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Abstract

Many speech enhancement algorithms that modify short-
term spectral magnitudes of the noisy signal are plagued
by annoying spectral outliers that are perceived as musical
noise. Recently, we presented techniques that reduce these
outliers by means of a temporal smoothing in the cepstral
domain. This cepstro-temporal smoothing increases the
quality of the enhanced output signal, as it affects only
spectral outliers caused by estimation errors, while the
speech characteristics are well preserved. However, due to
the cepstral transform, the temporal smoothing is done in
the logarithmic domain rather than the linear domain, and
hence results in a certain bias. In this paper we derive a
general bias compensation for a cepstro-temporal smooth-
ing of spectral filter gain functions that is only dependent
on the lower limit on the spectral filter-gain function. We
show that the proposed bias-compensation increases the
performance in terms of instrumental measures.

1 Introduction

Many successful speech enhancement algorithms work in
the short-time discrete Fourier transform (DFT) domain. A
drawback of DFT based speech enhancement algorithms
is that they yield unnatural sounding structured residual
noise, often referred to as musical noise. Musical noise oc-
curs, e.g. if in a noise-only signal frame single Fourier co-
efficients are not attenuated due to estimation errors, while
all other coefficients are attenuated. The residual isolated
spectral peaks in the processed spectrum correspond to si-
nusoids in the time domain and are perceived as tonal arti-
facts of one frame duration. Especially when the speech
enhancement algorithms operate in non-stationary noise
environments, unnatural sounding residual noise remains
a challenge. Recently, a selective temporal smoothing of
parameters of speech enhancement algorithms in the cep-
stral domain has been proposed [1, 2, 3] that reduces resid-
ual spectral peaks without affecting the speech signal. In
[1, 3] the algorithms based on cepstro-temporal smooth-
ing (CTS) are compared to state-of-the-art speech enhance-
ment algorithms in terms of listening experiments. In [1] it
is shown that CTS yields an output signal of higher quality
especially in babble noise, and that the number of spectral
outliers in the processed noise is less than with state-of-
the-art algorithms. In [3] it is shown that CTS yields an
output signal of increased quality when applied as a post
processor in a speaker separation task. However, due to
the non-linear log-transform inherent in the cepstral trans-
form, a temporal smoothing yields a certain bias as com-
pared to a smoothing in the linear domain. This bias re-
sults in an output signal with reduced power. While the
reduced signal power has only a minor influence on the re-
sults of listening experiments, instrumental measures are
often sensitive to a change in signal power. Thus, with-
out a bias correction, instrumental measures may indicate
a reduced signal quality if CTS is applied, while listening

experiments indicate a clear increase in quality. In [2] CTS
is applied to a maximum likelihood estimate of the speech
power to replace the well-known decision-directed a priori
signal-to-noise ratio (SNR) estimator [4]. It is shown that
if a bias correction is applied, the speech power estima-
tion based on CTS yields consistent improvements in terms
of segmental SNR, noise reduction, and speech distortion.
This can be attributed to the fact that in the cepstral domain
speech specific properties can be taken into account. In this
paper we derive a bias compensation for a CTS of arbitrary
spectral filter gain functions, e.g. [1, 3]. We use the same
setup as used for the listening experiments in [1] and show
that without a bias correction instrumental measures indi-
cate a decreased performance. Further we show that with
the proposed bias correction instrumental measures indi-
cate an increased performance especially in nonstationary
noise environments.

In the next two sections we briefly introduce short-time
DFT-domain speech enhancement and the concept of CTS.
In Section 4 we present a bias correction for a cepstro-
temporal smoothing of spectral filter gains. In Section 5
we show that the proposed correction successfully com-
pensates for the bias introduced by a temporal smoothing
in the cepstral domain for various input SNRs and noise-

types.

2 Speech Enhancement in the short-
time DFT-domain

For speech enhancement in the short-time DFT-domain, a
noisy time domain speech signal is segmented into short
frames, e.g. of length 32 ms. Each signal segment is win-
dowed, e.g. with a Hann window, and transformed into the
Fourier domain. The resulting complex spectral represen-
tation Y;(I) is a function of the spectral frequency index
k € [0,K[, and the segment index [. The spectral coeffi-
cients of the noise signal, Ni(!), are assumed additive to the
speech spectral coefficients Sy (1), i.e. Y (1) = Si(I) + N (1).
Note that the noise signal, N(I), may be environmental
noise as well as competing talkers as in the case of speaker
separation. The aim of speech enhancement algorithms is
to estimate the clean speech signal Sy () given the noisy
observation Y, (!). This is often achieved via a multiplica-
tive gain function G(l). An estimate of the clean speech
spectral coefficients is thus computed as

Se(l) = Ge(D Yi(1) - (1)

3 Cepstro-Temporal Smoothing

CTS is based on the idea that in the cepstral domain,
speech is represented by few coefficients, which can be
robustly estimated. A cepstral transform of some posi-
tive, real valued spectral parameter ®; (/) of the speech
enhancement algorithm (like the estimated speech peri-



odogram or the gain function) is given by
¢4(I) = IDFT {log®, (1)} , )

where ¢ € [0,K[ is the cepstral quefrency index, and
IDFT{-} the inverse DFT. Note that as ®(l) is real-
valued, ¢,(!) is symmetric with respect to g = K/2. There-
fore, in the following only the part g € [0,K/2] is dis-
cussed. The lower cepstral coefficients g € [0, giow] With,
preferably, gion < K/2 represent the spectral envelope
of ®,(l). For speech signals, the spectral envelope is
determined by the transfer function of the vocal tract.
The higher cepstral coefficients g < ¢ < K/2 represent
the fine-structure of @ (/). For speech signals, the fine-
structure is caused by the excitation of the vocal tract.
For voiced speech, the excitation is mainly represented by
a dominant peak at go = f5/fo, with fp the fundamental
frequency. This fundamental frequency can be found by
a maximum search in q € [giow,K /2] as proposed in [5].
Thus, in the cepstral domain voiced speech can be repre-
sented by the set

Q = {[0> qlow] >(IO} . (3)

If @, (l) is an estimated parameter, like the estimated
speech periodogram, or the spectral gain function, its fine-
structure is also influenced by spectral outliers caused by
estimation errors. Therefore, a recursive temporal smooth-
ing is now applied on ¢,(!), such that only little smooth-
ing is applied to those cepstral coefficients, g € Q, that are
dominated by speech, and strong smoothing to all other
coefficients:

0,(1) = 0g0, (1= 1) + (1= ) 9(1), O]
with the smoothing factor
<1 ,forqe
o = e @ )
—1 ,else

After the recursive smoothing aq(l) is transformed to
the spectral domain to achieve the cepstro-temporally
smoothed spectral parameter ®;(!), as

T,(1) = exp (DFT {aq(z) }) . 6)

CTS allows for a reduction of spectral outliers due to es-
timation errors, while the speech characteristics are pre-
served. In the following cepstro-temporally smoothed pa-
rameters are marked by a bar, e.g. G for the cepstro-
temporally smoothed spectral filter gain.

4 Bias Compensation for Cepstro-
Temporal Smoothing of Spectral
Filter Gain Functions

In [1] and [3] CTS of the spectral gain function is pro-
posed (i.e. ®x(I) = Gi (1) in (2)) to reduce spectral outliers
that do not correspond to speech but to estimation errors.
Smoothing the gain function for reducing spectral outliers
is a very flexible technique. It can be applied to any speech
enhancement algorithm where the output signal is gained
via a multiplicative gain function as in (1). This includes
noise reduction [1] and source separation [3]. In speech

enhancement algorithms the gain function is usually bound
to be larger than a certain value G, [6]. Therefore, after
the derivation of a gain function G, a constrained gain G
is computed as G = max {G,Guin}. The choice of Gpp
is a trade-off between speech distortion, musical noise and
noise reduction. A large Gy, masks musical noise and re-
duces speech distortions at the cost of less noise reduction.
The aim of this work is to derive a general bias correction
for CTS of arbitrary gain functions. We thus assume a uni-
form distribution of G’ between 0 and 1, independent of
its derivation and the underlying distribution of the speech
and noise spectral coefficients. To construct the probabil-
ity density function (PDF) of the constrained G we map
JSmin 1(G')dG' onto p(G = Guin) (cf. Figure 1).

Since the values of the gain function are limited in their
dynamic range (Gpin < G < 1), the non-linear compression
via the log-function in (2) is not mandatory, i.e. the prin-
ciple behavior of the cepstral coefficients stays the same
with or without the log-function. However, in [1] it is
noted, that incorporating the log-function may help reduc-
ing noise shaping effects that may arise due to the tem-
poral smoothing. We argue that the recursive averaging
(4) can be interpreted as an approximation of the expected
value operator. However, if the log-function is applied in
(2), an arithmetic mean of ¢, corresponds to a geometric
mean of ®, = Gy. Therefore, CTS changes the mean of
the gain function, as in general E{G} # exp (E{log(G)}),
with E{-} the expected value operator. If the distribution
of G is known the difference

kg = log (E{G}) —E{log (G)} )

can be determined and accounted for. For the distribution
in Figure 1, the expected value of the gain function can be
determined as:

(14+Gan), ®

N -

1
E{G} =G, +/ GdG =
Grin
and the expected value of the log-gain function results in

1
E{10g G} = Gin10g Gin + / log GdG
Gmin
= Guin— 1. ©)

With (7) the bias correction kg thus results in:

1 1
in =l — -
K6(Gmin) og<2+2

Gﬁ,j,,> —Gmn+1.  (10)
We can now apply a bias correction to a cepstro-temporally
smoothed gain function Gi(!), as

Gi(l) =G (1) exp(Kg) .- (11)

In Figure 2 K is plotted as a function of Gy,;,. Note that, as
small values of G have a strong influence on the difference
between geometric and arithmetic mean, the bias correc-
tion K is larger the smaller Gy,,. The cepstro-temporally

smoothed and bias compensated spectral gain Gy (/) can
now be applied to the noisy speech spectrum as in (1).

5 Evaluation

In this section we evaluate the bias correction derived in
Section 4. As in [1] we compare CTS to the softgain
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Figure 1: The assumed PDF p(G) of the gain function
(left) and its cumulative distribution (right).
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Figure 2: The bias correction kG(Gmin) for a CTS of the
filter gain G, as a function of the lower limit Gy, of the
gain function.

method of [6]. We use the same smoothing constants for
the softgain method and CTS as used for the listening tests
in [1]. There, the smoothing constants were chosen so that
both methods do not produce musical noise in stationary
noise. As in [1] we set the lower limit on the gain function
to 2010og 10(Gmin) = —15dB. In [1] listening tests indi-
cated a clear preference for CTS. In this paper we evaluate
the algorithms in terms of instrumental measures. We mea-
sure the SNR in terms of the frequency weighted segmen-
tal SNR (FW-SNR) [7], speech distortion in terms of the
Itakura-Saito distance [7], and noise reduction according
to [8]. We process 320 speech samples of [9, dialect re-
gion 6] that sum up to approximately 15 minutes of fluent,
phonetically balanced conversational speech of both male
and female speakers. The speech samples are disturbed
by several noise types. The results are presented in Fig-
ure 3 for input segmental SNRs between -5 and 15 dB. For
CTS we present results without a bias-correction (CTS-
noCorr), with the bias correction (CTS-corr), and when
the cepstrum is computed without the log function in (2)
(CTS-noLog). As for CTS-noLog the temporal smooth-
ing is done in the linear domain, a bias-correction is not
necessary. The results are given in Figure 3. The FW-
SNR and the Itakura-Saito distance indicate a decreased
performance when comparing CTS-noCorr to the softgain
method. This decrease of performance can be attributed to
the bias that occurs due to the temporal smoothing in the
log-domain. We see, that the decrease in performance is
compensated with the proposed bias correction of (10), as
CTS-noLog, CTS-corr, and the softgain method yield sim-
ilar results in terms of FW-SNR, Itakura-Saito measure,
and, for stationary noise, noise reduction. Further it can be
seen that CTS is very effective in non-stationary noise. For
babble noise CTS-corr and CTS-noLog achieve a higher
noise reduction than the softgain method while the SNR
and the speech distortion are virtually the same. This can
be attributed to a successful elimination of spectral outliers
caused by babble noise. Thus, even in babble noise, CTS

yields an output signal without musical noise. In [1] the
successful elimination of spectral outliers has been shown
via statistical analyses, and listening tests indicated a resid-
ual noise of higher perceived quality.

6 Conclusion

In this paper we present a bias-compensation for a cepstro-
temporal smoothing of spectral filter gain functions. We
showed that in a speech enhancement system the bias
introduced by a temporal smoothing in the cepstral do-
main yields a degradation of the output SNR and an in-
creased speech distortion. The proposed bias compensa-
tion method is shown to successfully compensate for the
introduced bias. Furthermore, compared to state-of-the-art
single channel speech enhancement algorithms, cepstro-
temporal smoothing is shown to yield higher noise reduc-
tion in babble noise, without an increase in speech distor-
tion.
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Figure 3: Averages of segmental frequency weighted SNR (top), Itakura-Saito distance (middle), and noise reduction
(bottom) for 320 TIMIT sentences and white stationary Gaussian noise (left), speech shaped noise (middle), and babble
noise (right). We present the results for the “softgain” approach [6], CTS of the gain function with (CTS-corr) and without
(CTS-noCorr) the bias correction (10), and when no log function is used in (2) (CTS-noLog). For the FW-SNR (top) and
noise reduction (bottom) larger values indicate increased performance. For the Itakura-Saito distance (middle) smaller
values indicate better performance.



