
2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2011, New Paltz, NY

A NEW LINEAR MMSE FILTER FOR SINGLE CHANNEL SPEECH ENHANCEMENT

BASED ON NONNEGATIVE MATRIX FACTORIZATION

Nasser Mohammadiha, Timo Gerkmann, and Arne Leijon

KTH Royal Institute of Technology, Sound and Image Processing Lab., Stockholm, Sweden
{nmoh, gerkmann, leijon}@kth.se

ABSTRACT

In this paper, a linear MMSE filter is derived for single-channel

speech enhancement which is based on Nonnegative Matrix Factor-

ization (NMF). Assuming an additive model for the noisy observa-

tion, an estimator is obtained by minimizing the mean square error

between the clean speech and the estimated speech components in

the frequency domain. In addition, the noise power spectral density

(PSD) is estimated using NMF and the obtained noise PSD is used

in a Wiener filtering framework to enhance the noisy speech. The

results of the both algorithms are compared to the result of the same

Wiener filtering framework in which the noise PSD is estimated

using a recently developed MMSE-based method. NMF based ap-

proaches outperform the Wiener filter with the MMSE-based noise

PSD tracker for different measures. Compared to the NMF-based

Wiener filtering approach, Source to Distortion Ratio (SDR) is im-

proved for the evaluated noise types for different input SNRs using

the proposed linear MMSE filter.

Index Terms— Speech enhancement, nonnegative matrix fac-

torization, Linear MMSE filter

1. INTRODUCTION

In this paper, we consider a supervised approach based on Non-

negative Matrix Factorization (NMF) to enhance the noisy speech

signal. NMF finds a locally optimal solution to solve the matrix

equation X ≈ TV under the nonnegativeness constraint on T and

V . For NMF based speech enhancement or audio source separa-

tion, X is the magnitude or power spectrogram of the observed sig-

nal, where spectra are stored column-wise in X . NMF is applied

to factorize the spectrogram into a matrix consisting of NMF basis

vectors, T , and the NMF coefficients matrix, V , which represents

the activity of each basis vector over time. NMF has been widely

used for blind source separation (BSS) and speech enhancement re-

cently; after performing NMF on the mixed observed speech signal,

in general, the separated or enhanced signal is obtained using one of

the following approaches: 1) as a weighted sum of the basis vectors,

where weighting factors are given by the NMF coefficients matrix,

V [1, 2, 3, 4]. 2) by a product of a Wiener-type soft mask and the

observation matrix X [5]. In this paper we aim to obtain an optimal

soft mask for enhancing the noisy signal.

We use a supervised algorithm in which the noise type is known

a priori. One separate basis matrix is obtained for each noise type,

and one basis matrix is derived for the speech signal using the train-

ing data. A standard NMF in used in the training part, and con-

tribution is made to find a better enhancement procedure using the
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trained basis matrices. First, we consider a Wiener filtering frame-

work in which the noise PSD is obtained using NMF. Second, we

derive a linear minimum mean square error (LMMSE) estimator for

the speech signal. Assuming an additive model for the noisy obser-

vation, mean square error between the clean speech and the esti-

mated speech components is minimized in the frequency domain to

find the estimated speech. The performance of the enhancement al-

gorithms is measured with different instrumental measures includ-

ing PESQ, SDR, segmental speech SNR, and segmental noise reduc-

tion.

2. NOTATION AND BASIC CONCEPTS

To refer to the (k, τ )th entry of a matrix X , we use either of no-

tations Xk,τ or [X]k,τ ; xτ denotes the τ th column of a matrix X ,

and [x]k denotes the kth element of the vector x. Let Yk,τ denote

the DFT coefficient for frequency bin k and time-frame τ of the

noisy signal. The observation for NMF is obtained by taking the

(element-wise) pth power of the magnitude of the DFT coefficients

(X = |Y |p). Given the observation matrix X , there are different

algorithms to perform the factorization [6, 7]. Here, we use gener-

alized Kullback-Leibler divergence as the cost function:

DKL(X‖TV ) =
∑

k,τ

(Xk,τ log
Xk,τ

[TV ]k,τ
+[TV ]k,τ−Xk,τ ). (1)

Factors T, V are found by iterating the following multiplicative

rules [8] to minimize (1):

Tk,i ← Tk,i

∑

τ Vi,τ (Xk,τ /[TV ]k,τ)
∑

p Vi,p
,

Vi,τ ← Vi,τ

∑

k Tk,i(Xk,τ /[TV ]k,τ)
∑

q Tq,i
.

(2)

After updating T , the columns of T are normalized such that

each column sums to 1.

3. NOISE PSD ESTIMATION USING NMF

In this section, we show how NMF can be used to estimate the

noise PSD. The obtained noise PSD will be used in a Wiener fil-

tering framework to enhance the noisy speech. NMF based algo-

rithms consist of training and enhancement phases. For both steps,

the given time-domain signal is segmented, windowed, and trans-

formed into the frequency domain to obtain the spectrogram. Dur-

ing the training phase, NMF is applied to the observations from the

clean speech and noise signals (|Strain|p and |Ntrain|p) to obtain

the speech basis matrix, TS , and noise basis matrix, TN :

(TS , V ) = arg min
T,Z

DKL(| Strain |p ‖TZ), (3)

(TN , W ) = arg min
T,Z

DKL(| Ntrain |p ‖TZ), (4)
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where Strain and Ntrain are the DFT coefficients of the clean

speech and noise signals, respectively. Now, the basis matrix for

the observed noisy speech, T , is obtained by concatenating TS and

TN as: T = (TS TN ). In the enhancement phase, an overlap-

add framework is utilized to process the noisy speech. Given the

vector of the observation at time frame τ (pth power of the magni-

tude of the DFT coefficients of the τ th frame of the noisy speech),

|yτ |p, NMF is applied to find a linear approximation of |yτ |p as:

|yτ |p ≈ Tuτ . In other words, keeping the basis matrix T fixed,

NMF is performed to obtain the NMF coefficients vector uτ :

uτ = arg min
z

DKL(|yτ |p ‖Tz). (5)

Partitioning uτ as: uτ =
(
v⊤τ w⊤τ

)⊤
(⊤ denotes the trans-

pose), the clean speech component is approximated using |sτ |p ≈
TSvτ , and the noise component is approximated as |nτ |p ≈
TNwτ . An instantaneous estimate of the noise PSD is now ob-

tained as:

̂|Nk,τ |2 =
(

[TNwτ ]k
[TSvτ +TN wτ ]k

× |Yk,τ |p
)2/p

,

Assuming some extent of stationarity of the noise, we can smooth

this instantaneous estimate across time to get a better noise PSD

estimate:
[
σ̂2

N

]

k,τ
= α

[
σ̂2

N

]

k,τ−1
+ (1− α) ̂|Nk,τ |2 , (6)

where
[
σ̂2

N

]

k,τ
denotes the estimated noise PSD for frequency bin

k and time-frame τ .

4. LINEAR MMSE FILTER BASED ON NMF

In this section, we derive a new filter for single channel speech en-

hancement by minimizing the mean square error between the clean

speech and the estimated speech components. We use |yτ |p ≈
Tuτ = TSvτ + TNwτ ≈ |sτ |p + |nτ |p, in which TSvτ and

TNwτ are some random variables whose specific realizations are

to be estimated; Given the observation |yτ |p, we can find the mag-

nitude of the DFT coefficients of the enhanced speech as |̂Sk,τ | =(
̂|Sk,τ |p

)1/p

where ̂|Sk,τ |p = Hk,τ |Yk,τ |p is the linear MMSE

estimate of the speech component. Assuming that pth powers of

the magnitude of the DFT coefficients at different frequencies are

independent, we can minimize the mean square error

E
(
(|Sk,τ |p −Hk,τ |Yk,τ |p)2

)
≈ E

((
[TSvτ ]k −Hk,τ [Tuτ ]k

)2)

(7)

independently for each frequency bin k. H can be obtained by tak-

ing the derivative of (7) and making it equal to zero [9, Sec 11.3.1]:

0 =
∂E

(

([TSvτ ]k−Hk,τ [Tuτ ]k)2
)

∂Hk,τ
=

E
(
−2 [TSvτ ]k [Tuτ ]k + 2Hk,τ [Tuτ ]2k

)

and hence:

Hk,τ =
E([TSvτ ]k[Tuτ ]k)

E([Tuτ ]2
k)

.

Assuming independency between the speech and noise compo-

nents we get:

Hk,τ =
E([TSvτ ]2k)+E([TSvτ ]k)E([TN wτ ]k)

E([TSvτ ]2
k)+E([TNwτ ]2

k)+2E([TSvτ ]k)E([TN wτ ]k)
(8)

Eq. (8) can be converted into a simpler form by assuming that

the real and imaginary parts of the DFT coefficients of the speech

(S) and noise (N ) signals are zero mean normally distributed

random variables; recalling that |sτ |p ≈ TSvτ (and |nτ |p ≈
TNwτ ) , the relation between E

(
[TSvτ ]2k

)
and E

(
[TSvτ ]k

)
(also

E
(
[TNwτ ]2k

)
and E

(
[TNwτ ]k

)
) can be found simply for p =

1, 2, i.e.:

E
(
[TSvτ ]k

)
≈ c
√

E
(
[TSvτ ]2k

)
, (9)

where c =
√

π/2 for p = 1, and c =
√

2/2 for p = 2.
We can now continue to simplify equation (8). Dividing the

denominator and numerator of (8) by E
(
[TNwτ ]2k

)
and defining

ξk,τ =
E([TSvτ ]2k)
E([TN wτ ]2

k)
, and using (9) we get:

Hk,τ ≈ ξk,τ +c2
√

ξk,τ

ξk,τ +1+2c2
√

ξk,τ
, (10)

in which we used:

E([TSvτ ]k)E([TN wτ ]k)
E([TN wτ ]2

k)
≈ c2

√

E([TSvτ ]2
k)

√

E([TNwτ ]2
k)

E([TN wτ ]2
k)

= c2
√

ξk,τ .

ξk,τ represents the smoothed speech to noise ratio (smoothed

SpNR). E
(
[TNwτ ]2k

)
can be estimated by a low pass filter as:

E
(
[TNwτ ]2k

)
≈ βE

(
[TNwτ−1]

2
k

)
+ (1− β) [TNwτ ]2k . (11)

ξk,τ can be found by following approximation: Define an

approximate SpNR as ηk,τ =
[TSvτ ]2k

E([TNwτ ]2
k)

, and hence ξk,τ =

E(ηk,τ ); we propose a decision-directed estimator, similar to [10],

for ξk,τ as:

ξk,τ = max

(
ξmin, γ

̂|Sk,τ−1|p
E
(
[TNwτ−1]

2
k

) + (1− γ)ηk,τ

)
. (12)

In our simulations, fairly similar results were obtained using the

following approximation of (10):

Hk,τ ≈ ξk,τ

ξk,τ +1 . (13)

It is interesting to highlight the differences between (13) and

the Wiener filter: Assuming the magnitude of the DFT coefficients

of the noisy speech as the observation (p = 1) for NMF, and perfect

nonnegative factorization for the clean speech and noise signals as

|sτ | = TSvτ , |nτ | = TNwτ , (13) will be identical to the Wiener

filter; however, by using the magnitude-squared DFT coefficients

(p = 2) this is not true any more. Moreover, there is another im-

plementation difference between the two filters: the Wiener filter is

often implemented by estimating a priori SNR based on a posteriori

SNR which is obtained from the noisy observation [11]; though, for

implementing (8), as it is mentioned above, an approximate SpNR

can be estimated using the separated speech and noise components

from NMF; next, the smoothed SpNR is estimated using (12) and

is used to implement (10) or (13). Since the approximate SpNR is

based on an initial estimate of the speech component and not the

noisy speech, the smoothing factor in (12) should be low enough to

capture the speech variations quickly. Good results were obtained

for γ = 0.5− 0.75 while the results were not sensitive to the exact

value of γ. Finally, note that the defined SpNR is not the same as

the SNR which is usually defined as the ratios of the powers of the

speech and noise signals.

The algorithm is summarized as:
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1. Obtain the NMF coefficients vector uτ by applying NMF to

the given observation at time frame τ as |yτ |p ≈ Tuτ .

2. Find wτ from uτ =
(
v⊤τ w⊤τ

)⊤
, then obtain an estimate of

E
(
[TNwτ ]2k

)
by smoothing [TNwτ ]2k over time (Eq. (11)).

3. Obtain the approximate SpNR, ηk,τ , and smoothed SpNR,

ξk,τ for all frequency bins (Eq. (12)).

4. Obtain the filter gain as (10) or (13).

5. The magnitude of the DFT coefficients of the enhanced

speech are obtained as |̂Sk,τ | = (Hk,τ |Yk,τ |p)1/p
.

6. Reconstruct the time domain signal using the noisy phase.

5. EVALUATION

Both magnitude (p = 1) and squared magnitude (p = 2) of the

DFT coefficients of the observed noisy speech signal are used as

observation in NMF model for the enhancement task. In the follow-

ing, the derived algorithm in section 4 (using Eq. (10)) is referred

as ’LMMSE-Mag’ and ’LMMSE-Pow’ for p = 1 and p = 2, re-

spectively. The estimated noise PSDs from Section 3 were used

in combination with a Wiener filter to perform the enhancement

and are referred as ’Wiener-Mag’ and ’Wiener-Pow’ for p = 1 and

p = 2, respectively; in addition, noise PSD was estimated using a

MMSE-based approach [12] which is one of the best algorithms for

this purpose [13], and the same Wiener filter was used for the en-

hancement; in the following, this approach is called ’Wiener-UnS’

to reflect the fact that this approach is an unsupervised filtering and

does not have any training. The Wiener filter was implemented us-

ing the decision-directed approach [10] with the same parameters

10 log10 (ξmin) = −25dB and α = 0.98 for all the approaches.

The same lower bound ξmin also was used in (12).

We used speech from the Grid Corpus and noise from the

NOISEX-92 databases. All the signals are down-sampled to 16

KHz. The speech is degraded by adding babble noise or factory

noise at 3 different SNRs: 0 dB, 5 dB, and 10 dB. A separate model

is trained for each noise type, and one speaker independent model

is trained for the speech signal; this model was trained on a mixed

group of 24 male and female speakers, and 8 sentences from each

speaker were used. For all the approaches 10 sentences form each

of the 8 speakers (4 male and 4 female, and none of them were used

for the training), and a part of the noise signal which was not used

for the training, were used for the performance evaluation. The re-

sults are averaged over the entire test set. To apply NMF we use a

noise specific basis matrix; if noise type is not known a priori, some

adapting procedures have to be used which we have not included

in our simulations. For the speech and noise signals, 60 and 100

basis vectors are trained, respectively. The following parameters

are obtained by performing a cross-validation test and are used in

the simulations: α = 0.95 in (6), β = 0.95 in (11), and γ = 0.6
in (12). The time frames have a length of 512 samples with 50%
overlap, and are windowed using a Hann window.

The performance of the speech enhancement algorithms are

evaluated using PESQ [14], and the Source to Distortion Ratio

(SDR) which is defined as:

SDR = 10 log10

‖starget‖2
‖einterf + eartifact‖2

,

where starget, einterf and eartifact are target time-domain speech

signal, interference, and artifact error terms defined in [15], and

‖·‖2 denotes the energy. In order to analyze the results more specif-

ically, Segmental speech SNR (SNRseg−sp), and segmental noise
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Figure 1: PESQ and SDR improvements for babble and factory

noises.

reduction (SegNR) are also measured as [16]:

SNRseg−sp = 1
T

∑T
τ=1 10 log10

(
∑I

i=1 s2
i+τI

∑I
i=1(si+τI−s̃i+τI)2

)
,

SegNR = 1
T

∑T
τ=1 10 log10

(
∑I

i=1 n2
i+τI

∑I
i=1 ñ2

i+τI

)
,

where I denotes the length of the frame, and T the number of

frames; These measures are obtained in a shadow filtering frame-

work: the filter is computed from the noisy speech signal (s + n)

and is used to obtain s̃, ñ. s̃ is the output of the enhancement sys-

tem when the clean speech, s, is the input to the filter; similarly, ñ
is the output of the enhancement system when only the noise, n, is

the input to the filter.

5.1. Results and Discussion

Figure 1 shows the improvement in PESQ and SDR for different

algorithms. The results show that a NMF-based filter which is de-

rived using the magnitude of the DFT coefficients (p = 1) of the

noisy speech gives a better result compared to the same type of

the NMF-based filter which is derived using the magnitude-squared
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Figure 2: Stacked presentation of Segmental Noise Reduction

(SegNR, bottom), and Segmental Speech SNR (SNRseg−sp , top)

for factory noise.

DFT coefficients (p = 2). This is true for both the Wiener and the

proposed LMMSE filters, and agrees with the previous applications

of NMF in source separation (e.g. [1, 2]). For the Wiener based

algorithms, the difference between these two cases is much higher

than that between the LMMSE algorithms. The NMF-based algo-

rithms with p = 1 mostly result to a better performance than the

Wiener-UnS algorithm, especially at low input SNRs. In the most

cases the SDR improvement for LMMSE-Mag is the highest among

all the algorithms for both noise types. For the babble noise, the

PESQ improvement is higher for the proposed LMMSE algorithms

compared to the Wiener based algorithms. For the factory noise,

the Wiener based algorithms often provide better PESQ for the en-

hanced speech signal than the LMMSE algorithms, especially for

low input SNRs.

For input SNRs for which PESQ and SDR improvements are

not pointing in the same direction (for instance factory noise at 5

dB input SNR) it becomes more difficult to compare different algo-

rithms; hence, we performed an informal listening test and found

that if the difference in the PESQ improvements is not high, and

at the same time the difference in the SDR improvements is high,

the algorithm with the higher SDR is preferred; for example, the

LMMSE-Pow was preferred over the Wiener-Pow algorithm for fac-

tory noise at 5 dB input SNR. This is because LMMSE-Pow provides

much higher SDR even though both methods provide similar PESQ

scores for the enhanced speech. This can be expected since none

of these measures completely model the speech quality. Even fairly

similar scores were obtained for the LMMSE-Mag and Wiener-Mag

for the factory noise at 5 dB input SNR. These results might be ex-

plained by looking at Figure 2.

Figure 2 shows the stacked results for Segmental Noise Reduc-

tion, SegNR, and Segmental Speech SNR, SNRseg−sp, for fac-

tory noise which are shown in the bottom and top of the figure re-

spectively. For both measures a high value is desired. SNRseg−sp

is inversely proportional to the speech distortion. Wiener based ap-

proaches provide a higher SegNR and lower SNRseg−sp com-

pared to the proposed LMMSE algorithms. The PESQ improve-

ments for the Wiener based approaches are obtained mainly be-

cause of the high SegNR while for the proposed LMMSE filters

the PESQ improvements are obtained mainly because of the high

SNRseg−sp (and hence less speech distortion).

6. CONCLUSIONS

Two types of NMF-based algorithms were obtained in this paper:

first, a Wiener filter was considered in which noise PSD was esti-

mated using NMF. Second, a LMMSE filter was derived by mini-

mizing the mean square error between the clean speech and the es-

timated speech components in the frequency domain. The proposed

LMMSE filters were shown to be promising and gave better SDR

improvements compared to the Wiener-based algorithms in most of

the test cases; LMMSE filters gave a higher PESQ improvements

for the babble noise for all the simulated input SNRs although for

the factory noise it was not the case. Most of the NMF-based ap-

proaches gave better SDR and PESQ improvements compared to the

Wiener filtering method in which a recently developed unsupervised

approach was used to estimate the noise PSD.
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