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Abstract-In this paper, a new approach is presented for single­
channel speech enhancement which is based on Nonnegative 
Matrix Factorization (NMF). The proposed scheme combines 
the noise Power Spectral Density (PSD) estimation based on 
a constrained NMF and Wiener filtering to enhance the noisy 
speech. The imposed constraint is motivated by the time corre­
lation of the underlying observations and enforces the NMF to 
give smoother estimates of the nonnegative factors. Compared 
to the standard NMF approach and Wiener filtering based on 
a recently developed noise PSD estimator, Source to Distortion 
Ratio (SDR) is improved for the evaluated noise types for different 
input SNRs. 

I. INTRODUCTION 

The quality and pleasantness of speech may significantly 
deteriorate in the presence of background noise. The problem 
of speech enhancement under the additive noise assumption 
has been widely studied in the past, and is still an active field 
of research. 

In this paper, we consider a supervised learning approach 
based on Nonnegative Matrix Factorization (NMF) to enhance 
the noisy speech signal. NMF finds a locally optimal solution 
to solve the matrix equation X � TV under the nonneg­
ativeness constraint on T and V. For NMF based speech 
enhancement or audio source separation, X is the magnitude 
or power spectrogram of the observed signal, where spectra 
are stored column-wise in X. NMF is applied to factorize the 
spectrogram into a matrix consisting of basis matrix, T, and a 
NMF coefficients matrix, V, which represents the activity of 
each basis vector over time. 

NMF has been widely used for blind source separation 
(BSS), e.g. [1], [2], [3]. In general, two approaches are used for 
BSS: in the first approach, after performing the factorization 
each separated source is obtained as a weighted sum of the 
basis vectors, where weighting factors are given by the NMF 
coefficients matrix V [1], [2]. In another approach, a soft 
mask is formed using the result of the factorization, and each 
separated source is obtained by a product of the mask and the 
observed matrix [3]. 

On the other hand, there are fewer studies that use NMF for 
speech denoising. In [4], [5], a constrained NMF is used to 
enhance the noisy speech; the constraint is motivated by the 
fact that human speech and some interference signals have 
different spectral structures, at least partially. Similar to the 
approach which is used in BSS, a weighted sum of the speech 
basis vectors are used to approximate the target speech in these 
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papers. In [6], a semi-supervised algorithm is introduced which 
is based on nonnegative hidden Markov modeling [7], and a 
Wiener-type gain, similar to the one used in [3], is used to 
enhance the noisy speech. There is an important difference 
between BSS and speech enhancement: in BSS, we aim at 
separating all the sources as well as possible while in speech 
enhancement we are not interested in estimating the noise as 
a separate target source. 

NMF based speech enhancement algorithm is usually based 
on a supervised learning; hence, the NMF based algorithm 
consists of two steps: first a set of basis vectors are found 
for the given training signals. Secondly, these basis vectors 
are used in the separation or enhancement step. Consequently, 
improvements can be made on either of these stages. 

We will use a standard NMF in the training part, and will 
contribute to make a better factorization in the enhancement 
phase. The Wiener-type gain for the enhancement of the noisy 
speech is in fact a spectral subtraction algorithm in which a 
periodogram type noise PSD estimate is used. We propose an 
algorithm to derive a better estimate for the noise PSD. To 
do so, first a constrained NMF is used which enforces the 
factorization to give a smooth estimate of the noise signal; 
this constraint is motivated by the observation that noise is 
often more stationary than the speech signal. Secondly, to get 
the noise PSD we smooth the estimated noise periodogram 
across time to reduce its variance. The obtained noise PSD is 
then used in combination with the Wiener filtering to enhance 
the noisy speech. The performance of the proposed method 
is measured with different instrumental measures including 
Source to Distortion Ratio (SDR), segmental speech SNR, and 
segmental noise reduction. 

II. NOTATION AND BASIC CONCEPTS 

To refer to the (k, r)th entry of a matrix X, we use X (k, r); 
X.r denotes the rth column of the matrix X, and x(k) 
denotes the kth element of the vector x. Let Y (k, r) denote 
the DFT coefficient for frequency bin k, and time-frame r. 
Assuming that noisy speech consists of speech degraded by 
additive noise, we have Y (k, r) = S (k, r) + N (k, r), where 
Y, S, N are the noisy speech, clean speech and the noise DFT 
coefficients, respectively. We use the magnitude-squared DFT 
coefficients (I . 12) as the observation in the NMF. 

Given the nonnegative matrix X, there are different al­
gorithms to perform the factorization [8], [9]. Here, we use 
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generalized Kullback-Leibler divergence as the cost function: 

" X(k,T) DKL(XIITV) = 
�

(X(k, T) log A(k, T) +A(k, T)-X(k, T)), 

(1) 
where A = TV. Factors T, V are found by iterating the 
following multiplicative rules [10]: 

T(k, i) 

V(i,T) 

+- T(k i) �T V(i,r)(X(k,r)/ A(k,r» 
, '" V(i p) , 

LJp , 

+- V(' ) Lk T(k,i)(X(k,r)/ A(k,r» 
�, T L T(q,i) , q 

(2) 

after updating T, the columns of T are normalized such that 
each column sums to 1. 

III. STATE-OF-THE-ART SPEECH ENHANCEMENT BASED 

ON NMF (STAND-NMF) 

NMF based speech enhancement algorithm consist of a 
training and an enhancement phase. For both steps, the given 
time-domain signal is segmented, windowed, and transformed 
into the frequency domain to obtain the spectrogram. During 
the training phase, NMF is applied to the power spectrogram 
of the clean speech and noise signals to obtain the speech basis 
matrix, Ts, and noise basis matrix, TN: 

(Ts, V) 

(TN, W) 

argmin DKL (I Strain 12 IITZ) , (3) 
T,Z 

argmin DKL (I Ntrain 12 IITZ) , (4) 
T,Z 

where Strain and Ntrain are the DFT coefficients of the clean 
speech and noise signals, respectively, and I • 12 is an element­
wise operator. Now, the basis matrix for the observed noisy 
speech, T, is obtained as: T = (Ts TN). In the enhancement 
phase, an overlap-add framework is utilized to process each 
frame of the noisy speech (Y.r) separately. Keeping the basis 
matrix fixed, NMF is performed to obtain the NMF coefficients 
vector U.r: 

U.r = argmin DKL (IY.rI2 1ITz) . (5) 
z 

The basic idea in (5) is to find a linear combination of the 
speech basis matrix, Ts, and noise basis matrix, TN, which 
best approximates the noisy input IY.rI2, such that: IY.rI2 � 
Tsv.r+TNW.r = Tu.r, where U.r = (v � w�) T (T denotes 
the transpose). 

An estimate of the speech magnitude-squared DFT coeffi­
cients is now obtained by multiplying a Wiener-type gain to 
the observation as: 

-
IS (k, T)12 = >'�T(�fJ��T(k) x IY (k, T)12 , (6) 

where A�r = Tsv.r and A�r = TNw.r. 
The time-domain enhanced speech can be obtained by 

inverse DFT transform using the noisy phase information and 

an overlap-add resynthesis. Eq. (6) is in fact an instantaneous 
power spectral subtraction (PSS) algorithm because: 

IN (k, T)12 = >'�T(�i���T(k) x IY (k, T)12 , (7) 

is(k,T)12 = (1- >'�T(�i���T(k») x IY(k,T)12 
- -

=IY(k,T)12- IN(k,T)12, (8) 

thus, the standard NMF can be seen as performing PSS based 
on an estimate of the noise periodogram. 

IV. PROPOSED ALGORITHM 

In this section, we describe an approach to get an improved 
estimate of the noise PSD; then, the obtained noise PSD will 
be used in combination with the Wiener filter to enhance the 
noisy speech. The training phase of the proposed algorithm is 
identical to the one in Section ill; therefore, we only consider 
the enhancement phase here. 

A. Noise PSD Estimation 

Keeping the same notations from Section ill, and assuming 
some extent of stationarity of the noise, we can smooth the 
result of (7) across time to get a better noise PSD estimate as: 

4(k,T) = ,s4(k,T-l) + (I-,s)IN(k,T)I2, (9) 

where IN (k, T)12 is given in (7), and 4 (k, T) denotes the 
estimated noise PSD for frequency bin k, and time-frame T. 
Note that this kind of smoothing is a common technique to 
reduce the variance of the estimate in noise PSD estimation 
algorithms [11]. 

B. Constrained NMF (C-NMF) 

Since human speech and some interference signals like 
babble noise have similar spectral structures, at least partially, 
the basis matrices of speech and these noise signals may be 
rather similar; as a result, the separation of the noisy speech 
into speech and noise components is difficult. Thus, there 
should be more constraints on the factorization to make it 
more robust. Here, we introduce a constraint which enforces 
the smoothness on the estimated noise signal. This is motivated 
by the fact that most of the noise signals are more stationary 
than the speech signal; hence, the consecutive estimates of 
the noise should be highly correlated. To do so, the following 
constrained NMF problem is considered to obtain the NMF 
coefficients vector U.r = (v � w�) T: 

U.r = argmin DKL (IY.rI2 1ITz) + aJ (z) , (10) 
z 

where J (z) is a convex function of z. In the optimiza­
tion problem given in (10), the basis matrix T is constant 
and any scaling of the observation will be carried to the 
NMF coefficients vector U.r (Le. a IY.r 12 � T (au.r ) . 
Since the Kullback-Leibler divergence is scale variant [1] 
(DKL (aYllax) = aDKL (yllx) ,  we should define a penalty 
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tenn J (z) which also scales like the Kullback-Leibler diver­
gence. This is important because the optimal value of Q: will be 
obtained using a cross-validation approach and the validation 
and test materials might have different scales, and the optimal­
ity of Q: should not be changed because of the difference in 
the scaling. Based on this explanation, we use a scale variant 
J (z) in (10) for which: J (az) � aJ (z). We also note that 
given the basis matrix T, the Kullback-Leibler divergence is 
a convex function of z and to preserve the convexity of the 
cost function, J (z) is required to be a convex function. In the 
rest of this Section, we first introduce two alternative choices 
for J (z), and then we explain the optimization procedure. In 
the following, we apply a constraint only on the part of the 
NMF coefficients vector which corresponds to the noise basis 
vectors. 

1) Normalized Sum of the Squared Differences : The NMF 
coefficients corresponding to the noise signal exhibit smoothed 
variations during time according to the stationarity of the 

noise. Splitting z as: z = (zJ zJ ) T, and assuming that NMF 
coefficients corresponding to the noise signal (zn) have multi­
variate Gaussian distribution with diagonal covariance matrix 
and similar diagonal elements, the negative log likelihood of 
Zn is related to the sum of the squared differences between 
the elements of Zn and their mean values. Hence, we define 
the following nonnalized penalty tenn: 

J(z) = � L (Zn (j) -W (j,T)) 2
, (11) 

GW.T j 

where W (j, T) is the mean activity level of the jth basis vector 
of the noise at time frame T, and O"w . .,.is the nns value of W.T; 
these parameters are described in the following. 

W (j, T) is estimated by smoothing the previous values of 
W across time as: 

W (j,T) = 'YW(j,T -1) + (1-'Y)W (j,T -1) . (12) 

O"W.T is defined as: 

1 � - .  2 O"w.T = I L..J W(J,T) , 
j=1 

where I is the number of the noise basis vectors (number of 
columns of TN)' By scaling w, its mean value will be also 
scaled, and it is easy to verify that J (az) = aJ (z). 

In [2], a different fonn of sum of the squared errors was used 
as the penalty tenn for NMF based monaural sound source 
separation. Eq. (11) differs from the one introduced in [2] for 
two reasons: 

1) Our penalty tenn penalizes the variations of noise NMF 
coefficients from their mean values while in [2] the 
differences between the consecutive NMF coefficients 
were penalized. Since the interfering signal in speech 
enhancement application is usually more stationary than 
the speech, using the mean values instead of the last 
neighboring coefficients statistically makes more sense 
and gives better results. 

2) Because of the applied nonnalization, the introduced 
penalty tenn in [2] is scale invariant while (11) is scale 
variant; it means that the value of the penalty tenn is 
adjusted depending on the level of the noisy speech. 
Hence, after selecting an optimal value for Q: (which 
controls the effect of the penalty tenn) at one particular 
input level, regardless of the level of the input (e.g. 
regardless of the level of the noise in the noisy speech) 
the penalty tenn will be scaled as the Kullback-Leibler 
divergence and its influence will remain optimal. 

We will also need the derivative of J (z) in the optimization 
which is calculated as: 

(13) 

where 0 is a zero vector that has the same number of elements 
as the number of the speech basis vectors (number of columns 
of Ts). 

2) Kullback-Leibler Divergence: As an alternative, we use 
the Kullback-Leibler divergence (1) between the NMF coeffi­
cients vector and its mean value as: 

(14) 

The scaling problem is solved using divergence with no 
more efforts. W.T is computed as (12). The derivative of J (z) 
is given as: 

T) T 
(log ;�J (15) 

3) Optimization Procedure: The optimization problem in 
(10) is solved using an iterative approach. The update rule for 
this iterative optimization is given as [8]: 

z(i) +- z(i)EkT(k,i)(IY(k,T)12/A(k») 
max (Eq T(q,i)+a<pz(i),e) , (16) 

where A = Tz, and € is a small positive number. ¢z is defined 
as (13) or (15). The value of z is assigned to U.T after 150 
iterations. After obtaining U.T> the estimated noise magnitude­
squared DFT coefficients are obtained using (7), and the noise 
PSD is estimated according to (9). It should be noted that the 
extra complexity of the proposed scheme, which is due to the 
calculation of ¢z, is ignorable compared to the original cost 
of the iterative minimization of (5). 

V. EVALUATION 

The proposed algorithm was used to estimate the noise 
PSD which was used in combination with a Wiener filter to 
enhance the noisy speech; In our simulation, using the first 
penalty tenn (11) resulted to slightly better results than the 
second one (14), and those results are reported here as the 
proposed algorithm. In addition, noise PSD was estimated 
using a MMSE based approach [12] which is one of the 
best algorithms for this purpose [11], and the same Wiener 
filter was used for the enhancement; this approach is called 
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Wiener-MMSE in the following. The Wiener filter was im­
plemented using the decision-directed approach [13] with the 
same parameters 10 IOg10 (emin) = -25dB, a = 0.98 and 
20 log 10 (Gmin) = -20 dB for both approaches; emin is the 
lower bound for the a priori SNR, and Gmin is the lower 
bound for the Wiener gain. Furthermore, the standard NMF 
approach from Section ill (Stand-NMF) is also included in 
the evaluation; In performing (6), applying gain limit like the 
one applied to the Wiener gain for the other two approaches, 
degraded the performance and hence in the evaluations no gain 
limit was used for this approach. 

We used speech from the Grid Corpus and noise from the 
NOISEX-92 databases. All the signals are down-sampled to 16 
KHz. The speech is degraded by adding babble noise or factory 
noise at 3 different SNRs: 0 dB, 5 dB, and 10 dB. A separate 
model is trained for each noise type; if noise type in not known 
a priori, some adaptive or semi-supervised approaches like [6] 
have to be used. One speaker independent model is trained for 
the speech signal; this model was trained on a mixed group of 
male and female speakers, none of which were in the test set. 
Speech signals from 24 speakers (12 speaker per gender), and 
8 sentences from each speaker were concatenated to obtain the 
training data for this model. For all the approaches a similar 
test set was used, which consists of sentences from 4 male and 
4 female speakers, none of which were in the train set, and 10 
sentences for each speaker. The part of the noise signal which 
was used for the test purposes was not used in the training. 
The results are averaged over all the test set. 

For the speech model and noise model, 60 and 100 basis 
vectors are trained, respectively. The following parameters are 
used in the simulations: a = 0.004 in (10) which is chosen 
using a cross-validation technique, "f = f3 = 0.95 in (9, 12). 
The time frames have a length of 512 samples with 50% 
overlap, and are windowed using a Hann window. 

The performance of the speech enhancement algorithms are 
evaluated using the Source to Distortion Ratio (SDR) which 
is defined as: 

SDR - 101 IIStargetl12 
- oglO 

II 112 ' einterf + eartifact 
where Starget, einterf and eartifact are target time-domain 
speech signal, interference, and artifact error terms defined 
in [14], and II • 112 denotes the energy. SDR represents the 
overall quality of speech when reducing noise and absence of 
artifacts are equally important. In order to analyze the results 
more specifically, the segmental speech SNR(SNRsp) , and the 
segmental noise reduction (SegNR) are also measured as [15]: 

where I denotes the length of the frame, and T the number 
of frames; these measures are obtained in a shadow filtering 

Input SNR Stand-NMF Proposed Wiener-MMSE 
o dB 0.2 2.6 1.5 
5 dB -0.25 2.3 1.6 

10 dB -1.7 1 1.1 
(a) Babble noise 

Input SNR Stand-NMF Proposed Wiener-MMSE 
o dB 1.7 3.8 2.1 
5 dB 1.1 3.2 2.2 

10 dB -0.4 1.6 1.4 
(b) Factory noise 

TABLE I: SDR improvements in dB for babble and factory 
noises 

framework: the Wiener filter is computed from the noisy 
speech signal (s + n) and is used to obtain s, n. s is the output 
of the enhancement system when the clean speech s, is the 
input to the filter; similarly, n is the output of the enhancement 
system when only the noise n, is the input to the filter. 

The noise tracking performance is evaluated using an aver­
aged log distance LogErr mean defined as: 

LogErr mean = 1T t t 1010glO [���k'T 1 ' 
k=17=1 N k,T 

where 0"'Jv is the reference noise PSD, and is obtained by 
smoothing the noise periodograms across time: 

A. Performance Evaluation 

Table I shows the SDR improvement for different algo­
rithms. Different rows in Table I present the results for dif­
ferent input SNRs. The proposed algorithm results in the best 
scores for most of the cases, especially its performance excels 
significantly at low input SNRs. The Stand-NMF approach 
consistently gives worse results than the proposed and the 
Wiener-MMSE approaches. It has to be emphasized that NMF­
based approaches are based on a speaker independent model, 
and by using a speaker dependent model the results of the 
both NMF-based approaches would be increased; however, to 
have a fair comparison between all the algorithms, we only 
consider the results of the speaker independent model here. 

More insights can be gained by looking at Table II which 
shows the Segmental Noise Reduction, SegNR, and Speech 
SNR, SNRsp, for babble noise at different input SNRs. For 
both measures a high value is desired, and SNRsp is inversely 
proportional to the speech distortion. Wiener-MMSE approach 
provides a high SegNR while SNRsp remains quite small 
especially at low input SNRs; On the other hand, Stand-NMF 
results to high SNRsp and low SegNR. The proposed algorithm 
makes a compromise between two measures and results to 
higher quality compared to the other approaches. Informal 
listening tests verified these results. 

Finally, Table ill shows some detailed results for the 
performance of the noise tracking part. A small value for 
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10 dB 
SegNR 4.4 6.3 6.7 

TABLE II: Segmental speech SNR (SNRsp) and Segmental 
Noise Reduction (SegNR) in dB for babble noise in different 
input SNRs 

Input SNR Proposed Wiener-MMSE 
o dB 2.3 2.6 
5 dB 2.8 2.4 

10 dB 4.1 2.3 
TABLE III: LogErr mean in dB for babble noise 

LogErr mean is desired. Stand-NMF is not shown in this 
table because this approach provides an estimate of the noise 
magnitude-squared DFT coefficients and comparing it to the 
(smoothed) noise PSD reference is not fair (it results in large 
error values). The proposed approach has smaller error for 0 
dB SNR while MMSE has lower errors for higher input SNRs. 
This comparison shows that the estimated noise PSD is less 
similar to the reference noise PSD compared to the estimate 
given by MMSE approach [12] particularly at 10 dB input 
SNR. However, this had a small effect in the performance of 
the enhancement procedure since both approaches resulted to 
quite similar outputs, having around 1 dB SDR improvement. 

VI. CONCLUSIONS 

An approach was proposed for estimating the noise PSD 
based on a constrained NMF. The applied constraint penalized 
the variations of the NMF coefficients vectors from their mean 
values, resulting to smoother estimates which in turn takes 
into account the time correlations of the noise signal. The 
estimated noise PSD was used in a Wiener filtering framework 
to enhance the noisy speech. The performance of the speech 
enhancement was evaluated using different instrumental mea­
sures including SDR, segmental noise reduction, and segmental 
speech SNR. The simulations show that the proposed approach 
outperforms the standard NMF approach and MMSE based 
Wiener filtering for different input SNRs and considered noise 

types. A SDR improvement in the order of 2.6 dB was obtained 
using the proposed approach for a noisy speech degraded by 
an additive babble noise at 0 dB input SNR. Informal listenings 
verified the excellence of the proposed algorithm. 
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