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ABSTRACT

We propose a novel, robust estimator for the probability of speech
presence at each time-frequency point in the short-time discrete
Fourier domain. While existing estimators perform quite reliably
in stationary noise environments, they usually exhibit a large false-
alarm rate in nonstationary noise that results in a great deal of noise
leakage when applied to a speech enhancement task. The proposed
estimator overcomes this problem by temporally smoothing the cep-
strum of the a posteriori signal-to-noise ratio (SNR), and yields
considerably less noise leakage and low speech distortions in both,
stationary and nonstationary noise as compared to state-of-the-art
estimators. Especially in babble noise, this results in large SNR
improvements.

Index Terms— Speech presence probability, speech analysis,
cepstral analysis, speech enhancement, smoothing methods.

1. INTRODUCTION

In many areas of speech processing an estimate of the probability
of speech presence is required. Such an estimate can, for instance,
increase the performance of single channel speech enhancement al-
gorithms [1, 2, 3, 4, 5, 6], or can be used in multichannel speech
enhancement to discard channels that are more severely disturbed
than others [7].

The estimation of speech presence at each time-frequency point
in the short-time discrete Fourier domain is a challenging task. Es-
timators as presented in [2, 3] exhibit only little speech distortion,
but do not yield low speech presence probability (SPP) estimates
in speech absence. Estimators like [4, 5] overcome this problem, but
still exhibit severe noise leakage in nonstationary environments, such
as in babble noise. Furthermore, the estimators in [4, 5] require the
combination of two SPP estimates based on local and global spectral
smoothing.

State-of-the-art estimators for the noise power are often based
on the fact that noise is more stationary than speech [8], and are
consequently not capable of tracking instationarities, e.g. high en-
ergy noise bursts of short duration that often occur in babble noise.
Hence, noise bursts are misinterpreted as speech and SPP estimators
like [2, 3, 4, 5] exhibit a high false-alarm rate in nonstationary noise.

Recently, it has been shown that a temporal smoothing of the
cepstral representation of certain spectral quantities performs better
than a smoothing in the frequency domain [9]. As in the cepstral
domain speech is represented by only few coefficients, a selective
smoothing of the speech related coefficients is possible, which en-
ables the elimination of spectral outliers caused by local underesti-
mations of the noise power without affecting the speech signal.

This work combines recent findings on a posteriori SPP estima-
tion [5] (Section 2), the idea of cepstral smoothing presented in [9]
(Section 3), and the effect of a cepstral smoothing on the statistics
of χ2-distributed random variables presented in [10] (Section 4). As
a result, we present a new estimator for the a posteriori SPP that
clearly outperforms state-of-the-art SPP estimators in nonstationary
noise and also achieves better performance in stationary noise (Sec-
tion 4).

2. A POSTERIORI SPP ESTIMATION

We assume an additive mixture of speech, Sk(l), and noise, Nk(l),
in the short-time discrete Fourier domain. Here, k is the frequency
index and l is the segment index. The observed signal under the
hypothesis H1, which signifies the presence of speech, is given as
Yk(l) = Sk(l) + Nk(l). Whereas, under hypothesis H0 that in-
dicates the absence of speech, the observed signal takes the form
Yk(l) = Nk(l). In the following, we whenever possible omit the
frame index l for notational convenience. We assume that the spec-
tral noise power σ2

N,k = E
˘
|Nk|

2
¯
is available, and introduce the

normalized observation γk = |Yk|
2/σ2

N,k as the a posteriori signal-
to-noise ratio (SNR). In practice, we estimate the noise power using
the minimum statistics approach [8]. For the short-time Fourier anal-
ysis we use Hann windows with a length of 32ms and 50% overlap.
The signals are sampled at 16 kHz.

In all papers mentioned above [1, 2, 3, 4, 5, 6, 7], an a posteriori
SPP estimate is gained as

Pk = P{H1| γk} =
Λk

1 + Λk
. (1)

The generalized likelihood ratio (GLR), Λk, is defined as the
weighted ratio of the likelihoods of speech presence and absence:

Λk =
ρ p

`
γk

˛̨
H1

´
(1 − ρ) p

`
γk

˛̨
H0

´ , (2)

where ρ = P{H1} is the a priori SPP.
As in [2, 3, 4, 6, 7] it is assumed that Yk is complex-Gaussian

distributed, which results in a χ2-distribution with two degrees of
freedom for the a posteriori SNR γk. In the following, the degrees
of freedom are expressed by the shape parameter μ = r/2, where
r denotes the degrees of freedom. Note, that super-Gaussian distri-
butions for Yk can be accounted for by setting μ < 1 as proposed
in [11]. As in [5] we propose to smooth the a posteriori SNR γk

and denote the smoothed quantity by γk. The smoothed random
variable remains approximately χ2-distributed [10, 12]. However,
as detailed in Section 4, the smoothing process results in an increase
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in the shape parameter, i.e. μ̄ > μ, where μ̄ is the shape parameter
after smoothing. As the a posteriori SNR is normalized on the noise
power, in speech absence we have E{γk} = 1 and

p
`
γk

˛̨
H0

´
=

1

Γ(μ̄)
μ̄μ̄ γμ̄−1

k exp(−μ̄ γk) . (3)

Assuming that speech and noise are uncorrelated, we have in
speech presence

p
`
γk

˛̨
H1

´
=

1

Γ(μ̄)

„
μ̄

(1 + ξk)

«μ̄

γμ̄−1
k exp

„
−μ̄

γk

(1 + ξk)

«
,

(4)
where ξk = σ2

S,k/σ2
N,k is the a priori SNR and σ2

S,k = E
˘
|Sk|

2
¯
.

The GLR results in

Λ(γk) =
ρ

1 − ρ
·

„
1

1 + ξk

«μ̄

exp

„
ξk

1 + ξk
μ̄ γk

«
, (5)

which is then used in (1) to compute the a posteriori SPP Pk.
The likelihood ratio indicates speech presence, if p

`
γk

˛̨
H1

´
>

p
`
γk

˛̨
H0

´
and vice versa. The likelihoods of speech absence

and presence differ only in their mean value E{γ|H0} = 1 and
E{γ|H1} = (1 + ξk), respectively. In [2, 3, 4] the a priori SNR
ξk is estimated using the decision-directed approach as proposed by
Ephraim and Malah [2]. However, as in speech absence the resulting
a priori SNR estimate is close to zero (ξk → 0), the likelihoods of
speech presence and speech absence are identical, and the a poste-
riori SPP yields the a priori SPP ρ. Thus, in [3, 4] it is proposed
to adaptively learn the a priori SPP. However, the adaptation of the
a priori SPP can be seen as only circumventing the true problem:
the likelihoods p

`
γk

˛̨
H0

´
and p

`
γk

˛̨
H1

´
still tend to be equal

in the absence of speech, which signifies a discrepancy in the basic
probabilistic model.

In [5] we argue that for SPP estimation neither the a priori SNR
nor the a priori SPP should be adapted, but reflect true a priori
knowledge. In particular, in order to obtain a reasonable SPP es-
timate, the a priori SNR should reflect the SNR that is expected if
speech were present. We find an optimal, fixed a priori SNR that
minimizes the total probability of error, as detailed in [5]. An er-
roneous estimate is given if Pk < 0.5 in the presence of speech
(missed-hit rate) and if Pk > 0.5 in the absence of speech (false-
alarm rate).

As in [1] we assume that the speech and noise states are equally
likely and use the fixed a priori SPP ρ = 0.5.

3. SMOOTHING THE NOISY OBSERVATION

Usage of γk instead of γk in (5), results in a large amount of outliers
in the estimate of the SPP Pk. The outliers can cause annoying arti-
facts if the SPP estimate is applied to a speech enhancement task, and
should thus be avoided. The amount of outliers in Pk can be miti-
gated by reducing the variance by smoothing γk over time and/or
frequency. This reduction of variance in turn decreases the overlap
of the likelihoods (3) and (4), and thus results in a lower false-alarm
and missed-hit rate, as shown in [5].

A drawback of smoothing over time and/or frequency is that
the temporal and/or frequency resolution is reduced. Recently, it
has been shown that smoothing in the cepstral domain outperforms
smoothing in the frequency domain [9], as speech is very compactly
represented in the cepstral domain. The speech related cepstral co-
efficients are given by few lower cepstral coefficients representing
the speech spectral envelope and a peak in the upper cepstrum that

represents the speech fundamental period. Consequently, a selective
smoothing of speech and the remaining coefficients can be carried
out. The selective smoothing allows for a strong reduction of spec-
tral outliers with very little speech distortion. Therefore, in this work
we propose to selectively smooth the a posteriori SNR in the cep-
stral domain. For this, the a posteriori SNR is transformed into the
cepstral domain

γceps
q (l) = IDFT{ log(γk(l))} , (6)

recursively smoothed over time

γceps
q (l) = αq(l) γceps

q (l − 1) + (1 − αq(l)) γceps
q (l) , (7)

and transformed back into the frequency domain

eγk(l) = exp
`
DFT

˘
γceps

q (l)
¯´

. (8)

In (6), (7), (8) DFT{·} is the discrete Fourier transform while
IDFT{·} is its inverse, q is the cepstrum index (often referred to
as quefrency index), log(·) is the natural logarithm, and αq is a
quefrency dependent smoothing constant. Due to the nonlinear log
in (6), the unbiased smoothing in the cepstral domain (7) results
in a bias in the spectral domain. In this work we denote a biased,
smoothed observation as eγ, while an unbiased smoothed observation
is given as γ.

To achieve a large variance reduction without speech distortion,
the smoothing constant αq in (7) is chosen to be close to zero for the
speech related cepstral coefficients and close to one for the remain-
ing coefficients.

4. DETERMINATION OF THE SHAPE PARAMETER AND
BIAS COMPENSATION

With [13, (3.462.9)] the moments of a χ2-distributed random vari-
able can be computed, and it can be shown that the mean and vari-
ance are related to μ̄ as

μ̄ = (E{γk})
2/var{γk} . (9)

From (9) it can be seen that an unbiased smoothing necessarily re-
sults in an increase in the shape parameter of a χ2-distributed ran-
dom variable. Then, for a noise-only signal with E{γ} = 1 the
shape parameter is simply given by the reciprocal of the reduced
variance μ̄ = 1/var{γk}.

However, due to the nonlinear log in (6) the cepstrum smoothing
(7) results in a bias in the frequency domain. Then, the shape param-
eter μ̄ and the relative bias in the mean of the cepstrally smoothed
spectral observation can be determined as derived in [10]. There, it
is shown that the shape parameter of a χ2-distributed random vari-
able after smoothing is directly related to the quefrency sum of the
cepstral variance after smoothing, as

ζ(2, μ̄(l)) =

K/2X
q=0

νqvar
˘
γceps

q

¯ 1 − αq(l)

1 + αq(l)
, (10)

with

νq =

(
1/2 , q ∈ {0, K/2}

2 , else
, (11)

ζ(·, ·) Riemann’s zeta-function [13, (9.521.1)], and K the length of
the Fourier transform used for the short-time analysis. The factor
1−αq

1+αq
follows from the variance reduction in the cepstral domain
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as achieved by (7). In practice, the relation between μ̄ and ζ(2, μ̄)
can be stored in a table. The variance of cepstral coefficients before
cepstral smoothing for μ = 1 is derived to be [10]:

var
˘
γceps

q

¯
≈

8<:
2
K

“
π2

6
+ cos

`
2π
K

q
´”

, q ∈
˘
0, K

2

¯
1
K

“
π2

6
+ cos

`
2π
K

q
´”

, else
. (12)

The additional cosine in (12) results from the spectral correlation in-
troduced by the Hann window used for the short-time Fourier analy-
sis. A derivation of the variance of cepstral coefficients for arbitrary
μ can be found in [10].

In general, the applied smoothing process should be unbiased,
i.e. the variance of γk should be reduced without affecting its mean.
As presented in [10], with the shape parameters μ and μ̄ known, this
bias can be removed easily by applying

γk(l) = eγk(l)
μ

μ̄(l)
eψ(μ̄(l))−ψ(μ) , (13)

where ψ (·) is the psi-function [13, (8.360)].

5. EVALUATION

In this section we compare the proposed SPP estimator to the ap-
proaches presented in [3, 4, 5]. For the estimator of Malah et al., we
implement the iterative approach used in the experimental results
presented in [3]. For the estimator of Cohen and Berdugo, we set the
recursive smoothing constant β = 0.48 in [4, (23)], as we only use
a 50% segment overlap for the short-time Fourier analysis.

For the smoothing in (7) we choose αq , as

αq(l) =

8>>><>>>:
0.2 , q ∈ {0, ..., 2}\Qpitch

0.4 , q ∈ {3, ..., 23}\Qpitch

0.997 , q ∈ {24, ..., 256}\Qpitch

0.5 , q ∈ Qpitch

, (14)

where Qpitch are the cepstral coefficients that represent the funda-
mental period. Qpitch is found by searching for the maximum in the
upper cepstrum, as detailed in [9]. If the found cepstral peak is lower
than a threshold of 0.2 the respective signal segment is assumed to
be unvoiced, and Qpitch is an empty set. Additionally, as in [9, (7)],
we recursively smooth αq over time with the smoothing constant
β = 0.9. With the given αq and assuming that the true, unknown
SNR ranges from -10 dB to 25 dB, the optimal fixed a priori SNR is
found to be ξk = 9 dB [5]. This fixed a priori SNR ξk = 9 dB, the
a priori SPP ρ = 0.5, the shape parameter μ̄ determined via (10),
μ = 1, and the smoothed and bias corrected a posteriori SNR (13)
are then used in (5) and (1) to estimate the a posteriori SPP Pk.

In Figure 1 (see last page) the resulting SPP estimates are shown.
It can be seen that the estimator proposed in [3] does not yield SPP
estimates close to zero in speech absence. This undesired behavior
is overcome by the estimators [4, 5] and the proposed approach. The
drawback of [4, 5] is that the spectral harmonics of the male speaker
are not resolved. The proposed approach not only yields low SPP
estimates in speech absence, but also resolves the spectral harmon-
ics.

We evaluate the SPP estimators in terms of the measures for
speech distortion (SD) and noise leakage (NL) introduced in [5].
The measure for speech distortion indicates the percentage of the
speech energy that the SPP estimator misses and is thus related to
the missed-hit rate. The measure for noise leakage indicates the per-
centage of the noise energy that is not attenuated by the SPP esti-
mator and is thus related to the false-alarm rate. Furthermore, we
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Fig. 2. The average segmental SNR improvement (top), speech
distortion (middle), and noise leakage (bottom) averaged over 320
TIMIT sentences for white Gaussian noise (left), babble noise (mid-
dle), and nonstationary traffic noise (right).

quantify the segmental SNR improvement when the SPP estimate
Pk is applied multiplicatively to noisy speech coefficients Yk. We
process 320 speech samples from dialect region 6 of [14] which are
phonetically balanced and are from both male and female speakers.
The speech is disturbed by white Gaussian noise, babble noise inside
a crowded restaurant, and nonstationary traffic noise at a busy street,
respectively. The experimental results for input segmental SNRs be-
tween -10 and 15 dB are given in Figure 2 (this page). It can be seen
that the proposed estimator exhibits considerably less noise leakage
than the estimators [3, 4, 5] while yielding similar or lower speech
distortion than [4, 5]. The estimator in [3] exhibits an even lower
speech distortion as it does not yield values close to zero in speech
absence. Consequently, it gives a large noise leakage and results in
a poor SNR improvement. Especially in babble noise, the proposed
estimator clearly outperforms the competing estimators in terms of
the segmental SNR improvement.

6. CONCLUSION

In this paper, we have proposed an estimator for the speech pres-
ence probability (SPP) at each time-frequency point in the short-time
Fourier domain, based on the temporal smoothing of the cepstrum.
All required parameters are derived in an optimal way for a given
set of cepstral smoothing parameters. As opposed to competing es-
timators, we use a fixed a priori SPP and a fixed a priori signal-
to-noise ratio (SNR), i.e. they represent true a priori knowledge.
While competing estimators combine SPP estimates based on local
and global spectral smoothing, this is not necessary in the proposed
estimator. The proposed approach achieves a higher frequency reso-
lution, considerably less noise leakage, and a higher or similar SNR
improvement, while obtaining lower or similar speech distortion as
compared to the state-of-the-art estimators [4, 5].
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(a) Clean signal.
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(b) Noisy signal.
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(c) SPP according to [3].
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(d) SPP according to [4].
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(e) SPP according to [5].
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(f) Proposed SPP estimator.

Fig. 1. Clean speech (a), noisy speech (b), and the resulting SPP estimates (c)-(f) for speech from a male speaker disturbed by additive
babble noise at 0 dB input segmental SNR. The signals in the spectrograms (a) and (b) have been pre-emphasized for a better visualization
of high-frequency components. The estimator [3] in (c) does not yield SPP estimates close to zero in speech absence. The estimators in
(d)-(f) overcome this undesired behavior. However, the estimators in (d) and (e) are not capable of resolving the spectral harmonics of the
male speaker. This is clearly improved with the proposed approach in panel (f), resulting in less noise leakage without an increase in speech
distortion.
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