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ABSTRACT

In this work we derive a new cepstrum based maximum likeli-
hood fundamental frequency estimator that exploits the infor-
mation of multiple microphones. The new approach results in
a maximum search on the sum of the microphone cepstra. We
compare the new approach to a maximum search on the cep-
strum of the output signal of a delay-and-sum beamformer.
We show that the new approach outperforms the beamform-
ing approach for all considered input signal-to-noise ratios.
We develop a general framework which includes the cepstral
harmonics of the fundamental frequency and extend the ap-
proach towards a maximum a posteriori fundamental period
tracker that further enhances the results and increases the ro-
bustness in noisy environments.

Index Terms— cepstral analysis, speech analysis, funda-
mental frequency estimation

1. INTRODUCTION

The fundamental period of voiced speech is caused by vibra-
tions of the glottis. Its inverse, the fundamental frequency, is
often simply referred to as pirch. As the speech fundamen-
tal period is one of the most important speech parameters,
many solutions for fundamental period estimation have been
proposed [1]. The fundamental period may be estimated for
instance in the time domain using harmonic modelling [2],
the autocorrelation function [3], or in the cepstral domain
[4]. Knowledge about the speech fundamental period may
be exploited for instance in speech coding [5], and speech en-
hancement [6, 7, 8]. As recent enhancement approaches [7, 8]
operate in the cepstral domain, cepstrum based fundamental
period estimators are of particular interest.

In the cepstral domain clean speech is decomposed into
the lower cepstral coefficients that represent the transfer func-
tion of the vocal tract and the higher cepstral coefficients that
represent the excitation of the vocal tract. For voiced sounds,
the fundamental period of the excitation signal is represented
by a dominant peak in the upper cepstrum, and multiples of
that peak, the so-called rahmonics [4]. Thus, Noll suggests
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to simply search for the maximum peak in the cepstrum in
the range of quefrencies that corresponds to the fundamental
period [4].

After definition of the cepstrum in Section 2, in Section 3
we show that under certain assumptions a cepstral maximum
search is optimal in the maximum likelihood (ML) sense.
Further, we give the solution when R cepstral rahmonics are
considered. In Section 4, we derive the ML optimal solution
if multiple microphones are present. In Section 5 we incor-
porate a fundamental period tracking that is optimal in the
maximum a posteriori (MAP) sense. In Section 6 we show
that the new ML estimator outperforms a maximum search on
the cepstrum of the output signal of a delay-and-sum beam-
former for various input signal-to-noise ratios. The extension
towards a MAP fundamental period tracker is shown to sub-
stantially increase the robustness in noisy environments.

2. THE CEPSTRUM

We consider the cepstral coefficients derived from the discrete
short-time Fourier transform Sy (1) of a discrete time domain
signal s(t), where ¢ is the discrete time index, k is the dis-
crete frequency index, and [ is the segment index. The time
domain signal is segmented, weighted with a window w;, and
transformed into the Fourier domain, as

K—1
Sk(l) = Z w s(LL +1) o2k K W
t=0

where L is the number of samples between segments, and
K is the segment size. The inverse discrete Fourier transform
(IDFT) of the logarithm of the periodogram yields the cepstral
coefficients

K—-1
G = % Y log (IS P) ™ @)
k=0

where ¢ is the cepstral index, the so-called quefrency in-
dex. As the log-periodogram is real-valued, the cepstrum
is symmetric with respect to ¢ = K/2. Therefore, in the
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following we will only discuss the lower symmetric part
g € {0,1,...,K/2}. With the sampling frequency f;, the
fundamental period ¢o/ fs of voiced speech appears as peaks
at the discrete cepstral coefficients rqg with r € N.

A common assumption for the cepstral coefficients is that
they are Gaussian distributed with a fixed variance. Assum-
ing a complex Gaussian distribution for the frequency domain
coefficients Sy, this variance can be shown to be var{c,} =
72 /(6K) for 0 < q < K /2 where a rectangular spectral anal-
ysis window wy is assumed [9, 10]. With ¢, Sj, being realiza-
tions of the random variables C~q, Sk, the mean of the cepstral
coefficients can be shown to be [10]

E{C,} = IDFT {log(E{ISk|*})} ~ ¢4, ()
with €, = v + 210g2 forg=0,¢, = 21%2 if ¢ is even, and

€ = 0if gis odd where v = 0.5772 is the Euler constant.
Note, that the case ¢ = 0 is not treated properly in [10]. For
white signals we have IDFT { log(E{|Sx|*})} = 0 for ¢ >
0. However, due to ¢4, even for white signals the cepstral
coefficients ¢ > 0 do not have zero mean. To obtain cepstral
coefficients that have zero mean for white signals, we define

Ca =Gyt eq. @)

For non-white signals, the expected value of the cepstrum,
E{C,}, carries the information about the spectral shape. We
find speech to be compactly represented by few lower cep-
stral coefficients ¢ < ¢; representing the speech spectral en-
velope, the fundamental period peak ¢p, and its rahmonics
[4, 8]. Thus, for the cepstrum of noisy speech, we assume
that cepstral coefficients at ¢ > ¢; have zero mean except for
the coefficients at ¢ = rqo with r € N that represent the fun-
damental period. Typically g; corresponds to 1-2 ms.

In [10] it has been shown, that the cepstral coefficients are
asymptotically uncorrelated for large K. Thus, Gaussian dis-
tributed cepstral coefficients are asymptotically independent.

3. ML FUNDAMENTAL PERIOD ESTIMATOR

In this section we derive a maximum likelihood (ML) estima-
tor for the fundamental period in the cepstral domain.

Because the mean of the cepstrum is zero for ¢ # rqo and
q > qi, the distribution of a noisy cepstral observation vector
c = [cq,Cqt1s s cK/z,l]T given the speech fundamental
period index o can be written as

K/2—1 2

1 (cq —E{Cq})

(¢ = ——exp | ——————""—
p(clao) qgl ro?)] p< 202

1 K/2—1

2

= L Era P | 755 ¢

(2mo2) =T 208 ; !

R-‘rl 2

.exp<z 2eruBAC) = (B{Crn) ) )
Oq
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For simplicity we neglect the Nyquist bin ¢ = K/2, as it has
a different variance than the coefficients ¢; < ¢ < K / 2 [10].

For a quefrency independent cepstral variance aq, only
the second exponential function has to be evaluated. As the
exponential function is monotonically increasing, the ML es-
timator is given by

R+1

Z QCTQOE{CT‘ZO } (E{CTQU })2

ML
Q" = argrr;axp (clgo) =
0
r=1

As speech is highly non-stationary, the instantaneous value is
used to estimate the expected value, E{C,q, } = |¢yq, | where
we may write the absolute value operator as, due to the struc-
ture of spectral harmonics, the fundamental period peak is al-
ways positive. For rectangular spectral analysis windows this

also holds for the rahmonics at rqo with r € {2,3,...}. The
ML fundamental period estimation results in
R+1
@ = — lergol) (6)

arg max Z [€rgo | (2€rg,
o r=1

which results in a cepstral peak detection if no rahmonics are
considered, i.e. R =0

g = argmaxe, . (7
q

Thus, for rectangular spectral analysis windows and R = 0
a cepstral peak detection is an optimal fundamental period
estimator in the ML sense.

4. EXTENSION TO MULTIPLE MICROPHONES

To extend the ML optimal solution when M microphones are
present, we assume that the cepstral coefficients, given g, of
the M microphones are independent. Thus we can write

p(Clao) = I]pcﬂ% ®)

m=1

with C = [cy, Co, ..., cpr]. For R = 0 and a quefrency and
microphone independent cepstral variance 03, the ML esti-
mator for multiple microphones results in a maximum search
on the sum or mean of the microphone cepstra:

M
ML, R=0
d = arg max g Cq.m - 9)
1 m=1

We refer to this approach as multi-microphone cepstral ML
(MM-CML). Another approach that exploits the information
of multiple microphones is to apply a ML fundamental pe-
riod estimation on the output of a beamformer (BF-CML).
The output of a beamformer has an increased signal-to-noise
ratio as compared to each single microphone channel. This
results in more prominent spectral harmonics and thus in an



increased cepstral peak. However, the variance of the non-
speech cepstral coefficients stays unchanged, as it is indepen-
dent of the signal power.

The MM-CML estimator (9), is fundamentally different to
the BF-CML approach. Taking the mean of the microphone
cepstra decreases the variance of cepstral coefficients, while
the cepstral fundamental period peak stays approximately the
same. While both approaches, MM-CML and BF-CML, in-
crease the estimation performance, the superiority of the cep-
stral averaging approach is demonstrated in Section 6.

5. MAP FUNDAMENTAL PERIOD TRACKING

To decrease the amount of estimation errors, it is common

practice to track the fundamental period over time. For this,

we extend the ML fundamental period estimator towards a

MAP fundamental period estimator similar to [2]. Assuming

that the cepstral coefficients of consecutive signal segments

given qg are independent, and treating the a priori probability

of qo as a first order Markov chain, the MAP estimator includ-

ing the information of the last A signal segments is given by

(2]
A1
(1) = argmax Z (log(p(C(l = A)go)) +
q0 \—0
Lo (C(I=X))
log (plaoli”" (1 = A= 1)) ) . (10)

Bao (a¥AP(1-x—-1))

Here, p(qo|qy*"(I — 1)) is the a priori transition probability
of the fundamental period gy, when the MAP fundamental
period estimate of the previous frame is ¢§**(I — 1). This a
priori distribution can be chosen to be Gaussian, i.e.

exp<_ (g0 — g“::(l - 1)) >

tracking

1
MAP l _ 1 —
Plaolgs™ (1 = 1) = ——

tracking

whereas the standard deviation o, can be found using la-
belled training data, e.g. [11].

As the pitch tracking algorithm is meant to provide pitch
estimates for low-delay applications, no major look ahead is
possible and an instantaneous decision is needed in each sig-
nal segment. To emphasize the information in recent signal
segments, we realize (10) via a recursive averaging as

Wao (l) = anIO(Z - 1)+
(1= ) (B (@ (1 = 1) + Ly, (C) ) (1)
with Wy, (0) = L, (C(0)) and the MAP fundamental period
estimate

@™ (1) = arg II;%X Wao (D), (12)

where the log a priori transition probability By, (-) and the
log likelihood L, (-) are defined in (10).
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6. EVALUATION

We compare the MM-CML estimator based on the summa-
tion of the microphone cepstra (9) to a cepstral ML estimation
on the output signal of a beamformer (BF-CML). Further, we
give the results for the multi-microphone MAP fundamental
period estimator MM-CMAP for R = 0 and R = 1. For
the evaluation we use the Keele database [11] that consists
of 5 male and 5 female speakers and up to 40s of speech
per speaker. The sampling rate is 20kHz, the segment size
25.6 ms and the frame shift 10 ms. This corresponds to K =
512 in (2) and L = 200 in (1). We choose a rectangular
spectral analysis window wy in (2) and ¢; = 40 (2 ms) in (5).
For the MAP algorithm we choose the smoothing constant
a = 0.8 in (11). The standard deviation of the a priori prob-
ability is determined based on the labelled training data [11]
and set to 0,0, = 23 bins which corresponds to 1.1 ms.

To decouple the evaluation of the fundamental period es-
timators from the problem of automatic voiced/unvoiced clas-
sification, a fundamental period estimation is applied only on
those signal segments that are marked as voiced in the Keele
database. The estimated fundamental frequency fo is com-
pared to the reference fundamental frequency fj of the Keele
database. For the evaluation we use the gross error rate (GER)
and the relative root mean square error (RMSE) according to
[12]. The GER is given as the percentage of signal segments
that have a fundamental frequency estimate that deviates by
more than 8% of the reference fundamental period.

GER(0) = Z{ﬁ”f fol >9%}, (13)
0;

V=1

where K, is the number of voiced signal segments. The rela-
tive RMSE

RMSE(§) = Ki 3 (f‘”fo f°7> L4
: ;

N

is evaluated only for those Ky signal segments of the set 2(6),
which have a relative fundamental frequency estimation error
smaller than 6%. It can be seen as a measure for the fine
fundamental frequency estimation error [12].

We now want to demonstrate the possible performance
gain of the proposed multi-microphone approach in compar-
ison to a delay-and-sum beamformer under ideal conditions.
For this, we generate ten microphone signals with uncor-
related additive white Gaussian noise at several segmental
signal-to-noise ratios (SNR). For the BF-CML approach, the
ten microphone signals are summed in time domain and the
ML estimator is applied on the cepstrum of the sum. We thus
simulate the case of a source at the broadside of the array with
its location perfectly known. For the MM-CML algorithm,
the cepstrum is computed for each microphone signal, and the
maximum of the sum of the cepstra is searched for (9). Note,
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Fig. 1. GER (left) and RMSE (right) for various input seg-
mental SNRs for § = 10%, M = 10, and uncorrelated white
Gaussian noise. The proposed MM-CML approach outper-
forms a delay-and-sum-beamformer (BF-CML) in terms of
GER and RMSE for all considered input SNRs. Maximum a
posteriori fundamental period tracking (MM-CMAP) further
enhances the estimation performance.

that for the MM-CML a source localization is not needed, as
the phase of the complex spectra is neglected when comput-
ing the cepstrum via (2). The results are given in Figure 1.
The proposed MM-CML approach (9) clearly outperforms a
delay-and-sum beamformer approach in terms of GER and
RMSE. When the fundamental period is tracked over time
(MM-CMAP), the results are further enhanced both in terms
of a lower GER and RMSE. The estimation performance can
be seen to be much more robust in noisy environments when
MAP tracking is applied. While for all above simulations we
chose R = 0, for the MM-CMAP we also present the results
for R = 1. As the rahmonics are often much smaller than
the fundamental period peak [4], it may happen that the sum
of two noise bins is larger than the sum of the fundamental
period peak and its rahmonic. Additionally, especially for
male speakers, incorporating the rahmonics increases funda-
mental period halving errors. In that cases, estimation errors
occur that result in an increased GER. However, the fine pitch
estimation error is reduced if a rahmonic is included, as can
be seen by a decreased RMSE in Figure 1.

We also conducted experiments with a microphone array
in a reverberant room and different noise sources, namely
white noise, speech-shaped noise, and babble noise. Due to
the correlation in the low-frequencies, the performance gain
achievable by using multiple microphones is reduced, and so
is the difference between BF-CML and MM-CML. While the
performance gain in terms of the RMSE became negligible in
our setup, the proposed MM-CML approach still clearly out-
performed the BF-CML for all SNRs and noise types in terms
of the GER.

7. CONCLUSION

We derive the maximum likelihood and maximum a posteriori
estimators for a fundamental frequency estimation in the cep-
stral domain and by this have also motivated the well known
approach by Noll [4]. When no rahmonics are considered
and rectangular spectral analysis windows are used, a simple
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maximum search is optimal in the maximum likelihood sense.
We extend the likelihood function towards multiple micro-
phones. The maximum likelihood solution results in a maxi-
mum search on the sum of all microphone cepstra. We show
that this approach outperforms a cepstral maximum search on
the cepstrum of the output of a delay-and-sum beamformer
in terms of the gross error rate (GER) and root mean square
fundamental frequency estimation error (RMSE) for all con-
sidered signal-to-noise ratios. Further, MAP fundamental pe-
riod tracking substantially improves the robustness in noisy
environments.

8. REFERENCES
[1] W.J. Hess, Pitch Determination of Speech Signals. Berlin:
Springer Verlag, 1983.

[2] J. Tabrikian, S. Dubnov, and Y. Dickalov, “Maximum a pos-
teriori probability pitch tracking in noisy environments using
harmonic model,” IEEE Trans. on Speech and Audio Proc.,
vol. 12, no. 1, pp. 76-87, Jan. 2004.

[3] A. de Cheveigné and H. Kawahara, “YIN, a fundamental fre-
quency estimator for speech and music,” J. Acoust. Soc. Am.,
vol. 111, no. 4, pp. 1917-1930, Apr. 2002.

[4] A. M. Noll, “Cepstrum pitch estimation,” J. Acoust. Soc. Am.,
vol. 41, pp. 293-309, Feb. 1967.

[5] P. Vary and R. Martin, Digital Speech Transmission: Enhance-
ment, Coding And Error Concealment. John Wiley & Sons,
2006.

[6] J. Tilp, “Verfahren zur Verbesserung gestorter Sprachsig-
nale unter Beriicksichtigung der Grundfrequenz stimmhafter
Laute,” Ph.D. dissertation, Universitdt Darmstadt, Darmstadt,
Germany, Jul. 2002.

[7] C.Breithaupt, T. Gerkmann, and R. Martin, “Cepstral smooth-
ing of spectral filter gains for speech enhancement without mu-
sical noise,” IEEE Signal Proc. Letters, vol. 14, no. 12, pp.
1036-1039, Dec. 2007.

[8] ——, “A novel a priori SNR estimation approach based on
selective cepstro-temporal smoothing,” IEEE ICASSP, pp.
48974900, Apr. 2008.

[9] P. Stoica and N. Sandgren, “Total-variance reduction via
thresholding: Application to cepstral analysis,” IEEE Trans.
on Signal Proc., vol. 55, no. 1, pp. 66-72, Jan. 2007.

[10] Y. Ephraim and M. Rahim, “On second-order statistics and lin-
ear estimation of cepstral coefficients,” IEEE Trans. on Speech
and Audio Proc., vol. 7, no. 2, pp. 162-176, Mar. 1999.

[11] “Keele pitch database,” University of Liverpool, School of
Psychology, http://www.liv.ac.uk/Psychology/hmp/projects/
pitch.html.

[12] F. Flego, “Fundamental frequency estimation techniques for
multi-microphone speech input,” Ph.D. dissertation, Univer-
sity of Trento, Italy, Mar. 2006.



