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Zusammenfassung

Von digitalen Kommunikationsgeräten, wie Hörhilfen oder Mobiltelefonen, werden häu-
fig Sprachsignale erfasst, die durch Umgebungsgeräusche gestört sind. Mit Hilfe von
Geräuschreduktionsalgorithmen kann das Verhältnis zwischen Sprach- und Geräuschsig-
nalleistung (SNR) verbessert werden. Die Verbesserung des SNRs geht allerdings oft mit
Prozessierungsartefakten oder Sprachsignalverzerrungen einher. Ziel dieser Arbeit ist es,
ohne Einbußen in der Geräuschreduktion Artefakte und Sprachsignalverzerrungen zu re-
duzieren.

Bei den in dieser Arbeit verwendeten Geräuschreduktionsalgorithmen wird das gestörte
Sprachsignal mit einer gleitenden diskreten Fouriertransformation (DFT) in den Spek-
tralbereich transformiert, und dann in Abhängigkeit einer adaptiven Schätzung des a
priori SNRs mit einer Gewichtungsfunktion multipliziert. Ist das a priori SNR lokal
überschätzt, kommt es zu Ausreißern im prozessierten Sprachsignal, die häufig als tonale
Artefakte wahrgenommen werden. Eine Unterschätzung führt hingegen zu Sprachsig-
nalverzerrungen. Das Cepstrum bezeichnet die inverse diskrete Fouriertransformierte des
logarithmierten Betragsquadrats einer spektralen Größe, und hat die Eigenschaft, dass
spektrale Ausreißer einerseits und spektrale Sprachaktivität andererseits durch über-
wiegend disjunkten Mengen cepstraler Koeffizienten repräsentiert werden. Daher lassen
sich, ohne wesentliche Zunahme der Sprachsignalverzerrungen, durch eine selektive Glät-
tung im Cepstralbereich spektrale Ausreißer effektiv reduzieren.

In dieser Arbeit werden die statistischen Eigenschaften cepstraler Koeffizienten analysiert.
Zunächst erfolgt die Herleitung von Gleichungen für den Mittelwert und die Varianz cep-
straler Koeffizienten und logarithmierter spektraler Betragsquadrate. Es wird gezeigt,
dass eine χ2-verteilte spektrale Zufallsgröße nach einer cepstralen Glättung noch annäh-
ernd χ2-verteilt ist, allerdings eine erhöhte Zahl Freiheitsgrade aufweist. Es wird eine
Gleichung hergeleitet, welche die Bestimmung der Freiheitsgrade nach einer cepstralen
Glättung in Abhängigkeit der Glättungsparameter erlaubt. Mit Hilfe dieser Ergebnisse
wird nachgewiesen, dass eine erwartungstreue Glättung im Cepstralbereich zu einem
systematischen Fehler im Spektralbereich führt. Wenn spektrale Größen wie das a pri-
ori SNR im Cepstralbereich geglättet werden, führt dieser systematische Fehler zu einer
Unterschätzung der spektralen Gewichtungsfunktion und kann somit Sprachsignalverz-
errungen hervorrufen. In dieser Arbeit wird der systematische Fehler in Abhängigkeit
der verwendeten Glättungsparameter analytisch beschrieben, und kann somit korrigiert
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werden. Dadurch wird eine cepstrale Glättung möglich, die auch im Spektralbereich
erwartungstreu ist.

Zur Bestimmung der Untermenge sprachrelevanter Cepstralkoeffizienten ist eine Schätzung
der Sprachgrundfrequenz nötig. Es wird hergeleitet, dass hierfür die Suche des Maxi-
mums der Cepstralkoeffizienten, welche die spektrale Feinstruktur darstellen, optimal im
Maximum-Likelihood Sinn ist. Sind mehrere Mikrofone vorhanden, so erhält man die op-
timale Lösung, wenn die Cepstren der Mikrofonsignale vor der Maximumssuche addiert
werden. Weiterhin kann die Korrelation der Sprachgrundfrequenz zeitlich aufeinander-
folgender Segmente für eine robustere Schätzung im Sinne eines Maximum-A-Posteriori
Schätzers genutzt werden.

Es wird belegt, dass eine zeitliche Glättung des Cepstrums spektraler Größen, wie
der a priori SNR Schätzung, spektrale Ausreißer reduziert und unter Verwendung des
hergeleiteten Korrekturterms im Vergleich zu herkömmlichen Verfahren sowohl zu einer
Erhöhung des Ausgangs-SNRs als auch zu weniger Sprachsignalverzerrungen führt. Ähn-
liche Ergebnisse werden erzielt wenn cepstrale Koeffizienten des prozessierten Signals
durch Koeffizienten des unprozessierten Signals ersetzt werden. Der Vorteil der cep-
stralen Ersetzung im Gegensatz zu einer zeitlichen cepstralen Glättung ist, dass eine
zeitliche Verzerrung des prozessierten Signals ausbleibt. Dadurch wird insbesondere bei
nichtstationären Geräuschquellen, wie konkurrierenden Sprechern, die Natürlichkeit des
prozessierten Signals weiter erhöht. Der Vorteil der zeitlichen cepstralen Glättung ist
hingegen ein geringerer Rechenaufwand. Zudem wird gezeigt, dass der Rechenaufwand
durch eine Modifikation der Spektraltransformationen, die zur Berechnung des Cep-
strums verwendet werden, deutlich reduziert werden kann, während die Qualität des
Ausgangssignals annähernd unverändert bleibt.

Abschließend wird die Schätzung der a posteriori Sprachanwesenheitswahrscheinlichkeit
(SPP) in jedem spektralen Koeffizienten behandelt. Im Gegensatz zu konkurrierenden
Verfahren werden a priori SNR und a priori SPP nicht adaptiert, sondern vorab bes-
timmt, was zu einer Entkopplung der a posteriori SPP Schätzung und der Schätzung
der spektralen Gewichtungsfunktion führt. Der vorgeschlagene Algorithmus führt zu
weniger Schätzfehlern als konkurrierende Verfahren. Dies wird besonders dann deutlich,
wenn der SPP Schätzer mit einer zeitlichen Glättung des Cepstrums, dem hergeleiteten
Korrekturterm und dem vorgeschlagenen Verfahren zur Bestimmung der Freiheitsgrade
kombiniert wird.
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Chapter 1

Introduction

In digital communication devices, such as hearing aids or cellular telephones, speech
signals are captured by one or more microphones. The speech signal is often disturbed
by additive background noise, such as competing speakers or traffic noise. In the last
decades a tremendous progress has been made in the development of speech enhancement
algorithms that are capable of reducing additive noise with only little speech distortions.
In order to achieve this, single channel speech enhancement algorithms exploit the dif-
ferent statistical properties of speech and noise signals. For slowly varying noise sources,
such as interior car noise, state-of-the-art algorithms achieve an evident enhancement
in the signal quality. However, in nonstationary noise environments such as babble
noise, single channel speech enhancement remains a challenging task. This thesis aims
at increasing the robustness of speech enhancement algorithms in nonstationary noise
environments.

1.1 Speech enhancement in the short-time discrete

Fourier domain

In this thesis, we address speech enhancement algorithms that work in the short-time
discrete Fourier domain. For the spectral analysis, segments of the noisy discrete ob-
servation y(τ) are weighted by a window wn, and transformed into the discrete Fourier
domain, as

Yk(l) =
N−1∑

n=0

wn y(lL+ n) e−j2πkn/N , (1.1)

where τ and n are the discrete time indices, l is the segment index, k is the fre-
quency index, L is the segment shift, and N is the segment size. It is assumed that
under speech presence the noisy observation is a linear superposition of clean speech
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Sk(l) and noise Nk(l). Thus, the observed signal under the hypothesis H1,k(l), which
signifies the presence of speech, is given as Yk(l) = Sk(l) + Nk(l). Under hypothe-
sis H0,k(l) that indicates the absence of speech, the observed signal takes the form
Yk(l) = Nk(l). Subsequently, whenever possible, we omit the frame index l for nota-
tional convenience.

The considered speech enhancement algorithms can be decomposed into three blocks:

1. the estimation of the noise spectral power given the noisy observation,

2. the estimation of the speech spectral power given the estimated noise spectral
power and the noisy observation,

3. the estimation of clean speech spectral coefficients given the speech spectral power,
the noise spectral power, and the noisy observation.

The spectral noise power σ2
N,k = E{Nk} can be estimated e.g. using the minimum statis-

tics approach [Martin, 2001], minimum controlled recursive averaging [Cohen, 2003], sub-
space decomposition [Hendriks et al, 2008], or Minimum Mean Square Error (MMSE)
estimators [Hendriks et al, 2010]. For the evaluation of the algorithms presented in
this thesis, Martin’s minimum statistics approach [Martin, 2001] is used for spectral
noise power estimation. This approach is based on the observation that a noise power
estimate can be obtained by using minimum values of a power estimate of the noisy
signal. As such, it assumes that the noise signal is more stationary than the speech
signal, and that the found minimum represents only the noise signal. The noise spec-
tral power is then inferred from the found minima. With the spectral noise power
known, the noisy observation is normalized to obtain the a posteriori Signal-to-Noise
Ratio (SNR)

γk = |Yk|2/σ2
N,k .

The speech power σ2
S,k = E{|Sk|2} is often implicitly estimated by using the decision-

directed approach [Ephraim and Malah, 1984] that estimates the a priori SNR

ξk = σ2
S,k/σ

2
N,k .

In Section 3.2 we discuss the a priori SNR estimation in more detail and propose a
novel, improved estimator.

With the speech and noise spectral power given, MMSE estimators of the clean speech
spectral Discrete Fourier Transform (DFT) coefficients can be derived, as

Ŝk = P
(
H1,k|Yk, σ2

S,k, σ
2

N,k

)
· E
{
Sk|Yk, σ2

S,k, σ
2

N,k,H1,k

}

+ P
(
H0,k|Yk, σ2

S,k, σ
2

N,k

)
· E
{
Sk|Yk, σ2

S,k, σ
2

N,k,H0,k

}
, (1.2)
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where P
(
H1,k|Yk, σ2

S,k, σ
2

N,k

)
is the a posteriori Speech Presence Probability (SPP). As

in speech absence the optimal clean speech estimate is zero, (1.2) can be written as
[McAulay and Malpass, 1980, Ephraim and Malah, 1984, Malah et al, 1999]

Ŝk = P
(
H1,k|Yk, σ2

S,k, σ
2

N,k

)
E
{
Sk|Yk, σ2

S,k, σ
2

N,k,H1,k

}

= P
(
H1,k|Yk, σ2

S,k, σ
2

N,k

)
GH1,k,k Yk

= Gk Yk . (1.3)

The basic speech enhancement framework is depicted in Figure 1.1.

In this thesis we treat the estimation of the spectral gain function GH1,k,k and the a poste-

riori SPP P
(
H1,k|Yk, σ2

S,k, σ
2

N,k

)
separately. Thus, in (1.3) we set P

(
H1,k|Yk, σ2

S,k, σ
2

N,k

)
=

1 for all time-frequency points when we discuss the spectral gain function, while we set
GH1,k,k = 1 for all time-frequency points when we discuss the estimation of the a poste-
riori SPP.

Assuming that the speech and noise spectral coefficients are complex Gaussian dis-
tributed, the MMSE estimator for the clean speech spectral coefficients is given by the
well known Wiener Filter,

GH1,k,k = E
{
Sk|Yk, σ2

S,k, σ
2

N,k,H1,k

}
/Yk =

ξk
1 + ξk

. (1.4)

Other results than the Wiener filter may result for three reasons. First, we may search
for functions of the clean speech DFT coefficients, e.g. the spectral amplitudes [Ephraim
and Malah, 1984] or functions of the spectral amplitudes [Ephraim and Malah, 1985,
You et al, 2005, Loizou, 2005]. Secondly, we may change the optimality criterion, e.g.
from MMSE to Maximum A Posteriori (MAP) [Wolfe and Godsill, 2001]. Thirdly,
the assumption on the distribution of the spectral coefficients may be changed, e.g. to
be super-Gaussian instead of Gaussian [Martin, 2002, Martin, 2005, Lotter and Vary,
2005, Hendriks and Martin, 2007, Erkelens et al, 2007b]. The shape of the distribution
of clean speech spectral coefficients is discussed e.g. in [Martin, 2002] and [Gerkmann
and Martin, 2010b]. Instead of making an assumption on the distribution of speech
spectral coefficients, data driven approaches can be used to derive optimal spectral gain
functions [Porter and Boll, 1984, Erkelens et al, 2007a].

For resynthesis, each segment l of the enhanced spectrum Ŝk(l) is transformed into the
time domain using the Inverse Discrete Fourier Transform (IDFT), as

s̃n(l) =
1

N

N−1∑

k=0

Ŝk(l) ej2πkn/N . (1.5)
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Figure 1.1: Basic speech enhancement framework.

Then, the continuous time domain signal is obtained from the segmented time domain
signal s̃n(l) using the overlap-add method

ŝ(τ) =
∑

l∈Z

w̃τ−lL s̃τ−lL(l) , (1.6)

where the synthesis window w̃n and the segmented time domain signal s̃n(l) are assumed
to be zero for n < 0 and n > N − 1. For the evaluation of the speech enhancement
algorithms presented in this thesis we use Hann windows wn with a length of 32 ms and
50% overlap for the spectral analysis in (1.1) and rectangular synthesis windows w̃n = 1
in (1.6). Different choices for analysis synthesis window pairs are discussed e.g. in [Vary
and Martin, 2006, Section 11.3.5], [Mauler and Martin, 2007], and [Mauler and Martin,
2010].

1.2 Drawbacks of DFT-based speech

enhancement

DFT based speech enhancement allows for a high frequency resolution that enables the
suppression of noise even between the spectral harmonics of voiced sounds. However,
a drawback of DFT based speech enhancement algorithms is that they may yield un-
natural sounding structured residual noise, often referred to as musical noise, which is
one of the most annoying artifacts of speech enhancement algorithms [Dreiseitel and
Schmidt, 2006]. Musical noise occurs, if the spectral noise power estimate is locally
underestimated. Then, e.g. in a noise-only signal frame single Fourier coefficients are
not attenuated while all other coefficients are attenuated. The residual isolated spec-
tral peaks in the processed spectrum correspond to sinusoids in the time domain and
are perceived as tonal artifacts of one frame duration. Especially when the speech en-
hancement algorithms operate in nonstationary noise environments, unnatural sounding
residual noise remains a challenge. On the other hand, if the estimated noise spectral
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power is too large, speech distortions occur. A simple way to make musical noise in-
audible and to reduce speech distortions is to apply a lower limit Gmin on the spectral
gain function, the so called spectral floor, as

G̃k = max{Gk, Gmin} . (1.7)

However, this also reduces the amount of noise reduction.

In this thesis, we aim at lowering the spectral floor Gmin without introducing musical
noise or speech distortions.

1.3 Related work

If certain frequency bands are known to be very strongly disturbed or even missing,
a Wiener Filter cannot recover the clean speech. In such a case it may be prefer-
able to infer the missing or strongly disturbed speech from codebooks as proposed by
Rosca, Gerkmann, and Balcan [Rosca et al, 2006], or by using techniques from arti-
ficial bandwidth extension [Esch et al, 2010, Jax and Vary, 2003, Larsen and Aarts,
2004].

Isolated spectral peaks in the processed spectrum occur particularly as many DFT based
speech enhancement algorithms work in each frequency bin independently. Examples for
DFT based algorithms that work independently in each frequency bin are the spectral
noise power estimator using Martin’s minimum statistics [Martin, 2001], Ephraim and
Malah’s a priori SNR using the decision-directed approach [Ephraim and Malah, 1984],
spectral gain functions such as the Wiener filter, or the iterative SPP estimator of [Malah
et al, 1999]. The advantage of the frequency independent approach is that it can be
applied to signals with arbitrary spectral shape. However, if a priori information about
the spectral shape of the wanted signal is available, this information can be used to make
the estimator more robust. Thus, some algorithms exploit the correlation of neighboring
time-frequency points by smoothing spectral quantities in the time-frequency domain,
e.g. the a priori SNR estimator proposed by [Fingscheidt et al, 2005], the smoothing of
spectral gain functions proposed by [Esch and Vary, 2009], [Brandt and Bitzer, 2009],
and [Gustafsson et al, 2001], or the SPP estimator according to [Cohen and Berdugo,
2001]. The approaches in [Srinivasan et al, 2006] and [Srinivasan et al, 2007] go further
and store the representative spectral shapes of speech and noise in codebooks. However,
for low input SNRs the codebook lookup becomes increasingly difficult and is prone
to errors. Furthermore, the approach is rather demanding in terms of memory and
computational complexity.

In this thesis, we use the cepstrum to eliminate outliers of spectral quantities which
results in less musical noise. The cepstrum, which is given by the inverse Fourier trans-
form of the logarithm of the magnitude squared spectrum, is defined in Chapter 2. One
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of the first proposals to process the spectrum of speech by modifying cepstral coeffi-
cients is the nulling of the higher cepstral coefficients for formant estimation [Schafer
and Rabiner, 1969]. This approach eliminates the spectral fine structure and is thus
sometimes referred to as cepstral smoothing [Markel and Gray, 1976, Section 7.3]. The
approach is based on the assumption that the transfer function of the vocal tract is
represented by the lower cepstral coefficients, while the excitation of the vocal tract is
represented by the higher cepstral coefficients. The resulting spectrum after nulling the
higher cepstral coefficients is therefore assumed to represent the transfer function of the
vocal tract.

More recently Stoica and Sandgren have proposed to null certain cepstral coefficients
with a magnitude lower than a certain threshold [Stoica and Sandgren, 2006, Stoica
and Sandgren, 2007] to reduce the variance of the spectral quantity. As this implies
that a cepstral coefficient has zero mean if its magnitude is below the threshold, the
threshold has to be carefully chosen and results in a trade-off between speech distortions
and outlier suppression. In [Stoica and Sandgren, 2006, Stoica and Sandgren, 2007] the
threshold is globally determined based on the standard deviation of cepstral coefficients.
Thus, the approach exploits no a priori knowledge about which cepstral coefficients are
likely to represent the speech spectral structure. As a consequence, for spectral outliers
with a distinct spectral structure, such as babble bursts, the threshold is likely to be
locally chosen too small, as a global increase of the threshold would also result in speech
distortions.

1.4 Structure of this thesis

This thesis is organized as follows. In Chapter 2 we present the definition of the cepstrum
and introduce the concept of cepstral smoothing. As a smoothing of spectral quantities
in the cepstral domain results in a bias in the frequency domain, we derive a bias
compensation based on a thorough analysis of the first and second order statistics of the
logarithmic periodogram and cepstral coefficients. For cepstral smoothing, an estimate
of the fundamental period of voiced speech sounds is required. We show that under
certain assumptions a peak search in the cepstral coefficients that represent the spectral
fine structure is the optimal fundamental period estimation in the maximum likelihood
sense. If multiple microphones are present, we show that the optimal estimator searches
for a peak in the sum of the microphone cepstra. The results are further improved by
tracking the fundamental period over time.

In Chapter 3 we show how a temporal smoothing of the cepstrum may be used to improve
the performance of speech enhancement algorithms. We first propose to temporally
smooth the cepstral representation of the spectral gain function, and then propose to
use temporal cepstrum smoothing for a priori SNR estimation. While the first method
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is a very flexible technique that can be used for all speech enhancement algorithms that
estimate the clean speech spectral coefficients via a multiplicative gain function, the
latter technique increases the performance further, as it is applied in an earlier step of
the speech enhancement framework.

In Chapter 4 we propose to instantaneously replace coefficients of the cepstral representa-
tion of the speech and noise spectral estimates by the corresponding cepstral coefficients
of the noisy periodogram. Due to the instantaneous nature of this approach, in contrast
to Temporal Cepstrum Smoothing (TCS), the representation of the residual noise is not
smeared over time.

In Chapter 5 we discuss a posteriori Speech Presence Probability (SPP) estimation. In
contrast to state-of-the-art estimators, we argue that for SPP estimation the a priori
SPP and the a priori SNR should not be adapted but represent true a priori knowledge.
We propose to smooth the a posteriori SNR in the frequency domain or, preferably, in
the cepstral domain. The resulting a posteriori SPP estimators are shown to yield
a better trade-off between speech distortions and noise leakage than state-of-the-art
estimators.

In Chapter 6 conclusions from the results of this thesis are drawn.

In Appendix A we present mathematical derivations whose results are used in Chapter 2,
while in Appendix B we present the derivation of the Maximum Likelihood (ML) a priori
SNR estimator used in Chapter 3.



Chapter 2

Properties of the Cepstrum

In this thesis, we propose to use the cepstrum to represent the spectral characteristics
of speech. The cepstrum of a positive, symmetric, real valued spectral quantity Φk of
the speech enhancement algorithm is given by the inverse discrete Fourier transform of
the natural logarithm of the spectrum

φq = 1/N
N−1∑

k=0

log(Φk) ej2πkq/N , (2.1)

where q ∈ {0, . . . , N − 1} is the cepstral index, often referred to as quefrency index
[Bogert et al, 1963], and log(·) is the natural logarithm. In the relevant literature, the
cepstrum is sometimes defined as a function of the magnitude of spectral coefficients,
e.g. Φk = |Yk| [Vary and Martin, 2006], but also defined as the squared magnitude
of spectral coefficients, e.g. Φk = |Yk|2 [Ephraim and Rahim, 1999]. While the first
definition results from the even part of the complex cepstrum defined by [Oppenheim
and Schafer, 1975, Chapter 10], [Deller et al, 1993, Chapter 6], the latter is more in line
with the introduction of the cepstrum by Bogert, Healy, and Tukey [Bogert et al, 1963].
See also [Oppenheim and Schafer, 2004] for a review on the history of the cepstrum.
Due to the log-function, the square results only in a scaling of the cepstral coefficient
by a factor of two, while the principle behavior of the cepstral coefficients remains the
same. However, a scaling of the cepstrum also scales the mean and standard deviation
of cepstral coefficients which are derived in Section 2.3. In this thesis, we define the
cepstrum as in (2.1), where Φk is a squared quantity. Thus, Φk may represent spectral
quantities like the noisy periodogram |Yk|2, the speech spectral power σ2

S,k, or functions
of squared quantities such as the a posteriori Signal-to-Noise Ratio (SNR) γk, or the
gain function of a Wiener filter.

Note that as Φk is real-valued, φq is symmetric with respect to q = N/2. Therefore, in
the following only the part q ∈ {0, . . . , N/2} is discussed. The lower cepstral coefficients
q ∈ {0, . . . , qlow} with, preferably, qlow ≪ N/2 represent the spectral envelope of Φk. To
characterize all resonances of the vocal tract, assuming an allpole speech model, qlow/fs
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should be at least 1 ms [Markel and Gray, 1976, Section 6.5.3], where fs is the sampling
rate. In practice we choose qlow/fs in the range of 1 ms − 4 ms. For speech signals, the
spectral envelope is determined by the transfer function of the vocal tract. The higher
cepstral coefficients qlow < q < N/2 represent the fine-structure of Φk which, for speech
signals, is caused by the excitation of the vocal tract. For voiced speech, the excitation is
mainly represented by a dominant peak at q0 = fs/f0, with f0 the fundamental frequency.
The fundamental period is also represented by multiples of the fundamental period peak,
the so-called rahmonics, rq0, with r the index of the cepstral rahmonic. However, the
energy of the rahmonics decays quickly with increasing r. The fundamental frequency
can be found by a maximum search in q ∈ {qlow, . . . , N/2} as proposed by [Noll, 1967].
In Section 2.4 we show that, under some assumptions, this maximum search is optimal
in the maximum likelihood sense. With the found fundamental frequency, in the cepstral
domain voiced speech can be represented by the set

Q = {0, . . . , qlow,Qpitch} , (2.2)

where Qpitch contains the fundamental period peak and its rahmonics rq0, with r =
{1, . . . , R + 1}, where R is the considered number of rahmonics. In this thesis often only
the fundamental period peak is considered, i.e. R = 0. The remaining coefficients are
given by the set

Q = {{qlow + 1, . . . , N/2} \Qpitch} , (2.3)

The cepstrum is well suited for speech processing algorithms for the following reasons:
while speech is mainly represented by the set Q, non-speech like spectral structures,
like spectrally narrow babble bursts, are represented mainly by the remaining cepstral
coefficients Q. Thus, in the cepstrum speech-like and non speech-like spectral structures
can be selectively treated. Furthermore, as the cepstrum is a fixed transform, the cepstral
coefficients are easy to interpret. For instance the peak q0 in the upper cepstrum can be
directly related to the fundamental period T0, as T0 = q0/fs. Finally, the computational
cost of the cepstral analysis is moderate, and dominated by the discrete Fourier transform
which can be efficiently implemented via a real-valued fast Fourier transform [Cooley
and Tukey, 1965, Sorensen et al, 1987]. In Section 3.2.3 we show how the computational
complexity can be further reduced.

2.1 The cepstrum of clean speech

In Figure 2.1 the spectrum of a clean speech signal and its cepstral representation is
given. Here, the logarithm of the magnitude of the cepstrum is shown. It can be seen that
speech is mainly represented by some lower cepstral coefficients, a fundamental period
peak and multiples of that peak, the so called rahmonics.
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Figure 2.1: Clean spectrogram (top) and its cepstrum (bottom)

We will now show that the upper cepstral coefficients, except for the fundamental pe-
riod peak, are not important to reconstruct high quality speech. To achieve this, we
set the cepstral coefficients q ∈ Q to zero. We use the Keele database [Meyer, Accessed
2006] which contains speech samples, the corresponding voiced/unvoiced information
and the speech fundamental period. The speech samples are downsampled to a sam-
pling rate of fs = 16 kHz. We now assess the speech quality dependent on qlow. One
very common measure to compare the speech quality of processed and clean speech is
the cepstral distance [Markel and Gray, 1976, Section 10.2.2], [Quackenbush et al, 1988,
Section 2.2.7]. This measure is based on the difference between the lower cepstral coeffi-
cients of the clean and processed speech, which means that a modification of the upper
cepstral coefficients is not accounted by this measure. Therefore, the cepstral distance
is not well suited for this experiment. Instead, we use the Perceptual Evaluation of
Speech Quality (PESQ) Mean Opinion Score (MOS) [ITU-T, 2001]. The PESQ MOS is
not directly related to cepstral coefficients but measures the spectral distance between
frequency bands that resemble the spectral resolution of the auditory system. In the
experiment we use different settings for voiced and unvoiced speech sounds, i.e. we set
qlow = qlow,v for voiced sounds and qlow = qlow,uv for unvoiced sounds. The results of the
experiment are given in Figure 2.2. It may be seen, that only few cepstral coefficients
are needed to obtain a large PESQ MOS. Further, as compared to unvoiced sounds,
for voiced sounds more cepstral coefficients are needed to obtain a large overall PESQ
MOS.
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Figure 2.2: PESQ MOS for continuous speech from 5 male and 5 female speakers [Meyer,
Accessed 2006]. For voiced sounds, cepstral coefficients above qlow,v are set to
zero, excluding the cepstral coefficients representing the fundamental period
q ∈ Qpitch. For unvoiced sounds, cepstral coefficients above qlow,uv are set to
zero. The sampling rate is fs = 16 kHz. PESQ yields values between 1 and
4.5, where 4.5 indicates the best speech quality.

2.2 Cepstral smoothing for speech enhancement

without artifacts

Musical noise is caused by non-speech-like spectral outliers that alter the fine structure
of a spectral quantity. In this thesis three methods for cepstral smoothing are ana-
lyzed. The first technique is to apply a selective Temporal Cepstrum Smoothing (TCS).
Secondly, we may null non-speech related cepstral coefficients q ∈ Q (Cepstral Nulling
(CN)). The third technique is to instantaneously replace the non-speech related cep-
stral coefficients q ∈ Q of a spectral quantity Φk by the corresponding coefficients of the
noisy speech and is discussed in Chapter 4. In this section we will briefly introduce the
concepts of TCS and CN.

The idea of TCS is that cepstral outliers of short duration can be reduced by smoothing
the cepstrum over time. Due to the properties of the cepstrum, a selective smoothing
of speech-like spectral structures and non speech-like spectral structures is possible. To
minimize spectral distortions of the speech signal, only little smoothing is applied to the
speech related cepstral coefficients Q. On the other hand a strong smoothing can be
applied to the remaining cepstral coefficients for an efficient reduction of non speech-like
spectral outliers. The cepstral quantity φq, defined in (2.1), is recursively smoothed over
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time, as

φ̄q(l) = αq(l) φ̄q(l − 1) + (1− αq(l))φq(l) , (2.4)

where the smoothing factor αq is chosen rather close to zero for the speech related cepstral
coefficients q ∈ Q and rather close to one for the remaining coefficients q ∈ Q. The exact
determination of Q and αq is discussed in Chapter 3.

In CN certain cepstral coefficients are set to zero, as

φ̄q = bqφq , (2.5)

where the indicator function can be defined as

bq =





1 , for q ∈ Q

0 , else.
(2.6)

Alternatively, bq(l) can be defined to be zero if φq(l) is below a certain threshold, as
proposed by [Stoica and Sandgren, 2007].

After the cepstral smoothing, φ̄q is transformed to the spectral domain to achieve the
smoothed spectral quantity Φ̄k, as

Φ̄k = B · exp



N−1∑

q=0

φ̄q e−j2πkq/N


 . (2.7)

Due to the nonlinear logarithmic compression of the cepstral transform (2.1) an unbiased
smoothing in the cepstrum domain leads to a bias in the spectral domain. This bias
is compensated using the bias correction factor B. The bias correction factor B is
dependent on the distribution of the spectral quantity Φk. A bias correction for χ-
distributed spectral amplitudes is discussed in Section 2.3, while a general bias correction
for the smoothing of spectral gain functions is proposed in Section 3.1.1. In [Mauler et al,
2008] it is shown how cepstral smoothing can be interpreted as a smoothing on the entire
time-frequency plane. Further in [Mauler et al, 2008] we also present a bias compensation
for χ2-distributed spectral quantities. However, as opposed to the bias compensation in
Section 2.3, the bias correction proposed in [Mauler et al, 2008] holds only for spectrally
uncorrelated spectral coefficients, is computationally rather expensive, and can only be
applied to TCS.

The TCS algorithm is summarized in Algorithm 1, while the algorithm for CN is sum-
marized in Algorithm 2.
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Algorithm 1 Temporal Cepstrum Smoothing (TCS) of a spectral quantity Φk, such as
a spectral gain function, a speech power estimate, or the a posteriori SNR.

1: for all signal segments l do

2: Compute the cepstrum of Φk (2.1)

φq = 1/N
N−1∑

k=0

log(Φk) ej2πkq/N .

3: Choose smoothing factor αq to be rather close to zero for the speech related
cepstral coefficients q ∈ Q and rather close to one for the remaining coefficients
q ∈ Q.

4: Apply selective Temporal Cepstrum Smoothing (TCS) (2.4)
φ̄q(l) = αq(l) φ̄q(l − 1) + (1− αq(l))φq(l) .

5: Compute the bias correction B.
6: Transform back into the frequency domain (2.7)

Φ̄k = B · exp



N−1∑

q=0

φ̄q e−j2πkq/N


 .

7: end for

Algorithm 2 Cepstral Nulling Cepstral Nulling (CN) of a spectral quantity Φk, such
as a spectral gain function, a speech power estimate, or the a posteriori SNR.

1: for all signal segments l do

2: Compute the cepstrum of Φk (2.1)

φq = 1/N
N−1∑

k=0

log(Φk) ej2πkq/N .

3: Choose bq as

bq =





1 , for q ∈ Q

0 , else.

4: Apply selective Cepstral Nulling (CN) (2.5)
φ̄q = bqφq .

5: Compute the bias correction B.
6: Transform back into the frequency domain (2.7)

Φ̄k = B · exp



N−1∑

q=0

φ̄q e−j2πkq/N


 .

7: end for
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2.3 Statistical properties of cepstral coefficients and

χ-distributed spectral amplitudes before and after

cepstral smoothing

In this section we show that if χ-distributed spectral amplitudes are smoothed in the
cepstral domain, the resulting smoothed spectral amplitudes are also approximately χ-
distributed but with more degrees of freedom and less signal power. Further, we provide
new insights into the statistics of the cepstral coefficients derived from χ-distributed
spectral amplitudes using tapered spectral analysis windows. We derive explicit expres-
sions for the variance and covariance of correlated χ-distributed spectral amplitudes and
the resulting cepstral coefficients, parameterized by the degrees of freedom. Finally, we
derive the signal power bias B that arises when spectral amplitudes are smoothed by
reducing their variance in the cepstral domain by means of a cepstral smoothing via
TCS or CN and develop a power bias compensation method. The proposed bias cor-
rection results in a simple scaling of the spectral amplitudes and is fixed for a fixed set
of cepstral smoothing parameters. As the determination of the bias correction factor
is computationally inexpensive, it can be computed on a segment-by-segment basis if
the smoothing parameters change. The results of this section are partly presented in
[Gerkmann and Martin, 2009].

In many applications of statistical signal processing, a variance reduction of spectral
quantities derived from time domain signals, such as the periodogram, is required
[Martin, 2001, Gerkmann et al, 2008b]. The χ2-distribution of a spectral quantity P
is given as

p(P ) =
1

Γ(µ)

(
µ

σ2

)µ
P µ−1 exp

(
− µ

σ2
P
)
, (2.8)

with shape parameter µ, mean E{P} = σ2, variance var{P} = σ4/µ, and the complete
gamma function Γ(·) [Gradshteyn and Ryzhik, 2000, (8.31)]. 2µ is also known as the
degrees of freedom [Vary and Martin, 2006]. Mean and variance can be derived using
[Gradshteyn and Ryzhik, 2000, (3.381.4)]. For µ = 1, it is well known that a smoothing of
P over time and/or frequency results in an approximately χ2-distributed random variable
with the same mean and an increase in the degrees of freedom that goes along with the
decreased variance [Martin and Lotter, 2001, Martin, 2006]. In Appendix A.1 we show
that the χ2-distribution holds exactly for a moving average smoothing of independent
periodogram bins P and arbitrary µ. Then, for an unbiased smoothing, the shape
parameter after smoothing µ̄ can be easily obtained if the mean before smoothing and
the amount of variance reduction is known, as

µ̄ = σ4/var
{
P̄
}
, (2.9)
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where smoothed quantities are marked by a bar. A drawback of smoothing in the fre-
quency domain is that the temporal and/or frequency resolution is reduced. In speech
processing this may not be desired as the temporal smoothing smears speech onsets
and frequency smoothing reduces the resolution of speech harmonics. This drawback of
frequency domain smoothing is overcome by cepstral smoothing techniques. However,
the application of an unbiased smoothing process in the cepstral domain leads to a bias
in the spectral domain: cepstral smoothing does not only change the variance of a χ2-
distributed spectral random variable P , but also its mean E{P} = σ2 6= E

{
P̄
}

= σ̄2. For
practical applications, the fact that cepstral smoothing results in a bias in the frequency
domain is most critical. If P = |S|2 is the periodogram of a complex-valued zero-mean
variable S for instance, changing the mean of the periodogram E{|S|2} changes the signal
power of S. As this is usually an undesired side-effect of cepstral smoothing, a framework
to compensate for the bias in signal power is needed. However, after cepstral smoothing,
all three variables in (2.9) are unknown. We neither know the shape parameter after
smoothing µ̄, nor the amount of variance reduction a cepstral smoothing applies to spec-
tral coefficients, nor the biased mean of the spectral coefficients after smoothing σ̄2. In
this section we show that bias, the variance, and the shape parameter in (2.9) can still
be determined based on a statistical analysis of the log-periodogram and cepstral coeffi-
cients. The presented results are based on the observation that the distribution of spec-
tral amplitudes after cepstral smoothing can be well approximated by a χ-distribution.
Then we show that the variance of the cepstral coefficients is directly related to the shape
parameter. Thus, for a given amount of variance reduction in the cepstral domain, we
can determine the shape parameter after smoothing. The bias can then be determined
from the shape parameters before and after smoothing.

We first discuss the statistical properties of the log-periodogram and of cepstral coeffi-
cients in Section 2.3.1 for several spectral analysis windows. In Section 2.3.2 we show
how the shape parameter after cepstral smoothing can be determined and how the sig-
nal power bias can be compensated. This procedure is summarized in Algorithm 4. In
Section 2.3.3 we discuss the mean of the cepstral coefficients. In Section 2.3.4 we apply
the proposed bias compensation in a practical scenario.

2.3.1 Statistical properties of the logarithmic periodogram and

cepstral coefficients before cepstral

smoothing

It is well known that for a Gaussian time domain signal s(τ), the spectral coefficients Sk
obtained similar to (1.1) are complex Gaussian distributed and the spectral amplitudes
|Sk| are χ-distributed with two degrees of freedom (µ = 1) for k ∈ {{1, . . . , N} \N/2},
and with one degree of freedom (µ = 1/2) at k ∈ {0, N/2}. The χ-distribution is given
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by

p(|Sk|) =
2

Γ(µ)

(
µ

σ2
S,k

)µ
|Sk|2µ−1 exp

(
− µ

σ2
S,k

|Sk|2
)
, (2.10)

with the variance σ2
S,k = E{|Sk|2}. The distribution of the periodogram Pk = |Sk|2 is then

found to be the χ2-distribution [Papoulis and Pillai, 2002],

p(Pk) =
1

Γ(µ)

(
µ

σ2
S,k

)µ
P µ−1
k exp

(
− µ

σ2
S,k

Pk

)
. (2.11)

The χ2-distribution is frequently also referred to as the Gamma distribution [Andrianakis
and White, 2009]. χ and χ2-distribution can also be comprised to a generalized Gamma
distribution [Erkelens et al, 2007b]. For µ = 1 the χ-distribution is identical to the
Rayleigh distribution, while the χ2-distribution is identical to the exponential distribu-
tion. As stated above, a shape parameter of µ = 1 results for a Gaussian distributed time
domain signal s(τ). Even if the time domain signal s(τ) is not Gaussian distributed,
the complex spectral coefficients are asymptotically Gaussian distributed for large N
[Brillinger, 1981]. However, for segment sizes used in common speech processing frame-
works, it can be shown that the complex spectral coefficients of speech signals are super-
Gaussian distributed [Martin, 2002, Martin, 2005] and thus exhibit a larger kurtosis as
compared to Gaussian distributed spectral coefficients. The kurtosis of the χ-distribution
(2.10) can be shown to increase with a decreasing µ [Breithaupt, 2008, (C.1)]. In fact,
choosing µ < 1 in (2.10) may yield a better fit to the distribution of speech spectral am-
plitudes than a Rayleigh distribution (µ = 1) [Andrianakis and White, 2006, Breithaupt
et al, 2008b, Andrianakis and White, 2009].

In this thesis, we derive expressions for arbitrary values of µ that thus hold for com-
plex Gaussian distributed spectral coefficients Sk (µ = 1), complex super-Gaussian dis-
tributed spectral coefficients for µ < 1 [Breithaupt and Martin, 2010] and complex
spectral coefficients that exhibit a slightly sub-Gaussian distribution for µ > 1. In a
practical scenario, µ should be chosen so that (2.10) fits the empirical distribution of
the spectral amplitudes of the considered signal. However, we show in this thesis that
µ can also be estimated from the empirical variance of cepstral coefficients (cf. Algo-
rithm 3).

To compute the variance of the cepstral coefficients we first derive the variance of the
log-periodogram,

var{log(Pk)} = E
{
(log(Pk))

2
}
− (E{log(Pk)})2 . (2.12)

With (2.11) and [Gradshteyn and Ryzhik, 2000, (4.352.1)], the expected value of the
log-periodogram of a χ2-distributed Pk can be derived as

E{logPk} = ψ(µ)− log (µ) + log
(
σ2

S,k

)
, (2.13)
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Figure 2.3: Riemann’s zeta-function ζ(2, µ) [Gradshteyn and Ryzhik, 2000, (9.521.1)]

where ψ(·) is the psi-function [Gradshteyn and Ryzhik, 2000, (8.360)]. The first term
on the right hand side of (2.12) can be derived using [Gradshteyn and Ryzhik, 2000,
(4.358.2)]

E
{
(logPk)

2
}

=
(
ψ(µ)− log (µ) + log

(
σ2

S,k

))2
+ ζ(2, µ) , (2.14)

where

ζ(2, µ) =
∞∑

n=0

1

(µ+ n)2
. (2.15)

is Riemann’s zeta-function [Gradshteyn and Ryzhik, 2000, (9.521.1)], depicted in Fig-
ure 2.3.

With (2.12), (2.13), and (2.14) the variance of the log-periodogram κ0 results in

κ0 = var{logPk} = ζ(2, µ) . (2.16)

This is a generalization of the results in [Ephraim and Rahim, 1999], where the variance
of the log-periodogram was derived for the special case µ = 1.

The cepstrum is obtained as given in (2.1) with Φk = Pk = |Sk|2. As shown in Ap-
pendix A.2, the covariance of the cepstral coefficients can be obtained by taking a
two dimensional discrete Fourier transform of the covariance of the log-periodogram
as

cov{φq1 , φq2} =
1

N2

N−1∑

k2=0

N−1∑

k1=0

cov{log(Pk1
) , log(Pk2

)} ej 2π
N
q1k1e−j 2π

N
q2k2 , (2.17)

where k1, k2 ∈ {0, . . . , N − 1} are frequency indices, and q1, q2 ∈ {0, · · · , N/2} are que-
frency indices. For large N , we may neglect the fact that at k ∈ {0, N/2} the variance
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var{logPk} = ζ(2, µ
2
) is larger than for k ∈ {{1, . . . , N} \N/2} where var{logPk} =

ζ(2, µ) = κ0. If the frequency bins are uncorrelated, i.e. cov{logPk1
, logPk2

} = 0 for
k1 6= k2, the covariance of the cepstral coefficients results in

cov{φq1 , φq2} =





1
N
κ0 , q1 = q2, q1 ∈

{
1, ..., N

2
− 1

}

2
N
κ0 , q1 = q2, q1 ∈

{
0, N

2

}

0 , q1 6= q2

, (2.18)

with κ0 defined in (2.16). Note that a tapered spectral analysis window wn in (1.1) results
in a correlation of adjacent frequency bins. Since in (2.18) uncorrelated frequency bins
are assumed, this result holds only for rectangular spectral analysis windows. Tapered
spectral analysis windows and correlated spectral coefficients are treated in the following
paragraph.

Correlated spectral coefficients and tapered spectral analysis

windows

While in [Ephraim and Rahim, 1999] and (2.18) only rectangular spectral analysis win-
dows wn were considered for the spectral analysis in (1.1), we now discuss the statistics
of the log-periodogram and cepstral coefficients for correlated spectral coefficients, where
the spectral correlation results e.g. from tapered spectral analysis windows as used in
many speech processing algorithms.

While for uncorrelated spectral coefficients we have µ degrees of freedom for k ∈ {0, N/2}
and 2µ degrees of freedom for k ∈ {{1, . . . , N} \N/2}, the correlation introduced by a
tapered spectral analysis window results in a reduction of the degrees of freedom, and
thus a higher variance for the log-periodogram bins adjacent to k = 0 and k = N/2. As
for large N this hardly affects the cepstral coefficients, the effect is insignificant here. A
derivation of the log-spectral variances is given by [Gray, Jr, 1974] for the special case
µ = 1 and different spectral analysis windows wn.

However, the squared correlation coefficient of the frequency coefficient Sk and its mth
neighbor Sk+m

ρ2
m =

∣∣∣E
{
SkS

∗
k+m

}∣∣∣
2

E{|Sk|2}E{|Sk+m|2}
(2.19)

greatly affects the variance of cepstral coefficients.

The resulting covariance of the logarithm of two periodogram bins

κm = cov{log(Pk), log(Pk+m)}
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is derived below. As in general the spectral covariance κm introduced by tapered spec-
tral analysis windows rapidly decreases with increasing m, we assume that κm = 0
for m > M and M ≪ N/2 + 1. Further, as in (2.18), for large N , we may neglect
the fact that for k ∈ {0, N/2} the variance of the log-periodogram is larger than κ0,
as we have less degrees of freedom than for k /∈ {0, N/2}. Then, as shown in Ap-
pendix A.3, the covariance of cepstral coefficients φq1 and φq2 for correlated data results
in

cov{φq1 , φq2} ≈





1
N

(
κ0 + 2

∑M
m=1 κm cos

(
m2π
N
q1

))
, q1 = q2, q1 ∈

{
1, ..., N

2
− 1

}

2
N

(
κ0 + 2

∑M
m=1 κm cos

(
m2π
N
q1

))
, q1 = q2, q1 ∈

{
0, N

2

}

0 , q1 6= q2

(2.20)

where M denotes the number of non-zero covariance values κm. From (2.20) it follows
that cepstral coefficients are approximately uncorrelated, even if log-periodogram bins
are correlated. The cepstral variance is given as the diagonal of the covariance matrix,
as

var{φq} ≈




2
N

(
ζ(2, µ) + 2

∑M
m=1 κm cos

(
m2π
N
q
))

, q ∈
{
0, N

2

}

1
N

(
ζ(2, µ) + 2

∑M
m=1 κm cos

(
m2π
N
q
))

, else
. (2.21)

To derive the covariance κm of two log-periodogram bins, we extend the χ2-distribution
(2.11) to the bivariate χ2-distribution of two correlated periodogram bins Pk = |Sk|2 and
Pk+m = |Sk+m|2 with the squared correlation coefficient ρm as given in (2.19). This distri-
bution can be found e.g. in [Joarder, 2009, Theorem 2.1], as

p(Pk, Pk+m) =
P µ−1
k P µ−1

k+m

22µ+1
√
π Γ(µ) (1− ρ2

m)µ
exp

(
−Pk + Pk+m

2(1− ρ2
m)

)

∞∑

n=0

(1 + (−1)n)

(
ρm

1− ρ2
m

)n Γ
(
n+1

2

)

n! Γ
(
n
2

+ µ
)P

n
2

k P
n
2

k+m . (2.22)

Note that the infinite sum in (2.22) can also be expressed in terms of the hypergeometric
function [Nadarajah, 2009]. With (2.22), [Gradshteyn and Ryzhik, 2000, (4.352.1)] and
[Gradshteyn and Ryzhik, 2000, (3.381.4)] we find

κm = cov{log(Pk), log(Pk+m)} (2.23)

= E{log(Pk) log(Pk+m)} − E{log(Pk)}E{log(Pk+m)} (2.24)

=
∞∑

n=0

An,µ,ρm (Bn,µ,ρm)2 −
(
∞∑

n=0

An,µ,ρmBn,µ,ρm

)2

, (2.25)
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where

An,µ,ρm =
(1− ρ2

m)µ

2
√
π Γ(µ)

(1 + (−1)n) 2nρnm
Γ
(
n+1

2

)
Γ
(
n
2

+ µ
)

n!
, (2.26)

Bn,µ,ρm = ψ
(
µ+

n

2

)
+ log

(
2
(
1− ρ2

m

))
, (2.27)

and ρm as defined in (2.19). This is a generalization of the results in [Ephraim and
Roberts, 2005, (6)] and [Ephraim and Roberts, 2005, (20)] where the covariance is given
for the special cases µ = 1 and µ = 1/2, respectively. With (2.25), the covariance κm
of log-periodogram bins, and thus the covariance of cepstral coefficients (2.20), can be
determined.

From above derivations we see that the covariance of cepstral coefficients depends only
on the shape parameter µ of χ-distributed spectral amplitudes and the correlation be-
tween spectral coefficients ρm. Specifically, the covariance of the cepstral coefficients is
independent of the signal power, the spectral shape, and the segment index l. In Ap-
pendix A.4 we show that for a Hann window and σ2

S,k−1 ≈ σ2
S,k ≈ σ2

S,k+1, the normalized
correlation results in ρ1 = 2/3 and ρ2 = 1/6. Hence, for a Hann window and µ = 1 we
have κ1 = 0.507 and κ2 = 0.028.

The cepstral variance for µ = 1 and the rectangular window (κm = 0,m ∈ {1, ...,M})
or the Hann window (κ1 = 0.507, κ2 = 0.028, κm = 0,m ∈ {3, ...,M}) are compared
in Figure 2.4, where we also show empirical data. It is obvious that (2.21) provides an
excellent fit for both the rectangular and the Hann window. As the additional cosine-
terms in (2.20) and (2.21) have zero mean with respect to q, the mean of the cepstral
variance for arbitrary spectral correlation equals the cepstral variance for a rectangular
window and is thus independent of the chosen analysis window wn. Thus, for the sum
over quefrency we have

N/2∑

q=0

νqvar{φq} =ζ(2, µ) , (2.28)

with

νq =





1/2 , q ∈ {0, N/2}
2 , else

. (2.29)

The coefficients νq account for the symmetry of the cepstrum and the different variances
at the DC and Nyquist bin in (2.21). In this way the cosine terms in (2.21) cancel out
and the modified summed variance of the cepstral coefficients are related to the shape
parameter µ via Riemann’s zeta-function.
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Figure 2.4: The cepstral variance for a pink Gaussian time-domain signal analyzed with
a non-overlapping rectangular analysis window wn in (2) and a Hann window
with half-overlapping frames. The empirical variances are compared to the
theoretical results in (2.21) with κm = 0,m ∈ {1, ...,M} for the rectangular
window and κ1 = 0.507, κ2 = 0.028, κm = 0,m ∈ {3, ...,M} for the Hann
window. The sampling rate is fs = 16 kHz and N = 512.

2.3.2 Statistical properties after cepstral

smoothing

In this section, we approximate the distribution of spectral amplitudes after cepstral
smoothing by the parametric χ-distribution. From experimental results in Section 2.3.4
it will be seen that this approximation is valid. From (2.28) and Figure 2.3 we see that
a reduction of the cepstral variance via cepstral smoothing increases the parameter µ
of the χ-distribution. Then, due to (2.13), changing µ also changes the spectral power
σ2

S,k. Hence, a variance reduction in the cepstral domain results in a bias in the spectral
power that can now be accounted for. In the following, we denote parameters after
cepstral smoothing by a bar. We will discuss cepstral smoothing via CN and TCS
separately.

As described in Section 2.2, in CN a set of cepstral coefficients is set to zero. Then, the
summed variance after cepstral smoothing can be related to the shape parameter after
smoothing µ̄, as

ζ(2, µ̄) =
N/2∑

q=0

νqvar{φq} bq , (2.30)

where φ̄q are the cepstral coefficients after cepstral smoothing, the indicator function bq ∈
{0, 1} sets certain cepstral coefficients to zero, and νq is defined as in (2.29).
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For TCS, the cepstral coefficients are recursively smoothed over time with a quefrency
dependent smoothing factor αq

φ̄q(l) = αq φ̄q(l − 1) + (1− αq)φq(l) . (2.31)

With the variance after recursive smoothing derived in Appendix A.5.1, the variance
after cepstral smoothing can be related to the shape parameter after smoothing µ̄,
as

ζ(2, µ̄) =
N/2∑

q=0

νqvar{φq}
1− αq
1 + αq

. (2.32)

The derivation in Appendix A.5.1 holds for uncorrelated successive signal segments which
is valid for nonoverlapping rectangular spectral analysis windows and is also well ful-
filled for half overlapping Hann windows. For higher signal segment correlation, the
summed variance after cepstral smoothing can be measured offline for a fixed set of re-
cursive smoothing constants αq. For a given µ of the spectral amplitudes before cepstral
smoothing, the cepstral variance can be determined via (2.21) and thus the summed
cepstral variance after cepstral smoothing via (2.30) or (2.32). In a practical applica-
tion, the relation between µ̄ and ζ(2, µ̄) can be stored in a table such that the summed
cepstral variance can be directly related to the shape parameter after cepstral smoothing
µ̄.

The spectral power bias σ2
S,k/σ̄

2
S,k can then be determined using (2.13), as

log
(
σ2

S,k/σ̄
2

S,k

)

= E
{
log

(
|Sk|2

)}
− ψ(µ) + log (µ)−

(
E
{
log (|Sk|2)

}
− ψ(µ̄) + log (µ̄)

)
. (2.33)

The cepstral transformation consists of a nonlinear logarithmic compression and an
Inverse Discrete Fourier Transform (IDFT). As the IDFT is a linear operation, an
unbiased smoothing in the cepstral domain remains unbiased in the logarithmic domain.
Therefore the expectation of the logarithmic periodogram stays unchanged before and
after cepstral smoothing, i.e. E{log (|Sk|2)} = E

{
log (|Sk|2)

}
. We thus obtain the

frequency independent factor

B = σ2
S,k/σ̄

2
S,k =

µ

µ̄
exp(ψ(µ̄)− ψ(µ)) (2.34)

that is applied when computing the inverse cepstral transform as in (2.7), where Φ̄k
represents the periodogram after cepstral smoothing, i.e. the squared spectral ampli-
tudes. Note that the bias correction B depends only on µ and µ̄. For a fixed set of
smoothing parameters αq or bq the bias correction B is thus fixed and independent of
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the segment index l. We obtain unbiased cepstrally-smoothed spectral amplitudes with
reduced cepstral variance, as

|S̄k(l)| =

√√√√√B exp



N−1∑

q=0

φ̄q(l) e−j2πkq/N


 , (2.35)

which are approximately χ-distributed (2.10) with shape parameter µ̄. The algorithm
for computing unbiased signal power estimates after cepstral smoothing is summarized in
Algorithm 4, while Algorithm 3 summarizes how to obtain the statistical properties be-
fore cepstral smoothing that are required for Algorithm 4.

Algorithm 3 Determination of second order statistics before cepstral smoothing
1: If unknown, determine the shape parameter µ using an empirical estimation of

var{φq} from representative data and (2.28):

ζ(2, µ) =
N/2∑

q=0

νqvar{φq} ,

with νq defined in (2.29).
2: Determine the correlation of neighboring log-periodogram bins κm via (2.25):

κm =
∞∑

n=0

An,µ,ρm (Bn,µ,ρm)2 −
(
∞∑

n=0

An,µ,ρmBn,µ,ρm

)2

with A,B, ρm defined in (2.26), (2.27), and (2.19).
3: Determine the cepstral variance before cepstral smoothing (2.21):

var{φq} =





2
N

(
ζ(2, µ) + 2

∑M
m=1 κm cos

(
m2π
N
q
))

, q ∈
{
0, N

2

}

1
N

(
ζ(2, µ) + 2

∑M
m=1 κm cos

(
m2π
N
q
))

, else.

2.3.3 Mean of the cepstrum

In this section we derive the mean of the cepstral coefficients. We generalize the results
of [Ephraim and Rahim, 1999] and [Stoica and Sandgren, 2006, Stoica and Sandgren,
2007], where µ = 1 is assumed. Due to the linearity of the inverse discrete Fourier
transform IDFT{·} and (2.13), the mean value of the cepstral coefficients defined by



Chapter 2 Properties of the Cepstrum 38

Algorithm 4 Bias compensation for Temporal Cepstrum Smoothing (TCS) and Cep-
stral Nulling (CN)

1: Determine the cepstral variance before smoothing using Algorithm 3.
2: for all signal segments l do

3: if smoothing parameters bq or αq have changed then

4: Determine the shape parameter after cepstral smoothing µ̄,

• in the case of CN (2.30):

ζ(2, µ̄) =
N/2∑

q=0

νqvar{φq} bq,

• in the case of TCS (2.32):

ζ(2, µ̄) =
N/2∑

q=0

νqvar{φq}
1− αq
1 + αq

.

5: Compute signal power bias (2.34):

B(µ̄) = σ2
S,k/σ̄

2
S,k =

µ

µ̄
exp(ψ(µ̄)− ψ(µ)) .

6: end if

7: Apply bias correction when computing the inverse cepstral transform (2.7):

Φ̄k(l) = B(µ̄) exp



N−1∑

q=0

φ̄q(l) e−j2πkq/N


 .

8: end for

In a practical application, the relation between µ̄ and ζ(2, µ̄) can be stored in a table.
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(2.1) is given by

E{φq} =IDFT{E{logPk}}
=IDFT

{
log σ2

S,k

}
− IDFT{log µk − ψ(µk)}

=IDFT
{
log σ2

S,k

}
− εq , (2.36)

where ψ(·) is the psi-function [Gradshteyn and Ryzhik, 2000, (8.360)]. Therefore, even
for white signals, when σ2

S,k is constant over frequency, the mean of the cepstral coeffi-
cients is not zero for q > 0 but −εq. When

µk =




µ/2 , k ∈ {0, N/2}
µ , else

the deviation εq results in

εq = IDFT{log µk − ψ(µk)}

=





N−2
N

(log µ− ψ(µ)) + 2
N

(
log µ

2
− ψ

(
µ
2

))
, q = 0

2
N

(
log µ

2
− ψ

(
µ
2

))
− 2
N

(log µ− ψ(µ)) , q even

0 , q odd

. (2.37)

If µk = µ is constant for all k, as assumed in [Stoica and Sandgren, 2006, Stoica and
Sandgren, 2007], the deviation results in

εq =





log(µ)− ψ(µ) , q = 0

0 , else
.

For CN proposed by [Stoica and Sandgren, 2006] cepstral coefficients below a variance
threshold are nulled, implying they have zero mean. Thus, for CN better performance
can be expected when the cepstrum actually has zero mean for white signals. Such an
alternative definition of the cepstrum is given by φq ← φq + εq. However, since typically
ε2
q ≪ var{φq} for q > 0, the influence of the mean bias εq given in (2.37) is of minor im-

portance. For TCS, as proposed in [Breithaupt et al, 2007, Breithaupt et al, 2008a], zero-
mean cepstral coefficients are neither assumed nor required.

2.3.4 Experimental results

In this section we show that Algorithm 4 successfully compensates for the signal power
bias introduced by cepstral smoothing. After providing results for a stationary colored
signal, we also apply the bias compensation in a practical scenario, namely the a priori
speech power estimation proposed in [Breithaupt et al, 2008a]. The smoothed spectral
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amplitudes with bias correction are denoted by a bar and obtained as given in (2.35).
When the bias compensation B is not applied, this results in the biased smoothed spectral
amplitudes denoted by a tilde and given by

|S̃k(l)| =

√√√√√exp



N−1∑

q=0

φ̄q(l) e−j2πkq/N


 . (2.38)

Stationary colored signal

Here we apply cepstral smoothing to a stationary colored Gaussian distributed signal.
The according spectrograms before and after cepstral smoothing are given in Figure 2.5.
In Figure 2.6 and Figure 2.7 we present the frame energy and histograms for TCS
using a rectangular and a Hann spectral analysis window in (1.1), respectively. In
Figure 2.8 and Figure 2.9 we present the frame energy and histograms for CN using
a rectangular and a Hann spectral analysis window in (1.1), respectively. From the
presented results, we see that cepstral smoothing introduces a signal power bias, and
that this bias is successfully compensated with Algorithm 4. Further, we compare the
histograms of spectral amplitudes before and after cepstral smoothing with and without
a bias compensation to the derived probability density functions. It may be seen that
the algorithm for estimating the shape parameter after cepstral smoothing works well,
as an excellent match for the histograms and the derived probability density functions
may be observed. The distribution of χ-distributed spectral amplitudes after cepstral
smoothing can thus be well approximated by a χ-distribution with an increased shape
parameter.
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(a) Spectogram of pink noise
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(b) Pink noise after TCS
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(c) Pink noise after CN

Figure 2.5: Spectrogram of Gaussian-distributed pink noise (a), after TCS (b) and after
CN (c). For TCS we use the same smoothing constants as in [Breithaupt
et al, 2008a] while for CN cepstral coefficients q > N/16 are set to zero. Here
N = 512 and the sampling rate is fs = 16 kHz.
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Figure 2.6: Frame energy and histograms for cepstral smoothing by TCS of a stationary
pink Gaussian-distributed signal and non-overlapping rectangular spectral
analysis windows wn in (1.1). We use the same smoothing constants as in
[Breithaupt et al, 2008a]. The spectrograms before and after processing are
given in Figure 2.5(a) and Figure 2.5(b). In subplot (a) of this figure, the
signal segment energies before cepstral smoothing, after cepstral smoothing,
and after cepstral smoothing and bias correction are given. (b) compares
the derived distributions to the histograms of the spectral amplitudes |Sk|
for k = 111 before cepstral smoothing, |S̃k| after cepstral smoothing, and
|S̄k| after cepstral smoothing and bias correction.



Chapter 2 Properties of the Cepstrum 43

0 1 2 3 4 5
−20

−15

−10

−5

 

 

fr
am

e
en

er
gy

[d
B

]

time [s]

1/N
∑N−1
k=0 |Sk(l)|2

1/N
∑N−1
k=0 |S̃k(l)|2

1/N
∑N−1
k=0 |S̄k(l)|2

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

 

 

|Sk|,|S̃k|,|S̄k|

h
is

to
gr

am
,

d
is

tr
ib

u
ti

on

hist (|Sk|)

hist(|S̄k|)
hist(|S̃k|)

p (|Sk|)
p(|S̄k|)

(b)

Figure 2.7: cepstral smoothing by TCS as in Figure 2.6 but with half-overlapping Hann
windows wn in (2). In (a) the signal segment energies before cepstral smooth-
ing, after cepstral smoothing, and after cepstral smoothing and bias correc-
tion are given. (b) compares the derived distributions to the histograms of
the corresponding spectral amplitudes.
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Figure 2.8: Cepstral smoothing by CN using non-overlapping rectangular spectral anal-
ysis windows wn in (2). Cepstral coefficients q > N/16 are set to zero. The
spectrograms before and after processing are given in Figure 2.5(a) and Fig-
ure 2.5(c). In subplot (a) of this figure, the signal segment energies before
cepstral smoothing, after cepstral smoothing, and after cepstral smoothing
and bias correction are given. (b) compares the derived distributions to the
histograms of the corresponding spectral amplitudes.
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Figure 2.9: Cepstral smoothing by CN as in Figure 2.8 but with half-overlapping Hann
windows wn in (2). In (a) the signal segment energies before cepstral smooth-
ing, after cepstral smoothing, and after cepstral smoothing and bias correc-
tion are given. (b) compares the derived distributions to the histograms of
the corresponding spectral amplitudes.
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A priori speech power estimation

Now, the bias compensation method is applied in a practical scenario, namely the TCS
based a priori clean speech power estimation algorithm for speech enhancement as pro-
posed in [Breithaupt et al, 2008a]. There, a maximum likelihood estimation of the a
priori clean speech power Φk is temporally smoothed in the cepstral domain via Algo-
rithm 1 to obtain the smoothed a priori speech power estimation Φ̄k. Without the bias
correction, the a priori speech power estimate Φ̃k is biased with respect to Φk, as may
be seen in Figure 2.10.

For the simulation we used nonoverlapping rectangular spectral analysis windows. We
estimate the shape parameter before cepstral smoothing, 2µ, by measuring the aver-
age cepstral variance var{φq} and using the relation ζ(2, µ) = Nvar{φq}. We thus
obtain µ = 0.37. We use the same smoothing procedure as proposed in [Breithaupt
et al, 2008a]. As in [Breithaupt et al, 2008a] the smoothing constant αq in (2.31) varies
from signal segment to signal segment, a different bias B is introduced in each seg-
ment l. Note that the computational simplicity of Algorithm 4 allows for an individual
computation of the signal power bias B in each signal segment l (steps 4-5 of Algo-
rithm 4).
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Figure 2.10: Spectrogram of the a priori speech power estimation Φk before cepstral

smoothing (a) and Φ̄k after cepstral smoothing and bias compensation (b).
In (c) the signal segment energies before cepstral smoothing, after cepstral
smoothing, and after cepstral smoothing and bias compensation are given.
The speech signal is disturbed by instationary traffic noise at a signal-to-
noise ratio of 0 dB. The spectral noise power is estimated using the minimum
statistics approach [Martin, 2001]. Here N = 512 and the sampling rate is
fs = 16 kHz.
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2.4 Maximum a posteriori fundamental period

estimation in the cepstral domain

In this section we show that for uncorrelated spectral coefficients a maximum search in
the upper cepstrum q > qlow is the optimal cepstral domain fundamental period esti-
mator in the Maximum Likelihood (ML) sense (Section 2.4.2). Further, we show that
for multiple microphones, the ML fundamental period estimator results in a maximum
search on the sum of the microphone cepstra (Section 2.4.3). Finally, we extend the
ML estimator towards a Maximum A Posteriori (MAP) optimal fundamental period
tracker (Section 2.4.4). In Section 2.4.5 we show that the proposed ML estimator out-
performs a maximum search on the cepstrum of the output signal of a delay-and-sum
beamformer for various input signal-to-noise ratios. The extension towards a MAP
fundamental period tracker is shown to substantially increase the robustness in noisy
environments. The results of this section are partly presented in [Gerkmann et al,
2009].

The fundamental period of voiced speech is caused by vibrations of the glottis. Its in-
verse, the fundamental frequency, is often simply referred to as pitch. As the speech
fundamental period is one of the most important speech parameters, many solutions
for fundamental period estimation have been proposed [Hess, 1983]. The fundamen-
tal period may be estimated for instance in the time domain using harmonic modelling
[Tabrikian et al, 2004], the autocorrelation function [Cheveigné and Kawahara, 2002], ex-
ploiting the impulse-like characteristic of glottal excitations [Yegnanarayana and Murty,
2009], or in the cepstral domain [Noll, 1967]. Knowledge about the speech fundamental
period may be exploited for instance in speech coding [Vary and Martin, 2006], and
speech enhancement [Tilp, 2002, Breithaupt et al, 2007, Breithaupt et al, 2008a]. As
most algorithms in this thesis require a fundamental period estimation in the cepstral
domain, cepstrum domain optimal fundamental period estimators are of particular in-
terest.

In (2.2) we define the set of speech related cepstral coefficients Q = {0, . . . , qlow,Qpitch},
where the lower cepstral coefficients q ≤ qlow represent the transfer function of the vocal
tract and the set Qpitch represents the excitation of the vocal tract for voiced sounds.
With the sampling frequency fs, the fundamental period T0 of the excitation signal of
voiced sounds is represented by a dominant peak in the upper cepstrum at q0 = T0fs,
and multiples of that peak, the so-called rahmonics [Noll, 1967, Bogert et al, 1963] at rq0

with r ∈ {1, 2, . . .}. Thus, Noll suggests to search for the maximum peak of the squared
cepstrum in the range of quefrencies that corresponds to the fundamental period [Noll,
1967].
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2.4.1 Distribution of cepstral coefficients

To derive the ML fundamental period estimator, the distribution of cepstral coefficients
is needed. A common assumption for the cepstral coefficients is that they are Gaus-
sian distributed with fixed variance [Stoica and Sandgren, 2006]. As shown in Sec-
tion 2.3, the variance (2.21) is dependent on the distribution of spectral coefficients and
the spectral correlation. The mean of the cepstral coefficient is given by the spectral
shape and a mean deviation εq (2.36). The mean deviation can easily be determined
as given in (2.37). Thus, if εq is added to the cepstral coefficients, as proposed in Sec-
tion 2.3.3, we can assume that the cepstral coefficients q ∈ Q have zero mean and a
variance given by (2.21). However, the influence of εq on the cepstral coefficients is
usually rather small for q > 0, as then ε2

q ≪ var{φq}. In [Ephraim and Rahim, 1999] it
has been shown that the cepstral coefficients are asymptotically uncorrelated for large
N . Thus, under the Gaussian assumption, cepstral coefficients are asymptotically in-
dependent [Hyvärinen et al, 2001], and their joint distribution factors into marginal
distributions.

2.4.2 ML fundamental period estimator

In this section we derive a ML estimator for the fundamental period in the cepstral
domain.

Because the mean of the cepstrum is zero for q 6= rq0 and q > qlow, the distribution

of a noisy cepstral observation vector φ =
[
φqlow

, φqlow+1, ..., φN/2−1

]T
given the speech

fundamental period index q0 can be written as

p(φ|q0) =
N/2−1∏

q=qlow+1

1

(2πσ2
q )

1
2

exp

(
−(φq − E{φq})2

2σ2
q

)

=
1

(2π)
N/2−qlow−1

2



N/2−1∏

q=qlow+1

1

σq


 exp


−

N/2−1∑

q=qlow+1

φ2
q

2σ2
q




· exp

(
R+1∑

r=1

2φrq0E{φrq0} − (E{φrq0})2

2σ2
rq0

)
. (2.39)

For simplicity we neglect the Nyquist bin q = N/2, as even for uncorrelated spectral coef-
ficients it has a different variance than the coefficients qlow < q < N/2 (2.18).

As the first part of (2.39) is independent of q0, only the second exponential function
has to be evaluated. As the exponential function is monotonically increasing the ML
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estimator is given by

qML
0 = arg max

q0
p(φ|q0)

= arg max
q0

R+1∑

r=1

2φrq0E{φrq0} − (E{φrq0})2

σ2
rq0

= arg max
q0

R+1∑

r=1

E{φrq0} (2φrq0 − E{φrq0})
σ2
rq0

.

For uncorrelated spectral coefficients, the cepstral variance is constant for q /∈ {0, N/2}
(2.18), and the ML estimator simplifies to

qML
0 = arg max

q0

R+1∑

r=1

E{φrq0} (2φrq0 − E{φrq0}) .

Search on the squared cepstrum

As speech is highly nonstationary and hence not ergodic, the estimation of the expected
value E{φrq0} is difficult. A simple but reasonable solution is to take the instantaneous
value, as Ê{φrq0} = φrq0 . Then, the ML fundamental period estimation results in a peak
search on the normalized squared cepstrum

qML
0 = arg max

q0

R+1∑

r=1

(
φ2
rq0
/σ2
rq0

)
. (2.40)

Thus, for uncorrelated spectral coefficients and R = 0 a peak detection on the squared
cepstrum is an optimal fundamental period estimator in the ML sense, as

qML,R=0
0 = arg max

q
φ2
q . (2.41)

Note that this corresponds to the fundamental period estimator proposed in [Noll,
1967], where the cepstrum is defined equivalently to (φqN)2, i.e. the square of N times
(2.1).
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Search for a positive peak

Due to the symmetry of the logarithmic spectrum, the cepstral transform (2.1) results in
a correlation of the log-spectrum with cosine functions. As spectral harmonics have the
same fixed distance between each other and the zeroth spectral coefficient, the cepstral
fundamental period peak that results from the correlation of a cosine with the spectral
structure is positive as illustrated by an exemplary simulated voiced speech sound in Fig-
ure 2.11(a). If rectangular spectral analysis windows wn are used in (1.1), the rahmonics
are also positive (cf. example in Figure 2.11(b)). However, if the spectral harmonics
are broader than one bin, the rahmonics may also become negative as illustrated in
Figure 2.11(d). This occurs, for instance, when tapered spectral analysis windows are
used that result in a smearing of spectral harmonics. The smearing results from the con-
volution of the the spectral harmonics with the rather broad mainlobe of the frequency
response of the tapered spectral analysis window.

The a priori knowledge that a fundamental period peak (and for rectangular spectral
analysis windows also the rahmonics) are positive, can be exploited to increase the
robustness of the fundamental period peak estimator by excluding negative values from
the peak search. This can be achieved by using the absolute instantaneous value for the
estimate of the expected value, as Ê{φrq0} = |φrq0|. The corresponding ML fundamental
period estimation results in

qML
0 = arg max

q0

R+1∑

r=1

|φrq0| (2φrq0 − |φrq0|) /σ2
rq0
. (2.42)

As a result, negative values are penalized by a factor of three, and for R = 0 we
obtain

qML,R=0
0 = arg max

q




φ2
q/σ

2
q , φq ≥ 0

−3φ2
q/σ

2
q , φq < 0 .

(2.43)

Thus, for uncorrelated spectral coefficients and R = 0 , the ML optimal fundamental pe-
riod estimator is given by the search for a positive peak, as

qML,R=0
0 = arg max

q
φq . (2.44)
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Figure 2.11: Simulation of the log-spectrum a voiced speech sound. Between the spectral
harmonics, the ideal spectrum would be zero and the log spectrum would
tend to minus infinity. Here, we limited the log-spectrum to be larger
than −36. To compute the cepstrum, the log-spectrum is correlated with
cosine functions. For a rectangular spectral analysis, in this example the
zeroth and first cepstral rahmonic are equally strong (cf. figures 2.11(a)
and 2.11(b)). However, if a Hann spectral analysis window is used, the
rahmonics can also be negative (cf. Figure 2.11(d)).
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Smoothing the cepstrum over quefrency

For a better estimate of the expected value operator, the cepstrum can be smoothed
over quefrency. The smoothing can be obtained by convolving the cepstrum e.g. with a
normalized Hamming window wH,q, as

φ̌q = φq ∗ wH,q . (2.45)

The smoothing of the cepstrum over quefrency can also be seen as a low pass filtering
of the log-spectrum. Since the power of voiced sounds is less at high frequencies, e.g.
[Loizou, 2007, Section 4.2], the quefrency smoothing (2.45) can be expected to increase
the robustness of the proposed algorithm.

Given the smoothed cepstrum (2.45), the expected value is approximated as Ê{φrq0} =
|φ̌rq0 |, and the ML estimator results in

qML
0 = arg max

q0

R+1∑

r=1

|φ̌rq0|
(
2φrq0 − |φ̌rq0|

)
/σ2
rq0
. (2.46)

For uncorrelated spectral coefficients, this results in

qML
0 = arg max

q0

R+1∑

r=1

|φ̌rq0|
(
2φrq0 − |φ̌rq0|

)
. (2.47)

We observed that for R = 0 very similar results are obtained if we search for a positive
peak on the normalized smoothed cepstrum, as

qML,R=0
0 ≈ arg max

q
φ̌q . (2.48)

while for R = 1 the performance degrades if we use qML
0 ≈ arg maxq

∑R+1
r=1 φ̌rq0 instead

of (2.47).

2.4.3 Extension to multiple microphones

To extend the ML optimal solution towards the case when M microphones are present,
we assume that the cepstral coefficients, given q0, of the M microphones are independent.
As we condition the likelihood on q0 and consider only q > qlow, this corresponds to the
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assumption that the non speech related cepstral coefficients q ∈ Q between microphones
are independent. Thus, we can write

p(Φ|q0) =
M∏

m=1

p(φm|q0) , (2.49)

with Φ = [φ1,φ2, ...,φM ]. For R = 0, and a quefrency and microphone independent cep-
stral variance σ2

q , the ML estimator for multiple microphones results

• in a maximum search on the sum or mean of the squared microphone cepstra for
Ê{φrq0} = φrq0

qML,R=0
0 = arg max

q

M∑

m=1

φ2
q,m , (2.50)

• in a maximum search on the sum or mean of the microphone cepstra for Ê{φrq0} =
|φrq0|

qML,R=0
0 = arg max

q

M∑

m=1

φq,m , (2.51)

• approximately in a maximum search on the quefrency smoothed cepstrum for
Ê{φrq0} = |φ̌rq0|

qML
0 = arg max

q

M∑

m=1

|φ̌q,m|
(
2φq,m − |φ̌q,m|

)

≈ arg max
q

M∑

m=1

φ̌q,m . (2.52)

We refer to these approaches as Multi-Microphone Cepstral ML fundamental period
estimator (MM-CML). Another approach that exploits the information of multiple
microphones is to apply a ML fundamental period estimation on the output of a beam-
former (Beamforming based Cepstral ML fundamental period estimator (BF-CML)).
The output of a beamformer has an increased signal-to-noise ratio as compared to each
single microphone channel. This results in more prominent spectral harmonics and
thus in an increased cepstral peak. Under the Gaussian assumption, the variance of
the non-speech cepstral coefficients stays unchanged, as it is independent of the signal
power.

While the coefficients rq0 of the microphone cepstra are correlated, the remaining coeffi-
cients can be assumed to be uncorrelated between microphones. Thus, adding the micro-
phone cepstra as proposed by the MM-CML estimators of Section 2.4.3 increases the dif-
ference between the cepstral peak and the cepstral variance more directly. While both ap-
proaches, MM-CML and BF-CML, increase the estimation performance, the superiority
of the cepstral averaging approach is demonstrated in Section 2.4.5.
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2.4.4 MAP fundamental period tracking

To decrease the amount of estimation errors, the fundamental period can be tracked
over time. To achieve this, we extend the ML fundamental period estimator towards a
MAP fundamental period estimator similar to [Droppo and Acero, 1998, Tabrikian et al,
2004]. The MAP fundamental period estimator is given by

qMAP
0 = arg max

q0
(p(q0)p(Φ|q0)) . (2.53)

Thus, in addition to the likelihood (2.49), (2.39) we also need to model the a priori
probability of the fundamental period p(q0). As proposed in [Tabrikian et al, 2004], we
incorporate the information of Λ consecutive frames by treating the a priori fundamental
period probability p(q0) as a first order Markov chain, as

p(q0(l)) =
Λ−1∏

λ=0

p(q0(l − λ)|q0(l − λ− 1)) , (2.54)

where q0(l) are the states and p(q0(l)|q0(l−1)) is the transition probability density func-
tion. For the initial state we choose p(q0(l−Λ + 1)|q0(l−Λ)) = 1. The transition prob-
ability density function can be chosen to be Gaussian, i.e.

p(q0(l)|q0(l − 1)) =
1

√
2πσ2

tracking

exp

(
−(q0(l)− q0(l − 1))2

2σ2
tracking

)
,

whereas the standard deviation σtracking can be found using labelled training data, e.g.
the data of the Keele database [Meyer, Accessed 2006].

Similar to (2.49) we assume that the cepstral coefficients of consecutive signal segments,
given q0, are independent. Then, the MAP estimator including the information of the
last Λ signal segments is given by [Tabrikian et al, 2004]

qMAP
0 (l) = arg max

q0

Λ−1∏

λ=0

p(Φ(l − λ)|q0(l)) p(q0(l)|q0(l − λ− 1))

= arg max
q0

Λ−1∑

λ=0

log
(
p(Φ(l − λ)|q0(l))

)
+ log

(
p(q0(l)|q0(l − λ− 1))

)
,

(2.55)

where qMAP
0 (l) = {q0(l), ..., q0(l − Λ + 1)} is the sequence of fundamental period esti-

mates that is optimal in the MAP sense.
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While (2.55) requires estimating the whole sequence qMAP
0 (l) at each segment l, the es-

timator is simplified if the estimate at segment l is based on the MAP estimates qMAP
0 (l−

λ−1) of previous frames similar to [Tabrikian et al, 2004], as

qMAP
0 (l) = arg max

q0

Λ−1∑

λ=0

Lq0(Φ(l − λ)) +Bq0
(
qMAP

0 (l − λ− 1)
)
, (2.56)

with the log likelihood

Lq0 (Φ(l − λ)) = log
(
p(Φ(l − λ)|q0)

)
, (2.57)

and the logarithmic transition probability density function

Bq0
(
qMAP

0 (l − λ− 1)
)

= log
(
p(q0|qMAP

0 (l − λ− 1))
)
. (2.58)

As the pitch tracking algorithm is meant to provide pitch estimates for low-delay appli-
cations, no major look ahead is possible and an instantaneous decision is needed in each
signal segment. A drawback of (2.56) is that all segments {l, ..., l − Λ + 1} contribute
equally to the current estimate at segment l. To emphasize the information in recent
signal segments, instead of using (2.56), we propose to realize (2.55) via a recursive
averaging as

Wq0(l) = αWq0(l − 1) + (1− α)
(
Bq0
(
qMAP

0 (l − 1)
)

+ Lq0(Φ(l))
)

(2.59)

using the initializionWq0(0) = Lq0(Φ(0)) and the MAP fundamental period estimate

qMAP
0 (l) = arg max

q0
Wq0(l) . (2.60)

2.4.5 Experimental results

We compare the MM-CML estimators based on the summation of the microphone cep-
stra proposed in Section 2.4.3 to a cepstral ML estimation on the output signal of a
beamformer (BF-CML). Further, we give the results for the Multi-Microphone Cepstral
MAP fundamental period estimator (MM-CMAP) for R = 0 and R = 1. For the eval-
uation we use the Keele database [Meyer, Accessed 2006] that consists of 5 male and 5
female speakers and up to 40 s of speech per speaker. The sampling rate is fs = 20 kHz,
the segment size 25.6 ms and the frame shift 10 ms. This corresponds to N = 512 and
L = 200 in (1.1). We choose a rectangular spectral analysis window wn in (1.1) and as-
sume that the cepstral variance is quefrency independent. Further, we choose qlow = 40
(2 ms) in (2.39). For the MAP algorithm we choose the smoothing constant α = 0.8
in (2.59). The standard deviation of the a priori probability is determined based on
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the labelled training data [Meyer, Accessed 2006] and set to σtracking = 23 bins which
corresponds to 1.1 ms.

To decouple the evaluation of the fundamental period estimators from the problem of au-
tomatic voiced/unvoiced classification, a fundamental period estimation is applied only
on those signal segments that are marked as voiced in the Keele database. The estimated
fundamental frequency f̂0 is compared to the reference fundamental frequency f0 of the
Keele database. For the evaluation we use the Gross Error Rate (GER) and the relative
Root Mean Square Error (RMSE) according to [Flego, 2006]. The GER is given as the
percentage of signal segments that have a fundamental frequency estimate that deviates
by more than θ% of the reference fundamental period.

GER(θ) =
1

Nv

Nv∑

l=1




|f̂0(l)− f0(l) |

f0(l)
> θ%



, (2.61)

whereNv is the number of voiced signal segments. The relative RMSE

RMSE(θ) =

√√√√√ 1

Nθ

∑

l∈Ω(θ)


 f̂0(l)− f0(l)

f0(l)




2

. (2.62)

is evaluated only for those Nθ signal segments of the set Ω(θ), which have a relative fun-
damental frequency estimation error smaller than θ%. It can be seen as a measure for the
fine fundamental frequency estimation error [Flego, 2006].

For the evaluation, we generate ten microphone signals with stationary diffuse additive
white Gaussian noise at several segmental SNRs. The diffuse noise field is created as
detailed e.g. in [Habets et al, 2008]. The ten microphones are assumed to be linearly
spaced with a 5 cm gap between each microphone. For the BF-CML approach, the
ten microphone signals are summed in time domain and the ML estimator is applied
on the cepstrum of the sum. We thus simulate the case of a source at the broadside
of the array with its location perfectly known. For the MM-CML algorithm, the cep-
strum is computed for each microphone signal, and the maximum of the sum of the
cepstra is searched as proposed in Section 2.4.3. Note that for the MM-CML a source
localization is not needed if the maximal time delay between the microphone signals
(Maximum Microphone Distance)/(340 m/s) is small as compared to the segment length
N/fs, as the phase of the complex spectra is neglected when computing the cepstrum
via (2.1).

In Figure 2.12 we present the results when the peak of the squared cepstrum is searched
for as given in (2.41), in Figure 2.13 we search for a positive peak according to (2.44),
and in Figure 2.14 we smooth the cepstrum and use (2.47). For the smoothing kernel
wH,q, we use a normalized Hamming window of length fs/(2000 Hz) = 10. It can be
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clearly seen that searching for a positive peak increases the robustness of the fundamen-
tal period estimator in terms of the GER. The quefrency smoothing of the cepstrum
(Figure 2.14) increases the performance even more. In all cases of figures 2.12, 2.13, and
2.14 the proposed MM-CML approaches of Section 2.4.3 clearly outperforms a delay-and-
sum beamformer approach BF-CML in terms of the GER and the RMSE. As now the
cepstral transform has to be computed M times, the increased performance goes along
with an increased computational complexity. When the fundamental period is tracked
over time (MM-CMAP), the results are further enhanced in terms of a lower GER and
the estimation performance can be seen to be much more robust in noisy environments.
For Figure 2.13 and Figure 2.14 also the fine fundamental frequency estimation error
(RMSE) decreases when the MAP fundamental period tracking is employed. In case a
maximum is searched on the squared cepstrum, the performance in terms of the RMSE
decreases when the fundamental period tracking is used, while the GER indicates an
increased performance (cf. Figure 2.12). For the MM-CMAP we also present the results
for R = 1. It can be seen that incorporating a rahmonic reduces the fine pitch esti-
mation error at the price of more outliers in terms of the GER. As the rahmonics are
often much smaller than the fundamental period peak [Noll, 1967], it may happen that
the sum of two noise bins is larger than the sum of the fundamental period peak and
its rahmonic. Additionally, especially for male speakers, incorporating the rahmonics
increases fundamental period halving errors. In that cases, estimation errors occur that
result in an increased GER.
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Figure 2.12: GER (upper panel) and RMSE (lower panel) for various input segmental
SNRs for θ = 10%, M = 10, and diffuse white Gaussian noise. The proposed
MM-CML approach outperforms a delay-and-sum-beamformer (BF-CML)
in terms of GER and RMSE for all considered input SNRs. Maximum a
posteriori fundamental period tracking (MM-CMAP) further enhances the
estimation performance. Here, a peak on the squared cepstrum is searched
as proposed in (2.41).
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Figure 2.13: As Figure 2.12, but a positive peak is searched, as proposed in (2.44). As
compared to Figure 2.12, where the maximum of the squared cepstrum is
searched, the results indicate an increased robustness.
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Figure 2.14: As Figure 2.13, but the cepstrum is smoothed over quefrency resulting
in (2.47). The additional smoothing increases the robustness further (cf.
figures 2.13 and 2.14).
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2.5 Conclusions

In this chapter the properties and applications of the cepstrum are discussed. Speech is
shown to be very compactly represented in the cepstral domain. For speech processing al-
gorithms this compactness is a desirable property as it allows for a selective treatment of
speech related coefficients and the remaining coefficients. The concepts of Temporal Cep-
strum Smoothing (TCS) and Cepstral Nulling (CN) are introduced where it is proposed
to apply little smoothing or no modification to the speech related cepstral coefficients,
while strongly smoothing or nulling the remaining coefficients. However, due to the loga-
rithmic compression inherent in the cepstral transform, a modification in the cepstral do-
main results in a signal power bias in the spectral domain.

An explicit expression is derived to account for the signal power bias that occurs when a
spectral quantity is modified in the cepstral domain. The bias compensation is based on
the analysis of the statistical properties of cepstral coefficients. If χ-distributed spectral
amplitudes are smoothed in the cepstral domain, the resulting smoothed spectral ampli-
tudes are found to be also approximately χ-distributed but with more degrees of freedom
and less signal power. Explicit expressions for the mean, the variance, and the covari-
ance of cepstral coefficients and the logarithmic periodogram are derived, parameterized
by the shape parameter of χ-distributed spectral amplitudes. The spectral correlation
introduced by tapered spectral analysis windows is shown to result in a decline of the
cepstral variance for an increasing cepstral index. The key finding for the proposed bias
compensation is that the degrees of freedom of χ-distributed spectral amplitudes are
directly related to their average cepstral variance. Thus, for a given modification of
cepstral coefficients, the shape parameter of the spectral amplitudes after the modifica-
tion is determined. Finally, an expression for the bias compensation is derived that is
only dependent on the shape parameters before and after the cepstral modification. As
the parameterized χ-distribution for the spectral amplitudes is assumed, the presented
results hold for Gaussian, super-Gaussian, and slightly sub-Gaussian distributed com-
plex spectral coefficients. The proposed bias compensation method is computationally
inexpensive and shown to work very well for white and colored signals, as well as for
rectangular and tapered spectral analysis windows.

To determine the set of cepstral coefficients that represent speech, the determination of
the speech fundamental period is necessary. Maximum likelihood and maximum a poste-
riori estimators for a fundamental period estimation in the cepstral domain are derived,
which also motivate the well known approach by Noll [Noll, 1967]. For spectrally uncor-
related data a maximum search is found to be optimal in the maximum likelihood sense.
When extending the likelihood function towards multiple microphones, the maximum
likelihood solution results in a maximum search on the sum of all microphone cepstra.
This approach is shown to outperform a cepstral maximum search on the cepstrum of
the output of a delay-and-sum beamformer in terms of the Gross Error Rate (GER) and
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the Root Mean Square Error (RMSE) for all considered signal-to-noise ratios at the cost
of an increased computational complexity. Finally, the maximum likelihood estimator
is extended to a Maximum A Posteriori (MAP) fundamental period tracking that sub-
stantially improves the robustness in noisy environments.



Chapter 3

Temporal Cepstrum Smoothing for

Speech Enhancement

In this chapter we address the Temporal Cepstrum Smoothing (TCS) approach, intro-
duced in Section 2.2 and summarized in Algorithm 1.

In TCS a spectral quantity is transformed into the cepstral domain, selectively smoothed
over time and transformed back into the spectral domain. The selective smoothing
is done via the quefrency dependent smoothing constant αq, which is close to zero
for the speech related cepstral coefficients q ∈ Q and close to one for the remaining
coefficients q ∈ Q. For the determination of the speech related cepstral coefficients
Q = {0, . . . , qlow,Qpitch}, defined in (2.2), we need to determine the cepstral coefficients
Qpitch that represent the fundamental period.

Since the power of voiced sounds is less at high frequencies, e.g. [Loizou, 2007, Sec-
tion 4.2], the estimation of the fundamental period is more robust if only the spectrum
up to a certain cut-off frequency is considered. This low-pass filtering of the log-spectrum
can be achieved by convolving each cepstral frame with a short Hamming window, wH,q,
of length τH taps as proposed in (2.45)

φ̌q = φq ∗ wH,q . (3.1)

We found that a simple maximum search on the smoothed cepstrum, as derived in (2.48),
leads to sufficiently robust fundamental period estimates for cepstral smoothing. The
cepstral index q0(l) that most likely represents f0 is thus found as

q0(l) = argmax
q

{
φ̌q(l)|qlow ≤ q ≤ qhigh

}
, (3.2)

where the search is limited to possible fundamental frequencies between f0,low and f0,high,
resulting in the range qlow = ⌊fs/f0,high⌋ to qhigh = ⌊fs/f0,low⌋, with fs the sampling rate
and ⌊·⌋ the flooring operator towards the nearest integer number.
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Note that (3.2) only yields meaningful results if voiced speech is present. To detect
voiced speech sounds, we compare the found peak value to a threshold, Λthr. Thus, the
set of cepstral bin indices associated with the fundamental frequency, Qpitch, is gained
as

Qpitch =




{q0 −∆q0, ..., q0 + ∆q0} if φ̌q(l) ≥ Λthr

∅ else ,
(3.3)

where q ∈ {q0−∆q0, ..., q0 + ∆q0} is the range of cepstral bins that most likely represent
the fundamental period, ∆q0 is a small margin, and ∅ is the empty set. A suitable value
for the threshold Λthr is found from tests with representative noisy data. Note that
for cepstral smoothing Λthr is not a sensitive parameter, as long as it is chosen rather
low.

To preserve the speech spectral envelope, less smoothing is applied to the cepstral co-
efficients q ≤ qlow than to the coefficients q ∈ Q. To achieve this, a smoothing con-
stant αconst

q is chosen to gradually increase with increasing q. The exact choice for
αconst
q is given in the respective section of this chapter. To avoid a strong smoothing of

the speech fundamental period peak, an adaptive smoothing factor αq(l) is gained as

αq(l) =




αpitch , if q ∈ Qpitch ,

β αq(l − 1) + (1− β)αconst
q , else ,

(3.4)

where αpitch is a value rather close to zero. The smoothing constant β is a forgetting
factor that determines how fast the value of αq(l) rises back from αpitch to αconst

q , if it
has been lowered in previous frames. Due to (3.4), a detection error of the fundamental
period in the current frame l does not lead to an immediate strong smoothing of the
cepstral fundamental period bin in step 4 of Algorithm 1.

3.1 Smoothing spectral gain

functions

In speech enhancement, an estimate of clean speech is often obtained by multiplying
the noisy speech with a spectral gain function in the Discrete Fourier Transform (DFT)
domain as given in (1.3). However, especially for a high frequency resolution that enables
the suppression of noise between spectral harmonics of voiced sounds, spectral outliers
in the spectral gain function lead to musical noise.

One way of preventing spectral outliers in single channel speech enhancement gain func-
tions is to combine the gain function for clean speech estimation GH1,k,k with an a
posteriori Speech Presence Probability (SPP) estimate P (H1,k|Yk, σ2

S
, σ2

N
) as given in
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(1.3) [Malah et al, 1999]. Alternatively in [Linhard and Haulick, 1999] a filter is de-
scribed that has several parameters for adapting the spectral gain function to the noise
condition. A third strategy is to search and remove spectral peaks in the filtered signal
that lead to musical noise [Goh et al, 1998]. In [Gustafsson et al, 2001] a recursive
averaging is applied to the spectral gain function that smoothes out fluctuations, while
in [Esch and Vary, 2009, Brandt and Bitzer, 2009] a smoothing along frequency is pro-
posed. As such a smoothing in the time-frequency domain may also severely affect
speech components, the smoothing constant of these algorithms have to be carefully
adapted.

In this section we propose to temporally smooth the spectral gain function in the cepstral
domain to reduce spectral outliers that may yield musical noise. This is a very flexible
application for TCS as it can be used for any speech enhancement algorithm that obtains
a clean speech spectral estimate by applying a multiplicative spectral gain function or
a binary mask as Ŝk = GkYk. This approach has been introduced for the case of single
channel speech enhancement [Breithaupt et al, 2007] and has then been carried over to
blind source separation [Madhu et al, 2008].

In single channel speech enhancement, the gain function may be given by the Wiener
Filter (1.4). As the Wiener filter is a function of the speech and noise spectral power, and
thus of squared spectral quantities, we define the cepstrum as given in (2.1) where Φk rep-
resents the spectral gain function G̃k which is limited to be larger than Gmin according to
(1.7). The spectral gain function is then smoothed via Algorithm 1.

3.1.1 Bias compensation

For the computation of the bias correction B in Algorithm 1, we may not use Algorithm 4,
as the bias correction in Algorithm 4 relies on the assumption that the spectral quantity
Φk is χ2-distributed. In this section, we aim at deriving a bias correction that holds
for arbitrary spectral gain functions, e.g. the Wiener filter, the Log Spectral Amplitude
(LSA) estimator [Ephraim and Malah, 1985] or spectral masks for blind source separation
[Madhu et al, 2008]. Therefore, a very general assumption is made on the distribution of
the spectral gain function: we assume that the gain function Gk is uniformly distributed
between 0 and 1, and then limited to be larger than Gmin as given in (1.7). The results of
this section are partly presented in [Gerkmann et al, 2008a].

With Heaviside’s step function

Θ(b) =





0 if b < 0

1 if b ≥ 0
,
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Gmin
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Figure 3.1: The assumed distribution p(G̃k) of the gain function (left) and its cumulative
distribution (right).

Dirac’s delta function δ(·) is given by

∫ b

−∞
δ(a)da = Θ(b) .

Using Heaviside’s step function and Dirac’s delta function, the probability density func-
tion of the limited gain function G̃k can be written as

p(G̃k) = Θ(G̃k −Gmin)−Θ(G̃k − 1) +Gmin δ(G̃k −Gmin) , (3.5)

such that

∫ G̃k

0
p(G̃k)dG̃k =





1 , if G̃k > 1

G̃k , if Gmin ≤ G̃k ≤ 1

0 , otherwise.

(3.6)

The resulting distribution is visualized in Figure 3.1.

To derive the bias B in Algorithm 1, we now assume that the cepstral smoothing per-
fectly approximates the expected value operator. However, due to the logarithm in the
definition of the cepstrum (2.1) this expectation is not taken in the linear domain, but
in the log domain, and thus results in the bias

B =
E
{
G̃k
}

exp
(
E
{

log
(
G̃k
)}) . (3.7)
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With the distribution given in (3.5) the expectations in (3.7) result in

E
{
G̃k
}

=
∫ 1

Gmin

G̃kdG̃k +
∫ ∞

−∞
G̃kGmin δ(G̃k −Gmin)dG̃k

=
1

2

(
1−G2

min

)
+G2

min

=
1

2

(
1 +G2

min

)
, (3.8)

and with [Gradshteyn and Ryzhik, 2000, (2.723.1)] we find

E
{
log G̃k

}
=
∫ 1

Gmin

log
(
G̃k
)

dG̃k +
∫ ∞

−∞
log
(
G̃k
)
Gmin δ(G̃k −Gmin)dG̃k

=
[
G̃k log

(
G̃k
)
− G̃k

]1
Gmin

+Gmin log(Gmin)

= Gmin − 1 . (3.9)

With (3.8) and (3.9), the ratio (3.7) results in:

B =
1

2

(
1 +G2

min

)
e1−Gmin . (3.10)

The bias correction factor B is then applied to the smoothed spectral gain function in
step 6 of Algorithm 1.

To check the plausibility of (3.10), note that the numerator of (3.7) may be seen as an
arithmetic mean of the gain function which is always less or equal to the denominator
which corresponds to the geometric mean. Then, the bias B can be seen as the ratio
between arithmetic and geometric mean, which increases with a decreasing Gmin. This
can be observed in Figure 3.2, where the bias correction B is plotted as a function
of Gmin. For Gmin = 1, the gain function is a constant which is the only case where
geometric mean and arithmetic mean are equivalent and the bias correction factor is
1.

3.1.2 Experimental results

We now evaluate the proposed TCS of spectral gain functions. For the evaluation,
the probability of speech presence in (1.3) is assumed to be P (H1,k|Yk, σ2

S
, σ2

N
) = 1

for all time-frequency points. The estimation of the probability of speech presence
P (H1,k|Yk, σ2

S
, σ2

N
) is treated separately in Chapter 5. The gain function Gk is given by

the Wiener filter, i.e. Gk = GH1,k,k = ξk
1+ξk

. The gain function is first limited to be larger
than 20 log10(Gmin,1) = −22 dB and after TCS limited to be larger than 20 log10(Gmin) =
−17 dB. The bias correction is computed with the first limit 20 log10(Gmin,1) = −22 dB.
While the spectral noise power is estimated using the minimum statistics approach
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Figure 3.2: The bias correction B for a TCS of the filter gain Gk, as a function of the
lower limit Gmin of the gain function.

[Martin, 2001], the a priori Signal-to-Noise Ratio (SNR) is estimated using the decision-
directed approach (3.14) with αdd = 0.94. For the short-time Fourier analysis (1.1) we
use Hann windows wn with a length of 32 ms and 50% overlap.

For the recursive smoothing constant in (3.4), we choose:

αconst
q =





0 , q ∈ {0, ..., 2}
0.3 , q ∈ {3, ..., 6}
0.5 , q ∈ {7, ..., 12}
0.6 , q ∈ {13, ..., 19}
0.97 , q ∈ {20, ..., 256} ,

(3.11)

The remaining parameters used for TCS of spectral gain functions are summarized in
Table 3.1.

We compare the cepstral smoothing of spectral gain functions to an approach where
we choose a large value αdd = 0.98 for the decision-directed SNR estimation approach
(3.14), as increasing αdd is known to reduce the musical noise phenomenon when used
with estimators for the clean speech spectral amplitudes [Cappé, 1994]. With these
settings, neither the approach with αdd = 0.98 nor the approach with αdd = 0.94
and the TCS of the spectral gain function yield musical noise for white stationary
noise.
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Smoothing factor for Qpitch (3.4) . . . . . . . . . . . . . . . . . αpitch = 0.2

Threshold for voiced/unvoiced decision (3.3) . . . . . Λthr = 0

Lower bound for the q0 search (3.2) . . . . . . . . . . . . . . qlow =
⌊
fs

300 Hz

⌋

Upper bound for the q0 search (3.2) . . . . . . . . . . . . . qhigh =
⌊
fs

70 Hz

⌋

Margin for Qpitch (3.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . ∆q0 = 2

Length of the cepstral low-pass (3.1) . . . . . . . . . . . . . τH = fs/2000 Hz

Smoothing constant for (3.4) . . . . . . . . . . . . . . . . . . . . β = 0.96

Lower bound on the gain function before TCS . . . 20 log10(Gmin,1) = −22 dB

Lower bound on the gain function after TCS . . . . 20 log10(Gmin) = −17 dB

Sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fs = 16 kHz

Table 3.1: Parameters for TCS of the spectral gain function.

We process 320 samples from the TIMIT database [Garofolo, 1988, dialect region 6]
that sum up to approximately 15 minutes of fluent, phonetically balanced conversational
speech of both male and female speakers. The speech samples are disturbed by stationary
white Gaussian noise, nonstationary traffic noise at a crowded street, and babble noise
in a restaurant for input segmental SNRs between −5 and 15 dB. The improvement
of the segmental SNR, the segmental speech SNR, and the segmental noise reduction
[Breithaupt, 2008, Lotter, 2004, Lotter and Vary, 2005] are given in Figure 3.3. For all
three measures higher values indicate an increased performance. In particular, a higher
speech SNR indicates less speech distortions. The segmental SNR considers both speech
distortions and noise reduction. For input SNRs below 0 dB the segmental SNR would
indicate an improvement even if the gain function is zero for all time-frequency points.
Therefore it has to be read together with the segmental speech SNR. It can be seen
that in terms of the instrumental measures, the approaches yield rather similar results.
The approach with TCS yields slightly less noise reduction, a higher speech SNR and
for white noise a slightly higher SNR improvement as compared to the approach with
αdd = 0.98.

Per definition, the cepstrum of a spectral quantity is given by the inverse Fourier trans-
form of the logarithm of the spectral quantity (2.1). If the spectral quantity is the speech
spectral power, the logarithm is important for the compression of the spectral harmon-
ics. If no logarithm is used, the lower spectral harmonics would usually be much larger
than the higher harmonics and hence would not be mapped to a strong peak in the
cepstrum. However, in contrast to the speech spectral power, the gain function resulting
from a Wiener filter or a binary mask for blind source separation is usually bound to
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values between Gmin and 1. Therefore, an additional compression by the log function
is not mandatory for the selective cepstral smoothing of spectral gain functions. One
advantage of using no logarithmic compression is that the selective smoothing process
results in unbiased smoothed spectral quantities. In Figure 3.3 we also present the re-
sults when no logarithmic compression is applied. It can be seen that this results in a
lower speech SNR. While an increased noise reduction may be observed when no loga-
rithmic compression is used, especially at high input SNRs the segmental SNR is larger
when the logarithmic compression is applied. Further, informal listening shows that
using the logarithmic compression reduces noise shaping effects caused by the recursive
smoothing. Noise shaping effects occur after a speech sound has ended as then, due to
the recursive smoothing, the gain function may still be large although it should be zero.
This effect is reduced if the logarithmic compression is applied, as then small values
have a strong effect on the averaging and, compared to the case when no logarithmic
compression is used, the smoothed gain function will decrease quicker after a speech
sound has ended.

While the instrumental measures indicate a similar performance in terms of speech dis-
tortions, noise reduction and SNR improvement, the major benefit of TCS can be seen
in the reduction of processing artifacts such as spectral outliers that may be perceived as
musical noise. While processing artifacts may considerably reduce the perceived signal
quality, none of the used measures is designed to predict artifacts such as musical noise.
In Figure 3.4 the spectrogram of the exemplary sentence “Please shorten this skirt for
Joice” is given, which is spoken by a female. In Figure 3.5 the spectrograms for noisy
speech disturbed by stationary white Gaussian noise at 0 dB segmental SNR are given,
while in Figure 3.6 spectrograms for nonstationary babble noise are given. With respect
to the noisy signal, after speech enhancement the background noise is reduced. As we
limit the gain function to be larger than Gmin = −17 dB to reduce processing artifacts
and speech distortions as discussed in Chapter 1, no complete cancellation of the noise
is achieved. Comparing TCS in figures 3.5(b) and 3.6(b) to the approach without TCS
in figures 3.5(c) and 3.6(c), it can be seen that TCS notably preserves plosives (e.g. at
2.1 s), vowels (e.g. at 2.3 s) and fricatives (e.g. at 4.2 s for white noise). Most impor-
tantly, it may be observed in Figure 3.6 that for babble noise the residual noise signal is
much smoother for the approach with TCS, i.e. spectral outliers are strongly reduced.
This impression is also confirmed by informal listening, where a strong reduction of the
musical noise phenomenon may be observed.

The most reliable way to assess the signal quality is to conduct listening experiments
[Dreiseitel and Schmidt, 2006]. Therefore, in [Breithaupt et al, 2007] we conducted
listening experiments for a cepstral smoothing of spectral gain functions. Even though
the parameter setting in the listening experiments were slightly different from those
recommended in Table 3.1, we believe that the listening experiments prove the general
strengths of TCS based approaches, namely a considerable reduction of spectral outliers
that result in more natural sounding residual noise and a higher signal quality. In
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the listening experiments we compare the performance of the decision-directed SNR
estimation approach and an a posteriori SPP estimator according to [Malah et al, 1999]
to a TCS of spectral gain functions. We use nonstationary babble noise, nonstationary
subway noise and stationary pink Gaussian noise. For each noise type, ten different
speech samples from [Garofolo, 1988] were presented, five spoken by male, five by female
speakers. In order to allow the subjects to get an impression of the residual noise by
itself, the speech samples were preceded and followed by speech pauses of 3 s overall
duration. The average duration of the resulting samples was about 7 s. The noise
was scaled and added such that the noisy samples had an average segmental SNR of
0 dB in frames where speech is present. Each of the noisy samples was filtered by the
conventional and proposed approach, respectively, resulting in ten pairs of enhanced
samples per noise type. The participants were asked to select the file in each pair
they preferred in terms of speech quality, naturalness of the background and overall
quality, respectively. The comparison was done blindly and in randomized order. The
participants were divided into two groups, experts and non-experts. While the 7 expert
listeners clearly favored the proposed cepstral smoothing approach, we present detailed
results only for the 12 non-expert listeners for babble and pink noise in Table 3.2. It
may be seen that especially in nonstationary environments, the participants favored the
cepstral approach. This is because the background noise sounds less tonal and thus
more natural with the proposed approach. This is achieved without affecting the speech
quality. On the contrary: for stationary noise sources, where both algorithms perform
equally well in terms of background quality (no musical noise), a preference for TCS in
terms of speech and overall quality may be seen. The audio examples are available at
[Breithaupt and Gerkmann, 2007].
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Noise Category TCS of spectral
gain functions

decision-directed
[Ephraim and
Malah, 1984] with
αdd = 0.97 and
[Malah et al, 1999]

Equally Suited

Babble Backgr. 68% 5% 27%

Speech 54% 8% 38%

Overall 75% 7% 18%

Subway Backgr. 61% 5% 34%

Speech 69% 8% 23%

Overall 84% 4% 12%

Pink Backgr. 18% 18% 64%

Speech 52% 23% 25%

Overall 50% 22% 28%

Table 3.2: The results of the listening experiment for babble, subway, and pink noise.
The numbers state the percentage of votes in favor of one of the filters. The
choice “equally suited” was also possible.
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Figure 3.3: Instrumental measures for a TCS of spectral gain functions and the decision-
directed approach with αdd = 0.98.
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Figure 3.4: Spectrogram for the sentence “Please shorten this skirt for Joice.” spoken by
a female.
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(b) Enhanced speech with the decision-directed approach and αdd = 0.98
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(c) Cepstral Smoothing of spectral gain functions

Figure 3.5: Spectrograms for noisy and enhanced speech. The clean speech of Figure 3.4
is disturbed by stationary white Gaussian noise at 0 dB segmental SNR.
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(b) Enhanced speech with the decision-directed approach and αdd = 0.98
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(c) Cepstral Smoothing of spectral gain functions

Figure 3.6: Spectrograms for noisy and enhanced speech. The clean speech of Figure 3.4
is disturbed by nonstationary babble noise at 0 dB segmental SNR.
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3.2 Temporal cepstrum smoothing for a priori SNR

estimation

While a smoothing of the spectral gain function is a very general tool and can be applied
to any speech enhancement algorithm where the output is achieved with a multiplicative
spectral weighting, an even better performance may be expected if TCS is applied in an
earlier step of the speech enhancement algorithm. If the spectral gain function is given
by the Wiener Filter

Gk =
ξk

1 + ξk
,

the next earlier step is the estimation of the a priori SNR ξk. In this section we propose
to use TCS to replace the well known decision-directed a priori SNR estimator [Ephraim
and Malah, 1984].

3.2.1 Revision of a priori SNR estimation

The estimation of the a priori SNR is a very important part in speech enhancement
algorithms. Erroneous estimation of this parameter leads either to a reduced noise re-
duction, speech distortions or musical noise. In nonstationary noise environments the
estimation of the a priori SNR is particularly difficult. In this section we review state-of-
the art a priori SNR estimators, particularly the well known decision-directed approach
introduced by [Ephraim and Malah, 1984], and discuss their strengths and weaknesses.
We then propose to estimate the a priori SNR by temporally smoothing the Maximum
Likelihood (ML) a priori SNR estimate in the cepstral domain.

The a priori SNR, ξk, is defined as the ratio of the speech power, σ2
S,k, and the noise

power, σ2
N,k. In Appendix B.1 we show that for a χ2-distributed a posteriori SNR γk =

|Yk|2/σ2
N,k the ML estimate of the a priori SNR is given as

ξml
k = γk − 1 =

|Sk +Nk|2 − E{|Nk|2}
E{|Nk|2}

. (3.12)

If speech and noise are uncorrelated, the expected value of the ML estimate is the a
priori SNR:

ξk =
σ2

S,k

σ2
N,k

=
E{|Sk|2}+ E{|Nk|2} − E{|Nk|2}

E{|Nk|2}
= E

{
ξml
k

}
. (3.13)
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Thus, the ML a priori SNR ξml
k is an unbiased estimate of the a priori SNR ξk. However,

any deviation of |Nk|2 from the noise power σ2
N,k = E{|Nk|2} will cause fluctuations in

the ML SNR estimator, ξml
k . When employed in a speech enhancement framework, e.g.

for computing the Wiener filter (1.4), these fluctuations yield a very unnatural sounding
residual noise. In [Ephraim and Malah, 1984], before introducing the decision-directed
approach, Ephraim and Malah derived an ML estimator based on consecutive analysis
frames that results in a recursive smoothing of (3.12). This recursive smoothing can be
interpreted as an approximation of the true a priori SNR ξk = E

{
ξml
k

}
, assuming that

the speech signal is ergodic. However, since speech is highly non-stationary (and hence
not ergodic), recursive smoothing results in a poor trade-off between fluctuations in the
residual noise and distortions of speech onsets and transients. If the recursive smoothing
constant is chosen high enough to eliminate fluctuations in ξml

k , it also distorts speech
onsets and transitions, resulting in a reduced speech quality. Therefore, in state-of-the-
art speech enhancement algorithms the a priori SNR is estimated in a decision-directed
way [Ephraim and Malah, 1984, Ephraim and Cohen, 2006], i.e. based on a previous
clean-speech estimate Ŝk(l − 1) which may be obtained with (1.3) using the Wiener filter
(1.4):

ξ̂k(l) = max

{
αdd
|Ŝk(l − 1) |2
σ2

N,k(l − 1)
+ (1− αdd)ξml

k (l) , ξmin

}
. (3.14)

The parameters αdd and ξmin control the trade-off between noise reduction and dis-
tortions of speech transients in a speech enhancement framework [Cappé, 1994]. The
decision-directed procedure (3.14) allows for a fast tracking of increasing levels of the
speech power, thus effectively resulting in an adaptive smoothing. Consequently, at
speech onsets and transitions, less speech distortions are introduced as compared to a
recursive smoothing of ξml

k .

However, since the decision-directed SNR estimator is sensitive to rising spectral am-
plitudes, it does not only respond to speech onsets, but also to noise bursts that are
not tracked by the noise power estimation algorithm. Therefore, noise bursts will cause
a rising a priori SNR estimate, and thus outliers in the residual noise of the clean-
speech estimate that may be perceived as annoying musical tones. Furthermore, the
performance of the decision-directed approach depends on the type of speech estimator
GH1,k,k in (1.3) [Breithaupt and Martin, 2010]. The SNR estimation approach proposed
next is capable of avoiding annoying outliers while preserving the speech characteristics.
Further, it also decouples the estimation of the clean speech spectral coefficients and the
a priori SNR estimation.
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3.2.2 Proposed a priori SNR estimation

From the ML SNR estimate (3.12) we compute the speech power

σ2,ml
S,k = σ2

N,k max
{
ξml
k , ξml

min

}
. (3.15)

Here ξml
min > 0 is a small lower bound which prevents ξml from taking negative values or

values close to zero and thus avoids numerical difficulties in the following steps. We then
apply TCS to the ML speech power estimate using Algorithm 1 where Φk = σ2,ml

S,k . The

smoothed output Φ̄k represents the speech power estimate σ̂2
S,k, such that the a priori

SNR estimate is gained as

ξ̂k = max

{
σ̂2

S,k

σ2
N,k

, ξmin

}
. (3.16)

The bias correction B in Algorithm 1 is computed using Algorithm 4 where we assume
σ2,ml

S,k to be χ2-distributed with µ = 1. In Section 3.2.4 the proposed TCS for a priori
SNR estimation is compared to the decision-directed a priori SNR estimator [Ephraim
and Malah, 1984].

3.2.3 Reduction of the computational

complexity

As both the spectral power and the cepstral coefficients are real and symmetric with
respect to N/2, the N point DFT and its inverse in steps 2 and 6 of Algorithm 1 can
also be computed by a type-I N/2 + 1 point Discrete Cosine Transform (DCT) [Wang,
1984, Wang, 1991].

DFT{φq} =
N/2∑

q=0

ϑqφq cos

(
πqk

N/2

)
= DCT {φq} , (3.17)

where ϑq = 1 for q ∈ {0, N/2} and ϑq = 2 for q /∈ {0, N/2}. The Inverse Discrete
Cosine Transform (IDCT) results from a simple scaling of the DCT by 1/N . While
the general complex N point DFT exhibits a computational complexity of the order
N log2(N) if realized in terms of a Fast Fourier Transform (FFT) [Cooley and Tukey,
1965], a fast DCT on half the length exhibits a complexity of the order N/4 log2(N/2)
[Wang, 1991, Lo and Cham, 1996].

To additionally reduce the computational complexity we propose to replace the strong
smoothing of the upper cepstral coefficients by cepstral nulling. If a subset of only
L < N/2 + 1 connected cepstral coefficients is assumed nonzero, a pruned DCT can
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N/2
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L

d = 0

d = 0

d = 1
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d = 2

d = 3
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IDCTND/2+1

IDCTND/2+1,L

IDCTND/2+1,L
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Figure 3.7: Illustration of TCS with reduced computational complexity with D = 4.
While IDCTND/2+1 denotes an ND/2 + 1 point IDCT, IDCTND/2+1,L denotes
a pruned ND/2 + 1 point IDCT with pruned length L.

be used instead of a regular N/2 + 1 point DCT which reduces the computational
complexity approximately by the factor log2(L) / log2(N/2) [Wang, 1991]. However,
in speech processing it is important that the fundamental period peak in the cepstral
representation is preserved. As the position of the speech fundamental period peak
may lie anywhere in the range q ∈ {fs/800 Hz, ..., N/2}, a pruned DCT with a fixed
pruned length L is not applicable. The spectral harmonics of the speech fundamental
frequency are especially strong and important in the low frequency range, e.g. below
2 kHz. Hence, we divide the spectrum into a low frequency range, where the spectral
harmonics are preserved, and the high frequencies, where a pruned DCT is used. To
keep the DCT lengths of the low and high frequency divisions as powers of two, we
divide the spectrum into D subdivisions, where D is also a power of two. Thus, we now
have D subdivisions indexed by d, with a bandwidth of fs/(2D) and a segment length
of ND/2 + 1 = N/(2D) + 1 each (cf. Figure 3.7), where

ND = N/D. (3.18)

The exact arrangement of the subdivisions in the frequency domain (left hand side of
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Figure 3.7) is given in (3.19), where Φk is short for σ2,ml
S,k .

d = 0 :
[
Φ0, Φ1, ..., ΦND

2
−1
, 0

]

d > 0 :
[
0, Φ

d
ND

2

, ..., Φ
(d+1)

ND
2
−2
, Φ

(d+1)
ND

2
−1

]
.

(3.19)

The Nyquist bin ΦN/2 is neglected such that the spectral coefficients for all subdivisions
but the zeroth, obey the same distribution model. For resynthesis we keep the non-
smoothed Nyquist bin ΦN/2.

While for the zeroth subdivision we apply a regular TCS, for the remaining subdivisions
d = 1, ..., D − 1 we use TCS for the lower cepstral coefficients and null the cepstral
coefficients q > L. This allows us to use a pruned ND/2 + 1 point DCT for D − 1
subdivisions with pruned length L. For d > 0, we find an effective length of the pruned
data of 1 ms to be sufficient to represent the speech spectral envelope. This results in
an effective length of the pruned data of

L = 1 ms · fs/D = 16/D. (3.20)

The relative computational complexity with respect to the N/2 + 1 point DCT is

C =
ND/4 log2(ND/2) +ND/4(D − 1) log2(L)

N/4 log2(N/2)
. (3.21)

For D = 2 and N = 512 the proposed approach with D = 2 requires CD=2 = 62.5% of
the computational complexity as compared to a N/2 + 1 point DCT without pruning.
For D = 4 we obtain CD=4 = 37.5%. When we compare the proposed approach to using
a complex FFT on the full symmetric spectrum, the relative complexity is as low as
CD=2 = 13.9% and CD=4 = 8.3%, respectively.

For the bias correction we employ Algorithm 4, where now ND is used instead of N
in (2.21) and Algorithm 4. For the pruned subdivisions d > 0, the sum in step 4 of
Algorithm 4 is only computed up to L instead of ND/2.

The results of Section 3.2.3 are accepted for publication in [Gerkmann and Martin,
2010a].

3.2.4 Experimental results

We now compare TCS for speech power estimation to the decision-directed approach for
single channel speech enhancement. For the filter function we use the Wiener filter and
assume that speech is present in all time-frequency points. Thus, the gain function in
(1.3) is given by Gk = ξ̂k/(1 + ξ̂k), and then limited to be larger then Gmin via (1.7).
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The spectral noise power is estimated using the minimum statistics approach [Martin,
2001]. For the short-time Fourier analysis (1.1) we use Hann windows wn with a length
of 32 ms and 50% overlap.

For the recursive smoothing constant in (3.4), we choose:

αconst
q =





0.5 , q ∈ {0, ..., ⌊2/D⌋}
0.7 , q ∈ {⌊2/D⌋+ 1, ..., ⌊20/D⌋ − 1}
0.97 , q ∈ {⌊20/D⌋, ..., N/(2D)} ,

(3.22)

where ⌊·⌋ is the flooring operator. For the subdivisions d > 0 we only smooth the first
L = 16/D bins and Qpitch is an empty set, no matter if the speech segment is voiced or
unvoiced. The remaining cepstral coefficients q ≥ L are implicitly set to zero by applying
pruned DCTs for the cepstral transform and its inverse. The remaining parameters are
summarized in Table 3.3. Apart from the bias correction and ξml

min, the used parameters
are identical to [Breithaupt et al, 2008a] for D = 1.

Smoothing factor for Qpitch (3.4) . . . . . . . . . . . . . . . . . αpitch = 0.2

Threshold for voiced/unvoiced decision (3.3) . . . . . Λthr = 0.2 ·D
Lower bound for the q0 search (3.2) . . . . . . . . . . . . . . qlow =

⌊
fs

D·300 Hz

⌋

Upper bound for the q0 search (3.2) . . . . . . . . . . . . . qhigh =
⌊
fs

D·70 Hz

⌋

Margin for Qpitch (3.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . ∆q0 = ⌊2/D⌋
Length of the cepstral low-pass (3.1) . . . . . . . . . . . . . τH = ⌊ fs

D·2000 Hz
⌋

Smoothing constant for (3.4) . . . . . . . . . . . . . . . . . . . . β = 0.96

Lower bound on the a priori SNR (3.16) . . . . . . . . 10 log10(ξmin) = −25 dB

Lower bound on the a priori SNR (3.15) . . . . . . . . 10 log10(ξ
ml
min) = −30 dB

Lower bound on the gain function (1.7) . . . . . . . . . . 20 log10(Gmin) = −17 dB

Sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fs = 16 kHz

Table 3.3: Parameters for TCS based spectral a priori SNR estimation.

As in Section 3.1, we process 320 speech samples of [Garofolo, 1988, dialect region 6]
that are disturbed by several noise types and input SNRs. Again, we evaluate the
algorithms in terms of the segmental SNR improvement, the segmental speech SNR
and noise reduction [Breithaupt, 2008, Lotter, 2004, Lotter and Vary, 2005]. The re-
sults are given in Figure 3.8. We first compare the TCS approach with D = 1 to the
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decision-directed approach (3.14), where we set the smoothing constant to αdd = 0.98,
as proposed in [Ephraim and Malah, 1984]. It is obvious, that the TCS approach out-
performs the decision-directed approach [Ephraim and Malah, 1984] in terms of the
segmental SNR improvement and the speech SNR while performing virtually the same
in terms of noise reduction. The performance is also better as compared to a TCS of
spectral gain functions given in Figure 3.3. This can be attributed to the fact that TCS
for a priori SNR estimation is used in an earlier step of the enhancement framework.
The advantage of a TCS of the spectral gain function is that it can be more flexi-
bly used in any speech enhancement algorithm that uses multiplicative spectral gain
functions, including binary masks as used in blind source separation, e.g. [Jan et al,
2009].

In figures 3.9 and 3.10, the spectrograms of enhanced speech using the TCS based a
priori SNR estimator are given. As compared to the results of the decision-directed
approach given in figures 3.5 and 3.6, it can be observed, that for babble noise a much
smoother background noise can be observed. Informal listening confirms that the TCS
based approach results in a much more natural sounding residual noise with a strong
reduction of musical tones, and also a better speech quality as compared to the decision-
directed approach. Especially in the case of white Gaussian noise the processed speech
using TCS sounds clearer, as more low-energy speech components are preserved. As
for the residual noise, in the case of white noise, neither approach produces musical
noise.

In Figure 3.8 also the results with reduced complexity are given, i.e. D = 2 andD = 4. It
can be seen that the proposed low complexity approach with two subdivisions exhibits
virtually the same performance as the reference method D = 1 with computational
savings of 37.5%. The method with four subdivisions exhibits computational savings of
62.5% with respect to D = 1 while still performing considerably better than the decision-
directed approach [Ephraim and Malah, 1984]. For babble noise, the approach with
D = 4 results in a larger noise reduction than for D = 2 and D = 1. However, compared
to D = 1 and D = 2 the speech SNR and the segmental SNR are generally reduced
when four subdivisions are used. The reason why the approach with two subdivisions
performs better than the approach with four subdivisions is that in the first case the
spectral harmonics of the speech power estimate are preserved up to a frequency of
4 kHz while in the latter the spectral harmonics are only preserved up to a frequency of
2 kHz.
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Figure 3.8: Instrumental measures for TCS based a priori SNR estimation and the
decision-directed approach with αdd = 0.98.
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Figure 3.9: Spectrogram of enhanced speech using TCS for a priori SNR estimation
with D = 1. The clean speech of Figure 3.4 is disturbed by stationary
white Gaussian noise at 0 dB segmental SNR. The noisy speech is given in
Figure 3.5.
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Figure 3.10: Spectrogram of enhanced speech using TCS for a priori SNR estimation
with D = 1. The clean speech of Figure 3.4 is disturbed by nonstationary
babble noise at 0 dB segmental SNR. The noisy speech is given in Figure 3.6.
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3.3 Conclusions

In this chapter, the concept of Temporal Cepstrum Smoothing (TCS) is incorporated
to different parts of single channel speech enhancement algorithms. The first approach,
discussed in Section 3.1, applies TCS to the spectral gain function. Listening exper-
iments have indicated that this results in a more natural sounding residual noise and
a higher signal quality. In the second approach TCS is used to estimate the a priori
Signal-to-Noise Ratio (SNR) in speech enhancement algorithms, which produces even
better results in terms of instrumental measures as compared to a TCS of spectral gain
functions. This can be attributed to the fact that TCS is incorporated in an earlier
step of the noise reduction algorithm. The advantage of smoothing spectral gain func-
tions is that it can be employed to reduce spectral outliers in any speech enhancement
algorithm that estimates clean speech spectral coefficients by applying a multiplicative
gain function or binary masks. The additional costs of cepstral smoothing approaches
are dominated by the transformations needed to compute the cepstrum and its inverse.
These transformations can be efficiently computed using pruned fast Discrete Cosine
Transforms (DCTs).



Chapter 4

Instantaneous Cepstral Replacement

Techniques

In this chapter, we modify estimated spectral quantities in the earliest possible step of
the speech enhancement framework introduced in Chapter 1, with the aim that spectral
outliers are not reduced, but avoided before they even occur. Furthermore, while a tem-
poral smoothing of cepstral coefficients may smear the background noise over time, the
approach proposed in this chapter reduces spectral outliers instantaneously. Especially
in nonstationary noise, such as babble noise, this may yield a more natural sounding
residual noise.

Spectral outliers occur, if the spectral noise power is locally underestimated, for instance
because a babble burst of short duration is not tracked by the minimum statistics noise
power estimator [Martin, 2001]. As a consequence, spectral outliers occur in the Max-
imum Likelihood (ML) a priori Signal-to-Noise Ratio (SNR) estimate that cannot be
fully suppressed if the decision-directed approach (3.14) is used for the estimation of
the a priori SNR [Breithaupt and Martin, 2010] but are reduced if Temporal Cepstrum
Smoothing (TCS) is used for a priori SNR estimation (Section 3.2). In this chapter we
modify the estimate of the spectral noise power, so that spectral outliers in the a priori
SNR estimate are avoided before they occur. However, a modification of the spectral
noise power estimate has to be done with great care: if the spectral noise power is too
large, this results in an underestimation of the a priori SNR and in speech distortions
when applied in a speech enhancement framework. Therefore, in this chapter we com-
bine a careful modification of the spectral noise power with a modification of the spectral
speech power.
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4.1 Cepstral modification of the spectral noise

power

The minimum statistics approach [Martin, 2001] is a well established algorithm for spec-
tral noise power estimation. The basic assumption of the minimum statistics approach
is that the noise signal is more stationary than the speech signal. It is assumed that
in each frequency bin within a 1.5 second window speech is not active in at least one
segment l, such that the minimum of the smoothed squared noisy observation in the 1.5
second window can be attributed to the noise signal only. A bias correction is necessary
to infer the mean of the smoothed squared noise spectral coefficients from the found
minimum. The inferred mean represents the minimum statistics spectral noise power
estimate. One of the most powerful aspects of this approach is that it results in very
little speech distortions. However, noise bursts of short duration cannot be tracked by
the minimum statistics spectral noise power estimator and are likely to result in musical
noise.

In this section, we propose to replace the cepstral coefficients q ∈ Q (defined in (2.3)) of
the cepstral representation of the spectral noise power by the corresponding coefficients
of the cepstral representation of the magnitude squared noisy observation. As a result,
by exploiting the a priori knowledge that the speech spectral coefficients are reflected
mostly by the cepstral coefficients q ∈ Q, the modified spectral noise power estimate
also contains the spectral fine structure of the non speech related cepstral coefficients
q ∈ Q of the noisy observation.

However, when replacing coefficients of the noise power by coefficients of the noisy ob-
servation, one has to be very careful that no speech information leaks into the noise
power estimate, as this may result in speech distortions when applied in a speech en-
hancement framework. Thus, the lower cepstral bound qlow in (2.3) should be carefully
chosen: if it is too large, musical noise cannot be effectively suppressed, if it is too low,
speech distortions may occur. In Section 2.1, we analyzed which cepstral coefficients
carry the most information about speech. As a result, it turned out that more cepstral
coefficients are needed to represent the spectral envelope of voiced speech sounds than
for unvoiced speech sounds. As a consequence, for a cepstral modification of the spec-
tral noise power, the lower bound for voiced sounds qlow,v should be chosen larger than
the lower bound for unvoiced sounds qlow,uv, to avoid musical noise without introducing
speech distortions.

4.1.1 Bias compensation

The spectral noise power estimate gained by using the minimum statistics approach is
based on an optimal smoothing of the magnitude squared spectral noisy observation
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[Martin and Lotter, 2001]. Assuming that the magnitude squared noisy observation is
χ2-distributed, the optimal unbiased smoothing reduces the variance of the noisy obser-
vation, but also increases the shape parameter µMS = (E{|Yk|2})2/var{|YMS,k|2}, where
we denote the quantities after the smoothing of the minimum statistics by the index MS.
To enable an instantaneous adaption to the fine structure of the noise signal, we propose
to replace the cepstral coefficients q ∈ Q by the instantaneous nonsmoothed noisy obser-
vation |Yk|2, which is assumed to be χ2-distributed with µ = 1. Thus, the resulting shape
parameter µ̄ after the cepstral replacement will be reduced as compared to the shape
parameter µMS before the replacement. This reduction of the shape parameter results in
an overestimate of the spectral noise power, which can be compensated using a variation
of Algorithm 4. The bias (2.34) now takes the form

B =
µMS

µ̄
exp(ψ (µ̄)− ψ (µMS)) . (4.1)

While the shape parameter µMS after spectral smoothing is estimated within the mini-
mum statistics framework [Martin, 2001], the shape parameter after cepstral replacement
µ̄ is estimated by constructing the variance after cepstral replacement via (2.21), where
we choose the shape parameter to be µMS for the noise cepstral coefficients and µ = 1
for those cepstral coefficients that have been replaced. µ̄ is then obtained by taking
the sum of the variance of the cepstral coefficients after cepstral replacement, similar to
(2.28).

4.2 Cepstral modification of the spectral speech

power

For voiced sounds, cepstral coefficients of the noise power are only replaced for cepstral
coefficients q > qlow,v that represent the spectral fine structure. However, e.g. for babble
noise, spectral noise bursts may be spectrally rather coarse such that a replacement of
the cepstral coefficients qlow,uv < q ≤ qlow,v may substantially improve the elimination of
processing artifacts. However, as mentioned above, replacing the coefficients qlow,uv <
q ≤ qlow,v of the noise power estimate may yield a distortion of the spectral envelope of
voiced sounds.

Alternatively to replacing cepstral coefficients of the noise power estimate, one may also
replace coefficients of the speech power, estimated using e.g. the decision-directed ap-
proach (3.14). Spectral outliers due to processing artifacts result in a change of the
spectral shape usually described by the cepstral coefficients q ∈ Q. Due to the modi-
fication of the noise power described in Section 4.1, for voiced sounds spectral outliers
in the speech power estimate may still be expected to be represented by the cepstral
coefficients qlow,uv < q ≤ qlow,v. We thus propose to replace the cepstral coefficients
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qlow,uv < q ≤ qlow,v of the speech power estimate by the corresponding cepstral coeffi-
cients of the cepstral representation of the magnitude squared noisy observation. As the
spectral shape of the speech power estimate falls back to the spectral shape of the noisy
observation, the proposed cepstral replacement of the speech power can be expected
to result in considerably less speech distortions than a replacement in the noise power
estimate, or a cepstral nulling of the speech power estimate.

The overall algorithm for the instantaneous cepstral replacement is given in Algo-
rithm 5.

4.3 Evaluation

From the experiments in Section 2.1 we choose qlow,v = 64, which corresponds to
qlow,v/fs = 4 ms, and qlow,uv = 24, which corresponds to qlow,uv/fs = 1.5 ms, assuming a
sampling rate of fs = 16 kHz. The cepstral coefficients that represent the fundamental
period of voiced sounds q ∈ Qpitch are obtained using (3.2) and (3.3). To minimize
speech distortions, for the cepstral modification of the noise power Qpitch also includes
R = 3 rahmonics rq0 with r = {2, . . . , R + 1} when rq0 ≤ N/2. If Qpitch is the empty
set, the signal segment l is assumed to be unvoiced and qlow = qlow,uv in (2.2). If Qpitch is
not the empty set, the signal segment l is assumed voiced and qlow = qlow,v in (2.2). We
set the threshold Λthr = 0.2 and ∆q0 = 2 in (3.3). For the smoothing constant of the
decision-directed approach αdd in (3.14) we use αdd = 0.94 for the approach that uses
cepstral replacement and αdd = 0.98 for the competing approach that does not use any
cepstral techniques. For the short-time Fourier analysis (1.1) we use Hann windows wn
with a length of 32 ms and 50% overlap.

The results for 320 sentences from [Garofolo, 1988] are given in Figure 4.1. It can be seen
that the performance is similar to the approach described in Section 3.2, where an ML
estimate of the spectral speech power is temporally smoothed in the cepstral domain.
In babble noise the proposed approach yields a slightly higher noise reduction for low
SNRs which is also confirmed by informal listening. For traffic noise the segmental
SNR is slightly lower for the cepstral replacement approach than for the TCS approach.
This effect is almost inaudible though. Comparing Figure 4.1 to Figure 3.3, it can be
seen that the instantaneous cepstral replacement outperforms a TCS of spectral gain
functions in terms of instrumental measures. The spectrograms of enhanced speech
using the instantaneous cepstral replacement are given in figures 4.2 and 4.3. As for all
cepstral approaches presented in this thesis, for babble noise the residual background
noise exhibits considerably less spectral outliers as compared to the decision-directed
approach shown in Figure 3.6(b), while the speech signal is well preserved. As a result
the amount of musical noise is reduced, while at the same time the speech SNR is higher
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Figure 4.1: Results of instrumental measures for an instantaneous cepstral replacement
in the noise and speech power estimates, TCS for a priori SNR estimation
and the decision-directed approach with αdd = 0.98.

as compared to using the decision-directed approach with a larger smoothing factor
αdd.
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Algorithm 5 Cepstral replacement of the speech and noise power estimates.
1: for all signal segments l do

2: Estimate the spectral noise power σ̂2
N,k using [Martin, 2001].

3: Cepstral transform of the spectral noise power and the noisy observation

φN,q = 1/N
N−1∑

k=0

log
(
σ̂2

N,k

)
ej2πkq/N ,

yq = 1/N
N−1∑

k=0

log
(
|Yk|2

)
ej2πkq/N .

4: if segment l is voiced then

5: Moderate cepstral replacement

φ̄N,q =




yq , q ∈ {{qlow,v + 1, . . . , N/2} \Qpitch}
φN,q , else.

6: else

7: Cepstral replacement

φ̄N,q =




yq , q ∈ {qlow,uv + 1, . . . , N/2}
φN,q , else.

8: end if

9: Inverse cepstral transform (2.7) using (4.1)

σ̄2
N,k = B · exp



N−1∑

q=0

φ̄N,q e−j2πkq/N


 .

10: Estimate the spectral speech power σ̂2
S,k based on the modified noise power σ̄2

N,k

and the decision-directed approach (3.14).
11: Cepstral transform of the spectral speech power

φS,q = 1/N
N−1∑

k=0

log
(
σ̂2

S,k

)
ej2πkq/N

12: if segment l is voiced then

13: Replace the cepstral coefficients q ∈ {qlow,uv + 1, . . . , qlow,v}

φ̄S,q =




yq , q ∈ {qlow,uv + 1, . . . , qlow,v}
φS,q , else.

14: end if

15: Inverse cepstral transform (2.7)

σ̄2
S,k = exp



N−1∑

q=0

φ̄S,q e−j2πkq/N


 .

16: Estimate the clean speech spectral coefficients using the cepstrally modified spec-
tral speech and noise powers σ̄2

S,k and σ̄2
N,k.

17: end for
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Figure 4.2: Spectrograms of enhanced speech using cepstral replacement. The clean
speech of Figure 3.4 is disturbed by stationary white Gaussian noise at 0 dB
segmental SNR. The noisy speech is given in Figure 3.5.
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Figure 4.3: Spectrograms of enhanced speech using cepstral replacement. The clean
speech of Figure 3.4 is disturbed by nonstationary babble noise at 0 dB seg-
mental SNR.
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4.4 Conclusions

In this chapter an alternative approach to a temporal smoothing of the cepstrum is
presented. For single channel noise reduction the performance in terms of instrumental
measures is better than a temporal smoothing of the cepstrum of spectral gain functions
given in Section 3.1 and similar to Temporal Cepstrum Smoothing (TCS) for a priori
Signal-to-Noise Ratio (SNR) estimation proposed in Section 3.2. The cepstral replace-
ment approach is computationally much more expensive than the TCS approach. While
for the TCS approach requires two Discrete Fourier Transforms (DFTs) for the cepstral
transform and its inverse, the cepstral replacement approach requires one DFT for the
cepstral transform of the noisy observation, and four DFTs for the cepstral transform
of the spectral noise power, the spectral speech power and their inverses. However, in-
formal listening has revealed a slight preference for the cepstral replacement approach
for babble noise in low SNR scenarios. This can be attributed to the fact that the back-
ground noise is not temporally smeared when the instantaneous replacement approach
is used.



Chapter 5

Speech Presence Probability

Estimation

In this chapter we present an improved estimator for the speech presence probability
at each time-frequency point in the short-time discrete Fourier transform domain. In
contrast to existing approaches this estimator does not rely on an adaptively estimated
and thus signal dependent a priori signal-to-noise ratio estimate. It therefore decou-
ples the estimation of the speech presence probability from the estimation of the clean
speech spectral coefficients in a speech enhancement task. Using both a fixed a pri-
ori signal-to-noise ratio and a fixed prior probability of speech presence, the proposed
a posteriori speech presence probability estimator achieves probabilities close to zero
for speech absence and probabilities close to one for speech presence. While state-
of-the-art speech presence probability estimators use adaptive prior probabilities and
signal-to-noise ratio estimates we argue that these quantities should reflect true a pri-
ori information that shall not depend on the observed signal. We present a detection
theoretic framework for determining the fixed a priori signal-to-noise ratio. Also in
this chapter, we derive the theoretical basis for a posteriori speech presence probability
estimation based on a smoothed observation. The proposed estimator is conceptually
simple and yields considerably less noise leakage and low speech distortions in both, sta-
tionary and nonstationary noise as compared to state-of-the-art estimators. Especially
in babble noise, this results in large signal-to-noise ratio improvements. The results
of this chapter are partly presented in [Gerkmann et al, 2008b] and [Gerkmann et al,
2010].

5.1 Introduction

For many short-time Discrete Fourier Transform (DFT) based speech processing sys-
tems an estimator for the Speech Presence Probability (SPP) in each time-frequency
point is of great interest. For instance in speech enhancement clean-speech estimators,
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such as the Wiener Filter (1.4), are often derived under the assumption that speech is
actually present. Since this is neither true in speech pauses nor between the spectral
harmonics of voiced speech sounds, the SPP should be taken into account [McAulay
and Malpass, 1980, Ephraim and Malah, 1984, Malah et al, 1999, Cohen and Berdugo,
2001, Gerkmann et al, 2008b, Gerkmann et al, 2010]. SPP estimators are also of in-
terest in multichannel speech enhancement to discard channels that are more severely
disturbed than others [Gerkmann and Martin, 2006]. For clean-speech estimators, it is
crucial that the SPP estimator does reliably recognize speech presence to avoid spectral
distortions of low energy speech components. Most existing SPP estimators are designed
in a way that they satisfy this demand, and yield high SPP estimates whenever speech
is present. However, SPP estimators like [Ephraim and Malah, 1984, Malah et al, 1999],
have the drawback that they usually do not yield small values for the SPP at time-
frequency points where speech is absent, e.g. between the harmonics of voiced speech
or even in speech pauses. The estimator in [Cohen and Berdugo, 2001] overcomes this
problem by making the a priori SPP signal dependent. We argue that for a posteriori
SPP estimation neither the a priori Signal-to-Noise Ratio (SNR) nor the a priori SPP
should be adapted but represent true a priori knowledge and thus be independent of
the observation. In this chapter we show that with fixed priors a better trade-off be-
tween speech distortions and noise reduction can be achieved as compared to competing
state-of-the art estimators that adapt the priors, such as [Malah et al, 1999, Cohen and
Berdugo, 2001].

The discussed SPP estimators require an estimate for the noise spectral power. However,
state-of-the-art noise power spectral density estimators, like Martin’s minimum statistics
approach [Martin, 2001], are often based on the fact that noise is more stationary than
speech. Consequently they are not capable of tracking instationarities such as high
energy noise bursts of short duration that often occur in babble noise. This results
in large SPP estimates during noise bursts, so that SPP estimators like [Ephraim and
Malah, 1984, Malah et al, 1999, Cohen and Berdugo, 2001] exhibit a high false-alarm
rate in nonstationary noise.

In this chapter we overcome this drawback by smoothing the a posteriori SNR in the
cepstral domain. As a result, we present a new estimator for the a posteriori SPP
which clearly outperforms state-of-the-art SPP estimators in nonstationary noise and
also achieves better performance in stationary noise.

In the next section, we review the framework for a posteriori SPP estimation based
on a smoothed a posteriori SNR, and show that for an adapted a priori SNR the a
posteriori SNR yields only the prior SPP in speech absence. In Section 5.3 we argue
that for a posteriori SPP estimation neither the a priori SNR nor the a priori SPP
should be adapted, and present a framework to determine a fixed optimal a priori SNR
that minimizes the false-alarm and missed-hit rates. While in Section 5.4 the a posteriori
SNR is smoothed in the frequency domain, in Section 5.5 Temporal Cepstrum Smoothing
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(TCS) of the a posteriori SNR is proposed. In Section 5.6 we show that a posteriori SPP
based on TCS and fixed priors clearly outperforms the competing SPP estimators [Malah
et al, 1999, Cohen and Berdugo, 2001, Gerkmann et al, 2008b] in nonstationary noise
and also achieves better performance in stationary noise.

5.2 A posteriori SPP estimation

We now derive the a posteriori SPP given the a posteriori SNR. The a posteriori SNR is
given as γk = |Sk +Nk|2/σ2

N,k under speech presence H1,k, and γk = |Nk|2/σ2
N,k in speech

absence, denoted by H0,k. The noise power spectral estimate σ2
N,k = E{|Nk|2} may be

estimated using Martin’s minimum statistics approach [Martin, 2001]. Using Bayes’
theorem, the a posteriori probability of speech presence P (H1,k| γk), can be obtained
as

P (H1,k| γk) =
P (H1,k) p

(
γk
∣∣∣ H1,k

)

p(γk)
(5.1)

=
P (H1,k) p

(
γk
∣∣∣ H1,k

)

P (H1,k) p
(
γk
∣∣∣ H1,k

)
+ P (H0,k) p

(
γk
∣∣∣ H0,k

) . (5.2)

Hence, the a posteriori SPP is fully defined by the likelihoods of speech presence
p
(
γk
∣∣∣ H1,k

)
and absence p

(
γk
∣∣∣ H0,k

)
and the a priori SPP P (H1,k) = 1 − P (H0,k).

The a posteriori SPP can be rewritten in terms of the generalized likelihood ratio
as

P (H1,k| γk) =
Λk

1 + Λk
, (5.3)

where the generalized likelihood ratio Λk is defined as the weighted ratio of the likelihoods
of speech presence and absence:

Λk =
P (H1,k) p

(
γk
∣∣∣ H1,k

)

(1− P (H1,k)) p
(
γk
∣∣∣ H0,k

) . (5.4)

The prior P (H1,k) can be used to bias the generalized likelihood ratio in favor of ei-
ther speech presence (P (H1,k) > 0.5) or of speech absence (P (H1,k) < 0.5). All SPP
estimators mentioned in Section 5.1 are implicitly or explicitly based on the generalized
likelihood ratio.
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5.2.1 Effects of a smoothed observation

The a posteriori SNR is defined as the periodogram of noisy speech |Yk|2 normalized on
the noise power spectrum. Since the periodogram, as an estimate of the power spectrum,
exhibits a large variance [Vary and Martin, 2006, Section 5.9], [Papoulis and Pillai,
2002, Section 12-2] the a posteriori SNR γk suffers from random fluctuations. When
P (H1,k| γk) is incorporated into a speech enhancement framework, random fluctuations
in γk may result in spectral peaks in the enhanced signal that may be perceived as
musical noise [Malah et al, 1999]. To reduce its variance, we propose to smooth the a
posteriori SNR and denote the smoothed quantity as γ̄k.

As in [Ephraim and Malah, 1984, Malah et al, 1999, Cohen and Berdugo, 2001, Yu and
Hansen, 2009, Gerkmann and Martin, 2006] we assume that Yk is complex-Gaussian
distributed, which results in a χ2-distribution (2.11) with shape parameter µ = 1 for
the a posteriori SNR γk. For a smoothing in the frequency domain, it is well known,
that the smoothed random variable remains approximately χ2-distributed but with an
increase in the degrees of freedom [Martin and Lotter, 2001, Martin, 2001]. The χ2-
distribution holds exactly if the averaged values of P are uncorrelated. For a cepstral
smoothing the χ2-distribution also holds, as shown in [Gerkmann and Martin, 2009] and
Section 2.3.

As under speech absence we have E{γk} = 1, we can write the likelihood of speech
absence as

p
(
γ̄k
∣∣∣ H0,k

)
=

1

Γ(µ̄)
µ̄µ̄ γ̄µ̄−1

k exp(−µ̄ γ̄k) . (5.5)

Assuming that speech and noise are uncorrelated, we have E{γ̄k} = 1 + ξk in speech
presence, and thus

p
(
γ̄k
∣∣∣ H1,k

)
=

1

Γ(µ̄)

(
µ̄

1 + ξk

)µ̄
γ̄µ̄−1
k exp

(
−µ̄ γ̄k

1 + ξk

)
, (5.6)

where ξk = σ2
S,k/σ

2
N,k is the a priori SNR and σ2

S,k = E{|Sk|2}. The generalized likelihood
ratio results in

Λk =
P (H1,k)

1− P (H1,k)
·
(

1

1 + ξk

)µ̄
exp

(
ξk

1 + ξk
µ̄ γ̄k

)
, (5.7)

which is then used in (5.3) to compute the a posteriori SPP P (H1,k| γ̄k).
The generalized likelihood ratio (5.4) is the ratio of the likelihoods (5.6) and (5.5)
weighted by their priors. In order to illustrate the effect of the a posteriori SPP (5.3),
Figure 5.1 shows the numerator and denominator of the generalized likelihood ratio
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Figure 5.1: Numerator and denominator of the generalized likelihood ratio (5.4) and
the resulting a posteriori SPP P (H1,k| γk) for a nonsmoothed observation
(µ = 1), 10 log10(ξk) = 8 dB, and P (H1,k) = 0.5. The prior P (H1,k) can be
used to provide for an overall bias in favor of speech presence or absence.
For 10 log10(γk) > 10 log10(γ

intersect
k ) = 3.6 dB the weighted ratio (5.4) of the

likelihoods (5.6) and (5.5) is larger than one and the SPP, P (H1,k| γk), is
larger than 0.5.

(5.4) and the resulting SPPs for an a priori SNR of 10 log10(ξk) = 8 dB and µ = 1
as a function of the a posteriori SNR. Note that while all computations are done in
the linear domain, for the illustrations the a posteriori SNR is converted from linear
scale to decibels, as γk[ dB] = 10 log10(γk). The intersection of the weighted likelihoods
P (H1,k) p(γk|H1,k) and (1− P (H1,k)) p(γk|H0,k) occurs at

γintersect
k =

1 + ξk
ξk

log

(
1− P (H1,k)

P (H1,k)
[1 + ξk]

)
(5.8)

and marks the point where the generalized likelihood ratio is Λk = 1 and where the
resulting a posteriori SPP is P (H1,k| γk) = 0.5.

With [Gradshteyn and Ryzhik, 2000, (3.381.4)] the moments of a χ2-distributed ran-
dom variable can be computed, and it can be shown that the shape parameter af-
ter smoothing µ̄ is related to the ratio of the mean and variance after smoothing as
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µ̄ = (E{γ̄k})2/var{γ̄k} . (5.9)

As argued in Section 2.3, from (5.9) it can be seen that the variance reduction of
an unbiased smoothing with E{γ̄k} = E{γk} necessarily results in an increase in the
shape parameter of a χ2-distributed random variable. Then, for a noise-only signal
with E{γ̄k} = 1 the shape parameter is simply given by the reciprocal of the reduced
variance, as µ̄ = 1/var{γ̄k}. Thus, the shape parameter after smoothing can be ob-
tained by measuring the variance of a noise only signal after smoothing as proposed in
[Gerkmann et al, 2008b]. For a cepstral smoothing, µ̄ can be obtained as detailed in
Algorithm 4.

For further theoretical analyses we employ the false-alarm rate and the missed-hit rate,
as used in classical detection and estimation theory, e.g. [Van Trees, 1968, Ch. 2].
Interpreting the SPP estimator as a detector, we define the false-alarm rate as the
probability that a noise-only bin yields an SPP higher than 0.5. Accordingly, the missed-
hit rate is the probability that a bin that contains speech yields an SPP lower than
0.5.

The inherent variance reduction of the smoothing process results in less overlap of the
likelihoods (5.5) and (5.6) and a steeper transition of the a posteriori SPP, as can be
seen by comparing figures 5.1 and 5.2, as well as figures 5.4(a) and 5.4(b). The advantage
of a steeper transition is that low values of γ̄k yield a low SPP, when ξk is larger than
a lower bound. The decreased overlap results in a lower false-alarm rate and a lower
missed-hit rate, as shown next.

Using [Gradshteyn and Ryzhik, 2000, (3.381.3)], the false-alarm rate can be written as

PF,µ̄ =
∫ ∞

γintersect
k

p(γ̄k|H0,k)dγ̄k =
Γ(µ̄, µ̄ γintersect

k )

Γ(µ̄)
, (5.10)

where γintersect
k is determined according to (5.8). For µ = 1 this results in

PF,µ=1 = exp(−γintersect
k ) =

(
1− P (H1,k)

P (H1,k)
[1 + ξk]

)− 1+ξk
ξk

.

For 10 log10(ξk) = 8 dB and P (H1,k) = 0.5 the false-alarm rate reduces from PF,µ=1 =
10% for the unsmoothed case (µ = 1) to PF,µ̄ = 1% for a smoothed observation with
µ̄ = 5.1. The missed-hit rate can be written as:

PM,µ̄ =
∫ γintersect

k

0
p(γ̄k|H1,k)dγ̄k = 1−

Γ(µ̄, µ̄
γintersect
k

1+ξk
)

Γ(µ̄)
. (5.11)
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Figure 5.2: Numerator and denominator of the generalized likelihood ratio (5.4) and
the resulting a posteriori SPP P (H1,k| γ̄k) for a smoothed observation with
µ̄ = 5.1, 10 log10(ξk) = 8 dB, and P (H1,k) = 0.5. Comparing this figure
to Figure 5.1, it can be seen that smoothing results in less overlap of the
likelihoods, which results in a lower false-alarm rate and missed-hit rate,
as well as in a steeper transition of the a posteriori SPP P (H1,k| γ̄k). The
intersection of the likelihoods 10 log10(γintersect

k ) = 3.6 dB is the same as in
Figure 5.1.
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For µ = 1 this results in

PM,µ=1 = 1− exp

(
−γ

intersect
k

1 + ξk

)
= 1−

(
1− P (H1,k)

P (H1,k)
[1 + ξk]

)− 1
ξk

.

For 10 log10(ξk) = 8 dB and P (H1,k) = 0.5 the missed-hit rate reduces from PM,µ=1 =
27% considering a single bin (µ = 1) to PM,µ̄ = 2% for a smoothed observation with
µ̄ = 5.1.

5.2.2 Drawbacks of an adapted a priori SNR

Besides the observation γ̄k and the shape parameter µ̄, the estimate of P (H1,k| γ̄k)
depends on the a priori SPP P (H1,k) and the a priori SNR ξk ((5.3) and (5.7)). Since
its introduction in [Ephraim and Malah, 1984], an estimate ξ̂k of the a priori SNR
is usually obtained using the decision-directed approach (3.14) [Ephraim and Malah,
1984, Malah et al, 1999, Cohen and Berdugo, 2001]. As the decision-directed approach
(3.14) depends on an estimate of the clean speech Ŝk, the estimation of the SPP and
the estimation of clean speech are coupled if the decision-directed approach is used for
SPP estimation.

While the decision-directed approach and the a priori SNR estimator of Section 3.2 are
powerful approaches to estimate the a priori SNR for filter gains, there is an intrinsic dis-
advantage to adapting the a priori SNR estimate for SPP estimation: at time-frequency
points where speech is absent, the adapted a priori SNR is very small and thus the two
likelihoods (5.5) and (5.6) that are compared in the generalized likelihood ratio (5.4)
are approximately the same (cf. Figure 5.3). In this case the a posteriori SPP estimate
P (H1,k| γ̄k), does not make use of any information in the observation, but depends only
on the a priori SPP P (H1,k). This can also be observed in Figure 5.4, where the a
posteriori SPP is given for different a priori SNRs.

To overcome this problem Malah, Cox, and Accardi [Malah et al, 1999] suggested to
perform two iterations on the SPP estimator: starting with a fixed P (H1,k) = 0.5, the
resulting SPP estimate of the first iteration of (5.3) is used as a frequency dependent
a priori SPP estimate P̂ (H1,k(l)) in the second iteration. In figures 5.4(a) and 5.5 the
a posteriori SPP P (H1,k| γk), obtained with the conventional method and the iterative
method proposed in [Malah et al, 1999] are given as a function of the a posteriori SNR.
The second iteration of (5.3) causes a steeper transition of P (H1,k| γk) from its minimum
to its maximum, as may be seen by comparing figures 5.4(a) and 5.5. Note that in case
that ξ̂k is very small (e.g. 10 log10(ξk) = −40 dB in Figure 5.5), the resulting SPP
still equals the prior P (H1,k), and the second iteration has no effect. This situation is
somewhat improved, if we limit ξ̂k to be larger than 10 log10(ξmin) = −10 dB as proposed
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Figure 5.3: Numerator and denominator of the generalized likelihood ratio (5.4) and
the resulting a posteriori SPP P (H1,k| γ̄k) for a smoothed observation with
µ̄ = 5.1, 10 log10(ξk) = −40 dB, and P (H1,k) = 0.5. For a small a priori SNR,
e.g. 10 log10(ξk) = −40 dB, the likelihoods overlap, and the a posteriori SPP
P (H1,k| γ̄k) yields only the a priori SPP P (H1,k) = 0.5 for all γ̄k.
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(a) The conventional SPP estimator without smoothing (µ = 1) and P (H1,k) = 0.5.
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(b) The SPP estimator with a smoothed observation (µ̄ = 5.1) and P (H1,k) = 0.5.

Figure 5.4: The speech presence probability P (H1,k| γk), with and without smoothing.
Smoothing the observation results in a steeper transition of the a posteriori
SPP.

in [Malah et al, 1999]. The lower limit on ξ̂k enables the SPP estimate to differ from
P (H1,k) even in speech pauses, because the two likelihoods (5.6) and (5.5) cannot become
identical. The second iteration emphasizes this difference, but the resulting SPP estimate
is still far from zero for low SNR conditions, when 10 log10

(
ξ̂k
)

= 10 log10(ξmin) = −10 dB
(cf. Figure 5.5).

Cohen and Berdugo [Cohen and Berdugo, 2001] developed the idea of adapting the a
priori SPP P (H1,k) further. Their approach exploits the correlation of speech presence
in neighboring frequency bins of consecutive frames. This is done by taking local and
global averages on the a priori SNR ξ̂k, as gained via the decision-directed approach
(3.14). The averages are then mapped on values between 0 and 1 and reinterpreted as
a priori SPPs. Since the resulting a priori SPP estimate P̂ (H1,k) is mostly either very
close to one or very close to zero, it dominates the a posteriori SPP. The likelihood-ratio
in (5.4) has then only a minor effect.
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Figure 5.5: The speech presence probability P (H1,k| γk), without smoothing (µ = 1) but
with two iterations and an initial P (H1,k) = 0.5 as proposed in [Malah et al,
1999]. As compared to the case without smoothing and only one iteration
given in Figure 5.4(a), the second iteration results in a steeper transition of
the a posteriori SPP.

5.3 Fixed a priori SNR and a priori

SPP

In this section, we argue that for a posteriori SPP estimation, the adaptation of the a pri-
ori SPP can be seen as only circumventing the true problem: the likelihoods p

(
γ̄k
∣∣∣ H0,k

)

and p
(
γ̄k
∣∣∣ H1,k

)
still tend to be equal in the absence of speech, which signifies a dis-

crepancy in the basic probabilistic model. Instead, the a priori SPP and the a priori
SNR should reflect true a priori knowledge and should not depend on the observation.
Instead of adapting the a priori SPP and the a priori SNR, we therefore propose to use a
fixed prior P (H1,k) and a constant ξfix that reflects the SNR that a typical speech sound
would have if speech were present in the considered bin. This ξfix should be carefully
chosen. If it is too high, the missed-hit rate increases, i.e. weak speech components are
not recognized. If it is too low, the false-alarm rate increases, i.e. random fluctuations
occur in P (H1,k| γ̄k).
The optimal choice for ξfix is found by minimizing the average cost for a detection, which

is denoted as the risk R. With an assumed ξ̃fix, γintersect
k = 1+ξ̃fix

ξ̃fix

log
(

1−P(H1,k)
P(H1,k)

[1 + ξ̃fix]
)

,

(5.10), and (5.11), the risk combines the false-alarm rate PF,µ̄ and the missed-hit rate
PM,µ̄, as

R(ξk, ξ̃fix) = cF [1− P (H1,k)]PF,µ̄(ξ̃fix) + cM P (H1,k) PM,µ̄(ξ̃fix, ξk) , (5.12)

where cF , cM are the respective costs. The probabilities for correct detection are not
considered in (5.12), since their cost is assumed to be zero. Note that the missed-hit



Chapter 5 Speech Presence Probability Estimation 107

 

 

−10 0 10

−10

0

10

20

0

0.1

0.2

0.3

0.4

0.5

ξk [dB]

ξ̃ fi
x

[d
B

]

ξfix[ dB] = 8 dB

(a) cF = cM

 

 

−10 0 10

−10

0

10

20

0

0.1

0.2

0.3

0.4

0.5

ξk [dB]

ξ̃ fi
x

[d
B

]

ξfix[ dB] = 11 dB

(b) cF = 4 cM

Figure 5.6: The risk R(ξk, ξ̃fix) according to (5.12) as a function of the unknown a priori

SNR ξ and the assumed ξ̃fix. A risk of zero corresponds to perfect detection.
The larger the risk, the larger the probability of incorrectly assigning a bin
to be speech or having missed a true speech bin. An integration of R(ξk, ξ̃fix)
along the horizontal line from 10 log10(ξlow) = −10 dB to 10 log10(ξup) =
15 dB in the linear domain achieves the minimum overall risk. Here, µ̄ = 5.1,
and the a priori SPP is P (H1,k) = 0.5.

rate depends on the assumed a priori SNR ξ̃fix and the unknown a priori SNR ξk.
The false-alarm rate, however, is independent of the signal power and depends only on
the assumed ξ̃fix. In Figure 5.6, the risk is illustrated for different costs cF and cM .

We find an optimal ξfix by minimizing the risk for all ξ between ξlow and ξup.

ξfix = arg min
ξ̃fix

∫ ξup

ξlow

R(ξk, ξ̃fix)dξk . (5.13)

We solve the integral numerically in the linear domain. When the resulting SPP es-
timate is applied to a speech enhancement framework, the costs for false-alarms cF
and missed-hits cM control the trade-off between noise-leakage and speech distortions.
These costs as well as the range of the integral in (5.13) can be adjusted, such that
the performance of the SPP estimator is optimal for the application of interest. A
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choice of cM = cF = 1 and zero cost for perfect detection minimizes the total proba-
bility of error [Van Trees, 1968]. As an example, for a smoothing that results in the
shape parameter µ̄ = 5.1, and the true SNR ranging from 10 log10(ξlow) = −10 dB to
10 log10(ξup) = 15 dB, the optimization (5.13) yields 10 log10(ξfix) = 8 dB. Note that us-
ing a value of 10 log10(ξfix) = 8 dB in the generalized likelihood ratio does not mean that
the a posteriori SNR has to be higher than 10 log10(γ̄k) ≈ 8 dB to “detect” speech pres-
ence (P (H1,k| γ̄k) > 0.5), but only higher than 10 log10(γ

intersect
k ) = 3.6 dB (cf. figures

5.1, 5.4, and 5.4(b)).

As in [McAulay and Malpass, 1980] we assume that the probabilities of speech presence
and speech absence in each bin are a priori equal, and thus set P (H1,k) = 0.5.

5.4 Smoothing the observation in the frequency

domain

In this section we consider a frequency domain smoothing of the a posteriori SNR
presented in [Gerkmann et al, 2008b]. To achieve the frequency domain smoothing, we
calculate the smoothed observation over a time-frequency region in the neighborhood of
the time-frequency point under consideration as

γ̄k(l) =
1

|K| · |L|
∑

κ ∈ K
λ ∈ L

γκ(λ) . (5.14)

Here, K is the set of adjacent frequency bins, L is the set of successive time frames, and
|K| · |L| is the number of spectral bins used for averaging.

The shape parameter µ̄ is increased as compared to the unsmoothed case where only one
spectral bin is considered and µ = 1. If the time-frequency points K×L are uncorrelated,
the shape parameter is µ̄ = |K| · |L|. However, due to the overlapping tapered analysis
windows wn in (1.1), adjacent time-frequency points are usually correlated. Then, the
shape parameter after smoothing can be determined empirically by smoothing a noise
only signal and measuring its variance. As for a noise only signal E{γ̄k} = 1, the shape
parameter after smoothing can be obtained using (5.9).

Without loss of generality, we discuss the smoothing defined in (5.14) in the context of
a causal system and choose K and L according to Figure 5.7. The parameters ∆l and
∆k defined in Figure 5.7 should be chosen large enough to ensure a low false-alarm rate,
but small enough to preserve the fine structure of speech. In [Cohen and Berdugo, 2001]
and [Sørensen and Andersen, 2005] the combination of two initial SPPs P (H1,k|γ̄local,k)
and P (H1,k|γ̄global,k) has been successfully applied. These initial SPPs are based on
different averaging windows. P (H1,k|γ̄global,k) is based on a relatively large averaging
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Figure 5.7: Illustration of the computation of the smoothed observation γ̄k(l) via (5.14)
in the time-frequency domain for fs = 16 kHz, N = 512 and a segment
overlap of L/N = 50% in (1.1). The current bin k, l is marked black. The
gray area illustrates the neighboring bins used for the smoothing, giving
|K| · |L| = [∆l + 1] · [2∆k + 1] bins.

window. Thus, its variance is greatly reduced, but the fine structure of the speech signal
is lost (see example in Figure 5.8(b)). On the other hand P (H1,k|γ̄local,k) is based on a
much smaller averaging window. It has a high variance but is able to resolve the fine
structure of the speech signal (see example in Figure 5.8(a)). As in [Cohen and Berdugo,
2001, Sørensen and Andersen, 2005] we propose to combine two initial SPPs such that
the final SPP estimator yields values close to one only if the global and the local SPP
have values close to one. This is achieved via a multiplicative combination [Cohen and
Berdugo, 2001, Sørensen and Andersen, 2005], as:

Pk = P (H1,k|γ̄local,k) · P (H1,k|γ̄global,k) , (5.15)

where Pk is an estimate of the a posteriori SPP. In Figure 5.8(c) it can be seen that
the combined SPP (5.15) based on the local and global averages presented in Fig-
ure 5.8(a) and Figure 5.8(b), has a low variance but resolves the fine structure of speech.

For our purposes, the following averaging parameters were found to yield a good trade-off
between tempo-spectral resolution, missed-hit rate, and false-alarm rate of the proposed
SPP estimator. For the temporal smoothing, we propose to average over T̄ = 64 ms of
speech. With

∆l = (T̄ − Tseg)/Tshift , (5.16)
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(c) Pk = P (H1,k|γ̄local,k) · P (H1,k|γ̄global,k)

Figure 5.8: The local SPP (a), the global SPP (b), and their product (c) for an exemplary
speech signal disturbed by pink noise at 0 dB segmental SNR.
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Figure 5.9: Illustration of overlapping time segments. With an analysis window of length
32 ms and a frame-shift of 8 ms the overall time averaging window of 64 ms
requires ∆l + 1 = 3 segments.

∆f3dB = 43 Hz ∆f = 31.25 Hz

F̄local = 105.5 Hz

0 dB

-3 dB
∆fk ∆f (k + 1)∆f (k − 1) frequency

Figure 5.10: Illustration of frequency averaging. With a distance between frequency
bands of 31.25 Hz and a 3 dB mainlobe bandwidth of 43 Hz the overall
frequency averaging window of 105.5 Hz requires 2 ∆k + 1 = 3 bins.

the analysis segment length of Tseg = N/fs = 32 ms and a segment shift of Tshift =
L/fs = 16 ms (50% overlap), this results in ∆l = 2 (cf. Figure 5.7 and Figure 5.9). For
the smoothing along frequency we have

∆kΞ =
1

2
(F̄Ξ −∆f3dB)/∆f , (5.17)

with a frequency bin distance of ∆f = 1/Tseg = 31.25 Hz, and a 3 dB mainlobe band-
width of the Hann window of approximately ∆f3dB ≈ 43 Hz. In (5.17) and below, Ξ
stands for either the local or the global average. For the local average we want to apply
only little smoothing to preserve the fine structure of speech. We propose to average
over a frequency window of F̄local = 105.5 Hz which results in ∆klocal = 1 (cf. Figure 5.7
and Figure 5.10). For the global average we want to have a relatively large frequency
window to reduce fluctuations in the observation. We choose a frequency window of
543 Hz that results in ∆kglobal = 8.

Using these values for the averaging in the time-frequency plane and using cF = cM = 1,
10 log10(ξlow) = −10 dB, and 10 log10(ξup) = 15 dB for the computation of the optimal
ξfix, we get the parameters given in Table 5.1. The parameters are determined as sum-
marized in Algorithm 6. Note that the resulting parameters µ̄Ξ and ξfix,Ξ are insensitive
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window-
overlap

Ξ ∆kΞ ∆l |K| · |L| µ̄Ξ ξfix,Ξ[ dB]

local 1 2 9 5.4 8 dB
50%

global 8 2 51 25.7 3 dB

local 1 4 15 5.1 8 dB
75%

global 8 4 85 24.7 3 dB

Table 5.1: The parameter settings for the proposed SPP estimator with T̄ = 64 ms,
F̄local = 105.5 Hz and F̄global = 543 Hz. Ξ stands for either the local or the
global average. The parameters are determined for a Hann window with 50%
overlap and 75% overlap, respectively. The fixed SNR is optimized for a range
of 10 log10(ξlow) = −10 dB to 10 log10(ξup) = 15 dB.

to different choices of window overlaps, if the number of time frames ∆l is chosen accord-
ingly, as the difference in correlation is considered in µ̄ (cf. Table 5.1). The algorithm
for estimating the SPP is summarized in Algorithm 7.

Algorithm 6 Determination of the parameters in Table 5.1. Ξ stands for either the
local or the global average.

1: choose averaging window, e.g. T̄ = 64 ms, F̄global = 543 Hz, and F̄local = 105.5 Hz
2: compute ∆l and ∆kΞ via (5.16), (5.17)
3: compute the respective number of bins, |K| · |L| = (∆l + 1) · (2∆kΞ + 1)
4: empirically determine the degrees of freedom by smoothing a noise only signal and

using (5.9), µ̄Ξ = (E{γ̄Ξ,k})2/var{γ̄Ξ,k}
5: compute the optimal a priori SNR, ξfix,Ξ (5.13)
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Algorithm 7 Proposed SPP estimation algorithm based on frequency domain smooth-
ing. Ξ stands for either the local or the global average.

1: for all signal segments l do

2: compute smoothed observation γ̄k,Ξ (5.14)
3: compute P (H1,k|γ̄Ξ,k) via (5.3) and (5.7) using ξfix,Ξ and P (H1,k) = 0.5
4: compute the overall SPP: Pk = P (H1,k|γ̄global,k) · P (H1,k|γ̄local,k)
5: end for

5.5 Smoothing the observation in the cepstral

domain

Smoothing in the time-frequency domain is always a trade-off between tempo-spectral
resolution and a reduction of outliers. A reduction of the temporal resolution may
smear speech onsets, while a reduction of the spectral resolution may dissallow resolving
spectral harmonics of voiced speech sounds. To obtain a posteriori SPP estimates that
exhibit a low variance and still resolve the spectral harmonics, for the frequency domain
smoothing of [Cohen and Berdugo, 2001, Sørensen and Andersen, 2005, Gerkmann et al,
2008b] and Section 5.4, a multiplicative combination of initial a posteriori SPP estimates
based on local and global averages are required.

In the cepstral domain, we can exploit a priori knowledge about which cepstral coef-
ficients are likely to represent speech and apply a selective smoothing that results in
an effective reduction of spectral outliers while preserving the speech spectral envelope.
Thus, we propose to smooth the a posteriori SPP estimate in the cepstral domain via
Algorithm 1. The bias correction factor B in Algorithm 1 is computed using Algorithm 4
where we assume the a posteriori SNR before smoothing γk to be χ2-distributed with
µ = 1. Algorithm 1 is also used to estimate the shape parameter after smoothing µ̄ that
is needed in (5.7).

The adaptive smoothing factor αq in Algorithm 1 is obtained as in (3.4). For the recursive
smoothing constant αconst

q in (3.4), we choose:

αconst
q =





0.2 , q ∈ {0, ..., 2}
0.4 , q ∈ {3, ..., 23}
0.997 , q ∈ {24, ..., 256} ,

(5.18)

where Qpitch is estimated using (3.2) and (3.3). With the given αconst
q and assuming that

the true, unknown SNR ranges from -10 dB to 25 dB, using (5.13) the optimal fixed a
priori SNR is found to be 10 log10(ξfix) = 9 dB. The used parameters are summarized in
Table 5.2.
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Smoothing factor for Qpitch (3.4) . . . . . . . . . . . . . . . . . αpitch = 0.5

Threshold for voiced/unvoiced decision (3.3) . . . . . Λthr = 0.2

Lower bound for the q0 search (3.2) . . . . . . . . . . . . . . qlow = fs
300 Hz

Upper bound for the q0 search (3.2) . . . . . . . . . . . . . qhigh = fs
70 Hz

Margin for Qpitch (3.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . ∆q0 = 2

Length of the cepstral low-pass (3.1) . . . . . . . . . . . . . τH = fs
2000 Hz

Smoothing constant for (3.4) . . . . . . . . . . . . . . . . . . . . β = 0.96

Sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fs = 16 kHz

Lower limit for the integral in (5.13) . . . . . . . . . . . . . 10 log10(ξlow) = -10 dB

Upper limit for the integral in (5.13) . . . . . . . . . . . . . 10 log10(ξup) = 25 dB

Optimal fixed a priori SNR . . . . . . . . . . . . . . . . . . . . . 10 log10(ξfix) = 9 dB

A priori SPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P (H1,k) = 0.5

Table 5.2: Parameters for a TCS of the a posteriori SNR.

As in the cepstral domain a selective smoothing is applied where only little smoothing is
applied to the speech related cepstral coefficients and a strong smoothing to the remain-
ing cepstral coefficients, the multiplicative combination (5.15) of estimators based on
local and global averages as applied in algorithms based on frequency domain smooth-
ing [Cohen and Berdugo, 2001, Sørensen and Andersen, 2005] and Section 5.4 is not
necessary. Thus, after smoothing the a posteriori SNR in the cepstral domain we obtain
the a posteriori SPP

Pk = P (H1,k| γ̄k) . (5.19)

In Section 5.6 we show that a temporal cepstrum smoothing clearly outperforms fre-
quency domain smoothing in nonstationary noise and also achieves better performance
in stationary noise.

5.6 Experimental results

In this section, we compare different state-of-the-art a posteriori SPP estimators to the
proposed estimators with fixed priors using frequency domain smoothing and cepstrum
domain smoothing.
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In figures 5.11 and 5.12 the spectrograms and resulting SPP estimates for stationary
white noise and a female speaker are shown, while in figures 5.13 and 5.14 the results
for nonstationary babble noise and a male speaker are given. It can be seen that the
estimator proposed in [Malah et al, 1999] does not yield SPP estimates close to zero in
speech absence. Furthermore, dark speckles in the gray spectral regions where no speech
is present indicate a large amount of spectral outliers that may yield musical noise in
a speech enhancement task. This undesired behavior is overcome by the estimator of
[Cohen and Berdugo, 2001] and the proposed approaches. However, it can be seen that
for white noise (Figure 5.12) the estimator of Cohen et al. does not yield high SPPs for
the fricatives at l = 63 and l = 192 which results in larger speech distortions as compared
to the proposed estimators. For the male speaker in Figure 5.14 it can be seen that the
approach of Cohen et al. and the proposed frequency domain smoothing of Section 5.4 do
not resolve the spectral harmonics, which results in large false alarm rates. The proposed
cepstral domain smoothing approach of Section 5.5 does not only yield low SPP estimates
in speech absence, but also resolves the spectral harmonics and yields larger SPPs for
fricatives in white noise as compared to the approach of [Cohen and Berdugo, 2001].
Thus, it is expected to yield less speech distortions and less noise leakage, which will be
confirmed by instrumental measures next.

Inspired by [Hu and Wang, 2004] we evaluate the SPP estimators in terms of Speech
Distortions (SD) and Noise Leakage (NL), which can be seen as measures for missed-hit
rate and false-alarm rate, respectively. As in [Erkelens et al, 2007b] we create an ideal
binary speech presence mask Pid,k from the clean speech signal Sk that contains ones at
all short-time DFT bins where the energy is no less than 50 dB below the maximum bin
energy in the particular speech signal. We then compute two error-signals, ESD,k and
ENL,k as:

ESD,k = max {Pid,k − Pk, 0} · Sk , (5.20)

ENL,k = max {Pk − Pid,k, 0} ·Nk , (5.21)

where Pk is the estimated a posteriori SPP obtained e.g. as (5.15) or (5.19). ESD,k

contains those speech bins that are marked as speech by the ideal mask Pid,k, but are
attenuated by the SPP estimator Pk. ENL,k contains those noise bins that are marked
as noise by the ideal mask Pid,k, but are not fully suppressed by the SPP estimator Pk.
These error signals are then related to the ideal speech signal Sid,k and the corresponding
ideal noise signal Nid,k, which are gained as:

Sid,k = Pid,kSk , (5.22)

Nid,k = (1− Pid,k)Nk . (5.23)

After taking the inverse Fourier transform and reconstructing the time signal by over-
lapping and adding the signal segments we get the time domain signals eSD(τ), eNL(τ),
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sid(τ) and nid(τ). The final measures for speech distortions and noise leakage are then
gained as:

SD =

∑
τ e

2
SD(τ)

∑
τ s

2
id(τ)

, (5.24)

NL =

∑
τ e

2
NL(τ)

∑
τ n

2
id(τ)

. (5.25)

The measure for speech distortions SD indicates the percentage of the speech energy
that the corresponding SPP estimator neglects while the measure for noise leakage NL
indicates how much energy from the noise-only bins is not attenuated (in percent). Thus,
SD equals 100% if all speech coefficients indicated by the ideal mask Pid are attenuated
by Pk and SD = 0% if Pk = 1 wherever Pid,k = 1. The NL equals 0% if Pk = 0 for all
noise-only bins.

Furthermore, we quantify the segmental SNR improvement when the SPP estimate Pk
is applied multiplicatively to noisy speech coefficients Yk as

Ŝk = PkYk . (5.26)

We process 320 speech samples from dialect region 6 of the TIMIT database [Garofolo,
1988] which are phonetically balanced and are from both male and female speakers. The
speech is disturbed by white Gaussian noise, babble noise inside a crowded restaurant,
and nonstationary traffic noise at a busy street, respectively. For the short-time Fourier
analysis (1.1) we use Hann windows wn with a length of 32 ms and 50% overlap. The
spectral noise power is estimated using the minimum statistics approach [Martin, 2001].
The experimental results for input segmental SNRs between -10 and 15 dB are given in
Figure 5.15. It can be seen that the proposed approaches that use both a fixed a priori
SPP and a fixed a priori SNR yield less noise leakage than the competing approaches
[Malah et al, 1999, Cohen and Berdugo, 2001] for all considered input SNRs and noise
types. In terms of speech distortions, the proposed approaches perform similar to the
approach of [Cohen and Berdugo, 2001] for babble noise and traffic noise, and slightly
better for white noise. The estimator of [Malah et al, 1999] exhibits even lower speech
distortions as it does not yield values close to zero in speech absence. Consequently,
it gives a large noise leakage and results in a poor SNR improvement. While the pro-
posed frequency domain smoothing of Section 5.4 yields similar results in terms of the
SNR improvement as compared to [Cohen and Berdugo, 2001], the proposed TCS based
estimator outperforms the competing estimators especially in babble noise. At 0 dB
SNR, the segmental SNR indicates a considerable gain of approximately 1.5 dB as com-
pared the competing algorithms in babble noise and a gain of approximately 0.5 dB in
stationary white Gaussian noise.
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(a) Clean signal.
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(b) Noisy signal.
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(c) A posteriori SPP according to [Malah et al, 1999].

Figure 5.11: Clean speech (a), noisy speech (b), and the resulting a posteriori SPP
estimate using [Malah et al, 1999] (c) for the sentence “Surely this is a reality
we all acknowledge” spoken by a female speaker disturbed by additive white
noise at 0 dB input segmental SNR. The signals in the spectrograms (a) and
(b) have been pre-emphasized for a better visualization of high-frequency
components. The estimator [Malah et al, 1999] in (c) does not yield SPP
estimates close to zero in speech absence.
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(a) A posteriori SPP according to [Cohen and Berdugo, 2001].
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(b) Frequency domain smoothing proposed in Section 5.4 [Gerkmann et al, 2008b].
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(c) Cepstral domain smoothing proposed in Section 5.5 [Gerkmann et al, 2010].

Figure 5.12: The a posteriori SPP estimates for the input given in Figure 5.11(b). In
contrast to Figure 5.11(c) the estimators in this figure are capable of yielding
low SPP in speech absence. However, the estimator in (a) does not indicate
speech presence at the fricatives around l = 63 and l = 192 which results
in higher speech distortions as compared to the proposed estimators in (b)
and (c).
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(a) Clean signal.
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(b) Noisy signal.
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(c) A posteriori SPP according to [Malah et al, 1999].

Figure 5.13: Clean speech (a), noisy speech (b), and the resulting a posteriori SPP esti-
mate using [Malah et al, 1999] (c) for the sentence “Whoever cooperates in
finding Nan’s cameo will be rewarded” spoken by a male speaker disturbed
by additive babble noise at 0 dB input segmental SNR. The signals in the
spectrograms (a) and (b) have been pre-emphasized for a better visualiza-
tion of high-frequency components. The estimator of [Malah et al, 1999] in
(c) does not yield SPP estimates close to zero in speech absence.
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(a) A posteriori SPP according to [Cohen and Berdugo, 2001].
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(b) Frequency domain smoothing proposed in Section 5.4 [Gerkmann et al, 2008b].
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(c) Cepstral domain smoothing proposed in Section 5.5 [Gerkmann et al, 2010].

Figure 5.14: The a posteriori SPP estimates for the input given in Figure 5.13(b). In
contrast to Figure 5.13(c) the estimators in this figure are capable of yielding
low SPP in speech absence. However, the estimators in (a) and (b) are not
capable of resolving the spectral harmonics of the male speaker. This is
clearly improved with the proposed approach in panel (c), resulting in less
noise leakage without an increase in speech distortions.



Chapter 5 Speech Presence Probability Estimation 121
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Figure 5.15: The average segmental SNR improvement (top), speech distortions (mid-
dle), and noise leakage (bottom) averaged over 320 TIMIT sentences for
white Gaussian noise (left), babble noise (middle), and nonstationary traf-
fic noise (right).
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5.7 Conclusions

In this chapter, the theoretical basis for an a posteriori Speech Presence Probability
(SPP) estimator based on a smoothed a posteriori Signal-to-Noise Ratio (SNR) is given.
Smoothing the a posteriori SNR has the major benefit of reducing the variance of the
SPP estimate. By interpreting the estimator as a detector, it is shown that this in-
creases the estimation performance in terms of a lower false-alarm rate and a lower
missed-hit rate. The perceptual benefits are less musical noise and less speech distor-
tions when the SPP estimator is incorporated into a speech enhancement framework.
In the cepstral domain a priori knowledge about which cepstral coefficients are likely
to represent speech can be exploited to apply a selective temporal smoothing that re-
duces spectral outliers while preserving the speech spectral structure. Such a selective
Temporal Cepstrum Smoothing (TCS) is shown to outperform the smoothing in the fre-
quency domain proposed in [Cohen and Berdugo, 2001, Sørensen and Andersen, 2005]
and Section 5.4. Further, while the approaches of [Cohen and Berdugo, 2001, Sørensen
and Andersen, 2005] and Section 5.4 require to combine SPP estimates based on lo-
cal and global spectral smoothing, this is not necessary with the proposed selective
TCS.

The a posteriori SPP estimator is based on the ratio of the likelihoods of speech presence
and speech absence, weighted by their prior probabilities. In state-of-the-art a posteri-
ori SPP estimators the likelihood-ratio is usually based on an adaptively estimated a
priori SNR estimate that takes very small values at time-frequency points where speech
is absent (e.g. between the harmonics of voiced speech). We have shown that then the
resulting a posteriori SPP estimate yields only the prior probabilities. Competing ap-
proaches attempt to mend this undesired behavior by adaptively estimating the speech
presence priors.

However, we have argued that for speech presence probability estimation neither the a
priori SNR nor the a priori SPP should be adapted, but reflect true prior knowledge.
In particular, the a priori SNR should reflect the SNR that is expected when speech is
present. To achieve this, an optimal fixed a priori SNR is used that minimizes the false-
alarm and missed-hit rates. For the a priori SPP it is assumed that speech presence
and absence are equally likely and set P (H1,k) = 0.5. Our modifications provide low
a posteriori SPP estimates at time-frequency points where speech is absent, without
the necessity for adaptively tracking the a priori SPP. Further, since the a priori
SNR is not adaptively estimated, the proposed procedure enables a decoupling of the
estimation of the speech presence probability and the estimation of the clean-speech
spectral coefficients.

The proposed cepstral approach is shown to achieve a higher frequency resolution, con-
siderably less noise leakage, and a higher or similar SNR improvement, while obtaining
lower or similar speech distortions as compared to state-of-the-art estimators that yield
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small values for the SPP in speech absence. At 0 dB SNR, the segmental SNR indicates a
gain of approximately 1.5 dB as compared the competing algorithms in babble noise and
a gain of approximately 0.5 dB in stationary white noise.



Chapter 6

Conclusions

In this thesis, Wiener filter based enhancement of noisy speech signals is addressed.
The aim is to increase the signal-to-noise ratio improvement as compared to competing
state-of-the art algorithms without increasing the amount of musical noise or distort-
ing the speech spectral structure. The cepstral domain is shown to be well suited to
reduce spectral outliers that yield musical noise while preserving the speech spectral
structure.

In the cepstral domain speech is shown to be represented by few coefficients, thus en-
abling a selective modification of the speech related coefficients and the remaining coef-
ficients. While the speech related coefficients are hardly modified, the remaining coeffi-
cients can be temporally smoothed, nulled, or replaced. Thus, spectral outliers that are
represented by the remaining cepstral coefficients can be effectively reduced while the
speech related cepstral coefficients are preserved.

To optimize the performance of cepstral modification techniques, it is important to un-
derstand the statistical properties of cepstral coefficients before and after modification.
Thus, the statistical properties of cepstral coefficients and the logarithmic periodogram
from χ-distributed spectral amplitudes and tapered spectral analysis windows are an-
alyzed. In particular, explicit expressions for the mean and covariance matrix of the
log-periodogram and cepstral coefficients are derived for spectrally uncorrelated, as well
as spectrally correlated, χ-distributed spectral amplitudes. The spectral correlation in-
troduced by tapered spectral analysis windows is shown to result in a decreasing cepstral
variance for an increasing cepstral index. As the cepstral transformation includes a non-
linear compression, changing the variance of cepstral coefficients results in a bias in the
spectral domain. As any of the proposed cepstral modification techniques — i.e. tempo-
ral cepstrum smoothing, cepstral nulling or cepstral replacement — results in a change
of the average cepstral variance, a derivation of the bias for a given cepstral modification
is of great interest. We have related the change of the average cepstral variance to the
shape parameter of χ-distributed cepstral coefficients, and have shown that the shape pa-
rameter is increased for a cepstral variance reduction as obtained by temporal cepstrum



Chapter 6 Conclusions 125

smoothing or cepstral nulling. As a result, the bias can be obtained as a function of the
shape parameters before and after cepstral modification.

To determine the set of cepstral coefficients that represent the speech spectral structure,
an estimate of the speech fundamental period is required. For uncorrelated spectral
coefficients a maximum search in the upper cepstrum is shown to be the optimal fun-
damental period estimator in the maximum likelihood sense. Interestingly, if multiple
microphones are present, the optimal estimator results in a maximum search on the
sum of the microphone cepstra rather than a maximum search on the cepstrum of the
output of a delay-and-sum beamformer. Further, the estimator is extended towards a
maximum a posteriori fundamental period tracker that may further increase the perfor-
mance.

Three applications for a temporal cepstrum smoothing are considered. First, temporal
cepstrum smoothing is applied to the multiplicative gain function, then temporal cep-
strum smoothing is used for the estimation of the a priori Signal-to-Noise Ratio (SNR).
In Chapter 5 temporal cepstrum smoothing is applied for speech presence probabil-
ity estimation. It is shown that temporal cepstrum smoothing reduces spectral out-
liers and results in a more natural sounding residual noise while keeping speech dis-
tortions low as compared to competing methods. In terms of instrumental measures,
temporal cepstrum smoothing for a priori SNR estimation yields even better results
than a smoothing of spectral gain functions. The advantage of a temporal cepstrum
smoothing of spectral gain functions is its flexibility: it can be applied to any speech
enhancement algorithm that uses multiplicative spectral gain functions, including bi-
nary masks for blind source separation. The computational complexity of cepstral
smoothing approaches is dominated by two additional spectral transformations. How-
ever, the computational complexity can be greatly reduced if pruned Discrete Cosine
Transforms (DCTs) are used for the cepstral transform and its inverse as proposed in
Section 3.2.3.

One of the reasons why a temporal cepstrum smoothing for a priori SNR estimation
performs better than a smoothing of spectral gain functions is that it is used in an earlier
step of the speech enhancement framework. Motivated by this, it is proposed to apply
a modification of cepstral coefficients in an even earlier step, namely the spectral noise
power estimation. As an alternative to a temporal smoothing of the cepstrum, it is pro-
posed to replace cepstral coefficients of the noise spectral power. When modifying the
spectral noise power, extra care has to be taken that no speech information leaks into the
noise power estimate as this would result in speech distortions. Therefore, as compared
to the proposed temporal cepstrum smoothing algorithms, less cepstral coefficients can
be modified in the noise power estimate. Thus, it is proposed to combine a spectral re-
placement in the noise power estimate with a replacement in the speech power estimate
which is less sensitive to speech distortions. Instrumental measures indicate that the
resulting framework produces comparable results as a temporal cepstrum smoothing for
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a priori SNR estimation and thus in an increased performance as compared to compet-
ing methods without cepstral modification. The advantage of the cepstral replacement
technique is that it works instantaneously in each time frame. For nonstationary noise,
such as babble noise, this may be beneficial, as the background noise is not smeared over
time. This effect was also confirmed by informal listening. The advantage of a temporal
cepstrum smoothing is a much lower computational complexity, especially when pruned
DCTs are used.

Finally, the problem of a posteriori speech presence probability estimation is addressed.
While in state-of-the-art estimators the a priori speech presence probability and the
a priori SNR are adaptively estimated, we have argued that for a posteriori speech
presence probability the priors should not be adapted but represent true a priori knowl-
edge. Further, it is proposed to smooth the a posteriori SNR in the frequency domain
or, preferably, in the cepstral domain. Here, the determination of the shape parameter
proposed in Section 2.3 is not only important to determine the bias, but also to de-
rive the likelihoods of speech presence and absence. The estimator based on cepstral
smoothing with optimally derived fixed priors and the proposed determination of the
shape parameter is shown to clearly outperform state-of-the-art estimators in terms of
speech distortions, noise leakage and segmental SNR improvement when multiplicatively
applied to noisy speech.



Appendix A

Properties of the Cepstrum

A.1 Averaging independent χ2-distributed random

variables

In this section, we show that an unbiased averaging of independent χ2-distributed ran-
dom variables with shape parameter µ results in χ2-distributed random variables with
the same mean but an increase in the shape parameter that goes along with a decrease
of the variance. Without loss of generality, we consider the special cases of an averaging
of two and three random variables. The extension to an averaging of L ∈ N random
variables, such as a moving average smoothing with a rectangular kernel of length L, is
straightforward.

We want to derive the distribution of the random variable that results, when three in-
dependent χ2-distributed random variable x, y, z are added and normalized, as v̄ = (x+
y+z)/3. To achieve this, we first consider the addition of two χ2-distributed random vari-
ables w = x+y. The two χ2 distributions of x and y are given by

px(x) =
1

Γ(µ)

(
µ

σ2

)µ
xµ−1 exp

(
− µ

σ2
x
)

(A.1)

py(w − x) =
1

Γ(µ)

(
µ

σ2

)µ
(w − x)µ−1 exp

(
− µ

σ2
(w − x)

)
(A.2)

We assume that the two periodograms are χ2-distributed with the same shape parameter
µ, the same mean σ2 and and the same variance σ4/µ. In the context of a moving
average smoothing, this corresponds to the assumption of a stationary process. Then,
the distribution of the variable w = x + y can be derived using [Papoulis and Pillai,
2002, (6–45)] as

pw(w) =
∫ w

0
px(x)py(w − x)dx

=
1

(Γ(µ))2

(
µ

σ2

)2µ

exp
(
− µ

σ2
w
) ∫ w

0
xµ−1 (w − x)µ−1 dx . (A.3)
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Using [Gradshteyn and Ryzhik, 2000, (3.191.1)] and [Gradshteyn and Ryzhik, 2000,
(8.384.1)] we have

∫ w

0
xν−1(w − x)µ−1dx = wµ+ν−1 Γ(µ)Γ(ν)

Γ(µ+ ν)
. (A.4)

With (A.4) we can solve (A.3) and obtain

pw(w) =
1

Γ(2µ)

(
µ

σ2

)2µ

w2µ−1exp
(
− µ

σ2
w
)

=
1

Γ(2µ)

(
2µ

2σ2

)2µ

w2µ−1exp
(
− 2µ

2σ2
w
)
. (A.5)

Comparing the χ2-distribution (A.1) to (A.5) it can be seen that w is χ2-distributed
with shape parameter 2µ, mean 2σ2, and variance 2σ4/µ. After normalizing w by 2, the
smoothed periodogram w̄ = 1

2
(x+y) is χ2-distributed with E{w̄} = σ2, shape parameter

2µ, and var{w̄} = σ4/(2µ).

To obtain the distribution of v = x+y+z = w+z, we proceed with

pz(z) =
1

Γ(µ)

(
µ

σ2

)µ
zµ−1 exp

(
− µ

σ2
z
)

(A.6)

pw(v − z) =
1

Γ(2µ)

(
µ

σ2

)2µ

(v − z)2µ−1 exp
(
− µ

σ2
(v − z)

)
. (A.7)

Using (A.4), we obtain

pv(v) =
∫ v

0
pz(z)pw(v − z)dz

=
1

Γ(2µ)Γ(µ)

(
µ

σ2

)3µ

exp
(
− µ

σ2
v
) ∫ v

0
zµ−1 (v − z)2µ−1 dz

=
1

Γ(3µ)

(
µ

σ2

)3µ

v3µ−1exp
(
− µ

σ2
v
)

=
1

Γ(3µ)

(
3µ

3σ2

)3µ

v3µ−1exp
(
− 3µ

3σ2
v
)
. (A.8)

Thus, v = x+ y+ z is χ2-distributed with shape parameter 3µ, mean 3σ2, and variance
3σ4/µ, while v̄ = (x+ y+ z)/3 is χ2-distributed with shape parameter 3µ, mean σ2, and
variance σ4/(3µ). The extension to an averaging of L ∈ N χ2-distributed random vari-
ables with shape parameter µ and mean σ2 is straightforward and results in a smoothed
χ2-distributed random variable with

• shape parameter Lµ,

• mean σ2, and

• variance σ4/(Lµ).
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A.2 Relation between the cepstral covariance and the

log-periodogram

In this appendix, we show that the covariance of the cepstral coefficients can be obtained
by taking a two dimensional discrete Fourier transform of the covariance of the log-
periodogram. With the definition of the cepstrum (2.1) we obtain

cov{φq1 , φq2}
= E{(φq1 − E{φq1}) (φq2 − E{φq2})∗}

= E

{
1

N

N−1∑

k1=0

(logPk1
− E{logPk1

}) ej 2π
N
k1q1 · 1

N

N−1∑

k2=0

(logPk2
− E{logPk2

}) e−j 2π
N
k2q2

}

=
1

N2

N−1∑

k2=0

N−1∑

k1=0

cov{logPk1
, logPk2

} ej 2π
N
q1k1e−j 2π

N
q2k2 . (A.9)
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Figure A.1: The covariance matrix of the log-periodogram cov{log(Pk1
) , log(Pk2

)} (a)
and the cepstral coefficients cov{φq1 , φq2} (b). The periodogram bins are
obtained from a computer generated white Gaussian time domain signal, a
Hann window with 50% overlap, and N = 16.
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A.3 Cepstral covariance for correlated spectral

coefficients

In this appendix, we derive an explicit expression for the covariance of cepstral coeffi-
cients, when the log-periodogram bins are correlated. The derived results hold for large
N as usually used in speech enhancement applications. For large N , the covariance
matrix of the log-periodogram can be approximated by a N × N symmetric circulant
Toeplitz matrix [Gray, 2006] defined by the vector [κ0, κ1, ..., κN/2−1, κN/2, κN/2−1, ..., κ1],
where we neglect the fact that for k ∈ {0, N/2} the variance of the log-periodogram is
larger than κ0, as we have less degrees of freedom than for k /∈ {0, N/2}. The covari-
ance of the cepstral coefficients is obtained by taking a two dimensional discrete Fourier
transform, as presented in Appendix A.2. As in general the spectral covariance κm in-
troduced by tapered spectral analysis windows rapidly decreases with increasing m, we
assume that κm = 0 for m > M and M ≪ N/2 + 1. Then, the covariance of cepstral
coefficients results in

cov{φq1 , φq2}

=
1

N2

N−1∑

k2=0


2κ0 cos

(
2π

N
q1k2

)

+
M∑
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2π

N
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(
k2 −m
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+ cos

(
2π

N
q1

(
k2 +m
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e−j 2π

N
q2k2

=
1

N2
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ej 2π
N

(q1−q2)k2 +
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N
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N
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N−1∑
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e−j 2π
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)


=





1
N

(
κ0 + 2

∑M
m=1 κm cos

(
2π
N
q1m

))
, (q1 = q2 6= 0, N/2) OR (q1 + q2 = N)

2
N

(
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m=1 κm cos

(
2π
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, q1 = q2 = 0, N/2

0 , else.

(A.10)

Note that (A.10) is the result for the full symmetric cepstrum q ∈ {0, ..., N − 1}, while in
(2.20) the solution for the lower symmetric part q ∈ {0, ..., N/2} is given.

In Figure A.1 the covariance matrices of the log-periodogram and the cepstral coefficients
are illustrated. There, the periodogram bins are obtained from a computer generated



Appendix A Properties of the Cepstrum 131

white Gaussian time domain signal. The spectral analysis (1.1) is obtained with a
Hann spectral analysis window wn and N = 16. As N is relatively small, a slight
correlation may be observed in Figure A.1(b) when both q1 and q2 are even, or both
q1 and q2 are odd. These correlations arise from the fact, that for k ∈ {0, N/2} the
variance of the log-periodogram is larger than κ0, which we neglected in the derivation
of (A.10). However, the resulting correlations decrease with 1/N2 [Ephraim and Rahim,
1999]. For segment sizes N , as usually used in speech processing, these correlations
are insignificant, i.e. the cepstral coefficients are asymptotically uncorrelated for large
N .

A.4 Spectral correlation for a Hann

window

In this appendix we derive the correlations ρ1 and ρ2 for a Hann window, with ρm defined
in (2.19).

The multiplication of the time domain signal with the window function wn in (1.1)
results in a convolution of the uncorrelated spectral coefficients Uk with the Fourier
domain representation of the window function Wk = DFT{wn}, i.e. Sk = Uk ∗ Wk,
where the asterisk denotes convolution and DFT{·} the discrete Fourier transform.
For a normalized discrete Hann window we obtain the correlated frequency coeffi-
cients

Sk = −
√

1

6
Uk−1 +

√
2

3
Uk −

√
1

6
Uk+1 . (A.11)

Because Uk is spectrally uncorrelated, with σ2
k−1 ≈ σ2

k ≈ σ2
k+1 and E{|Uk|2} = σ2

k we
have

E
{
|Sk|2

}
= σ2

k . (A.12)

For the covariances we obtain

E
{
SkS

∗
k+1

}
= −1

3
σ2
k −

1

3
σ2
k+1 , (A.13)

E
{
SkS

∗
k+2

}
= −1

6
σ2
k+1 . (A.14)

Thus, with σ2
k−1 ≈ σ2

k ≈ σ2
k+1 and (2.19) we have ρ1 = 2/3 and ρ2 = 1/6.
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A.5 Variance after smoothing

In this appendix we relate the variance of recursively and moving average smoothed ran-
dom variables to the variance of the nonsmoothed variable.

A.5.1 Variance after recursive smoothing

The recursive smoothing of a variable s is given by:

s̄(l) = αs̄(l − 1) + (1− α)s(l) . (A.15)

For stationary processes, for the first moment follows

E{s̄} = αE{s̄}+ (1− α)E{s}
(1− α)E{s̄} = (1− α)E{s}

E{s̄} = E{s} . (A.16)

For uncorrelated successive s(l), the smoothed quantity s̄(l−1) and s(l) are uncorrelated.
Then, the second moment is given by:

E
{
s̄2
}

= α2E
{
s̄2
}

+ (1− α)2E
{
s2
}

+ 2α(1− α)(E{s})2

=
1− α
1 + α

E
{
s2
}

+ 2
α

1 + α
(E{s})2 (A.17)

Thus, for the variance we obtain

var{s̄} = E
{
s̄2
}
− (E{s̄})2

=
1− α
1 + α

E
{
s2
}
− (E{s})2

(
1− 2

α

1 + α

)

=
1− α
1 + α

var{s} . (A.18)
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A.5.2 Variance after moving average

smoothing

A moving average is obtained by taking the average over L frames, as

s̄(l) =
1

L

L−1∑

ℓ=0

s(l − ℓ) . (A.19)

For stationary processes, the first moment is given by

E{s̄} =
1

L

L−1∑

ℓ=0

E{s(l − ℓ)}

= E{s} . (A.20)

For uncorrelated successive s(l), with [Gradshteyn and Ryzhik, 2000, (0.121.1)] the
second moment is given by:

E
{
s̄2
}

=
1

L2
E





(
L−1∑
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s(l − ℓ)
)2




=
1

L2

(
LE

{
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+ 2
L(L− 1)

2
(E{s})2

)

=
1

L
E
{
s2
}

+ (1− 1

L
) (E{s})2 (A.21)

Thus, for the variance we obtain

var{s̄} = E
{
s̄2
}
− (E{s̄})2

=
1

L
E
{
s2
}
− 1

L
(E{s})2

=
1

L
var{s} . (A.22)
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A.5.3 Relation between recursive smoothing and moving average

smoothing

From (A.18) and (A.22) we can compute the recursive smoothing constant that results
in the same variance reduction as a moving average smoothing for uncorrelated and
stationary processes:

L =
var{s}
var{s̄} =

1 + α

1− α . (A.23)

Vice versa we find

α =
L− 1

L+ 1
. (A.24)



Appendix B

Temporal Cepstrum Smoothing for

Speech Enhancement

B.1 Derivation of the maximum likelihood a priori

SNR

In this appendix we derive the Maximum Likelihood (ML) a priori Signal-to-Noise Ratio
(SNR) estimate for a χ2-distributed a posteriori SNR. The ML a priori SNR estimate
is obtained by maximizing the likelihood function, as

ξml
k = arg max

ξk
p
(
γk
∣∣∣ ξk

)
, (B.1)

with the likelihood given by

p
(
γk
∣∣∣ ξk

)
=

1

Γ(µ)

(
µ

1 + ξk

)µ
γµ−1
k exp

(
−µ γk

1 + ξk

)
. (B.2)

To find the maximum of the likelihood, we set its first derivative with respect to ξk to
zero

d

dξk
p
(
γk
∣∣∣ ξk

)
!

= 0

=
1

Γ(µ)
µµ γµ−1

k exp

(
−µ γk

1 + ξk

)(
−µ(1 + ξk)

−µ−1 + (1 + ξk)
−µµγk(1 + ξk)

−2
)
.

(B.3)

We then obtain

µ(1 + ξk)
−µ−1 = µγk(1 + ξk)

−µ−2 (B.4)

1 = γk(1 + ξk)
−1 , (B.5)
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and thus finally

ξml
k = γk − 1 , (B.6)

which is a maximum, as the χ2-distribution is unimodal for γk ≥ 0.
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