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Abstract—Our research addresses the challenge of answering
complex scholarly hybrid questions, often demanding multi-
faceted reasoning and iterative answer retrieval over scholarly
knowledge graphs (KGs) and text. The question complexity
is simplified by decomposing it into simple questions and
utilizing symbolic representation. However, existing scholarly
hybrid Question Answering (QA) models lack question decom-
position and symbolic representation. In response, we propose
SH-CoDE (Scholarly Hybrid Complex Question Decomposition
and Execution). This approach breaks down questions into
simple queries and employs symbolic representations, resulting
in a natural and interpretable format - HQ (Hybrid Ques-
tion) representation. SH-CoDE also includes an HQ-Executor,
transforming the HQ representation into a tree structure and
executing operations within its nodes. During execution, if the
executor encounters symbolic representations such as KGQA or
TextQA, it retrieves answers from KG and text data sources,
respectively. The KGQA module automatically generates and
runs SPARQL queries against the KG SPARQL endpoints.
Similarly, the TextQA component employs semantic searching
and an FLAN-T5-based reader to answer over text. Our model
demonstrates competitive results on the test dataset, showcasing
its effectiveness in answering complex scholarly questions.

Index Terms—Question Answering, Question Decomposition,
Scholarly Hybrid Question Answering, Scholarly Hybrid Ques-
tion Representation

I. INTRODUCTION

A natural language question - a common way to define our

information needs in day-to-day activities - is classified as

simple or complex based on the phases necessary to gather

relevant facts from the underlying data sources and the oper-

ations required to answer a question [8], [25]. For example,

an answer to a simple question like ‘Who is the author of the

Learning SPARQL book?’ (Answer: Bob DuCharme) needs

only the book author’s information from a certain underlying

data source. In contrast, complex questions like ‘Among the

publications of the Learning SPARQL book’s author, which

one has more citations?’ need identifying ‘the author of the
book’, the author’s publications with their citation, comparing
the citations and returning the one that has more citations.

Beyond the reasoning steps and the complexity of the oper-

ations, complex scholarly hybrid questions1 shown in Figure 1

1Questions requiring facts from a scholarly KG and text.

Fig. 1: An example of a scholarly hybrid question with its

Hybrid Question (HQ) representation.

need searching facts over scholarly Knowledge Graphs (KGs)

and text.

Generally, questions with such complexity indulge question

decomposition - representing the complex question as a se-

quence (combination) of simple questions [10], [15]. The in-

troduction of the decomposition component improves Question

Answering (QA)2 model’s capability of answering complex

questions [16], [17]. However, the QA systems assume that the

answer search for the simple questions derived from the com-

plex questions is on a single data source - KG or text, which

does not fit the scholarly hybrid QA where the underlying

data have both sources. On the other hand, generic hybrid QA

models first unify the underlying data into KG or text and then

utilize question decomposition [11]. Unlike that, Xu et al. [24],

while decomposing the question, do not formulate a simple

question but rather use relational mappings to both sources

simultaneously. Apart from that, existing scholarly hybrid QA

models [7], [9], [19] lack question decomposition and do not

leverage symbolic representations3.

Therefore, we propose SH-CoDE (Scholarly Hybrid

Complex Question Decomposition & Execution) a symbolic

representation-driven scholarly hybrid question decomposition

and execution method that offers a natural and more inter-

2QA is the task of answering questions over a specific data source.
3Symbolic representations refers to using symbols — such as logical

expressions, structured knowledge, or formal rules—to represent the meaning
of questions and potential answers.
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pretable representation. The decompose stage generates an

intermediate representation - HQ-representation (see Figure 1)

- by identifying embedded questions within the complex ques-

tion and forming a series of sub-questions along with symbols

like JOIN operations to replace the result obtained from the

right part of the expression onto the placeholder in the left.

Besides, symbols like KGQA and TextQA trigger an answer

retrieval of the sub-question over KG and text data sources,

respectively. The first challenge for complex scholarly question

decomposition is correctly identifying the words’ spans that

make a valid sub-question. Subsequently, a valid sub-question

formulation must paraphrase the identified span of the text.

When the candidate’s span of text does not contain the ‘Wh’

term, it is necessary to add an appropriate interrogation to

have a valid, simple question—failure to identify sub-questions

results in an incorrect answer to the complex question [23].

Hence, we leverage few-shot prompting to address the span

identification and correct simple question formulation. We pro-

vide examples with their respective symbolic representation-

based decomposition and prompt a Large Language Model

(LLM).

On top of that, the scholarly complex questions have differ-

ent forms, such as bridging, comparison, and bride-comparison

questions. Bridging-type questions require a bridging entity

that answers the embedded question(s) and is part of the

succeeding sub-question. For instance, to answer the bridging

type question given in Figure 1, the sub-questions should be

answered recursively: (i) the author of the article, (ii) the

author’s institution, and (iii) the moto of the institution. In

the meantime, the HQ-expression executor replaces the result

from KGQA with the placeholder ‘Ans#1’ & ‘Ans#2’ in the

left node before looking for the final answer due to the JOIN

operator. Bridging questions are recursive and expressed as a

sequence of sub-questions; except for the first innermost sub-

question, all other sub-questions depend on their preceding

sub-question. In contrast, comparison questions compare two

or more entities based on their properties. For example,

“Whose hIndex is higher, Tim Berners-Lee or Christopher

Manning?”, hIndex is used to compare the two scholars. In

comparing questions, the answer is not the final comparative

result; instead, it is the value of the parent of the node that

satisfies the comparison condition. Hence, the model needs

to backtrack and identify the respective node value. Bridge-

comparison questions have both structures, i.e., identify the

bridge entities with their requested properties, then compare

and return the result.

In addition to the symbolic-driven question representation

and execution method, we generate SPARQL automatically for

the KGQA and develop our own TextQA model that fetches

text from Wikipedia, chunks the text, retrieves semantically

related chunks, and then uses a FLAN-T5-based [4] reader4

to extract the final answer. Hence, automatic query generation

and TextQA distinguish our scholarly hybrid QA method from

4A reader is a model that processes a context passage to extract the correct
answer text span to a given question.

the existing scholarly and generic hybrid QA models. Overall,

we summarise our contributions as follows:

• New Method: we propose a new hybrid scholarly QA

method that uses symbolic representation-based question

decomposition & execution, KG SPARQL generation,

and textual QA. The resulting HQ representations are

parsable to binary tree structures, which makes them

easily executable. Our method achieves a competitive

result of 70.51 exact match scores and 71.83 F-Score on

an existing Scholarly Hybrid QA dataset [20].

• Explainable: Breaking down complex questions into sim-

ple questions and generating an intermediary representa-

tion allows us to trace the information flow and decisions

made at each stage. For example, by identifying operators

like JOIN or COMPARE in decomposed questions, we

can clarify which intermediate data pieces the model

retrieved and how they contributed to the final answer.

This hierarchical approach enables us to observe the

final and intermediate results and the reasoning paths

to understand why the model chooses specific answers.

Additionally, this process allows the model to highlight

potential sources of uncertainty or error at each stage,

thus supporting a more explainable Scholarly QA.

The source code is available at https://github.com/

semantic-systems/sh-code.

II. RELATED WORK

A. Question Decomposition

The divide-and-conquer approach is a common method

existing QAs follow to answer complex questions [3], [15].

The work in [22] introduced a QA model that answers bridging

and comparison questions by decomposing the questions into

single fact-seeking search queries suitable for surfing the web

through a search engine. However, the search queries are

inefficient in answering questions over KG and unstructured

textual sources.

DECOMPRC [15] is a QA model that decomposes ques-

tions using Bidirectional Encoder Representations from Trans-

formers (BERT) [5] based module via supervised training

of human-annotated questions. Even though the training set

is minimal, obtaining examples that enable the model to

generalize from the given example is difficult. Unlike that, the

ONUS (One-to-N Unsupervised Sequence transduction) [17]

model proposed a decomposition component that learns from

synthetic examples formulated from single-hop questions in

an unsupervised way. However, it is not easy to control the

quality of the auto-generated training sets, and training starts

by assuming the existence of a pseudo-decomposition set.

Recent advancements in QA explore the interplay between

neural models and symbolic reasoning to address complex

questions with enhanced interpretability. Liu et al. [14] parses

questions into hierarchical expressions by training the T5 [18]

model. Moreover, it merges symbolic rules and neural readers

for combined precision and explainability in textual QA. Addi-

tionally, recent techniques involving LLMs enhance reasoning
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capabilities by building query trees and using a probabilistic

tree of thought reasoning to leverage parametric and external

knowledge [2]. Our proposed method, SH-CoDE, also em-

phasizes the decomposition of complex queries, similar to the

strategies noted by Liu et al. [14]. SH-CoDE uniquely employs

symbolic representations to create a natural and interpretable

scholarly hybrid question representation. Unlike others, SH-

CoDE specifically integrates a KGQA module for automatic

SPARQL query generation and execution, along with a Tex-

tQA component using semantic search and a FLAN-T5 reader.

These components adeptly retrieve answers from both KG

and text data sources, setting our work apart in its ability

to integrate multiple answer retrieval methods seamlessly.

Moreover, our model uses few-shot prompting to decompose

the questions and does not require annotated decomposition

training data.

B. Few-shot Prompting

Recent developments in complex QA focus on enhancing

interpretability by using symbolic question decomposition

methods [14]. LLMs, providing limited examples to guide their

responses, perform various tasks through few-shot prompt-

ing [1]. Few-shot prompting-driven decomposition gains trac-

tion because it can simplify complex queries into sequential

sub-questions (answerable in a single reasoning step), allowing

models to generalize with minimal supervision. Studies such

as [6] and [12] have utilized few-shot methods for breaking

down questions and identifying entities.

Our approach differs by leveraging few-shot prompting for

question decomposition, incorporating symbolic representa-

tions into the query. The decomposition of questions focuses

on creating and executing these questions through symbolic

representations, providing a more comprehensive framework

for handling complex queries. This dual focus on decomposi-

tion and execution with symbolic representation sets SH-CoDE

apart from those that rely primarily on few-shot prompting for

decomposition tasks.

C. Scholarly Question Answering

Among recent studies in scholarly QA, [21] describes a

scholarly KGQA model that employs a few-shot learning

strategy to generate SPARQL queries. This model selects few-

shot examples from the training questions similar to the input

query using a BERT-based encoder. Similarly, JarvisQA [13]

addresses questions related to tabular data in scholarly litera-

ture, leveraging BERT to retrieve direct answers from various

tabular formats. Unlike methods focusing solely on KGs [21]

or unstructured text [13], SH-CoDE integrates both KGQA and

TextQA into its framework for complex questions. In scholarly

hybrid QA, [19] extracts relevant context from the underlying

KGs and Wikipedia by utilizing entities mentioned in the

question and prompts Llama3.15 to retrieve answers. The

work in [7] presents a pipeline incorporating context retrieval

and evidence matching to generate coherent responses to

5https://ai.meta.com/blog/meta-llama-3-1/

bibliographic questions, achieved through a fine-tuned model.

Additionally, [9] combines SPARQL queries with divide-

and-conquer algorithms and BERT predictions to improve

the accuracy of their model. Besides, the scholarly hybrid

QA [20] identifies scholarly entities expressed through sub-

question phrases within the main question. Then, it retrieves

relevant text from Wikipedia and entity-related triples from

the underlying KGs via templated SPARQL queries. Finally, it

utilizes a Retrieval-Augmented Generation (RAG) model that

processes the retrieved text chunks alongside KG triple labels

to produce an answer. In contrast, SH-CoDE distinguishes

itself with interpretable, hierarchical symbolic representations

and a tree-based execution framework, effectively querying

KG and text-based QA and setting it apart from other scholarly

QA approaches.

III. METHOD

As shown in Figure 2, an input question comes into the

SH-CoDE HQ-parser, transforming into an intermediate ex-

pression - Hybrid Question (HQ) representation. Then, an

HQ executor forms a binary tree from the HQ representation

and executes the operations in each node. While sending the

sub-question to the KGQA module, it generates a SPARQL

and runs the query on one of the SPARQL endpoints. If the

TextQA module receives a sub-question, it hits Wikipedia,

retrieves the entity text, chunks it, and passes the top three

chunks highly similar to the respective sub-question. The

reader part of the TextQA extracts a span of text as an

answer and returns the one with the highest score among

the top three candidate answers to the executor. Finally, upon

the completion of all the operations’ execution, an answer is

returned.

A. Hybrid Question (HQ) Parsing

The parser employs the few-shot prompts for the HQ

parsing task presented in III-A (Prompt 1) to generate an

intermediate representation of scholarly questions, referred to

as HQ representation, using ChatGPT-3.5. The prompts guide

the transformation of complex scholarly hybrid questions into

a structured HQ-representation format. This process involves

decomposing questions into simpler, sequential sub-questions

using operators such as JOIN and comparison operators like

COMP >, COMP <, and COMP =, which specify how

results from one sub-question feed into another. For example,

as shown in Table I, JOIN is employed for bridging questions,

while JOIN with COMP is used for handling comparative

and bridge-comparison questions. The examples included in

the prompt demonstrate the practical usage of these operators.

The prompts ensure that questions are precisely structured to

facilitate accurate execution against KGs and TextQA systems

via the HQ representation.
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Fig. 2: The SH-CoDE model and its core components — HQ Parser, HQ Executor, KGQA, and TextQA—are illustrated

through a practical example highlighting their interactions and functionalities.

Prompt 1: HQ-representation Generation Prompt
Convert question to HQ-representation:
the question is complex. The HQ
representation contains operators
and elements. Each element is a
natural question. The operator is
from [JOIN, AND, UNION, COMP_>,
COMP_<, COMP_=], and each is a binary
operator containing two elements.
Placeholder (e.g., Ans#1, Ans#2) is to
represent the answer to the predecessor
sub-question.
Generate an HQ representation. Please
follow the demo examples.
Example: {example}
Given question: {question}
HQ-representation:

B. HQ-Execution

The HQ-Executor converts the HQ representation into

a binary tree through a structured approach. The HQ-

representation is a symbolic expression made up of nested

functions and operators that denote complex queries or op-

erations, such as JOIN, COMP_>, COMP_<, and specific

query types like KGQA and TextQA. Each HQ representation

TABLE I: Example questions with their corresponding HQ

Representation.

Example Question HQ representation
Q: What is the citation of the
author who collaborated with
Piero Fraternali on ‘The Story
of the IDEA Methodology’?

JOIN(KGQA2(What is the citation of
Ans#1?), KGQA1(Who is the author
who collaborated with Piero Fraternali
on ‘The Story of the IDEA Methodol-
ogy’?))

Q: Which institution, Joshua
Smith or Duncan Watts affil-
iation, has fewer publications?

COMP >(JOIN(KGQA2(What is the
publication of Ans#2),KGQA2(What
is Joshua Smith affiliation?)),
JOIN(KGQA2(What is the publication
of Ans#1),KGQA1(What is the
affiliation of Duncan Watts?)))

Q: What is the main research
focus of the author of ‘Your
System Is Secure? Prove It!’?

JOIN(TextQA(What is the main re-
search focus of Ans#1?), KGQA1(Who
is the author who collaborated with
Piero Fraternali on ‘The Story of the
IDEA Methodology’?))

Q: What is the motto of
the academic institution with
which the writer of ‘The Com-
plexity of Revising Logic Pro-
grams’ is affiliated?

JOIN(TextQA(What is the motto of
Ans#2?), JOIN(KGQA2(What is the
academic institution Ans#1 affiliated?),
KGQA1(Who is The writer of ‘The
Complexity of Revising Logic Pro-
grams’?)))

expresses complex queries or operations as nested function

calls, where each function typically has one or two arguments.

The binary tree has the following characteristics: (i) Each

node symbolizes a function/operator, (ii) The left and right
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children represent the arguments of this function/operator, and

(iii) Leaf nodes represent specific query terms or values.

The parser recursively constructs TreeNode objects based

on function names and operators in the expression. The step-

by-step process to convert the HQ representation into a tree

structure:

1. Input Processing: Begin by taking the HQ representation

as input. Evaluate if it conforms to recognizable patterns

such as JOIN, AND, UNION, comparison operators (e.g.,

COMP_>), or other query types (e.g., TextQA, KGQA1,

KGQA2,).

2. Extract functions with their argument: Utilize regular

expressions to identify function names and extract their

corresponding arguments.

3. Single Query Node Creation: If the expression corre-

sponds to a specific query function (e.g., KGQA1, KGQA2,

TextQA), construct a node with the function’s name as

the primary value and the argument as the left child.

4. Binary Operator Handling: When the expression begins

with a binary operator (e.g., JOIN, AND, UNION, or

a comparison operator), separate the arguments. Handle

nested structures by counting parentheses to ensure split-

ting occurs only at the top level, thereby enabling correct

segmentation of complex expressions.

5. Recursive Parsing: Develop the left and right subtrees

recursively by parsing each argument in turn.

Subsequently, the executor begins processing the parsed

HQ representation with the rightmost leaf node. Each leaf

node contains a sub-question and a symbolic representation

that indicates the type of QA system, such as TextQA or

KGQA. When the executor encounters a TextQA symbol, it

sends the question to the TextQA module. For symbols like

KGQA1 or KGQA2, the executor forwards the sub-question

to the KGQA module. These symbols specify SPARQL types

corresponding to DBLP and SemOpenAlex executables. The

HQ executor recursively traverses the tree structure to execute

an HQ query. It evaluates each node based on its type (e.g.,

JOIN, COMP_>) to retrieve relevant answers and entities. For

specific nodes, such as JOIN, the executor applies a right-

to-left execution order to propagate responses and entity ref-

erences across nested expressions. Additionally, the executor

incorporates entity tracking during comparisons to maintain

correct associations throughout the evaluation process.

1. Evaluate Comparison Nodes (COMP_>, COMP_<,
COMP_=):
• For comparison nodes, retrieve and track values and

entities from the left and right child nodes.

• Compare these values according to the operator type

(>, <, or =).

• Return the entity corresponding to the greater, lesser,

or equal value, as applicable.

2. Evaluate Join Nodes (JOIN):
• For a JOIN node, first evaluate the right child to

obtain the answer and associated entity URI (Uniform

Resource Identifier).

• Replace any placeholders (e.g., Ans#) in the left

child’s query with this answer.

• Then, evaluate the left child with the updated query,

using the entity from the right child as the current URI

context.

3. Evaluate Logical Operators (AND, UNION):
• For AND, recursively evaluate both children and return

"true" only if both results are "true".

• For UNION, evaluate each child and merge their out-

comes, ensuring no duplicates in the final result.

4. Evaluate Query Nodes (TextQA, KGQA1, KGQA2):
• Execute each query type by invoking the corresponding

function, which processes the question and provides an

answer and entity (URI or name).

• These outcomes rely on external systems, TextQA or

KG functions like KGQA1 and KGQA1.

5. Return Leaf Node Values Directly:
• If the node is a leaf with no further operations required,

return its value directly.

C. QA Modules

1) KGQA: The KGQA module has two sub-modules,

namely KGQA1 for addressing questions related to DBLP

and KGQA2 for answering questions answerable by SemOpe-

nAlex.

Prompt 2: SPARQL Generation Prompt

Convert question -> SPARQL: The
SPARQL contains commands and
variables. URI is the identifier
of the entity under question.
Generate a SPARQL for the question.
Please follow the examples.
For example: {examples}
Given question: {question}
URI: {uri}
SPARQL:

KGQA1: The KGQA1 module focuses on answering ques-

tions related to authors by using their DBLP (Digital Bibli-

ography & Library Project) URIs. First, it employs an entity

linker to identify and connect the entity mentioned in the ques-

tion. It uses ChatGPT-3.5 to determine the entity name within

the question. Using the resolved entity URI, it formulates a

SPARQL query by prompting ChatGPT-3.5 through Prompt

2 (III-C1. The module then runs the SPARQL against the

DBLP-dump SPARQL endpoint6 to retrieve details such as

the author’s name, ORCID7 (Open Researcher and Contributor

ID), and Wikipedia page URI ensuring the Wikipedia link is

in English. The ORCID links an author across both DBLP and

SemOpenAlex.

6https://dblp-april24.skynet.coypu.org/sparql
7https://orcid.org/
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KGQA2: The KGQA2 module transforms a given question

into a SPARQL query using a specific URI and executes that

query against the SemOpenAlex KG endpoint8. If the query

returns an answer, the module provides it as the response.

While generating the SPARQL query, the module prompts

ChatGPT-3.5 using the prompt in III-C1 (Prompt 2). The

prompt includes the input question, the target URI, and ex-

amples that guide the LLM in selecting appropriate relation

names for the query.

2) TextQA: The TextQA module extracts text from the

corresponding Wikipedia page via the entity Wikipedia URI.

Once the text is available, TextQA integrates a semantic

search and reader models to process a long document and

pinpoint a precise answer. This two-stage approach handles

significant texts by narrowing down the relevant text chunk

before extracting the answer. The model splits the text into

chunks of 200 words and identifies the top three possible

answers. Finally, the module returns the best answer and a

list of top-3 answers.

Semantic Searching: The Semantic searching component

employs a pre-trained sentence transformer model to compute

embeddings for both the question and the text chunks. The

searching process involves splitting the input text into chunks

of 200 words, generating an embedding vector for the question

and each chunk using all-MiniLM-L6-v29, and selecting the

top three relevant chunks for further processing based on

similarity scores from the sentence transformer, with the

highest similarity scores indicating relevance.

Reader: The reader component leverages the FLAN-T5-

based10 model [4] to process each top-ranked chunk. The

reader creates an input dictionary containing the question for

each chunk, formatted with a classification token (cls), and

the chunk as the context. Then generates an answer and its

associated score using the reader pipeline11. Once all chunks

are processed, determine the final answer by selecting the

result with the highest score using the max function. The

final answer undergoes a cleaning process to remove any

leading or trailing whitespace and unwanted characters such

as parentheses, periods, and trailing commas.

IV. EXPERIMENT

A. Dataset

For the evaluation of our proposed method, we use an

existing dataset released for the Scholarly Hybrid QALD

Challenge12. The questions in the dataset require reasoning

over scholarly text and KG facts. Each question is aligned with

DBLP and SemOpenAlex KG sub-graphs and Wikipedia text.

8https://semoa.skynet.coypu.org/sparql
9https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
10FLAN-T5 is a fine-tuned version of T5 (Text-to-Text Transfer Trans-

former) that incorporates instruction tuning to improve performance on a wide
range of text-to-text tasks.

11We instantiate the reader model pipeline using a Hugging Face trans-
former pipeline specifically configured for QA, setting the model and tokenizer
to “sjrhuschlee/flan-t5-base-squad2”.

12https://codalab.lisn.upsaclay.fr/competitions/19747

The released dataset contains 10.5K question-answer pairs,

which includes a test set of 700 human-verified questions [20].

B. Evaluation

To assess the overall performance of our proposed method

in answering questions correctly, we use the exact match

(EM) and F-Score metrics. EM calculates the ratio of answers

that precisely match the gold standard answers. The F-Score

evaluates how well the predicted answers balance precision

and recall. It measures the model’s accuracy by determining

how well the predicted answers match the correct answers

regarding overlapping tokens or words, typically analyzed at

the word level for unstructured text.

The F-score is defined as follows:

F-Score = 2× Precision × Recall

Precision + Recall
(1)

Where:

• Precision is the proportion of words in the predicted

answer that also appear in the correct answer:

Precision =
Number of overlapping words

Total words in the predicted answer
(2)

• Recall is the proportion of words in the correct answer

that also appear in the predicted answer:

Recall =
Number of overlapping words

Total words in the correct answer
(3)

The F-Score represents the harmonic mean of precision and

recall, rewarding the model for accurately and comprehen-

sively identifying correct answer tokens. A higher F-Score

indicates that the predicted answers overlap effectively with

the correct answers in both directions, achieving a balance

between precision and recall.

TABLE II: Exact Match and F-Score of different models and

our model.

Models Exact Match (EM) F-Score
Fondi and Jiomekong [9] 43.59 45.05
Contri(e)ve [19] 32.05 40.70
SH-CoDE (Ours model) 70.51 71.83

TABLE III: SH-CoDE performance of on different question

types

Question Types EM F1
Bridge (KG-KG) 58.93 58.93
Comparison and Bridge-Comparison (KG-KG) 37.14 38.37
Bridge (KG-TEXT) 79.74 81.55

As shown in Table II, the model in [9] achieves an EM

score of 43.59 and 45.05 F-Score. While Contri(e)ve [19]

reports an EM of 32.05 and an F-Score of 40.70, lower

than the other models listed. In contrast, our proposed model

significantly outperforms the others, achieving an EM score

of 70.51 and an F-Score of 71.83. This higher performance

highlights the effectiveness of our approach, which integrates
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symbolic question parsing supported by SPARQL generation

and semantic searching with the reader.

Additionally, as Table III illustrates our evaluation of the dif-

ferent question types, the SH-CoDE highest EM and F1 scores

on the bridge (KG-Text) question types indicate the model

ability in decomposing the questions and answering their

respective sub-questions correctly. In contrast, on comparison

and bridge comparison (KG-KG) question types, SH-CoDE

performs the lowest due to the complexity of the questions. Be-

sides, as the error analysis shows, the cumulative effect of the

KGQA and HQ representation and execution errors impacts its

performance. On the other hand, SH-CoDE shows a moderate

performance in the bridge (KG-KG) type. Overall, SH-CoDE’s

higher performance on bridging-type questions highlights the

model’s efficient capability of handling questions that need a

chain of evidence.

V. ERROR ANALYSIS

Figure 3 presents our error analysis of the SH-CoDE

model, focusing on 100 randomly selected incorrect results.

The model’s performance suffers from three primary errors:

incorrect HQ representation generation & execution, erroneous

KGQA responses, and TextQA-related mistakes. The most

frequent issue, counting for 46% of errors, involves incorrect

HQ representation & execution. This category includes three

main problems. First, 36% of errors occur due to missing

sub-question spans. For example, as shown in Table IV (row

1), the model should order the sub-questions as ‘the writer

of. . . ’, ‘the academic institution of Ans#1. . . ’, and ‘How many

publications. . . ’. Instead, the model combines the first two sub-

questions, producing ‘the academic institution of the writer

of. . . ’. Second, misplaced placeholders account for 6% of

errors. In the HQ representation, placeholders must appear

from right to left, with Ans#1 nested in the innermost sub-

question. If a placeholder precedes its predecessor, it causes

errors. Finally, 4% of errors result from incorrect operator

usage in HQ representations.

The second error category involves erroneous responses

from the KGQA component, constituting 23% of errors, which

includes 11% due to inaccurate SPARQL query generation,

such as introducing a non-existent relation name (for example,

bio:pdate), shown in Table IV (row 2). Improper entity linking

causes 5% of errors, where the model fails to identify entity

names with their URI accurately. Additionally, 7% of errors

arise from incorrect answers due to inaccurate entity URI

usage.

The final category pertains to TextQA errors, which make

up 31% of the total. In this category, the model struggles

with extracting relevant text from Wikipedia, causing 5% of

errors, and an incorrect semantic search results in 7% of errors

when the retriever fails to extract relevant text chunks. The

predominant error contributing 19% to this category involves

inaccurate identification of the correct answer span. For in-

stance, as shown in Table IV (row 3), the predicted answers are

either overly detailed or insufficient. Our analysis highlights

areas needing improvement, particularly in representing hybrid

Fig. 3: An error analysis on the SH-CoDE model using

randomly selected 100 questions.

questions and optimizing interactions between KGQA and

TextQA components.

TABLE IV: Sample questions with wrong HQ representation,

KGQA, and TextQA results.

Question Error Examples
How many publications are at-
tributed to the academic institution
of the writer of ‘Advancing Re-
producibility in Parallel and Dis-
tributed Systems Research’?

JOIN(KGQA2(How many
publications are attributed to
Ans#1),KGQA1(the academic
institution of the creator of
‘Advancing Reproducibility in
Parallel and Distributed Systems
Research’))

What is the i10Index of the scholar
associated with Microsoft Research
and involved in the publication of
Information voyeurism: Social Im-
pact of Physically Large Displays
on Information Privacy in 2003?

SELECT ?answer WHERE {
author uri bio:pdate ?answer .
author uri org:memberOf ?uri .}

For what work did the author
of Efficient haplotype matching
and storage using the positional
Burrows-Wheeler transform
(PBWT) receive the Gabor Medal
in 2017?

Gold Answer: computational biol-
ogy
Predicted Answer: contributions to
computational biology

VI. CONCLUSION

In conclusion, this paper presents SH-CoDE, a new ap-

proach to scholarly hybrid QA that seamlessly integrates

question decomposition with symbolic representation and exe-

cution. SH-CoDE effectively breaks down complex questions

into simpler queries and utilizes a hierarchical symbolic repre-

sentation (HQ representation) to establish a natural and inter-

pretable framework for query processing. The HQ-Executor
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enhances this framework by transforming the HQ represen-

tation into a tree structure, facilitating efficient operations

across nodes. Additionally, our method incorporates automated

SPARQL generation for KGQA and employs semantic search

alongside a FLAN-T5-based reader for text-based queries,

enabling precise answer retrieval from heterogeneous data

sources.

SH-CoDE demonstrates superior performance compared to

existing models and excels in handling bridging questions

and indicating areas for improvement in handling comparison

questions. Future work will focus on expanding SH-CoDE’s

capabilities to support a broader range of question types and

improve its performance.
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