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ABSTRACT

Smoothing selected cepstral coefficients over time has been
recently shown to be a powerful method in the enhancement
of noisy speech signals. A difficulty that arises in this con-
text is that averaging a random variable in the log-domain
changes its mean in the linear domain. The knowledge of this
bias is indispensable for most temporal cepstrum smoothing
applications. To date, the bias is known only for Gaussian
distributed signals and infinite averaging length. This contri-
bution presents an analytic solution for signals that are recur-
sively smoothed in the cepstral domain with arbitrary effec-
tive averaging lengths. Additionally, the correct bias is com-
puted also for a quefrency dependent setting of the recursive
averaging parameters.

Index Terms— cepstrum, temporal smoothing, quefrency,
bias compensation, time-frequency plane

1. INTRODUCTION

In many speech processing algorithms careful smoothing of
spectral parameters is applied, e.g. to reduce disturbances like
musical noise that would otherwise be audible in the output
signal. Temporal smoothing must be adaptive to prevent dis-
tortion of the speech signal in a noisy mixture.

Recently, temporal smoothing of selected cepstral coeffi-
cients was proposed as a robust and powerful method to se-
lectively smooth noisy speech with very little distortion of the
speech signal [1], [2]. The method relies on the observation
that in the cepstral domain noisy speech is decomposed into
coefficients that are dominated by the clean speech spectral
envelope, the excitation or the noise. Hence, different de-
grees of smoothing can be applied to the noise and the speech
process in the cepstral domain.

A difficulty that emerges when random variables are tem-
porally smoothed in the cepstral domain is that not only their
variance is reduced, which is the desired effect, but also their
mean. The latter observation is plausible since the logarithm
used in the definition of the cepstrum transforms the arith-
metic mean into a geometric mean which is known to be al-
ways less or equal to the arithmetic mean. It is the purpose
of this paper to derive and discuss this bias w.r.t. the mean

value. After a discussion of the general effect of temporal
cepstrum (TC) smoothing we give an explicit solution to the
bias of TC-smoothed χ2-distributed random variables in the
spectral domain.

This paper starts with a review of temporal cepstrum
smoothing. Then, in Sec. 3, we rewrite the TC-average in
order to get a new and illustrative insight into TC-smoothing.
The main focus of the paper is on the derivation of a bias com-
pensation factor in Sec. 4. Experimental results are reported
in Sec. 5.

2. TEMPORAL CEPSTRUM (TC) SMOOTHING

We assume a zero-mean complex-valued signal Y (k, l) in the
domain of the short-time discrete Fourier transform (DFT)
with normally distributed and uncorrelated real and imaginary
parts, each with variance σ2

Y /2 = 0.5E{|Y (k, l)|2}. The
parameters k, l denote the discrete frequency index and the
frame index of a block processing spectral analysis system,
respectively.
The cepstrum is defined as the inverse DFT (IDFT) of the nat-
ural logarithm of |Y (k, l)|2

|Y (q, l)|2ceps = IDFT{ln(|Y (k, l)|2)}. (1)

In temporal cepstrum smoothing [1], [2], cepstral coefficients
are smoothed over time, e.g. in an efficient manner by using
a first order recursive average

|Y (q, l)|2ceps = β(q)|Y (q, l − 1)|2ceps

+(1 − β(q))|Y (q, l)|2ceps, (2)

where β(q) ∈ [0, 1[ is a quefrency dependent recursive
smoothing parameter. Eventually, the corresponding TC-
smoothed squared magnitude is obtained after DFT and after
applying the exponential function,

|Y (k, l)|2 = exp
(

DFT{|Y (q, l)|2ceps}
)

. (3)

3. REFORMULATION OF THE TC-AVERAGE

The TC-smoothing defined by (1), (2), and (3) is summarized
in (4) (see bottom of next page) for an arbitrary frequency bin,



k = k0. Herein, the recursive average (2) has been replaced
by its closed form representation

|Y (q, l)|2ceps = (1 − β(q))
∞
∑

λ=0

βλ(q)
(

|Y (κ, l − λ)|2
)

. (5)

Furthermore the notation wxy
K = exp

(

j2π xy
K

)

is used where
K denotes the transformation length.

After regrouping the complex exponentials we obtain the
alternative representations of the TC-average

|Y (k0, l)|2 = exp

(

1

K

K−1
∑

κ=0

∞
∑

λ=0

bk0
(κ,λ) ln(|Y (κ, l − λ)|2)

)

(6)
=

K−1
∏

κ=0

∞
∏

λ=0

(

|Y (κ, l − λ)|2
)

1

K
bk0

(κ,λ)
. (7)

Therein,

1

K
bk0

(κ,λ) =
1

K

K−1
∑

q=0

(1 − β(q))βλ(q)wq(κ−k0)
K (8)

is the IDFT of the expression (1 − β(q))βλ(q) modified by
the cyclic shift k0 in the spectral domain. Therefore we have
bk0

(κ,λ) = b0(κ − k0,λ), which shows that only K spec-
tral parameters need to be computed. Furthermore, since
(1−β(q))βλ(q) is symmetric, the factors bk0

are real-valued.
Note also that

∑

∞

λ=0

∑K−1
κ=0

1
K

bk0
(κ,λ) = 1.

The representations (6) and (7) allow for a new interpre-
tation of the TC-average: According to (6) the TC-average
of the spectral parameter at frequency bin k0 and time in-
dex l is obtained via the weighted sum of the logarithm of
all preceding data in the time-frequency plane. Similarly, in
(7) the data is exponentially weighted before being multiplied
over the entire time-frequency plane. Apparently, the selec-
tion of data that essentially contribute to the TC-average is de-
termined by the time-frequency weighting function bk0

(κ,λ),
which is discussed next.

3.1. Behavior of 1
K

bk0
(κ,λ)

We discuss now how the weights 1
K

bk0
(κ,λ) are distributed

over the time-frequency plane for a specific pattern of
smoothing parameters β(q).

In Figure 1 two examples of patterns β(q) are given (2-
D plots) for which the respective weights 1

K
bk0

(κ,λ) over
the (truncated) time-frequency plane are shown (3-D plots).
As argued before, changing k0 results in a circular shift of
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(a) Using constant-β(q)-pattern.
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Fig. 1. 1
K

bk0
(κ,λ) over the time (λ) -frequency (κ) plane

(bottom) for two different patterns of β(q) (top) and k0 = 20.
A positive value of λ indicates frames in the past.

|Y (k0, l)|2 = exp

(

K−1
∑

q=0

(

(1 − β(q))
∞
∑

λ=0

(

βλ(q)
1

K

K−1
∑

κ=0

(

ln
(

|Y (κ, l − λ)|2
)

wqκ
K

)

)

w−qk0

K

))

(4)



the factors 1
K

bk0
(κ,λ) along κ. In these examples we have

k0 = 20 and K = 64.
If, as in Fig. 1(a), the same recursive averaging parameter

is applied for all K quefrencies, β(q) = β, (8) simplifies

1

K
bk0

(κ,λ) =

{

(1 − β)βλ for κ = k0

0 else,
(9)

constituting now a delta-function in frequency κ = k0 with
decaying amplitude over time λ. The smaller the smoothing
parameters β(q), the faster decays the exponential weighting
in (8), therefore limiting the influence of past data on the TC-
average.

In case of a quefrency dependent pattern β(q), like in Fig.
1(b), we first discuss λ = 0, which denotes the index of the
actual frame. In this case, 1

K
bk0

(κ, 0) = IDFT{1 − β(q)}
which shows that the pattern of the weights along frequency
κ is a superposition of the negative IDFT of β(q) and a delta
impulse at κ = k0. Past frames (λ > 0) are weighted with the
IDFT of the expression (1−β(q))β(q)λ. This expression ex-
ponentially decays towards past frames with a decaying con-
stant depending on β(q).

4. BIAS OF TC-AVERAGES

The expected value of a logarithmically distorted random
variable is smaller than the expected value of the undistorted
random variable

ln
(

E
{

|Y (k, l)|2
})

= E
{

ln
(

|Y (k, l)|2
)}

+ B, (10)

where B is a constant which equals the Euler constant γ =
0.5772 . . . for complex Gaussian distributed Y (k, l) [3]. For
stationary signals, the expectation operator can be approxi-
mated by recursive smoothing with a large smoothing con-
stant β(q) → 1. Then, due to (10), TC-smoothing results in
E{|Y (k, l)|2} = E{|Y (k, l)|2} ·Cbias [2]. We now derive an
analytic solution for the bias Cbias for arbitrary β(q).

At first we determine an expression for the expected value
of TC-smoothed squared magnitudes. Applying the expecta-
tion operation to (7) and assuming spectral and temporal un-
correlateness of the squared magnitudes the expectation oper-
ation may be applied to each factor in the product separately.
For the following computations the analysis window is rect-
angular with no frame overlap.

E
{

|Y (k0, l)|2
}

=
K−1
∏

κ=0

∞
∏

λ=0

E
{

(

|Y (κ, l − λ)|2
)

1

K
bk0

(κ,λ)
}

.

With the Gaussian assumption it follows that the squared
magnitudes |Y (k, l)|2 are χ2-distributed with with N = 1 de-
gree of freedom for frequency bin k = 0 and for the Nyquist-
bin and with N = 2 degrees of freedom otherwise. For sim-
plicity and since the transformation length K is usually large
we proceed assuming a χ2-distribution of degree N = 2 for

all frequency bins. Using theorem [4, 3.381,4.], the expecta-
tion integral can be solved

E
{

|Y (k0, l)|2
}

=
K−1
∏

κ=0

∞
∏

λ=0

{

(

σ2
Y (κ, l − λ)

)
1

K
bk0

(κ,λ)

·Γ

(

1

K
bk0

(κ,λ) + 1

)}

. (11)

We now assume that the recursive averaging parameters β(q)
are chosen so as to perform the TC-smoothing on short-time
stationary sections of the process. Then

E
{

|Y (k0, l)|2
}

=
K−1
∏

κ=0

(

σ2
Y (κ, l)

)

P

∞

λ=0

1

K
bk0

(κ,λ)

·
K−1
∏

κ=0

∞
∏

λ=0

Γ

(

1

K
bk0

(κ,λ) + 1

)

. (12)

Inserting (8) into the exponent of the variances, then changing
the order of the summations, and finally using

∑

∞

λ=0(1 −
β)βλ = 1 shows that

∞
∑

λ=0

1

K
bk0

(κ,λ) =

{

1 for κ = k0

0 else,
(13)

which simplifies (12) and gives the final result

E
{

|Y (k0, l)|2
}

= σ2
Y (k0, l) · Cbias,

with Cbias =
K−1
∏

κ=0

∞
∏

λ=0

Γ

(

1

K
bk0

(κ,λ) + 1

)

(14)

and bk0
(κ,λ) as in (8).

Cbias ∈ [0, 1] is the factor by which the expected value of the
TC-average is biased as compared to the power σ2

Y (k0, l) of
the unsmoothed spectral amplitudes. The value of k0 in (14)
can be arbitrarily set, e.g. k0 = 0, as according to (8) chang-
ing k0 results in a cyclic shift of the factors bk0

(κ,λ) along
frequency κ which has no effect on the total product (14).
Hence the factor Cbias is a function of the smoothing param-
eters only. For a fix pattern β(q) Cbias can thus be computed
offline.

In the following we discuss special cases of sets of smooth-
ing parameters β(q) and the resulting factors (14).

4.1. Equal smoothing along all quefrency bins q

In case of equal and constant β(q) = β the result in (9) is
used again, yielding the factor

Cbias =
∞
∏

λ=0

Γ
(

(1 − β)βλ + 1
)

.

In Fig. 2 we show the natural logarithm of the inverse of
this factor, normalized by the Euler constant, γ. For β → 1,
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Fig. 3. Example of quefrency dependent smoothing, β(q).

the TC-smoothing approximates the expectation operator, and
ln (1/Cbias) → γ. When no TC-smoothing is performed, i.e.
for β = 0, no bias occurs and ln (1/Cbias) → 0. For all other
values of β the compensation term should be set according to
the concave function in Fig. 2.

4.2. Quefrency dependent smoothing

In some applications a quefrency dependent setting of the re-
cursive averaging parameters β(q) is required. As an exam-
ple, we consider the vector of smoothing parameters βslope(q)
in Fig. 3 which applies strong smoothing to the fine-structure
(large q) and less smoothing to the envelope and to the low-
quefrency structure of a signal. The necessary additive cor-
rection in the log-domain to achieve unbiased estimates is
ln(1/Cbias) = 0.87γ.

5. EXPERIMENTAL RESULTS

We performed TC-smoothing on the squared magnitudes of
real data (K = 512) with and without the proposed bias
compensation (14) and computed the relative error between
the mean of the unsmoothed and the mean of TC-smoothed
squared magnitudes. The pattern of the averaging parameters
β(q) is as in Section 4.1. Stationary signals are used to allow
temporal averaging in the evaluation.

In Fig. 4 we show the relative error over β and for white
and for pink Gaussian noise signals. The prediction of the bias
is accurate for white and also for pink Gaussian noise. The
latter shows that even if the squared magnitudes are weakly
correlated over the time-frequency plane, thus violating the
assumptions, still good predictions can be obtained.

If the frequency dependent smoothing parameters β(q)
from Fig. 3 are used, the relative errors are without bias com-
pensation −0.39 (white) and −0.38 (pink) and are 9 · 10−4
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Fig. 4. Relative error between mean of unsmoothed,
|Y (k, l)|2, and mean of TC-smoothed squared magnitudes,
|Y (k, l)|2, with (thick line) and without (thin line) bias com-
pensation (14) for two signal types.

(white) and 0.019 (pink) if the bias compensation is used.

6. CONCLUSIONS AND OUTLOOK

We developed a representation of temporal cepstrum (tc)
smoothing of random variables in the spectral domain that
shows how smoothing in the cepstral domain affects the
squared spectral magnitudes of the input signal. Based on
this the bias has been derived by which a TC-smoothed ran-
dom variable is on average smaller than the unsmoothed ran-
dom variable. The bias factor is a function of the smoothing
parameters along quefrency and is accurate for uncorrelated
and weakly correlated signals. Further work will concentrate
on improvements in case of strongly correlated data.
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