Figure 6.10b shows that now, the data is more closely aligned, with a median
duration of ~75 seconds. This can be interpreted as advertising breaks from both
sources are of roughly the same length.

As we have further differentiated the audio podcast advertisement segments into
self-voice and inserted ads, we are able look at how the two types differ from each
other in terms of length, which is shown in Figure 6.11. We observe that inserted ads
are mostly grouped around the 30-second mark, with no segments going longer than
90 seconds. Self-voiced segments on the other hand have an average duration from ~60
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Figure 6.10: Comparing lengths of individual advertisements and advertisement blocks.

seconds with a wider spread. The hypothesis here is that inserted advertisements are
all around 30 seconds in length as this is a well established duration for advertisements
in multiple domains, especially in radio broadcasts (OFM 2024). Therefore, advertisers
are used to produce 30-second advertisements and an ad produced for podcasts could
also be aired in radio and vice versa. Self-voiced advertisements are almost always
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podcasts.

produced to be aired in the podcast and therefore don’t need to follow advertising
industry standards, thus varying in style and length.

6.10 Correlation of Episode Length and Advertisements

Next, we look at how the length of an episode correlates with the total length of
advertisements it contains. Figure 6.12 shows that at least for audio podcast, an increase
in episode length correlates and increase in combined advertisement length. The same
cannot be said about video podcasts, as it does not seem to be unusual for a long video
podcast to include comparably short advertisements and for a short video podcast to
contain relatively long advertisements.

Overall, the figure shows what became evident in the general statistics at the
beginning of the chapter (Table 6.1): Audio podcasts tend to contain a higher ratio of
advertisements to content. This is also shown in Figure 6.13: The median ad to episode
length value for video podcast is 0.025, and it is 0.08 for audio podcasts.

6.11 Transcription Quality

When working with large artificial intelligence (AI) models trained on extensive
volumes of unlabeled data, one has to be wary of model hallucinations (Rawte, Sheth,
and Das 2023; Huang et al. 2025). Hallucination “refers to a situation where the
model generates content that is not based on factual or accurate information.” (Rawte,
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Sheth, and Das 2023). As shown by Rawte, Sheth, and Das (2023), addressing model
hallucinations is crucial, since hallucinated content is often hard to distinguish from
real content. This is especially problematic in areas where factual accuracy is required,
such as journalism, healthcare and legal contexts (Rawte, Sheth, and Das 2023).

In our case, we find that the chosen whisper base model also suffers from halluci-
nation. In most cases, the model repeatedly transcribes the last said sentence over and
over, skipping over what was actually said. We observe this to happen when music is
played, but also mid-conversation.

Therefore, we want to analyze the dataset in terms of model hallucinations. Having
split the transcriptions into single sentences (as discussed in Chapter 5), we assume
any sentence that is repeated at least three times in sequence to be a hallucination. This
definition is precision-oriented, as transcription model hallucinations might not always
result in sentence repetitions. However, it is important to acknowledge that hallucina-
tions can also manifest in other forms, such as semantically inconsistent information,
and that normal content may sometimes contain repetitions for emphasis or stylistic
reasons. Despite these complexities, we believe this criterion provides a practical and
robust starting point for identifying likely hallucinations within the dataset.

After checking all generated sentences in our dataset for hallucinations, we present
the results in Figure 6.14. First, Figure 6.14a compares the total number of hallucinated
sentences to non-hallucinations for both data sources. We see that for both sources, the
number of hallucinated samples is almost equal to non-hallucinated samples. Our audio
podcast dataset contains 45% hallucinated sentences, the video podcast datasets 52%.

Although half of all sentences being hallucinates seems severe, diminishing the
corpus’ quality, it’s worth examining the percentage of hallucinations by time, since
most hallucinations are on average shorter than non-hallucinations: Hallucinations
have a mean duration of 0.45s over both sources and non-hallucinations have a mean
duration of 4.82s. Figure 6.14b shows that in both datasets, hallucinated samples make
up 6-9% of the total sample duration.

We therefore deem model hallucination as tolerable for this thesis. Hallucinated
samples are excluded from all training and evaluation datasets.

6.12 Baseline Classification

Before concluding the chapter, we train two simple classifiers on the data to demon-
strate the classification capabilities. We will do this for both audio and video podcasts,
training a naive Bayes classifier using the bag-of-words text model and a support vector
machine (SVM) using hand-crafted audio features on short segments sampled either
from ads or non-ads.

6.12.1 Text Features

A multinomial naive Bayes classifier is a probabilistic machine learning model
commonly used for classification tasks. The model is based on the Bayes’ Theorem
(Equation 6.1) and assumes feature independence.
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Figure 6.14: Sample hallucinations by count and duration.
P(X)+ P(X | y)
P(y)

Let y be a class, e.g. AD, and X be a feature instance, such as the word promocode,
we want to compute the probability of class AD given the instance promocode

Py | X)= 6.1

(P(y | X)).Bayes’ Theorem enables us to invert the conditional probabilities, and since
P(X), P(y) and P(X | y) can be computed by counting, P(y | X) becomes trivial.

When using discrete counts or frequencies as features, we use the multinomial naive
Bayes. We preprocess our transcribed corpora by splitting each segment (either AD or
NO_AD) into word lists of length w;, after removing stopwords. In this X, we chose
w; = 185, as this is the average word count in video podcast advertising segments.
This method of segmentation requires the knowledge of segment borders, but as this
is solely a baseline, this can be assumed. We transform the word lists into bag-of-
words text representations. Essentially, we create a vector of the size of our vocabulary
filled with zeros. Going through the wordlist, we increment the value by one at the
current word’s index for each time the word appears in the wordlist, similar to one-hot
encodings. With this strategy, we get F] scores for audio and video podcasts of 0.91
and 0.72 respectively (Table 6.2).



6. Data Exploration 50

Source Precision Recall F1
Audio Podcast 0.97 0.85 0.91
Video Podcast 0.73 0.71 0.72

Combined 0.77 0.81 0.79

Table 6.2: Performance of multinomial naive Bayes baseline classifier trained on bag-
of-words text features. 185 words per sample, stopwords removed.

As naive Bayes classifiers are probabilistic models, we can examine the empirical log
probabilities assigned by the model after we’ve fit the data. For each feature instance w,
in our data (meaning every word in our vocabulary), the model computes probabilities
for P(yap | w;) and P(yyo ap | w;). Sorting the vocabulary by their P(y,p | w;)
values, we obtain a list of words order by their likelihood to appear in the ‘AD’ class.
The top ten of those words are listed in Table 6.3a and Table 6.3b for audio and video
podcasts respectively.

Both audio and video podcast share words with high likelihoods, such as ‘com’,
‘slash’, ‘free’ and ‘get’. In podcasts, advertising messages often contain a call to action
to visit the advertiser’s website, which explains the use of URL-related terms (‘com’
and ‘slash’). Words such as ‘free’ and ‘get’ are also often used in call to action messages,
encouraging the user to ‘get’ a special promotion, or promoting a deal where the first
x months of a subscription are ‘free’.

Another information we can extract from the probabilities are words that have a high
probability delta, meaning a high value of P(y,p | w;) — P(yxo ap | w;)- Put simply,
these words appear frequently in AD segments and seldom in NO_AD segments. The top
ten words for audio and video podcasts are listed in Table 6.3c and Table 6.3d. In almost
all cases, these are the names of the advertisers (e.g. ‘shopify’, ‘agl’ and ‘betterhelp’).

In summary, we see that we can perform a baseline classification using a naive
Bayes classifier, assuming we know the segment boarder and use a large context size
(185 words). Experimenting with fewer words per sample showed that classification
performance decreases drastically. In terms of source comparison, the classifier per-
forms better on audio podcasts compared to video podcasts, hinting at either a clearer
distinction between AD and NO_AD features or a better dataset quality.

6.12.2 Audio Features

Similar to studies examined in Chapter 3, we can extract hand-crafted audio features
and by that train a classifier on the audio data. As a baseline for audio classification,
we will train a SVM classifier on typically used audio features, such as MFCCs,
chromagrams, zero-crossing-rate and spectral contrast (Vimal et al. 2021; Logan and
others 2000).

We preprocess the audio data by splitting the files into 10 second chunks, respecting
the segment borders. Meaning if the first AD segment starts at second 5, we generate
a NO_AD segment from 0 to 5. We fit our SVM for audio, video and combined data.
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Word | Empirical log probability Word | Empirical log probability
com | -4.782607243482638 get -4.470392984553348
get -5.101060974601173 like | -4.498942362660067
slash | -5.319245252556032 com | -4.790379346504375
like | -5.42146974055551 know | -5.021190155154074
one | -5.507236562312936 go -5.088297548359778
free | -5.520112276672981 one | -5.132888923088265
time | -5.668877913869351 right | -5.162216538182785
go -5.777306344358514 slash | -5.255742596193609
new | -5.80563685098474 free |-5.304859611158563
know |-5.977666721742147 going | -5.362152641677722

(a) Top ten words by their empirical log
probability in the audio podcast dataset.

(b) Top ten words by their empirical log
probability in the video podcast dataset.

Word Ppp — Pxo_ap Word Pyp — Pxo_ap
shopify 6.453521931261331 squarespace | 7.9860231773099635
agl 5.338780260663337 agl 6.559988487540558
mint 5.236126106603253 expressvpn | 6.460616013727355
5g 5.236126106603253 draftkings | 6.414806477696061
checkout | 5.236126106603253 userway 6.35026795655849
cashback | 5.15156871857519 moxfield 6.127124405244279
peloton 4.957412704134233 undies 5.969495461040696
airbnb 4.945436513087518 babble 5.944802848450324
cadillac 4.883304731980511 betterhelp | 5.903980853930069
betterhelp | 4.84408401882723 fitbod 5.893509554062774

(c) Top ten words by their log probability  (d) Top ten words by their log probability

delta in the audio podcast dataset. delta in the video podcast dataset.

Table 6.3: Log probability analysis for multinomail naive Bayes vocabulary.

Table 6.4 illustrates baseline performance on audio features. For audio podcast, we have
good precision, but bad recall, resulting in a classification score below those achieved
using text features. For video podcasts, results are worse. Using more than 10% of the
video podcast dataset results in an unreasonable fitting time (using scikit-learn’s SVC
classifier). Additionally, the class distribution in the YouTube data by nature is highly
imbalanced, with the only 3% of samples being of class AD. Without resampling (see
Section 2.4.1), the classifier refuses to predict AD. After resampling the data to 25% of
ad class presence using undersampling, we get a F] score of merely 0.16.
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Source Precision Recall F1
Audio Podcast 0.94 0.42 0.58
Video Podcast’ 0.8 0.09 0.16

Combined* 0.81 0.18 0.29

Table 6.4: Performance of SVM baseline classifier trained on hand-crafted audio fea-
tures of samples of 10 seconds. Classifier for video and combined datasets use resamples
class distribution due to naturally low-occuring minority class (see?).

6.13 Conclusion

The extensive data exploration performed in this chapter surfaced many relevant
findings comparing advertisements in audio podcasts to those found in video podcasts.
While showing similarities, both audio and video podcasts seemed to differ in ad-
related characteristics. This directly answer the first research question RQ1:

RQ1: How can advertisements in podcasts be characterized and what differentiates
advertisements in audio podcasts from advertisements in video podcasts?

Advertisements in audio podcast usually come in blocks of one to three individual
advertisements, where video podcasts on average show advertisements individually
(Figure 6.6). Furthermore, both sources often contain more than one advertising block,
with audio podcasts most often having four blocks per episode and video podcasts one
(Figure 6.5). If an episode contains more than one advertising block, the time between
blocks is shorter in audio podcasts than in video podcasts (Figure 6.7). This is because
audio podcasts have more advertising blocks, while also being shorter (Figure 6.2).
This ratio between an episode’s length and the total ad duration is also illustrated in
Figure 6.13. Here, the trend continues, with the audio podcast’s ratio being more than
double that of video podcasts. Additionally, we see that for audio podcasts, the duration
of advertisements seems to linearly increase with the episode’s length. This does not
seem to hold true for video podcasts.

We have also looked at where in an episode an advertisement is likely to occur
(Figure 6.8). Both audio and video podcasts have a strong trend do include advertise-
ments at the beginning of the episode. While audio podcasts also have a high relative
frequency of advertisements at the end of the content, it’s not as pronounced for
video podcasts. If we aggregate individual advertisements to advertisement blocks, we
observe that video podcasts have a tendency to start a block after a short introduction
to the episode. This seems to occur less in audio podcasts. Overall, both sources have
few advertisements just after the start of an episode or just before its end.

Looking at the duration of individual advertisements, those in audio podcasts are
shorter and less diversified in length compared to those in video podcasts (Figure 6.10a).
Aggregated to advertising blocks, both are similar in length (Figure 6.10). We can fur-
ther differentiate between self-voiced and inserted advertisements in audio podcasts,

'Performed on subset of dataset of 50,000 samples with an artificial minority class presence of 25%.
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following findings by Bulakh et al. (2023) and others. Here, we find that inserted
advertisements are grouped around the 30-second mark, while self-voiced ads are
usually around 60 seconds long and have a higher spread. We theorize that this can be
attributed to inserted advertisements being produced to known industry norms, with
30 seconds being a well established advertisement duration in radio broadcast (OFM
2024). Using Figure 6.9, we conclude that both ad types are of equally distributed in
audio podcasts, where video podcasts are assumed to only feature self-voiced adver-
tisements, due to YouTube’s ad policy restrictions.

In addition to ad-related metrics, we also examined non-ad-related metrics. We see in
Figure 6.1 that the episodes in the videos podcast dataset have been uploaded over the
last few years, with a tendency for 2021 to mid 2024. The earliest videos go back to 2012.
Audio podcasts on the other hand are mostly from 2023 and 2024, with the majority
being uploaded in October 2024. As discussed in Section 6.2, this is due to the data
collection strategy, which differs for both sources. We have also examined the genre
and tags of episodes (Figure 6.3). Unfortunately, as they come from different sources
(audio podcasts: iTunes; video podcasts: YouTube), they cannot be directly compared.

Next, we have examined the transcription quality, regarding model hallucination
(Figure 6.14). We find that the chosen base whisper model does hallucinate, repeating
previous transcribed sentences numerous times. But, the repeated sentences are short,
accounting for only a combined 8.8% of total dataset sample duration. We choose to
exclude hallucinated samples as part of our data preprocessing but acknowledge the
risk of other undiscovered dataset deficiencies.

Lastly, we trained simple classifiers on text and audio features extracted from the
dataset in Section 6.12. For both experiments, we assume we know segment bound-
aries. We find that we achieve reasonable results using a naive Bayes classifiers on
bag-of-words text representations, given we increase the length of each sample to 185
words (without stopwords). Audio podcasts work better than video podcasts, across
both precision and recall scores (Table 6.2). We examined assigned feature instance
probabilities in Table 6.3, surfacing words with high log probabilities for the AD class
and words with high probability deltas between classes.

Using audio features on the other hand, we face difficulties getting the classifier to
predict samples as AD without altering the class balance using undersampling. After
doing so, performance for video podcasts is far below that for audio podcasts, hinting
at differences in audio features across sources (Table 6.4).



Results

In this chapter, we present our results. We structure our findings according to the
experiments carried out. Chapter 8 discusses the results and puts them into context.

Important: We have trained and evaluated many different models, each using
various combinations of training data, evaluation data, data modality, and ad class
percentage. All results are summarized in the tables Table 7.1 and Table 7.4. Throughout
this chapter and in Chapter 8, focused subsets of these results are presented to support
specific comparisons and discussions. However, all subsets are derived from the same
full results in the main tables. Each model is labeled with an identifier (A-P), and these
identifiers always refer to the same model across all tables. In performance tables, the
highest score in each column is highlighted in green, and the lowest in red, to make
comparisons easier.

7.1 Modality Information Gain

In our first experiments, we analyze how a model’s performance varies when trained on
embeddings computed from text, embeddings computed from audio or a combination
of both. For clarity, Table 7.2 presents an excerpt of Table 7.1.

First, we will look at models trained on audio podcasts. Here, models A, E and G are
all trained on audio podcasts. Using undersampling of the majority class (NO_AD), we
set the minority class presence to 10%, which is close to the natural presence of 9.5% in
our audio podcast training dataset. In this experiment, we train and evaluate models
on the same source of podcasts (audio / video).

Model E is trained on embeddings computed from texts and achieves F; and Fj
scores of 0.71 and 0.79 respectively. Model G is trained on embeddings computed from
audio and scores similarly to Model E, with F] and F; 5 scores of 0.73 and 0.82. Lastly,
model A is trained on a combination of audio and video data by concatenating the

54
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Id | Train | Eval Modality | Percent | Samples | Pre | Rec | F, | F .
Ad Class

Audio
A | Audio | Podeast 63,833
Podcast | Video 0.30 |/ 0.04 | 0.07 | 0.13
Podcast
e 10%
Audio 0.70 1 0.11/0.19| 0.34
i Podcast
p | Video | Fodcas 180,005
Podcast | Video 0.50 | 0.25]0.33 | 0.42
text
Podcast
+
Audio di 0.74 0.80 | 0.76
Audio | Podcast audio
c |2t : 31,916
Podcast | Video 0.2210.09 | 0.13 | 0.17
Podcast
oceas 20%
Audio 0.54 1 0.47 | 0.50 | 0.53
p | Video | Podeast 90,002
Podcast | Video 0.3810.34 | 0.36 | 0.38
Podcast
Audio 0.88 10.59 | 0.71 | 0.79
i Podcast
p | Audio | Fodcas 63,833
Podcast | Video 0.29 1 0.27 1 0.28 | 0.29
Podcast
- text 10%
Audio 0.7710.33|0.46 | 0.61
i Podcast
p | Video | Podcas 180,005
Podcast | Video 0.56 | 0.32 ] 0.40 | 0.49
Podcast
Audio 0.900.61/0.73 | 0.82
Audio | Podcast
G Podcast | Video 63,833
Podcast )
: audio 10%
Audio 0.59 | 0.05|0.10 | 0.20
i Podcast
| Video | Podeas 180,005
Podcast | Video 0.47 1 0.04 1 0.07 | 0.14
Podcast

Table 7.1: Performance evaluation of local classifiers, samples chosen at random, 10
epochs, batch size of 32.

computed LanguageBind embeddings. It outperforms both previous models, with F]
and F 5 scores of 0.80 and 0.87.
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Id | Train + Eval | Modality | Percent | Samples | Pre | Rec| F, | F,;
Ad Class

A text + audio
E | Audio Podcast text 63,833 | 0.88 | 0.59 | 0.71 | 0.79
G audio 10% 0.90 | 0.610.73 | 0.82
B text + audio 0.50 1 0.25 ] 0.33 | 0.42
F | Video Podcast text 180,005 | 0.56 | 0.32 | 0.40 | 0.49
H audio
C | Audio Podcast 31,916

text + audio 20%
D | Video Podcast 90,002 0.34 1 0.36 | 0.38

Table 7.2: Evaluation of modality information gain. Models are trained and evaluated
on either audio or video podcasts and on text, audio or combined embeddings. Excerpt
from Table 7.1.

Next, we turn to models trained on video podcasts, models B, F and H. Using
undersampling of the majority class, we again set the minority class presence to 10%.
We hypothesize that this helps us compare model performance over source choices.
Initially, we trained a model on video podcasts without addressing the imbalanced data
problem, which resulted in the model never predicting the minority class, as the AD
class has a natural presence of 3.5% in the video podcast training data set (compared
to the 9.5% for audio podcast).

Analyzing the results, we observe that all three models trained on video podcasts
perform far worse than those trained on audio podcasts. Training on texts, audios
and both modalities (models F, H and B), we achieve F scores of 0.40, 0.07 and 0.33
respectively. F; 5 score are slightly higher with 0.49, 0.14 and 0.42. Interesting to note
is that here, the model trained on solely texts outperforms the model trained on text
and audio, which was not the case for audio podcasts. Furthermore, the model trained
on solely audio demonstrates poor performance, due to a notably low recall score.
This indicates that the models fails to detect a significant number of advertisements,
resulting in a high rate of false negatives. Recall that in audio podcasts, the addition of
audio features improves the F] score by nearly 0.1. However in video podcasts, adding
audio features decreases performance.

Regarding the imbalanced data problem, we’ve experimented with different class
distributions. Again using undersampling of the majority class, we train model C and
D on datasets where the minority AD class has a presence of 20%. As it is evident from
our results, this hurts precision but boosts recall. While F] scores stay at a similar level,
as they value precision and recall equally, we see a decrease in Fj 5 scores compared
to models trained with 10% minority class presence. An increase in the minority class
presence results in a decrease of overall number of samples. This is because once
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we already use all of our minority class samples in the training dataset, we can only
increase its relative frequency by sampling less majority class samples.

Overall, we can now formulate an answer to RQ2:

RQ2: How does model performance vary when using audio, text, or multimodal
training data?

We state that for audio podcast data, we can increase model performance by using both
audio and text modalities as input, outperforming models trained on single-modalities.
These findings cannot be transferred to video podcasts, where a multimodal model
performs worse than a text-modality model. For video podcasts, it’s also necessary to
create an artificial minority class presence of 10%, with a presence of 20% decreasing
precision but increasing recall.

7.2 Out-of-domain Training data

In our second experiment, we examine how well out-of-domain podcast data sourced
from YouTube can be used to train models that will be used for inference on in-domain
audio podcasts. To reiterate, this can be motivated by the fact that there does not exist
a dataset of advertisements in audio podcasts, requiring us to manually annotate a
self-built dataset. For video podcasts, we can use existing advertisement timestamp
databases for YouTube videos as found in the SponsorBlock project (Ajay Ramachan-
dran 2024) to automate the annotation process, allowing us to build a larger corpus in
less time.

We present our results in Table 7.3. Models B, F, H and D are trained on video
podcasts and evaluated on audio podcasts. Again using undersampling, the minority
class presence is set to 10% for models B, F and H and to 20% for model D. No matter
what minority class presence models are trained on, they are always evaluated on the
original dataset with its original class distribution. Models B and D are multimodal,
while model F is trained on text embeddings and model H on audio embeddings. All
models are trained for 10 epochs.

Id | Train | Eval | Modality | Percent | Samples | Pre | Rec | F, | F,;
Ad
Class
text + audio 0.70 1 0.11 1 0.19 | 0.34
Video | Audio text 10% | 180,005

Podcast | Podcast audio
text + audio 20% 90,002

UE"!‘J‘UU

Table 7.3: Performance results of OOD training data. Models are trained on video
podcasts and evaluated on audio podcasts. Different modalities are compared. Excerpt
from Table 7.1.
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In our results, we see that the model trained and evaluated on text embeddings per-
forms best with OOD data. Trained on audio data however, model H’s performance is
the lowest among all. This is again due to a poor recall score. Combining text and audio
modalities does increase all performance metrics, but model B is still outperformed by
model F. Increasing the minority class presence to 20% using multimodal embeddings
(model D), we see a familiar trend: Recall increases while precision decreases (compared
to model B). Model D thereby performs the second best, while model H performs the
worst.

With these findings, we can answer RQ3:

RQ3: Can training data from video podcasts be used to detect advertisement in audio
podcasts?

Overall, feature characteristics learned from OOD training data do not transfer over to
in-domain audio podcasts. While the model trained on video podcast text embeddings
is able achieve a K 5 score of 0.61 when evaluated on audio podcasts (Table 7.3, model
F), training directly on in-domain audio podcast text embeddings (Table 7.2, model E)
scores a higher Fj 5 score of 0.79.

The model trained on video podcast audio embeddings performs worse, achieving
a Fj 5 score of only 0.20, caused by a particularly low recall score. This hints at stark
differences in audio characteristics between audio and video podcasts. Combining
audio and text features improves overall performs over audio only models, but still
lacks behind text only models.

7.3 Superlocal Context

In our last experiment, we analyze how increasing the context of the model architecture
impacts classification performance. To increase the context, we concatenate interme-
diate sample representations before feeding them into a classifier, as described in
Section 5.6. We have tried contexts size of 2 to 128. The results are shown in Table 7.4.

Id | Samples | Context Size | Training Steps | Precision | Recall | F, | F,
J 64, 896 64 1014 0.84 0.32 1 0.46 | 0.63
K 67,264 32 2102 0.77 0.7310.75 | 0.76
L 67,280 16 4205 0.80 0.75]0.77 | 0.79
M| 67,288 3 8411 0.79

N | 67,292 4 16823

O | 67,294 2 33647

P 4,204 2 2102

Table 7.4: Performance results of ‘superlocal’ classifiers. Base model is model A in
Table 7.1. All models trained and evaluated on in-order audio podcast samples for 10
epochs.
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As the superlocal architecture requires a ‘local classifier’ model to compute the
intermediate sample representations, we choose model A (Table 7.1), which is our best
performing model, trained and evaluated on audio podcasts. It scores F] and K 5 scores
of 0.80 and 0.87, which is the baseline for this experiment. Due to an implementation
detail, the number of training steps correlates with the chosen context size (see
Section 8.2.3).

As we can see, no significant improvement can be made at any of the tried context
sizes. Models with context sizes 2, 4 and 8 (model O, N, M) outperform our baseline
model in Fj, but show worse Fj ; scores. Overall, model performance decreases with
increasing context sizes. The recall in particular sees a drastic decline from context
size 32 to 64. We will hypothesize about the reasons in Section 8.2.3. Model P is in its
hyperparameters equal to model O, but is trained on 1—16 of its data. The reasoning will
also follow in the discussion.

7.4 Advertisement Type Classification Performance

Since we have looked into how self-voiced ads differ from inserted ads in greater details
over the previous chapters, especially in the data exploration, it is worth to examine
if one ad type is easier to classify than the other. For this reason, we have split the
audio podcast dataset into two subsets, each containing all NO_AD samples but only
AD samples of either self-voiced or inserted advertisements. We train models on both
subsets and on all three modalities (text, audio and multimodal) for 10 epochs with a
minority class presence of 10%.

Table 7.5 holds the results. For inserted advertisements, the audio modality performs
the best for both F] and F; 5 scores. The text modality presents a balanced, but lower
result over the two scores. Interestingly, the model trained on multimodal input has the
highest recall score but lowest precision score, achieving the lowest F) ; score among
the three models trained on inserted advertisements.

Models trained on self-voiced advertisements indicate a difference in the datasets.
Here, the model trained on audio embeddings performs the worst in Fj 5. This is in
contrast to inserted advertisements, where audio embeddings performed best. The

Train + Eval Modality | Samples

text + audio
Audio Podcast Inserted Ads text 25,683

audio

text + audio
Audio Podcast Self-Voiced Ads text 38,899
audio 0.70 | 0.70 | 0.70

Table 7.5: Performance results of audio podcast ad types. Different modalities are
compared.
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model trained on multimodal input outperforms the other two in all four scores.
Overall, scores are comparable between both advertisement types, with a mean F] score
of 0.74 and a standard deviation of 0.44.

7.5 Optimal Decision Thresholds

When evaluating our models, we set a fixed value as the decision threshold in our
classifiers. Local classifier output layers emit a single real number between zero and
one, that it is mapped to either 1 (predicting AD) or 0 (prediciting NO_AD) depending on
the decision threshold. Up until now, we always chose 0.5 as our threshold.

In Figure 7.1, we examine if we can improve classification performance by optimizing
the threshold value. In the figures, the F] (solid line) and £ 5 (dashed line) scores over
all decision thresholds from zero to one for a particular model are visualized. The red
dot marks the optimal decision threshold, maximizing the respective score. For clarity,
we mark the previous chosen threshold of 0.5 in gray. We have model performance
evaluated on audio podcasts in blue and evalauted on video podcasts in orange.

First, we look at Figure 7.1a, which holds results for model A, that was trained on
combined embeddings of audio podcasts. When evaluated on audio data, we see that
E, 5 performance cannot be improved any further, as a decision threshold of 0.5 is
already close to optimal. If we were interested in F; score however, we could improve
the score by 0.03 choosing a decision threshold of ~0.32. Evaluated in video podcasts,
both metrics can be improved by choosing a lower threshold, in the case of F] we see an
improvement by 0.1. Overall, choosing a lower decision threshold seems to be effective
in this case.

The same holds for model B, which was trained on video podcasts (Figure 7.1b).
Here we observe that in three of the four cases, decreasing the decision threshold
improves the performance metric. Interestingly, after choosing optimal thresholds, the
model trained on video podcasts now performs better when evaluate on audio podcasts.
Before, the opposite was the case. Table 7.6 compares performances between old and
new decision thresholds.

7.6 ROC Curves

In this section, we will briefly look at receiver operating characteristics (ROC) curves
of our multimodal models A and B. Figure 7.2a and Figure 7.2b display the ROC curves
for model A and B respectively.

In Figure 7.2a, model A achieves a very high performance on the audio podcast
dataset, with an Area Under the Curve (AUC) of 0.98, indicating near-perfect discrimi-
nation between advertisements and non-advertisements. Conversely, the performance
on the video podcast dataset is substantially lower, suggesting that the model does not
generalize well from one source to the other.

In Figure 7.2b, model B shows a more balanced but overall lower performance
across the datasets. On the audio podcast dataset, it achieves an AUC of 0.72, which is
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Optimal Decision Threshold

1.0
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(a) Optimal decision threshold of model A when evaluated on audio vs. video podcasts.

Optimal Decision Threshold

1.0
= F1.0: Audio Podcast
0.9 == FO0.5: Audio Podcast
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(b) Optimal decision threshold of model B when evaluated on audio vs. video podcasts.

Figure 7.1: Evaluation of decision threshold performance for model A and B from
Table 7.1. Models are evaluated on either audio podcast (blue) or video podcast dataset
(orange). Performance evaluated with F] (solid) and K; 5 score (dashed).
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Id Train Eval F,old | F;0ld | Fopt F;opt
) Audio Podcast 0.80 0.87 0.83 0.87
A Audio Podcast -
Video Podcast 0.07 0.13 0.17 0.17
Audio Podcast 0.19 0.34 0.42 0.47
B Video Podcast
Video Podcast 0.33 0.42 0.36 0.42

Table 7.6: Findings summary of decision threshold experiments, comparing model

performance at decision threshold 0.5 to performance at optimal threshold. Optimal
threshold is model dependent.
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Figure 7.2: ROC curve comparison of model A and B from Table 7.1. Models are

evaluated on either audio (blue) or video podcasts (orange).

significantly worse than model A’s performance. On the video podcast dataset, model

B achieves an AUC of 0.81, outperforming model A on the same dataset. This is the
expected result, as model B was trained on the video podcast dataset.

Overall, model A is highly effective when evaluated on audio podcast data, but model
B shows a more balanced performance between the datasets. The true positive rate, the
false positive rate and the associated decision thresholds computed by the ROC can be
used to assess a model’s practical effectiveness given a maximum error rate, as will be

shown in the next section.

7.7 Practical Performance Evaluation

Before concluding the chapter, we want to assess a model’s performance in a real-word

example. Consider an advertisement detection system intended to remove unwanted

advertisements from a user’s requested podcast audio file. As previously noted, such a

task is precision oriented, as falsly removing content (due to false positive) is consid-



7. Results 63

ered worse than not removing advertisements (due to false negatives). Consequently,
we have measured models K 5 score in prior sections.

7.7.1 True Positive Rate Calculation

For our example, we assume a hypothetical user requires that the system produces, on
average, no more than one false positive every 30 minutes. In other words, the system
should have a mean time between false positives (MTBEFP) of at least 30 minutes. To
translate this requirement into a model’s acceptable FPR, we consider the average
sample length in our dataset. In the audio podcast dataset, each sample (i.e., each sen-

tence) has an average duration of 4.52 seconds (after excluding model hallucinations).
1

305> S there are

Knowing that, we can say that a MTBFP of 30 minutes equals a FPR of
on average 398 samples in 30 minutes (Equation 7.1).

1 false positive 1

30x60 seconds ~
S 398

7.1

Using the desired FPR, we find the next higher FPR in our retrieved FPRs, true positive
rates (TPRs) and thresholds from the ROC calculation. The associated TPR tells us
the percentage of advertisements the model will detect without producing more than
one false positive per 30 minutes. This data is presented in Table 7.7. Using a decision
threshold value of 0.6272, the model correctly identifies and removes 61% of all adver-
tisement sentences.

Assuming the user has stricter performance requirements, we can calculate the
effective TPR for a MTBEFP of e.g. 60 or 120 minutes as well. At least for the considered
FPRs, the effective TPR seems to decrease linearly to 48% and 39% of detected adver-
tisement samples.

7.7.2 Model Prediction Behavior

In the previous section, we’ve seen that the best performing model (A) is capable of
identifying 61% of all positive samples, given MTBFP of 30 minutes. In this section,
we will visualize the model predictions for a randomly selected podcast episode in our
dataset and briefly discuss its deficiencies. Figure 7.3 shows the predictions of model
A for two separate podcast episodes using the decision threshold for a MTBFP of 30
minutes as calculated in Table 7.7. The ground truth values are marked in blue, the
model predictions in red. Model hallucinations in the transcription are marked in

orange.
Id MTBFP FPR TPR Threshold
30min 755 ~ 0.00251 | 0.6072 0.6272
A 60min ==~ 0.00126 |  0.4814 0.7906
120min 5 ~ 0.00063 | 0.3920 0.8852

Table 7.7: Practical performance evaluation. Shows TPR and associated decision
threshold given a mean time between false positives (MTBFP) of 30 / 60 / 120 minutes.
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Figure 7.3a shows a well working example. The transcription does not contain
any hallucinations and the model identifies each advertisement block, although not
completely: In the first three blocks, the model flips from AD to NO_AD during the block.
The last advertisement block is detected too late.

In Figure 7.3b, the performance is worse. Here, the transcription contains many
hallucinations. In those areas, the model has to rely on the audio data, as the text data
does not hold much value. As we can see, the most of the advertisement blocks are
missed by the model. Additionally, the model flags a couple sentences at the end falsely
for advertisement, producing false positives.

Model Inference Behavior #1

Ground Truth
—— Model Prediction

1. - — — -

Label

0 500 1000 1500 2000 2500
Time in seconds

(a) Predictions for episode “Noble - The Missing Right Arm Chapter 7”

Model Inference Behavior #2

Ground Truth
—— Model Prediction

Label

0 1000 2000 3000 4000
Time in seconds

(b) Predictions for episode “Bad Friends - Keep Sketch Away From Loop Loop”

Figure 7.3: Inference behavior of model A using a decision threshold of 0.6272. Hallu-
cinations in transcription are marked in orange.
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7.8 Conclusion

In this chapter we have performed various performance evaluations and experiments.
We presented results comparing different podcast sources, input modalities and class
balances. Decision threshold values were evaluated and ROC curves analyzed. In
summary, we have found that advertisements in audio podcasts were best identified
when models are trained on real, in-domain audio podcast data. Using OOD video
podcast data sourced from YouTube does not work as well, with models trained on the
video podcast dataset failing to achieve decent performance scores when evaluated on
audio podcasts.

Interestingly, evaluating said models on same source video podcasts does yield
higher scores, but results are still below audio podcast performances. Using multimodal
input features in audio podcasts scored the best, followed by only audio and only text.
In contrast, video podcast models perform worse when using multimodal features,
likely due to a particularly bad performance of the audio feature space.

Comparing overall performance trends to those of the baseline classifiers in Table 6.2
and Table 6.4, we observe similarities. The naive Bayes classifier trained on audio
data scored high, with the audio podcast dataset outperforming the video podcast
dataset. The same is true for our Transformer-based local classifier. The Bayes classifier
achieved a F] score of 0.91, using a context size of 185 words and relying on proper
class segmentation within the samples. As models in this chapter classify on sentence
level, and as sentences in the audio podcast dataset have on average 16 words, the two
approaches cannot be directly compared. The SVM trained on audio data performed
worse for video podcast compared to audio podcast, which we also find in this chapter.
It especially struggles when trained on video podcast data, as do our Transformer-
based models. In summary, performance of Transformer-based models is similar to
baseline models while using much less input context and without requiring perfect
segmentation.

We have also compared self-voiced to inserted ads in audio podcasts. Here, we con-
clude that the audio modality is more feature-rich in regard to advertisement detection
for inserted ads compared to self-voiced advertisements. With respect to precision
performance, self-voiced advertisements have an edge over inserted advertisements
due to a high precision score for text embedding models.

Lastly, we’ve evaluated our best performing model in a real-world scenario. Assum-
ing an arbitrarily set mean time between false positives (MTBFP) of 30 minutes, we
find that the model achieves a TPR of ~0.61, effectively identifying more than half of all
advertisements. Over the course of two exemplary episodes, we’ve seen that a model
targeting a MTBFP of 30 minutes is able to pick up on most advertisement blocks, but
hallucinations in the transcription worsen the performance.

To recap, our best performing model is model A of Table 7.1. It is trained on audio
and text embeddings from audio podcasts, with an ad class percentage of 10% and a
decision threshold of 0.5. It scores 0.8 and 0.87 in F} and F; 5.



Discussion

This chapter provides a critical analysis of the results. Where possible, we will pro-
vide an interpretation of our findings. In an OOD setup, evaluating on video podcasts

exhibits worse classification performance compared to evaluating on audio podcasts.
We will perform an investigation for a possible cause. The chapter is concluded by a
general discussion of the limitations that the system faces.

8.1 Error Analysis

As illustrated in the previous section,
models trained on the video podcast
dataset do not perform well when evalu-
ated on audio podcasts. In fact, they also
do not perform well evaluated on the test
part of the video podcast dataset. This
section will investigate why that is. If a
model does not perform well for a given
classification task, it is either because of
low annotation quality or the model de-
sign is unable to capture the intricacies of
the problem. But since we are able to train
well performing models on audio podcast
data, model design is deemed to be an
unlikely cause.

8.1.1 Confusion Matrix

In Figure 8.1, the confusion matrix of
model B from Table 7.1 is shown.
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Figure 8.1: Confusion matrix of model B
from Table 7.1, trained and evaluated on
video podcast text + audio embeddings.
Most predictions are TNs. The model pro-
duces more FNs and FPs than TPs.
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Prediction Values of False Negatives
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Figure 8.2: Prediction values of false negatives from model B from Table 7.1, trained
and evaluated on the video podcast dataset, using a decision threshold of 0.42.

To recap, the model is trained using text and audio embeddings from video podcasts as
features. It is then evaluated on the same dataset, using a decision threshold of 0.42, as
the Fj 5 score is maximized at this threshold (as per Figure 7.1b).

Once again, we see that the data is highly imbalanced, with 7605 samples (3.5%) being
of class AD. Of those samples, only 2295 (30%) were correctly identified as advertise-
ments. In other words, the model misses 70% of all relevant instances. It also produces
false positives, but only to a negligible degree, with 3137 of 209863 (1.44%) NO_AD
samples being predicted as positive. From this model behavior, we conclude that a low
TPR and therefore a low recall score is the reason for the model’s poor performance.

When examining the model’s prediction scores in Figure 8.2, we see that most values
fall in the range of 0.05 to 0.13, with a mean value of 0.15. Therefore, we argue that in
this case, false negatives are not a case of model indecisiveness, as the model seems to
be certain about the samples being of class NO_AD. In the next section, we will examine
samples of false negatives in more details.

8.1.2 Sample Investigation

To reiterate, the video podcast dataset uses community-sourced advertisement annota-
tions found in the SponsorBlock project (Ajay Ramachandran 2024). There is neither a
barrier of entry for anyone to submit annotations, nor is there any instance ensuring
high annotation quality. It is therefore worth to investigate whether bad annotation
quality could be the reason for low classification performance. In an effort to inves-
tigate data annotation quality, we manually examine 100 randomly chosen instances
(meaning individual sentences) of false negatives, assessing the annotation quality. The
result is presented in Table 8.1, the raw data is listed under Appendix B.
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Metric Yes No | Total Percentage
Transcription accurate 90 10 100 0.90%
Advertisement present 78 22 100 0.78%

Table 8.1: Investigating 100 randomly chose false negative for transcription accuracy
and label correctness.

First, we observe that in 22 out of 100 cases, the video did not contain an advertise-
ment in the specified timeframe, meaning a sample that is a false-negative under our
evaluation data is actually a true-negative. In some instances, the ad had just ended,
meaning the annotation’s timecodes are inaccurate. In other instances, we found no
ad in the vicinity of the timecodes. With 78% of valid annotations in our samples, the
video podcasts dataset seems to contain annotations of suboptimal quality.

As the literature shows, NNs are adversely impacted by noise in training data:
Rolnick et al. (2017) argue that depending on the dataset and the model architecture,
having a clean label to noisy label ratio of 1:1 can cause a decrease in prediction
accuracy of 0.1. While they show that a convolutional neural network with four hidden
layers is robust to massive noise when trained on the MNIST dataset (Deng 2012),
the model architecture and the dataset characteristics are hardly transferrable to this
thesis. Kaplan, Handelman, and Handelman (2021) come to a similar conclusion, having
trained a convolutional model on two image datasets. They find that corrupted labels
decrease classification accuracy, depending on corruption percentage and class type.

Even though we conclude from the lit- False Negatives Content Form
erature that noise in training data for 751

simpler neural networks can reduce accu-
racy, we would expect the decrease to 604
be present for both text embeddings and 551
audio embeddings. But as Table 7.2 shows,
model performance is particularly bad for g 401
audio embeddings, while text embeddings &
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performance could be the fact that the
chosen YouTube videos were too
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podcast-unlike compared to episodes in the audio podcast dataset. But as the data in
Figure 8.3 suggests, this is not the case, as 75 of the 100 samples were found to be
podcast-like videos.

Given the above results, we conclude from the investigation of 100 randomly sam-
pled false negatives that while we see some deficiencies in data annotation, especially
in label noise, these findings do not explain the stark performance difference in model
performance between text and audio embeddings. In the next section, we will examine
the video podcast dataset on its audio characteristics.

8.1.3 Audio Data Characteristics

As we’ve seen in Table 7.1, the same model architecture exhibits vastly different
classification performance when trained on audio embeddings compared to using text
embeddings taken from the same audio snippets. This indicates that text embeddings
from different classes are more easily distinguishable than audio embeddings. Both
text and audio embeddings are of high dimensionality, with embeddings vectors of
length 768, and thus difficult to visualize. Using the t-distributed stochastic neighbor
embedding (t-SNE) dimension reduction technique (Maaten and Hinton 2008), we
assign each embedding a location in a two-dimensional space. Although the technique
is non-deterministic and the resulting visualization is highly dependent on the choice
of parameters, it gives us a glimpse into the embedding space.

Before generating the visualizations, we preprocess our datasets. We combine audio
and video podcasts and group the unified dataset by class and source, thus obtaining
four groups. From each group, we sample 500 entries at random. Our visualizations
therefore have 2000 data points. In each visualization, the colors correspond to the
source, while marker type corresponds to classes. We visualize audio and text embed-
dings separately.

Figure 8.4 holds the t-SNE visualization for text embeddings. Here, we see that data
points of both sources overlap, indicating no present domain shift. While we intuitively
assumed classes to be more separated, this is not the case. Figure 8.5 on the other hand
visualizes audio embeddings. We show t-SNE for video podcasts in 16 kHz (Figure 8.5a)
and in 48 kHz (Figure 8.5b). Interestingly, we observe clustered audio data similar to
the t-SNE of text embeddings when using video podcast data in 48 kHz. Using video
podcast data in 16 kHz, we see that embeddings of audio and video podcasts are
separated, indicating are clear distinction. In the next paragraph, we examine if and
how fidelity of input data impacts model performances.

On a technical level, one clear difference in our dataset is that audio podcasts are
stored in 44.1 kHz stereo, while video podcasts are stored in 16 kHz mono. While this
might seem relevant at first glance, LanguageBind internally resamples all audio data
to 16 kHz. Additionally, we have rerun some experiments with video podcast data in
16 kHz mono, 16 kHz stereo and 48 kHz stereo (Table 8.2).
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t-SNE of Dataset Embeddings. Number of Samples: 2000, modality: text
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Figure 8.4: t-SNE of training dataset. 500 samples chosen at random per class and source
combination.

In terms of F, and Fj;, using stereo input data of 48 kHz seems to produce the
best results when evaluating on same-source data. Although F] scores are doubled
going from mono to stereo data and doubled again going from 16 kHz to 48 kHz, the
gain in absolute numbers is only from 0.07 to 0.21, which is far below expectations.
Additionally, we are especially interested in how models trained on video podcasts
perform when evaluated on audio podcasts, as we are trying to use efficient to source
video podcast data as training material for audio podcast inference. Here, we're also
unable to improve from previous subpar results. Going from mono to stereo data, we
observe a performance decrease. Using high-fidelity 48 kHz data drastically increases
F] and F; 5 to 0.24 and 0.33, but absolute numbers are still behind expectations.

In short, while using higher fidelity and stereo channels in input data improves
model performance, the overall performance trend is unchanged, with generally low
transferability of models across domains. Changes in fidelity resulting in different
evaluation results is unexpected, as LanguageBind’s internal resampling transforms
all input data to 16 kHz low fidelity. The expectation here is that performance is
unchanged regardless of input fidelity. Noticeable differences in t-SNE clustering in
Figure 8.5 further hint at differences in audio embeddings between fidelity settings.
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t-SNE of Dataset Embeddings. Number of Samples: 2000, modality: audio
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(b) Video podcast dataset in 48 kHz stereo.

Figure 8.5: t-SNE of training dataset. 500 samples chosen at random per class and source
combination. a) video podcast in 16 kHz low fidelity, b) video podcasts in 48 kHz high

fidelity.
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Train

Channels

Fidelity

Samples

Eval

Video
Podcast

Mono

16 kHz

180,005

Video
Podcast
Audio
Podcast

0.59 | 0.05 | 0.10 | 0.20

Stereo

16 kHz

67,438

Video
Podcast

Audio

0.5410.09 | 0.16 | 0.28

Podcast
Video
Podcast

Audio
Podcast

0'32

Table 8.2: Model performance when training on audio embeddings of video podcast
dataset with different channels and fidelities. Models are evaluated on same-source
data and audio podcast data.

Stereo 48 kHz 47,866

8.1.4 Conclusion

After having investigated false negative samples on content form, annotation quality
and label correctness, as well as experimenting with changes in fidelity and mono vs.
stereo channels and plotting dimension reductions, we cannot give a definitive, single
answer as to why our models perform worse on video podcasts compared to audio
podcast.

It is likely that performance is low due to a combination of factors: Imperfect
annotation quality, high advertisement variance due to only self-voiced advertisements
being present in YouTube videos, presence of non-podcast-like content in the dataset
as well as missing second audio channel in stored YouTube videos. We can assume
YouTube to process videos and audios post-upload, possible smoothing audio charac-
teristic differences between advertisements and content. As we have seen in Section 7.4,
self-voiced advertisements are harder to classify than inserted advertisements, as they
are generally more diverse and produced in-house, using the same processing as the
video’s content. This could also play a role here, as YouTube only permit self-voiced
advertisements in its videos (see Listing 2.1).

8.2 Results Interpretation
In this section, we will provide hypotheses and possible explanations for the observed
results. For clarity, the section is structured according to the experiments.

8.2.1 Modality Information Gain
In the first experiment in Section 7.1, we’ve examined how using embeddings from
either text, audio or the combination of both impacted the performance of our classi-
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fication models. We’ve observed that the audio features perform particularly well for
audio podcasts. We attribute this the presence of inserted advertisements in the audio
podcast dataset, as these types of advertisements are produced at the advertisers end,
thus having different audio characteristics compared to regular content. This hypoth-
esis is supported by visual inspection performed while manually annotating the audio
podcast dataset (see Section 5.1.1 and Figure 5.1).

For video podcast, we observed that audio features perform worse, to the point that
the combination of modalities perform worse than text embeddings alone. We have
investigated possible reasons in the previous section, concluding that various factors
contribute to the issue, namely mislabeled data, self-voiced advertisement and possible
technical differences in terms of audio fidelity and channel count.

8.2.2 Out-of-domain Training data

We initially motivated using podcast-like videos sourced from YouTube as OOD data
to train models for in-domain audio podcast inference in an effort to circumvent the
tedious annotation process of podcasts, as there is no publicly available dataset of
podcasts with advertisement annotations known to us. As we’ve seen in Section 7.2,
learned feature characteristics learnt from OOD data do no transfer over well to in-
domain data. This again is due to bad performance of the audio features, as text features
atleast achieve a F] score of 0.46 (see Table 7.3). We again attribute this to the difference
in advertisement between domains, with video podcasts lacking the important inserted
advertisement type.

8.2.3 Superlocal Context

To bypass the segmentation decision, which is a problem worth exploring on its own
(Hearst 1997; Koshorek et al. 2018; Ghazimatin et al. 2024), we’ve decided on sentence-
level segmentation treating each sentence uttered in a podcast episode as a single
sample. The classifiers are then trained on sentence level, thus working with limited
context. In order to introduce more context into the model architecture, we’ve created
the superlocal architecture variant, which receives intermediate embeddings from a
local type base model and concatenates up to context_length representations together
to perform classification. In Section 7.3, we’ve shown how these changes to the model
architecture resulted in a negligible performance gain. The reason for that is likely
twofold: Datasets limitations and inner workings of the training loop.

First, we’ve shown in Section 6.11 that the audio podcast dataset’s transcription
contains hallucinations in the form of short sentences being repeated over and over.
Additionally, we’ve encountered issues in LanguageBind’ data preprocessing pipeline
when feeding audio data that is too short and therefore require each sample to be at
least 0.5s long. By excluding hallucinations and short sentences, we introduce gaps in
the dataset. Thus, two samples chosen in order might not appear directly after each
other on the original data. Testing how many samples are affected by this might be a
good first step in a future work.
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Id | Samples | Context Size | Training Steps | Precision | Recall

K | 67,264 32 2102

O | 67,294 2 33647

P | 4,204 2 2102 0.81

Table 8.3: Excerpt of Table 7.4.

Second, the windowing logic in the training loop does only full window-length
steps, meaning given a content_length of 2, samples [1, 2, 4, 5, 6] will be loaded for
training in pairs of (1, 2), (3, 4), (5, 6). Therefore, the number of steps in the training
loop directly correlates with the size of the context. Alternatively, using overlapping
windows, samples could be processed as (1, 2), (2, 3), (3, 4) and so on. This way, context
length is decoupled from training steps.

To confirm that lower training steps lead to worse performance, we've trained a
model using a context size of 2 (model P) but reduced its training samples to match
the number of samples (and thus, steps) a model with context size 32 would have
(model K, Table 8.3). We see that the reduction in training samples for model P leads
to a performance decrease compared to model O, thereby confirming our hypothesis
that models with higher context length might not only suffer from possibly too large
contexts, but also from reduced training data. It’d be interesting to see how using a
bigger transcription model in conjunction with overlapping window logic in training
affects superlocal model performance, as it could be assumed that the model would
generally benefit from capturing more context.

8.2.4 Advertisement Type Classification Performance

In our last experiment, we focused on performance differences between inserted and
self-voiced advertisements. We created two subsets of our audio podcast dataset, each
containing only one of the two ad types. These subsets are almost equal in length, as
both advertisement types are equally frequent in the original dataset (see Figure 6.9).
Having trained and evaluated models on the subsets (Table 7.5) on text, audio and
combined embeddings, we conclude that inserted advertisements yield the best classi-
fication performance in F] and Fj 5 scores, especially on audio embeddings.

Again, we attribute this to the fact that inserted advertisements are produced at the
advertiser’s end and thus differ from content in audio characteristics. In addition, we’ve
observed instances of inserted advertisements being present over multiple episodes in
our dataset, even across podcast shows. Self-voiced advertisements seem to be reused
less often. From this observation, we conclude that inserted advertisements can be
learned as a repeating pattern, which is less the case for self-voiced advertisements.
Examining individual advertisement on their content and how often it’s repeated across
episodes and shows is another well suited task for a future work.
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8.3 Limitations

While this thesis presents a systematic approach to identifying advertisements in
podcasts using machine learning, several limitations must be acknowledged. These
limitations stem from both practical constraints and methodological choices made
throughout the process. It is crucial to consider these limitations when drawing the
final conclusion.

8.3.1 Data Limitations
In the context of this thesis, data limitations arise from multiple sources, each having
an impact on the data’s quality and quantity.

First off, to our knowledge, a labeled dataset of advertisements in podcasts is not
publicly available. In our literature review, we’ve encountered the once available
dataset of 100,000 annotated podcast episodes published by Spotify (Clifton et al. 2020),
but public access has since been discontinued (Spotify 2023a). To overcome this issue,
we created our own dataset, consisting of 160 manually annotated audio podcasts and
1000 community annotated podcast-like YouTube videos.

Starting with the audio podcast dataset, we state that most episode were published
and scraped in October 2024 (Figure 6.1). Since advertising agencies often run adver-
tisements in multiple podcasts simultaneously, we noticed several advertisements
being shared over episodes and shows, decreasing the overall advertisement diversity,
running the risk of overfitting. As our possibly overfitted models are evaluated using
the testing part of the same dataset, we cannot definitely say whether overfitting is
present.

To account for overfitting, the corpus should consist of more episodes published
and sourced over a longer period of time. Simply sourcing more episodes all at once
cannot be the solution, due to dynamic ad insertion (DAI). Using DAI, the user is served
advertisements based on region, time and ad profile, making the dataset creation non-
deterministic. We’ve experienced this first hand when downloaded English podcast
shows contained advertisements in German. Setting an American geolocation using a
VPN not only resulted in English advertisement, but also in an overall higher advertise-
ment frequency. For that reason, creating a dataset of podcasts released over a longer
period of time (e.g. the last year) requires to periodically download recently released
episodes, as downloading them all at once would result in shared advertisements due
to DAL While a dataset 160 episodes is a good start, the models trained in this thesis
are likely to benefit from a larger, better balanced dataset.

The video podcast dataset sourced from YouTube and annotated by users in the
SponsorBlock Project (Ajay Ramachandran 2024) comes with its own list of issues. As
mentioned previously, the SponsorBlock annotations are of unknown quality, with no
mechanisms such as inter-annotator agreement (IAA) in place to ensure annotation
quality. We have discovered in our error analysis (Section 8.1) that for the chosen
model, 20% of false negatives were mislabeled samples and thus in fact true negatives,
thus confirming subpar annotation quality.
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Then, not all sourced videos are often podcast-like in content (Figure 8.3), due to
the broadly chosen heuristics (Table 5.1). While it would have been possible to pre-
select known-good video podcasts to download, using heuristics for video discovery
was motivated to create a broader, more diverse dataset.

During the error analysis in Section 8.1, we’ve encountered slight differences in
model performance depending on mono / stereo and fidelity of stored data. Although
LanguageBind internally resamples all incoming audio to 16 kHz, and mono data
performed comparable to stereo data in selected experiments, the t-SNEs visualized in
Figure 8.5 hint at embedding differences between high fidelity and low fidelity. It is
therefore possible that inconsistencies in data formats could have caused the datasets
to perform this differently, although multiple tests were performed to reject this
hypothesis.

Class imbalance is present in both datasets, with an averaged 4% of all samples being
advertisements (Table 6.1). This leads to models overfitting to the majority (non-ad)
class. We have experimented with different class distributions by undersampling the
majority class, without being able to drastically improve model performance, especially
when trained on video podcasts. It is possible that using different class splits or different
techniques to overcome the imbalance data problem would lead to better results, such
as using a weighted loss function as discussed in Section 2.4.2.

8.3.2 Model Limitations

Next, we’ll go over limitations in models used and trained throughout the thesis.

To begin, we have used the Whisper variant whisper-timestamped (linto-ai 2023)
to transcribe podcast episodes and YouTube videos. The quality of the transcriptions
is critical, as its accuracy affects performance of downstream tasks. While measuring
exact word error rates is beyond the scope of this thesis, we’ve shown in Section 6.11
that the deployed base whisper model is prone to hallucinations, repeating short
sentences. In raw numbers, about half of all our samples are marked as hallucinations
(Figure 6.14a), due to the fact that once hallucination is present, the number of
repetitions is generally high. Looking at the total sample duration of clean sentences
compared to hallucinations, we see that hallucinations only account for 10% of the
total sample duration, rendering them less severe. Even if present hallucinations are
less critical in terms of time, a cleaner dataset transcribed using a more accurate (but
also more resource heavy) whisper model might increase classification performance,
especially when joining samples for superlocal classifier training.

As the data preprocessing pipeline in LanguageBind throws an error for short
samples when decomposing the audio into its frequency components using bandpass
filters, the dataset was stripped of samples shorter than 0.5s. Ideally, all parts of an
episode are part of the training dataset. In a future work, one could combine short
samples with its neighbors until a threshold is reached to ensure a minimal duration
over all samples.
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One major limitation for all models in the thesis is the restriction to the English
language. Both source material of podcasts and YouTube videos were limited to English
to decrease complexity in transcription, preprocessing and classification pipelines.
A future work could investigate how the chosen model architecture performs over
multiple languages, as form and content of advertisements is likely to differ from one
language and culture to another.

Speaking of model architecture, faults in model architecture design cannot be ruled
out. For example, the number of hidden layers and their hidden neurons in both local
and superlocal classifiers is chosen according to general advice (Heaton 2008), but as
there is no definitive answer as to which layer design works best for a task, a different
setup could have result in better results. It is possible that adding context in superlocal
classifiers would have worked better if technique decisions were made differently.

8.3.3 Conclusion

Drawing a conclusion about the laid out limitations in the previous sections, we have
to acknowledge that the transferability of the results presented in this thesis is fairly
limited. This is due to severe limitation in both data and model design.

In terms of data limitations, the well performing audio podcast dataset is limited in
the sense that most episodes were published and scraped over the course of a single
month. All podcasts are English-speaking and popular in the United States, further
decreasing generalizability. While the video podcast dataset is larger, more diverse
in time of upload and has a higher number of unique shows, it’s performance in
classification tasks on audio embeddings is low. Models trained in the thesis were also
never evaluated on datasets from other domains containing advertisements, such as TV
and radio broadcasts. Model limitations include hallucinations, difficulties in sample
preprocessing, English language focus and unproven architecture design regarding e.g.
layer and neuron count.

Although presented limitations are non-negligible, we were able to show that using
the created dataset and chosen model design and decision thresholds, we were able to
achieve F] and K 5 scores of 0.83 and 0.87 classifying advertisement in audio podcasts.



Conclusion

In the final chapter of the thesis, we will recap our main findings, reference the
research questions and sum up the main learnings. We’ll end by providing an outlook
for possible future research directions.

9.1 Summary

In this thesis, we created a two-part dataset of advertisement in podcasts. Sourcing over
1150 podcast episodes from RSS feeds and from YouTube videos, we aimed to build a
large, diverse dataset of podcast-like audio content for advertisement classification. The
audio podcast part was annotated manually, thus significantly smaller (160 episodes).
YouTube videos were matched with existing ad annotation data from the SponsorBlock
project. To our knowledge, it is the first dataset of podcasts with advertisement anno-
tations.

Exploring the dataset, we differentiate two main types of advertisements: Inserted
and self-voiced advertisements. The former are produced by the advertiser and usually
have an industry standard length of 30 seconds, self-voiced advertisements are read by
the podcast’s host and their team, being more varied in duration, style and content.
This directly answers

RQ1: How can advertisements in podcasts be characterized and what differentiates
advertisements in audio podcasts from advertisements in video podcasts?

While traditional audio podcasts from RSS feeds feature both advertisement types
equally, YouTube does not allow inserted advertisements on their platform. Generally,
we have seen major differences in advertisement characteristics across sources, like
audio podcasts often feature multiple single ads in a row, something that’s less common
in video podcasts.

As part of the preprocessing, we transcribe podcast episodes using the base model of
the Whisper model family. Using its timestamp-enhanced fork whisper-timestamped,

78
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we align transcription and advertisement annotation, splitting the dataset into sen-
tences of AD and NO_AD samples.

We introduced two types of classifiers. The local classifier uses the Transformer-
based LanguageBind model to compute multimodal embeddings from text and audio
data of samples on sentence-level. Training on audio podcasts, we are able to outper-
form our baseline naive Bayes and SVM classifiers trained on long-word sequences.
Then, we examined how modality information affected model performance in

RQ2: How does model performance vary when using audio, text, or multimodal
training data?

We found that while both the text and audio modality produced suitable results with
high F] scores, concatenating embeddings from both modalities boosts the model per-
formance further. We state that for audio podcasts, combining modalities is beneficial
for classification performance.

The same cannot be said for models trained on video podcasts. In an effort to skip the
manual annotation process, we've tried to use publicly available annotations of OOD
data in the form of YouTube videos in

RQ3: Can training data from video podcasts be used to detect advertisement in audio
podcasts?

Overall, model performance when trained on OOD YouTube data is far below that of
in-domain models, evaluated on either dataset. We attribute this to multiple factors.
Different advertisement characteristics across datasets in terms of class distribution
and advertising type, fluctuating annotation quality in the video podcast dataset and
lastly possible post-upload processing performed by YouTube. Although text embed-
dings perform somewhat tolerable, audio embeddings performance is particularly low.
Trying to transfer learned characteristics from video podcasts by evaluating on audio
podcast did also not produce suitable results. We therefore conclude that at least for
the presented dataset and model architecture, manually annotation of in-domain audio
podcasts yields far higher results than using OOD data.

We've also tried augmenting the model architecture with more context in the form
of the superlocal architecture variant, effectively joining intermediate input represen-
tations from a local classifier to classifier multiple samples at once. Models performed
on par or slightly above local classifiers, possibly as increase context windows decrease
total number of steps in training.

We conclude by stating that modern Transformer-based approaches are perfectly
capable of identifying advertisements in podcasts. In a real-world scenario, our best
performing model is capable of detecting 60% of all advertising sentences while only
producing a single false positive in 30 minutes.
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9.2 Outlook

Due to limited time and resources, interesting methods and aspects of advertisement
identification in podcasts were left untouched. As seen in related works, content
detection on audio data is a vast field in which a problem can be approach from multiple
angles.

Beginning with segmentation, we have decided to use sentence-level segmentation
in this thesis to keep segmentation effort to a manageable minimum. In turn, our local
classifier architecture relies solely on the context of a single sentence. We've tried
to introduce more context by processing multiple sentences at once in our superlocal
classifier architecture, but where unable to significantly improve on single-sentence
results. Another approach could have been employing chapterization as part of the
preprocessing as presented by Glavas and Somasundaran (2020) and Ghazimatin et al.
(2024), as topic differences can be expected between classes.

Due to details in the training loop, training steps of Superlocal classifiers decreased
with increased context sizes, possibly resulting in models with longer contexts showing
particularly low performance. To overcome this, adequate training steps could be
ensured by either using overlapping windows as discussed in Section 8.2.3 or by using
a larger training dataset.

During training of either classifier architecture, we’'ve only adjusted the weights of
the classification layers via backpropagation. Also adjusting LanguageBind’s first few
layers could result in input embeddings that are better suited for the classification task
at hand.

In terms of data, the audio podcast dataset is limited in number of episodes
and time distribution, resulting of shared advertisements over episodes and shows.
Sourcing more shows over a longer period of time could lead to higher diversity in
advertisements. We’ve also not looked at how approaches presented in this thesis can
be transferred to non-English content or other domains like radio broadcasts.

With the emergence of the generative pre-trained Transformer (GPT) architecture,
LLMs became freely available and performant, even on consumer-grade hardware.
Alvarez et al. (2024) use GPT-4 for results validation, concluding that while achieving
good results, “small models trained on a specific task can beat state-of-the-art generalist
models” (Alvarez et al. 2024). In our case, we’ve tried using the Llama (Touvron et al.
2023) 3.1 8 billion parameter LLM for advertisement classification with mixed results.
While requiring little to no setup and corpus preprocessing, inference on available
hardware is slow and requires proper prompting. Additionally, we ran into situations
where the model refused to process a given sample, as it violated safety guard rails
established in training, for example when the sample included sexually explicit content
or violence. Here, using a newer model from the Llama 4 model family with a higher
parameter count could improve classification and segmentation performance in few-
shot prompting, although computing requirements will still exceed those of smaller,
single-task models like the ones presented in this thesis.
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Glossary

AlI - artificial intelligence 46

ANN - artificial neural network 6, 6

ASR — automatic speech recognition 21

AUC - Area Under the Curve 60, 60, 62

BPE - byte-pair encoding 9, 31

BPTT - backpropagation through time 8

DAI - dynamic ad insertion 2, 15, 15, 15, 16, 21, 25, 25, 75, 75, 75

EEB - energy-entropy block 20

FN - false negative 10, 66

FNN - feedforward neural network 7, 7, 8, 8, 22, 32

FP - false positive 10, 66, 79

FPR - false positive rate 10, 63, 63, 63, 63, 63, 63

GPT - generative pre-trained Transformer 30, 80

HMM - hidden Markov model 18, 18, 18, 18, 18, 18

HZCRR - high-zero-crossing-rate ratio 20

IAA - inter-annotator agreement 75

LDA - latent Dirichlet allocation 22, 30

LLM - large language model 23, 80, 80

LSTM - long short-term memory 18, 18, 21, 21

MFCCs — mel-frequency cepstral coefficients 17, 30, 50

ML - machine learning 6, 6, 6, 13, 13, 14, 28

MTBFP - mean time between false positives 63, 63, 63, 63, 63, 63, 65, 65
NER - named-entity recognition 5

NLP - natural language processing iv, 2, 3, 5, 5, 5, 5, 5, 6, 6, 6, 6, 18, 18, 21
NN - neural network 6, 6, 7, 11, 68

OOD - out-of-domain v, 3, 3, 20, 21, 21, 27, 28, 34, 57, 57, 57, 58, 65, 66, 73, 73, 73, 79, 79, 79
OOV - out-of-vocabulary 10

PoS — part-of-speech 5

RNN - recurrent neural network 6, 7,7, 8, 8,8, 8

ROC - receiver operating characteristics 11, 11, 12, 12, 13, 34, 35, 60, 60, 62, 62, 62, 62, 63, 65
RSS - really simple syndication 1, 1, 1, 1, 2, 3, 4, 4, 15, 38, 38, 78

SLI - spoken language identification 22, 22
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SNS - speech / non-speech 17, 17, 18

SVM - support vector machine 48, 50, 50, 52, 65, 79

TF-IDF - term frequency-inverse document frequency 22

TN - true negative 10, 66

TP - true positive 10, 66

TPR - true positive rate 63, 63, 63, 63, 63, 65, 67

t-SNE - t-distributed stochastic neighbor embedding 69, 69, 69, 69, 70, 70, 71, 76
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A. Audio Podcast Charts

Position | Title Producer RSS Feed
1 Call Her Daddy Alex Cooper https://feeds.simplecast.com/mKn_
QmLS
2 The Daily The New York Times https://feeds.simplecast.com/SI5CSM3S
3 Kill List Wondery | Novel https://rss.art19.com/kill-list
4 The Joe Rogan Experience Joe Rogan https://feeds.megaphone.fm/GLT
1412515089
5 Dateline NBC NBC News https://podcastfeeds.nbcnews.com/HL
4TzgYC
6 Crime Junkie audiochuck https://feeds.simplecast.com/qm_9xx0
g
7 The Deck Investigates audiochuk https://feeds.simplecast.com/sxk7RTyt
8 SmartLess Jason Bateman, Sean Hayes, Will https://feeds.simplecast.com/
Arnett hNaFxXpO
9 Pod Save America Crooked Media https://feeds.simplecast.com/dxZsm5
kX
10 The Megyn Kelly Show SiriusXM https://feeds.simplecast.com/RV1
USAfC
11 Up First from NPR NPR https://feeds.npr.org/510318/podcast.
xml
12 The Ben Shapiro Show The Daily Wire https://feeds.megaphone fm/WWO
8086402096
13 Pardon My Take Barstool Sports https://mcsorleys.barstoolsports.com/
feed/pardon-my-take
14 Candyman CBS News https://rss.art19.com/candyman
15 Morbid Morbid Network | Wondery https://rss.art19.com/morbid-a-true-
crime-podcast
16 Wiser Than Me with Julia Louis- Lemonada Media https://www.omnycontent.com/d/
Dreyfus playlist/796469f9-ea34-46a2-8776-ad0f
015d6beb/6bf95617-5ffc-4269-a957-afcc
015a4d66/ca180b09-a8bc-4612-92fe-
afcc015ae720/podcast.rss
17 Shawn Ryan Show Shawn Ryan https://rss.pdrl.fm/55dc8e/feeds.
megaphone.fm/WWO07410387571
18 All There Is with Anderson Cooper CNN https://feeds.megaphone.fm/WMHY
6497875466
19 Stuff You Should Know iHeartPodcasts https://www.omnycontent.com/d/
playlist/e73c998e-6e60-432{-8610-ae
210140c5b1/291018a4-ea4f-4130-bf55-
2e270180¢327/44710ecc-10bb-48d1-93¢
7-ae270180c33e/podcast.rss
20 The Tucker Carlson Show Tucker Carlson Network https://feeds.megaphone.fm/RSV
1597324942
21 Ghost Story Wondery | Pineapple Street Studios https://rss.art19.com/ghost-story
22 The Ramsey Show Ramsey Network https://feeds.megaphone.fm/RM
4031649020
23 The Dan Bongino Show Cumulus Podcast Network | Dan https://feeds.megaphone.fm/WWO

Bongino

3519750118
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Position | Title Producer RSS Feed
24 The Man in the Black Mask NBC News https://podcastfeeds.nbcnews.com/the-
man-in-the-black-mask
25 Criminal Attorney Wondery https://rss.art19.com/criminal-attorney
26 Money Crimes with Nicole Lapin Crime House https://feeds.megaphone.fm/
moneycrimes
27 20/20 ABC News https://feeds.megaphone.fm/ESP
3456903052
28 The Ezra Klein Show New York Times Opinion https://feeds.simplecast.com/kEKXbju]J
29 My Favorite Murder with Karen Exactly Right Media - the original true | https://www.omnycontent.com/d/
Kilgariff and Georgia Hardstark crime comedy network playlist/e73c998e-6e60-432{-8610-ae
210140c5b1/bdde8bb3-169d-43b1-91d3-
b24c0047969¢/f450d41f-16bc-4ecd-8f6
c-b24c004796e2/podcast.rss
30 The Dan Le Batard Show with Stugotz | Dan Le Batard, Stugotz https://feeds.megaphone.fm/ESP
2298543312
31 The Mel Robbins Podcast Mel Robbins https://feeds.simplecast.com/UCwaTX
1J
32 Huberman Lab Scicomm Media https://feeds.megaphone.fm/
hubermanlab
33 Before We Go Podcast Nation https://feeds.megaphone.fm/BOOJE
7773696316
34 The Toast Dear Media https://rss.art19.com/the-toast
35 The Deck audiochuck https://feeds.simplecast.com/ZH32N6
UM
36 This Past Weekend w/ Theo Von Theo Von https://feeds.megaphone.fm/
thispastweekend
37 Armchair Expert with Dax Shepard Armchair Umbrella https://rss.art19.com/armchair-expert
38 Fantasy Footballers - Fantasy Football | Fantasy Football https://feeds.megaphone.fm/fantasy-
Podcast football
39 The Binge Cases: Denise Didn't Come Sony Music Entertainment https://rss.pdrl.fm/c6e873/feeds.
Home megaphone.fm/fakepriest
40 What Now? with Trevor Noah Spotify Studios https://feeds.megaphone.fm/GLT
9681566788
41 Calm Parenting Podcast Kirk Martin https://feeds.megaphone.fm/CELBL
1853551588
42 New Heights with Jason & Travis Wave Sports + Entertainment https://rss.art19.com/new-heights
Kelce
43 MrBallen Podcast: Strange, Dark & Ballen Studios https://rss.art19.com/MrBallen-Podcast
Mysterious Stories
44 The Charlie Kirk Show Charlie Kirk https://www.omnycontent.com/d/
playlist/5e27a451-e6e6-4c51-aa03-a
7370003783¢/c865b590-c84f-4f7e-a43e-
ac64014b61d9/8978e846-cacd-4d65-b
085-ac64014cd49f/podcast.rss
45 Money Rehab with Nicole Lapin Money News Network https://feeds.megaphone.fm/TPG
1669083856
46 This American Life This American Life https://www.thisamericanlife.org/
podcast/rss.xml
47 The Bulwark Podcast The Bulwark https://audioboom.com/channels/
5114286.rss
48 Morning Wire The Daily Wire https://feeds.simplecast.com/WCb5

SgYj
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Position | Title Producer RSS Feed
49 The Jamie Kern Lima Show Jamie Kern Lima https://feeds.megaphone.fm/
LIFEISLOVELLC4342849321
50 The Bible in a Year (with Fr. Mike Ascension https://feeds.fireside.fm/bibleinayear/
Schmitz) ss
51 The School of Greatness Lewis Howes https://feeds.simplecast.com/AAvup9
Zz
52 48 Hours CBS News https://rss.art19.com/48-hours
53 Hidden Brain Hidden Brain, Shankar Vedantam https://feeds.simplecast.com/kwWcOlhf
54 The Commercial Break Commercial Break LLC https://feeds.megaphone.fm/tcb
55 Horoscope Weekly with Aliza Kelly OpenMind https://feeds.megaphone.fm/
horoscopeweekly
56 Candace Candace Owens https://feeds.megaphone.fm/candace
57 The NPR Politics Podcast NPR https://feeds.npr.org/510310/podcast.
xml
58 Conan O'Brien Needs A Friend Team Coco & Earwolf https://feeds.simplecast.com/
dHoohVNH
59 How To Destroy Everything HTDE | QCODE https://feeds.megaphone.fm/QCD
2353438940
60 Giggly Squad Hannah Berner & Paige DeSorbo https://feeds.acast.com/public/shows/
780a3042-864b-40fa-ae09-4557aec621c3
61 The Matt Walsh Show The Daily Wire https://feeds.simplecast.com/pp_b9xO
6
62 [ am Charles Schwartz Show Charles Schwartz https://feeds.libsyn.com/526583/rss
63 Bad Friends Andrew Santino and Bobby Lee https://feeds.megaphone.fm/TPC
1602991613
64 The Diary Of A CEO with Steven DOAC https://feeds.megaphone.fm/
Bartlett thediaryofaceo
65 The Rest Is History Goalhanger https://feeds.megaphone.fm/GLT
4787413333
66 Raising Parents with Emily Oster The Free Press https://feeds.megaphone.fm/
raisingparents
67 So Supernatural Parcast Network https://feeds.simplecast.com/kC8PV5p
6
68 Noble Wavland https://feeds.simplecast.com/vmQnidN
1
69 Fresh Air NPR https://feeds.npr.org/381444908/
podcast.xml
70 Leap Academy with Ilana Golan Ilana Golan https://feeds.megaphone.fm/YAP
7305356886
71 Young and Profiting with Hala Taha Hala Taha | YAP Media Network https://feeds.megaphone.fm/yap
72 Office Ladies Earwolf & Jenna Fischer and Angela https://feeds.megaphone.fm/office-
Kinsey ladies
73 Las Culturistas with Matt Rogers and Big Money Players Network and https://www.omnycontent.com/d/
Bowen Yang iHeartPodcasts playlist/e73c998e-6e60-432{-8610-ae
210140c5b1/{6816727-c503-47ac-a7ac-
ae2700391b1e/935¢500f-8bb0-436b-ba7
f-ae2700391b49/podcast.rss
74 All-In with Chamath, Jason, Sacks & All-In Podcast, LLC https://allinchamathjason.libsyn.com/
Friedberg rss
75 Up and Vanished Tenderfoot TV https://feeds.megaphone.fm/up-and-

vanished
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https://allinchamathjason.libsyn.com/rss
https://allinchamathjason.libsyn.com/rss
https://feeds.megaphone.fm/up-and-vanished
https://feeds.megaphone.fm/up-and-vanished

Position | Title Producer RSS Feed

76 The Weekly Show with Jon Stewart Comedy Central https://feeds.megaphone.fm/BVLLC
2163264914

77 The Binge Crimes: Night Shift Sony Music Entertainment / Campside | https://feeds.megaphone.fm/

Media crimesnightshift

78 Scamanda Lionsgate Sound https://feeds.acast.com/public/shows/
66d9aa05d740de0852b686a8

79 REAL AF with Andy Frisella Andy Frisella #100to0 https://mfceoproject.libsyn.com/rss2

80 Against the Rules with Michael Lewis | Pushkin Industries https://www.omnycontent.com/d/
playlist/e73c998e-6e60-432{-8610-ae
210140c5b1/f4e26994-3ddb-4ec7-b855-
ae32006cd5de/eadfae0c-3282-4cfd-b
315-ae32006cd5ec/podcast.rss

81 Serialously with Annie Elise 10 to LIFE & Audioboom Studios https://audioboom.com/channels/
5100770.rss

82 Full Body Chills audiochuck https://feeds.simplecast.com/6E74skéq

83 NPR News Now NPR https://feeds.npr.org/500005/podcast.
xml

84 The Bible Recap Tara-Leigh Cobble https://feed.podbean.com/
thebiblerecap/feed.xml

85 The Joe Budden Podcast The Joe Budden Network https://jbpod.libsyn.com/applepodcast

86 Scoop City: A show about the NFL The Athletic https://feeds.megaphone.fm/TAMC
6272189068

87 The Wonder of Stevie Higher Ground, Pineapple Street https://rss.art19.com/the-wonder-of-

Studios stevie

88 KILL TONY DEATHSQUAD.TV & Studio71 https://feeds.megaphone.fm/killtony

89 Unlocking Us with Brené Brown Vox Media Podcast Network https://feeds.megaphone fm/GLT
4889391284

90 Passion Struck with John R. Miles John R. Miles https://feeds.simplecast.com/_
BDqCTvj

91 Last Podcast On The Left The Last Podcast Network https://feeds.simplecast.com/
dCXMlIpJz

92 We Can Do Hard Things Glennon Doyle and Audacy https://feeds.megaphone.fm/wcdht

93 On Purpose with Jay Shetty iHeartPodcasts https://www.omnycontent.com/d/
playlist/e73c998e-6e60-432{-8610-ae
210140c5b1/32f1779e-bc01-4d36-89e6-
afcb01070c82/e0c8382f-48d4-42bb-89d
5-afcb01075cb4/podcast.rss

94 The Kevin O'Connor Show Yahoo Sports https://rss.art19.com/the-kevin-o-
connor-show

95 The Daily Show: Ears Edition Comedy Central and iHeartPodcasts https://www.omnycontent.com/d/
playlist/e73c998e-6e60-432{-8610-ae
210140c5b1/e5e49f91-be9b-42f1-a426-
ae3c00026e8b/04b51c34-8028-49a3-b42
f-ae3c00026e95/podcast.rss

96 Pivot New York Magazine https://feeds.megaphone.fm/pivot

97 Andrew Schulz's Flagrant with Akaash | Andrew Schulz's Flagrant with Akaash | https://feeds.megaphone.fm/APPI

Singh Singh 6857213837
98 Throwbacks with Matt Leinart & Jerry | Matt Leinart, Jerry Ferrara https://feeds.megaphone.fm/
Ferrara throwbacks

99 The Glenn Beck Program Blaze Podcast Network https://feeds.megaphone.fm/BMDC
3567910388

100 Freakonomics Radio Freakonomics Radio + Stitcher https://feeds.simplecast.com/Y8IFbOT4
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B. False Negatives

YouTube-1d

Start

End

Text

Prediction
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Accurate

Ad Present

RwjuE2eUo078

6.12

You might have seen my interview with
wealthy expats who does exactly this for you.

0.23323

1

QRoKCAN5mmo

22.84

98.44

This episode of two bears one cave is brought
to you by NASCAR Don't miss out and invite
over some friends and family to watch the
yellowwood 500 on Sunday October 1st at 2
p-m. Eastern on NBC We are supported by
Freeze pipe for the smoothest cannabis
smoking experience you got to try a freeze
pipe freeze pipe mix a unique line of Freezable
pipes bugglers and bongs that cool smoke by
hundreds of degrees for icy smooth toaks
without the throwburn chest pain or
coughing attacks they even have freezeable
devices built specifically for cooling joints
blunts and vapes The secret is the detachable
glycerin chambers that come on every Piece
pop one of these chambers in the freezer for
one hour and a smoke passes through it It's
instantly chilled by over three hundred
degrees proven to outperform traditional
pipes and bongs Simply inhale and relax as
freeze pipes icy glycerin chambers do all the
heavy lifting this thing makes the smoking
Experience so much smoother so much cooler
literally so much more enjoyable Shop the
smoothest pipes bugglers bongs and dab rigs
at everyday great prices by visiting the freeze
pipe calm and use the code Bears for 10% off
your entire order.

0.17362

WgyFeTnJ6KE

612.7

616.08

So they make it easy and free to change
counselors if needed.

0.22717

9DJfIKNs32w

107.21

108.82

All you got to do is follow the directions.

0.01373

ukr7aTfl868

4977.72

4979.08

You already see the lighting, okay?

0.06909

85LE-8LUaKA

1437.33

1438.18

Hello fresh.

0.29192

1d08k63Mki8

434.56

436.16

Rukions are clearly labeled on the packaging.

0.07414

Gj5uEr0Lh-k

181.03

182.34

Grammily helps you revise.

0.13376

A8ZXGOIHACY

268.66

280.88

And I urged everybody to go and pre-order
my latest book, The Shrouded Lighthouse.

0.03192

0fpC8CB22YI

368.78

372.74

Oh Man, [ mean I was curious about that.

0.1831

2qYRuxQWcKU

2292.84

2297.22

For years, I searched me opponents measly
hands and found only scurvy dogs.

0.12559

lee7w]MMt68

2599.38

2600.32

Now back to this episode.

0.11159

5V_6rh1moKM

2188.32

2189.98

No questions asked.

0.16261

bPiAvNjh-FY

1782.06

1782.72

Oh, yeah, no.

0.00897

rJgBPZV7wTM

1744.2

1746.28

Adam Freeman hits his 15th anniversary.

0.1917

bB5x3C3pFwY

1990.18

1994.96

The most important thing is to enjoy yourself
and have a great time with friends and family.

0.13208
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YouTube-Id Start End Text Prediction | Transcription | Ad Present
Accurate
m8_Ou2GQ2vA 1626.8 | 1632.5 | If you're looking to run a CEDH or 1v1 0.03176 1 1
tournament, eminent's gaming has your back
with command tower.
LxtZ5shc191 62.52 64.74 When this stuff's coming in, you're like, no, 0.24751 1 1
this isn't mine.
yR6aF2613el 1433.18 | 1434.14 | What are the best odds? 0.09238 1 1
av902KPKDn0 3531.3 3534.22 | Cracks, spills and mechanical failures, you're 0.3222 1 1
covered.
NhtxI-ftyUs 3141.98 | 3144.9 | Or should we spend millions of dollars to 0.26717 1 0
have the guy sing it?
kAgrE6Gyluk 4310.74 | 4594.22 | Music Music Music Music Music Music Music | 0.10426 0 0
Music Music Music Music Music Music Music
Music
pOxSbG384Sw 1613.22 | 1616.21 | When the aliens ask you, wow, how are you 0.11507 1 1
so prepared?
0p16Kd27Nak 4594.28 | 4595.56 | Be it a machine. 0.08645 1 0
bY71hjQt200 3324.92 | 3327.8 | Usually I lose and only get one or zero. 0.07459 1 1
TCRn_GUdKEw 1128.68 | 1129.56 | And then here's how it works. 0.13776 1 1
3F1JDaSI24Y 1864.34 | 1864.99 | Do you sleep on your side? 0.30451 1 1
3x8FLngZ1h0 5003.42 | 5008.7 | We're going to take a quick break to hear from | 0.23923 1 1
the sponsor of this entire show Ryan Reynolds
is folks over at Mint Mobile.
1TDYfcH-dVU 1891.08 | 1893.6 | And it ships right to your door in a discrete 0.24945 1 1
package.
jU_fuCZoerE 2474.18 | 2485.66 | Ididn't feed suck and coordinating with 0.0665 0 1
friends is a nightmare I always end up
running a bunch of money and chasing down
my friends to get reimbursed and if they flake
I'm stuck with the whole bill.
iz5Uf9Ve]GE 4493.4 4517.62 | You You You You You You You You You You 0.06481 0 0
You You You You You You You You You You
You You You You You You
1d08k63Mki8 420.0 422.08 | Cook, you need gives me quality and variety. 0.2096 1 1
k7DtQnGOmZA | 3319.04 | 3324.14 | On their show, you'll hear a chorus of 0.0562 1 1
perspectives from the diverse communities
behind the code.
segwKd_qwm4 1960.34 | 1962.82 | Can we play with him he'll be so funny. 0.03504 1 0
EOmIntdxUAs 2071.46 | 2078.48 | There's definitely like a different level of class | 0.12024 1 1
to it that I've been enjoying a lot and
everybody that I shown it to is super
impressive as well.
Fszw5-qc8yA 1514.09 | 1515.4 | You just go on their website. 0.36951 1 1
VAWDbSAtFAsU 163.84 | 164.76 | You don't want to hear this. 0.07516 1 1
qOFepgVRbI8 1455.02 | 1484.98 | house because it's getting hotter and the 0.18624 0 0

house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
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Ad Present

house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting hotter and the
house because it's getting

Jhfyn5F39FM

3563.62

3567.1

And it's not just the same lack of luster gifts
that you find anywhere else.

0.09338

80B75VIUR7c

157.85

161.13

So get your degree, put your glasses on.

0.33464

CaD9nTRMaeU

899.88

904.88

Tom Geico asks, how would you love a chance
to save some money on insurance?

0.21632

i26iBddxvd0

174.44

175.8

No, we've well, we have.

0.05158

fc4ZxyXSPNO

141.06

143.04

So, thank y'all for continuing to rock with me.

0.07287

ZVkjfqLqU2k

455.46

458.46

It says book walker on the book walker site.

0.11252

HIC5IKxEf6k

62.42

64.32

And these are my words completely.

0.17053

h-aaedXe610

514.28

522.32

Their cases are optimized for protection up to
11.5 feet which is 5 times the military
standard with standing drops up to 130 times.

0.29239

MIhFdhn3dXY

2272.45

2276.5

Inside of yours brought to you by
Neurohacker, Qualia Cinematic.

0.40092

z6atNBhItBs

2963.96

2993.84

that I think that I think that I think that I
think that I think that I think that I think that
I think that I think that I think that I think
that I think that I think that I think that I
think that I think that I think that I think that
1 think that I think that I think that I think
that I think that I think that I think that I
think that I think that I think that I think that
1 think that I think that I think that I think
that I think that I think that I think that I
think that I think that I think that I think that
I think that I think that I think that I think
that I think that I think that I think that I
think that I think that I think that I think that
I think that I think that I think that I think
that I think that I think that I think that I
think that I think that I think that I think that
I think that I think that I think that I think
that I think that I think that I think that I
think that I think that I think that I think that
1

0.02158

1iLzhNyQoXU

1264.06

1266.6

It was my second failure.

0.0632

segwKd_qwm4

32.56

33.32

Use these templates.

0.30729
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