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ABSTRACT

To harvest the potential of multi-channel noise reduction methods, it
is crucial to have an accurate estimate of the noise correlation ma-
trix. Existing algorithms either assume speech absence and exploit
a voice activity detector (VAD), or make use of additional assump-
tions like a diffuse noise field. Therefore, these algorithms are lim-
ited with respect to their tracking speed and the type of noise fields
for which they can estimate the correlation matrix.

In this paper we present a new method for noise correlation ma-
trix estimation that makes no assumptions about the type of noise
field, nor uses a VAD. The presented method exploits the existence
of accurate single-channel noise PSD estimators, as well as the avail-
ability of one noise reference per microphone pair. For spatially and
temporally non-stationary noise fields, the proposed method leads
to improved performance compared to widely used state-of-the-art
reference methods in terms of both segmental SNR and beamformer
response error.

Index Terms— Speech enhancement, noise correlation matrix,
multi-microphone

1. INTRODUCTION

In order to reduce degradations due to environmental noise, speech
processing applications often exploit single- and multi-channel noise
reduction algorithms. The advantage of multi-channel over single-
channel noise reduction is that these algorithms are also able to ex-
ploit spatial filtering. Most often, single- and multi-channel noise
reduction algorithms are implemented in the temporal-spectral do-
main, e.g., by computing a discrete Fourier transform (DFT). Single-
channel noise reduction algorithms then estimate the clean speech
DFT coefficients by applying a gain to the noisy DFT coefficients,
e.g., [1][2][3], while multi-channel NR algorithms estimate the clean
speech DFT coefficients by taking a weighted linear combination of
several noisy DFT coefficients from multiple microphones and form
a so-called beamformer, e.g., [4][5][6].

A crucial quantity on which all single-channel estimators de-
pend, is the noise power spectral density (PSD). Estimation of this
expected value is challenging, in particular for non-stationary noise
sources. During recent years, there has been quite some attention
for noise PSD estimation of non-stationary noise sources, see e.g.,
[7][8][9], and references therein.

The equivalence of the noise PSD for multi-channel noise reduc-
tion is the noise correlation matrix. Besides the noise PSD per micro-
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phone, the noise correlation matrix also caries the cross-correlation
between the noise DFT coefficients at the different microphones.
Multi-channel noise reduction methods like the minimum variance
distortionless response (MVDR) beamformer [10] and the multi-
channel Wiener filter [6] exploit the spatial information on the noise
field that is contained in the noise correlation matrix. These meth-
ods can adaptively steer a beamformer in the direction of interest and
reduce the effect of noise sources in other directions.

Correct knowledge of the noise correlation matrix is of high im-
portance for multi-channel noise reduction algorithms in order to
have the right suppression in a certain direction. Wrong estimates of
the noise correlation matrix can either lead to the situation that dis-
turbances from certain angles are not optimally suppressed, or, even
worse, that noise coming from certain angles is amplified.

Similar as for the noise PSD, the noise correlation matrix is an
unknown expected value that needs to be estimated from the noisy
microphone signals. Although noise PSD estimation received sig-
nificant interest, estimation of the noise correlation matrix appears
to have been less explored. Where estimation of the noise PSD is
challenging because noise sources can be non-stationary across time,
estimation of the noise correlation matrix can be even more challeng-
ing since the noise field can also be spatially non-stationary.

A rather simple approach to estimate the noise correlation matrix
is to exploit a voice activity detector (VAD) [11], and estimate the
noise correlation matrix when a frequency bin contains no speech.
When the noise sources are stationary across time and space, a VAD
can be sufficient to estimate the noise correlation matrix. However,
in many daily-life situations noise sources are non-stationary across
time and space. Since a VAD does not allow to update the corre-
lation matrix estimate during speech presence, it might happen that
for temporally and/or spatially non-stationary noise fields the noise
correlation matrix is estimated wrongly, resulting in a shape of the
formed beam that is not optimally matched to the present noise field.

More recently, in [12], a method was proposed that does not
rely on a VAD and can in theory estimate the noise correlation ma-
trix when speech is present. This method relies on the assumption
that the noise field is diffuse and estimates only the real part of the
noise correlation matrix. However, assuming a diffuse noise field is
not always realistic, in particular when noise sources are directional.
Then, generally, the noise correlation matrix is complex-valued.

Instead of estimating the noise correlation matrix directly, proce-
dures to estimate the filter coefficients adaptively were for example
proposed by Griffiths and Jim [13], also known as the generalized
sidelobe canceler (GSC). This adaptive method exploits an uncon-
strained least-mean-square (LMS) algorithm and allows estimation
of the filter coefficients when the noise sources are rather stationary
in both space and time. However, its performance degrades when
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noise sources tend to be more non-stationary in space and time [14].
In this paper we present a method to estimate the noise correla-

tion matrix for spatially and temporally non-stationary noise fields
and an M-dimensional microphone array. The presented method
makes no assumption on the type of noise field and can estimate
the noise correlation matrix also when speech is present at the fre-
quency bin under consideration. Similar as with the GSC we exploit
the fact that given the propagation vector of the target source, a noise
reference can be obtained. However, different than with the GSC the
proposed method does not make use of LMS-based algorithms, but
directly computes the elements of the noise correlation matrix.

2. NOTATION AND BASIC ASSUMPTIONS

We consider a multi-channel setup of M microphones. The noisy
microphone signals are windowed on a frame-by-frame basis and
transformed to the DFT domain, leading to the noisy DFT coeffi-
cients Ym(k, i), where k, i and m denote the frequency-bin, time-
frame and microphone number, respectively. Similarly, we define
the clean speech and noise DFT coefficients Sm(k, i) and Nm(k, i),
respectively. The DFT coefficients are assumed to be random vari-
ables, indicated by upper case letters, and their corresponding real-
izations are indicated by lower case letters. Furthermore, bold faced
letters indicate the use of matrices. We assume that the speech and
noise DFT coefficients are uncorrelated and additive i.e.,

E{Sm(k, i)Nn(k, i)} = 0 ∀ k, i,m, n, (1)

where E{·} denotes the statistical expectation operator, and

Ym(k, i) = Sm(k, i) +Nm(k, i), (2)

respectively. The DFT coefficients are assumed to be independent
across time and frequency, which allows us to neglect time- and fre-
quency indices for ease of notation. Let Y = [Y1, ..., YM ]T be a
vector containing the noisy DFT coefficients for each of the M mi-
crophones. Similarly, we define S ∈ C

M and N ∈ C
M as vectors

containing the M clean and noise microphone DFT coefficients, re-
spectively. Further, let Σ = E

{
NN

H
}

∈ C
M×M be the noise

correlation matrix. We assume the presence of a single target source
whose acoustic path to the M microphones is modelled by the fre-
quency dependent propagation vector d = [d1, ..., dM ]T . The vec-
tor with clean speech DFT coefficients is therefore given by S = Sd,
where S is the clean speech DFT at the target speaker location. Al-
together this leads to the following compact vector representation

Y = S+N = Sd+N. (3)

3. ESTIMATION OF THE NOISE CORRELATION MATRIX

In order to estimate the noise correlation matrix Σ, we make a dis-
tinction between its diagonal and off-diagonal elements. The di-
agonal elements are determined by the noise PSD per microphone
channel. Using noise PSD estimators that can accurately estimate
the noise PSD for non-stationary noise sources, e.g., [9], these di-
agonal elements can be considered to be known. That reduces the
problem of estimating the noise correlation matrix to estimating the
off-diagonal elements only. In order to estimate these cross-terms
of the noise correlation matrix we make use of three assumptions.
At first we assume that the acoustic path, represented by the prop-
agation vector d, is known. Secondly, we assume that the noise
PSD per microphone channel is known, and finally, we make use of
the assumption already expressed in Eq. (1), that is, the noise and

speech DFT coefficients are assumed to be uncorrelated across time,
frequency and microphones.

If d is perfectly known, we can create a noise reference for each
microphone pair where the target signal is completely cancelled. Let
d(m) denote the mth element of the propagation vector d. Fur-
ther, let dn,m = d(n)/d(m) denote the complex scaling that needs
to be applied to obtain the clean speech DFT coefficient at micro-
phone number n from the clean speech DFT coefficient at micro-
phone number m, that is, Sn = dn,mSm. A noise reference for
element (n,m) of the correlation matrix is then obtained by

Pn,m = Yn − dn,mYm = Nn − dn,mNm. (4)

In order to estimate a cross-term of the correlation matrix, the cross-
correlation between Pn,m and Y ∗

m is computed, where ·∗ indicates
complex conjugation. That is,

E{Pn,mY ∗
m} = E{NnY

∗
m}− dn,mE{NmY ∗

m} (5)

= E{NnN
∗
m}− dn,mE

{
|Nm|2

}
, (6)

where use is made of the assumption that speech and noise DFT
coefficients are uncorrelated and that the speech DFT coefficients
are perfectly cancelled in Pn,m as expressed by Eq. (4). The cross
term E{NnN

∗
m} can now be solved from Eq. (6) as

E{NnN
∗
m} = E{Pn,mY ∗

m}+ dn,mE
{
|Nm|2

}
. (7)

In practice, the expected values in Eq. (7) are unknown and have to
be estimated. To estimate E

{
|Nm|2

}
, i.e., the noise PSD, we use the

method presented in [9]. The term E{Pn,mY ∗
m} can be estimated by

means of exponential smoothing, i.e.,

Ẽ{Pn,m(k, i)Y ∗
m(k, i)} =

(1−α)Ẽ{Pn,m(k, i−1)Y ∗
m(k, i−1)}+αpn,m(k, i)y∗

m(k, i), (8)

where Ẽ{·} denotes an estimate of E{·}.

3.1. Reduction of Estimation Errors

The derivation of Eq. (6) from Eq. (5) relies on the assumption that
speech and noise are uncorrelated. However, even when truly un-
correlated, estimation of E{Pn,mY ∗

m} based on realizations, i.e.,
pn,m(k, i) and y∗

m(k, i), will give rise to a non-zero contribution
due to the speech contained in y∗

m(k, i). Therefore, instead of (6)
we obtain

Ẽ{Pn,mY ∗
m} = Ẽ{NnN

∗
m}− dn,mẼ

{
|Nm|2

}

+ Ẽ{NnS
∗
m}− dn,mẼ{NmS∗

m} . (9)

If we take these estimation errors into account, and substitute Eq. (9)
into Eq. (7) we obtain

Ẽerr{NnN
∗
m} = Ẽ{NnN

∗
m}+ Ẽ{NnS

∗
m}− dn,mẼ{NmS∗

m} .

Similarly, for the cross-correlation term Ẽ{NmN∗
n}, i.e., the com-

plex conjugate of Ẽ{NnN
∗
m}, we obtain

Ẽerr{NmN∗
n} = Ẽ{NmN∗

n}+ Ẽ{NmS∗
n}− dm,nẼ{NnS

∗
n} .

With Sn = dn,mSm and the hermitian property of Σ, we can

reduce estimation errors by taking the average of Ẽerr{NnN
∗
m} and
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the complex conjugate of Ẽerr{NmN∗
n} as

Ê{NnN
∗
m}

= (Ẽerr{NnN
∗
m}+ (Ẽerr{NmN∗

n})∗)/2 (10)

= Ẽ{NnN
∗
m}+ d∗m,nℑ(Ẽ{NnS

∗
n})j − dn,mℑ(Ẽ{NmS∗

m})j,

Where ℑ(·) denotes the imaginary part and j =
√
−1. That is, es-

timating E{NnN
∗
m} by means of Eq. (10), removes the real part of

the error terms Ẽ{NnS
∗
n} and Ẽ{NmS∗

m}. To further reduce the

effect of the imaginary parts of these error terms on Ê{NnN
∗
m},

the smoothing parameter α in Eq. (8) can be increased during pe-
riods where the signal-to-noise ratio (SNR) is rather high. In the
experimental in Section 4 this smoothing constant is set at α = 0.9.

Whenever the a posteriori SNR, i.e., ζ = |Y1|2/Ẽ
{
|N1|2

}
, exceeds

7.8 dB, α is increased to α = 0.99 for that time-frequency point.

4. EXPERIMENTAL RESULTS

In this section we evaluate the performance of our proposed ap-
proach and compare its performance to three reference methods.
Similar to a two-microphone hearing aid, we consider an M = 2
microphone endfire array with an inter-microphone distance of 1 cm.
All signals are sampled at 8 kHz and processed on a frame-by-frame
basis with a frame size of 256 samples with 50 % overlap, and are
windowed using a square-root-Hann window.

The proposed method is implemented according to the expres-
sion in Eq. (10). For comparison, we employ the estimated correla-
tion matrices in an MVDR beamformer, i.e.,

Ŝ =
d
H
Σ

−1
Y

dHΣ
−1

d
, (11)

with Ŝ the estimated clean speech DFT coefficient. The first refer-
ence method is an MVDR combined with the VAD based approach
presented in [11] in order to estimate the noise correlation matrix.
The VAD proposed in [11] is based on a minimum statistics noise
power spectral density estimate [7]. With this approach, speech ab-
sence is decided, when the ratio between the recursively smoothed
magnitude squared noisy observations and the estimated noise power
is smaller than a certain threshold γ for all microphones. In the
experimental results we set this threshold to γ = 1.2. Secondly,
we also compare the results to an MVDR beamformer, where the
covariance matrix of the noisy signal E

{
YY

H
}

is used, as under
ideal conditions this is the same as using the covariance matrix of
the noise signal (see e.g. [14]). To estimate E

{
YY

H
}

, we recur-

sively smooth YY
H over time with a smoothing constant α = 0.9.

Thirdly, we also compare to the GSC summarized in [14, Table
47.2], which is justified by the fact that the analytic expression of
the GSC equals the MVDR beamformer under ideal conditions.

As instrumental quality measure we compute the mean squared
error between the ideal MVDR beamformer response, where the
noise correlation matrix is obtained using the noise only signal, and
the beamformer response based on filter coefficients that are esti-
mated using the proposed or reference methods, that is,

BRerr =
1
|Q|

∑

(φ,k,i)∈Q

∥R̂(φ, k, i)−R(φ, k, i)∥2, (12)

where R̂(φ, k, i) and R(φ, k, i) are the estimated and ideal beam-
former responses, φ the direction of arrival, and |Q| the cardinality

of the set of all (φ, k, i). In addition we use the segmental-SNR

SNRseg =
1
|P|

∑

p∈P

10 log10

(
∥sp∥2

∥sp − ŝp∥2

)
, (13)

where sp and ŝp denote a clean and enhanced time-domain signal
frame, and P an index set to denote all clean speech frames with
energy within 35 dB of the maximum clean speech frame energy. As
the MVDR beamformer is distortionless in the look-direction, we do
not include a speech distortion measure in our evaluation.

For the target source we consider 5 female and 5 male speak-
ers from the TIMIT database [15] and two different target source
directions. That are, a target source in the endfire direction (0◦) that
is used to obtain the results in Fig. 1, and a target source at −60◦

to obtain the results in Fig. 2. We consider the speakers to be in free
field and the propagation vector d to be perfectly known to fulfill Eq.
(4). In a reverberant scenario, the estimation of the full acoustic path
represented by the propagation vector d is difficult and (4) is usu-
ally not ideally fulfilled. However, we report that first experiments
showed promising results also in a reverberant environment.

We disturb the speakers by modulated white Gaussian noise
(Fig. 1) and temporally non-stationary train noise (Fig. 2). We use
two different types of noise fields. While in subplots (a) of Figs.
1 and 2 the noise sources are spatially stationary, in subplots (b)
we have a spatially stationary source at −40◦ and a second spa-
tially stationary source at 100◦ that are repeatedly turned on for
one second and off for one second, thus creating a spatially highly
non-stationary noise field.

Spatially stationary directional sources can be cancelled by
steering a null towards the noise source. For an MVDR beamformer
in a dual channel setup and a single directional noise source, this
means that the phase of the cross terms E{NnN

∗
m} needs to be

estimated. As for a single spatially stationary noise source the phase
of E{NnN

∗
m} does not change, a VAD based approach is expected

to yield rather robust results even if the noise source is temporally
non-stationary. This is confirmed by the results in Figs. 1(a) and
2(a). However, for the spatially highly non-stationary scenarios in
Figs. 1(b) and 2(b), the VAD based approach is not capable of track-
ing the noise field and leads, compared to the proposed approach, to
a loss of approximately 7 dB in terms of segmental SNR.

Compared to the GSC and the noisy correlation matrix based
MVDR, the proposed approach leads to an improved performance
for both noise sources and both the spatially stationary as well as the
spatially non-stationary noise field. Similar as compared to the VAD
based approach, large improvements are obtained for the situation
that the noise is both temporally as well as spatially non-stationary,
as visible in Figs. 1(b) and 2(b).

In general, it can be seen from Figs. 1(b) and 2(b), that the
proposed approach clearly outperforms the competing approaches,
where, dependent on the SNR and the amount of temporal and spatial
non-stationarity of the noise source, improvements of 5 to 7 dB in
terms of the segmental SNR can be obtained.

5. CONCLUSIONS

In this paper we presented a new method for the estimation of the
noise correlation matrix. Existing methods can estimate the noise
correlation matrix in stationary or slowly changing noise fields.
However, for spatially and temporally non-stationary noise fields,
existing methods are not able to accurately estimate the noise cor-
relation matrix. The presented method exploits the availability of
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(a) Spatially stationary noise source at −40◦.
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(b) One stationary noise source at −40◦ and a second source at 100◦

that is repeatedly turned on and off. The present and absent states last
one second each.

Fig. 1. Results for a target source at the endfire direction (0◦) and a
modulated white Gaussian noise source.

accurate single-channel noise PSD estimators, as well as the avail-
ability of one noise reference per microphone pair. For spatially
and temporally non-stationary noise fields, the proposed method
leads to improved performance compared to exploiting a VAD or the
generalized sidelobe canceler in terms of the segmental SNR and
the beamformer response error.
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