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ABSTRACT

Recently, it has been shown that MMSE-based noise power estima-
tion [1] results in an improved noise tracking performance with re-
spect to minimum statistics-based approaches. The MMSE-based
approach employs two estimates of the speech power to estimate the
unbiased noise power. In this work, we improve the MMSE-based
noise power estimator by employing a more advanced estimator of
the speech power based on temporal cepstrum smoothing (TCS).
TCS can exploit knowledge about the speech spectral structure. As
a result, only one speech power estimate is needed for MMSE-based
noise power estimation. Moreover, the presented estimator results in
an improved noise tracking performance, especially in babble noise,
where SNR improvements of 1 dB over the original MMSE-based
approach can be observed.

Index Terms— Noise power estimation, speech enhancement.

1. INTRODUCTION

As speech processing applications like mobile telephony, hearing
aids and speech recognition systems are expected to work in a wide
variety of environments, it is likely that these applications have to
deal with speech signals that are degraded with environmental noise
sources. In order to cope with this, there has been much interest
to equip these applications with noise reduction algorithms. Usu-
ally, these algorithms work on a frame-by-frame basis in a spectral
domain, e.g., the discrete Fourier transform domain, where a gain
function is applied to the noisy DFT coefficients followed by an in-
verse DFT and overlap-add. The noise power spectral density (PSD)
is one of the very important parameters of noise reduction algo-
rithms. Since the noise PSD is unknown in practice, it has to be
estimated from the noisy speech. For relatively stationary noise
sources, the PSD can be estimated quite accurately using minimum
statistics (MS) based approaches [2][3]. However, when the noise
source tends to change faster, i.e., within the time-span of one sec-
ond, these methods usually lead to less satisfying results. More re-
cently a minimum mean-square error (MMSE)-based noise power
estimator has been proposed [1], which has been proven to allow for
a faster tracking of quickly changing noise fields as compared to MS
based approaches [4].

For the MMSE-based noise PSD estimation, an estimate of the
speech PSD is needed to obtain the conditioned estimate of the noise
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periodogram. In [1], for this estimate, a limited maximum likelihood
(ML) estimate is employed, which however results in a bias. It has
been shown that this bias can be compensated, if the true speech
PSD is known. Thus, in [1], the bias introduced by using the simple
ML estimator is compensated using a second estimate of the speech
PSD, obtained using the decision-directed (DD) approach [5]. In
this work, we employ a more advanced estimator of the speech PSD
based on temporal cepstrum smoothing (TCS). Using this advanced
speech PSD estimator in the first place makes the estimation of a
second speech PSD estimate for bias compensation unnecessary. At
the same time, the TCS-based speech PSD estimate results in a bet-
ter estimate of the noise PSD, a higher noise reduction performance
when employed in a speech enhancement framework, a comparable
amount of signal distortions and a higher gain in the segmental SNR.
The costs of the improved performance are two additional Fourier
transforms needed for the cepstral transform and its inverse.

This work is structured as follows. After introducing the em-
ployed signal model in Section 2, we review the MMSE-based noise
power estimation in Section 3, describe the proposed TCS-based ap-
proach in Section 4, evaluate the algorithms in Section 5 and con-
clude with Section 6.

2. SIGNAL MODEL

Let Sk(l), Nk(l) and Yk(l) denote the complex speech, noise and
noisy speech discrete Fourier transform (DFT) coefficient, respec-
tively, for frequency-bin index k and time-frame index l, obtained
by windowing the corresponding time-domain processes followed
by a DFT. Here, capital letters indicate random variables, while re-
alizations are denoted by its corresponding lower case letters.

We assume the speech and the noise processes to be additive in
the short-time Fourier domain, i.e.,

Yk(l) = Sk(l) +Nk(l) . (1)

Further, we assume that the speech and noise DFT coefficients are
zero mean and mutually independent and uncorrelated, such that

E
[
|Yk(l) |

2
]
= E

[
|Sk(l) |

2
]
+ E

[
|Nk(l) |

2
]
, (2)

with E[·] the statistical expectation operator. For notational conve-
nience, the time-frame index l and the frequency-bin index k will
be left out, unless necessary for clarification. The speech PSD and
noise PSD are defined by E

[
|S|2

]
= σ2

S and E
[
|N |2

]
= σ2

N , re-
spectively. We then define the a priori signal-to-noise ratio (SNR)
by ξ = σ2

S /σ
2
N . In the sequel estimated quantities will be denoted by

a hat symbol, i.e. σ̂2
N is an estimate of σ2

N .
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3. MMSE BASED NOISE PSD ESTIMATION

To guide the reader, we present in this section a brief summary of
the MMSE-based noise PSD estimation approach presented in [1].

The noise PSD estimator presented in [1] is based on an MMSE
estimate of the noise periodogram, which can be obtained by com-
puting the conditional expectation E

[
|N |2 | y

]
. Assuming that the

speech and noise DFT coefficients have a complex Gaussian distri-
bution with variances σ2

S and σ2
N , respectively, this leads to [1]

E
[
|N |2 | y

]
=

(
σ2
N

σ2
N
+ σ2

S

)2

|y|2 +
σ2
S

σ2
N
+ σ2

S

σ2
N . (3)

Obviously, both σ2
S and σ2

N are unknown expected values and have to
be estimated before (3) can be evaluated. Assuming that σ2

N changes
relatively slowly from frame to frame, it was proposed in [1] to use

the noise PSD estimate of the previous time-frame in (3), i.e., σ̂2
N
=

σ̂2
N
(l − 1). To estimate σ2

S , it was proposed in [1] to use a limited
ML estimate given by

σ̂2
S,ML = max

(
0, |y|2 − σ̂2

N

)
. (4)

However, as argued in [1], this ML estimate will lead to a bias in

E
[
|N |2 | y

]
, which can be computed analytically given σ̂2

S,ML, and
can be written as a function B(σ2

S , σ
2
N), which is, again, a function

of the speech and noise PSD. In order to compute this bias, the noise

PSD is again estimated by σ̂2
N = σ̂2

N(l − 1) and the speech PSD σ2
S

is computed using the DD approach [5] denoted by σ̂2
S,DD. The final

estimate of the noise PSD is then obtained as

σ̃2
N = E

[
|N |2 | y, σ̂2

S,ML, σ̂
2
N

]
B(σ̂2

S,DD, σ̂
2
N),

followed by recursive smoothing in order to reduce small variations
across time, that is

σ̂2
N(l) = αpow σ̂2

N(l − 1) + (1− αpow) σ̃2
N , (5)

where αpow = 0.8. To overcome a locking of the algorithm, the

current estimate σ̂2
N(l) is forced to be larger than the minimum of the

noisy periodograms of the last 0.8 seconds [1].
In summary, the MMSE approach for noise PSD estimation ex-

ploits thus two different speech PSD estimators, i.e., a limited ML
estimate and a DD-based estimate, and, as a consequence of the lim-
ited ML estimate, the method requires a bias compensation.

4. PROPOSED APPROACH BASED ON TEMPORAL
CEPSTRUM SMOOTHING (TCS)

We propose to improve the MMSE-based noise PSD estimator by
improving the speech PSD estimation necessary to evaluate (3). The
proposed method is based on selective temporal smoothing in the
cepstral domain in order to obtain more accurate estimates of the
speech PSD, similar to [6], instead of using a limited ML estimate
and a DD-based estimate as outlined in Section 3.

The benefit of smoothing in the cepstral domain is that a pri-
ori knowledge about the speech spectral structure can easily be em-
ployed: in the cepstral domain speech is mainly represented by few
lower cepstral coefficients and the peak of the remaining cepstral co-
efficients. The lower cepstral coefficients represent the speech spec-
tral envelope, while the peak represents the fundamental period of
voiced speech. Furthermore, non-speech-like spectral structures are

likely to be mapped to a different set of cepstral coefficients than
speech spectral structures. We apply a selective smoothing in the
cepstral domain, i.e., little or no smoothing to the speech related cep-
stral coefficients, and a stronger smoothing to the remaining cepstral
coefficients. By this, non-speech-like spectral outliers are reduced
while the speech spectral structure is preserved.

Similar to (4) we use a limited ML speech PSD estimate, as

σ̂2
S

pre

,k = max
(
σ̂2

N,kξmin , |yk(l)|
2 − σ̂2

N,k

)
, (6)

which is lower limited by σ̂2
N,kξmin and where ξmin is set to

10 log10(ξmin) = −30 dB in order to reduce speech distortions.
Let the length of the Fourier transform be denoted byK and the

cepstral index by q. The cepstral representation of the preliminary
speech PSD is then obtained as the inverse Fourier transform of the
log spectrum,

σ̂2
S

pre,ceps

,q = 1/K

K−1∑
k=0

log
(
σ̂2

S

pre

,k

)
ej2πkq/K . (7)

As the cepstrum is symmetric with respect to K/2, we only con-
sider the lower symmetric part q ∈ {0, ..., K/2} in the sequel. For
a better distinction between cepstral domain and frequency domain
coefficients, in this section we explicitly state the frequency index k
and the cepstral index q.

4.1. Selective smoothing

Selective smoothing in the cepstral domain can be done by means

of recursive temporal smoothing of σ̂2
S

pre,ceps

,q with a cepstral-index
and frame-index dependent smoothing factor 0 ≤ αq(l) ≤ 1, i.e.,

σ̂2
S

ceps

,q (l) = αq(l)σ̂2
S

ceps

,q (l − 1) + (1− αq(l))σ̂2
S

pre,ceps

,q (l). (8)

To adjust the smoothing factor αq , the speech related cepstral
coefficients need to be determined. This means that we need to find
the fundamental period peak in the cepstrum. Since the power of
voiced sounds is less at high frequencies, estimation of the funda-
mental period peak is more robust if less emphasis is put on the
higher frequencies. To reduce the effect of the high frequencies on
the cepstrum, we smooth the cepstrum by convolving it with a short
Hamming window wH,q of length τH = fs/2000Hz = 8, as

σ2
S

ceps

,q (l) = σ̂2
S

ceps

,q (l) ∗ wH,q ∗ wH,−q , (9)

with

wH,q =

{
0.54− 0.46 cos

(
2π q+τH/2

τH

)
for − τH/2 ≤ q < τH/2

0 else.
(10)

The cepstral index q0(l) that most likely represents the funda-
mental period is then found as

q0(l) = argmax
q

{
σ2

S

ceps

,q (l)|qlow ≤ q ≤ qhigh
}
, (11)

where the search is limited to possible fundamental frequencies be-
tween f0,low = 70Hz and f0,high = 300Hz, resulting in the range
qlow = �fs/f0,high� to qhigh = �fs/f0,low�, with fs the sampling
rate and �·� the flooring operator towards the nearest smaller integer
number.
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To determine whether the found peak-value represents the fun-
damental frequency of a voiced speech sound, we compare the peak-
value to a threshold, Λthr. The set of cepstral bin indices associated
with the fundamental frequency, say Qpitch, is then defined as

Qpitch(l) =

{
{q0(l)−Δq0, ..., q0(l) + Δq0} if σ2

S ,q0
(l) ≥ Λthr

∅ otherwise ,
(12)

where q ∈ {q0−Δq0, ..., q0+Δq0} is the range of cepstral bins that
represent the fundamental period, Δq0 = 2 is a small margin, and ∅
is the empty set. A decrease of the threshold Λthr results in a better
protection of the fundamental period, but also in less reduction of
processing outliers in unvoiced speech and speech pauses. We find
that Λthr = 0.1 yields a good trade-off.

As the lower cepstral coefficients and the fundamental period
peak represent the speech spectral structure, less smoothing is ap-
plied to these speech related coefficients than to the remaining co-
efficients. To avoid a strong smoothing of the speech fundamental
period peak, the smoothing factor αq(l) is determined adaptively as

αq(l) =

{
αpitch if q ∈ Qpitch

β αq(l − 1) + (1− β)αconst
q otherwise ,

(13)

where αpitch determines how strongly the fundamental period peak
is smoothed and where αconst

q will be specified below. A decrease
of αpitch results in a better protection of the fundamental period, but
also in less reduction of processing outliers. We find αpitch = 0.2
as a reasonable compromise. The smoothing constant β = 0.96 is
a forgetting factor that determines how fast the value of αq(l) can
rise back from αpitch to αconst

q . Due to (13), a detection error of
the fundamental period in the current frame l does not immediately
lead to a strong smoothing of the cepstral fundamental period peak.
The algorithm is not sensitive with respect to the exact choice of the
smoothing constant αconst

q , but it should be chosen such that only
little smoothing is applied to the lower cepstral coefficients and a
stronger smoothing to the upper cepstral coefficients that represent
the speech spectral envelope and the non-speech-like spectral struc-
tures, respectively. For the proposed noise PSD estimator, we find
the following choice of αconst

q to yield a good compromise

αconst
q =

⎧⎪⎨⎪⎩
0 q < 3

0.2 3 ≤ q < 20

0.85 20 ≤ q ≤ 256.

(14)

Finally, the smoothed cepstral representation is then transformed
back to the frequency domain to obtain an estimate of the speech
PSD, as

σ̂2
S,k(l) = B · exp

(
K−1∑
q=0

σ̂2
S

ceps

,q (l) e−j2πkq/K

)
, (15)

where B compensates for a bias that is introduced by TCS [7]. No-
tice that this bias is introduced due to the nonlinear compression in
(7) and subsequent smoothing in the log domain, prior to transform-
ing back to the linear domain via (15).

This bias was analyzed in [7] and depends on the amount of
smoothing that is applied in the cepstral domain, i.e., αq(l). In [7]
an analytic expression for this bias is derived based on distributional
assumptions on the speech DFT coefficients and Hann windowed
speech frames, that is, [7]

B =
exp(ψ(μ̄) + C)

μ̄
, (16)

where C = 0.5772 is Euler’s constant [8, Eq. 9.73] and ψ(·) is
Euler’s Psi-function [8, Eq. 8.360]. In [7] it is shown how the pa-
rameter μ̄ can be determined as a function of the smoothing factor
αq(l). For our choice of αconst

q , depending on Qpitch, the resulting
bias is typically in the range 1.45 < B < 1.55.

Finally, the estimate σ̂2
S,k(l) of the speech PSD (15) is employed

in (3) to estimate the noise periodogram, followed by recursive tem-
poral smoothing by means of (5).

5. EVALUATION

In this section we compare the performance of the proposed algo-
rithm with respect to the MMSE-based approach of [1], referred to
as MMSE-ref, and the MS-based approach [2].

For the spectral analysis we use 32msHann-windows with 50%
overlap. The length of the Fourier transform is K = 512 and
the sampling rate fs = 16 kHz. We evaluate 320 sentences from
the TIMIT-database for modulated white Gaussian noise and bab-
ble noise at segmental input SNRs between −10 and 15 dB under
free-field conditions. To create modulated noise we multiply a white
Gaussian noise signal by f(m) = 1+0.5 sin(2πmfmod/fs), where
m is the time-sample index, and we choose fmod = 0.5Hz. We
measure the logarithmic error between the estimated noise power
and the noise reference and distinguish between noise power overes-
timation and noise power underestimation, as

LogErrOver =
1

KL

L−1∑
l=0

K−1∑
k=0

∣∣∣∣∣min

(
0, 10 log10

(
σ2
N,k(l)

σ̂2
N,k(l)

))∣∣∣∣∣ ,
LogErrUnder =

1

KL

L−1∑
l=0

K−1∑
k=0

max

(
0, 10 log10

(
σ2
N,k(l)

σ̂2
N,k(l)

))
,

where K and L indicate the total number of frequency-bins and
time-frames, respectively. The sum of both results in the LogErr
as employed in [1], i.e. LogErr = LogErrOver + LogErrUnder.
The lower the value for LogErr, the better the performance. While
for the artificially created modulated Gaussian noise, the true noise
power σ2

N,k is known, for babble noise we use the periodogram of
the noise-only signal as an estimate of the true noise power, i.e.
σ2
N,k = |N |2.

We also employ the estimated noise power in a speech enhance-
ment framework and evaluate the performance in terms of the seg-
mental SNR, the segmental speech SNR and the amount of noise
reduction [9]. For these three measures, large values indicate im-
proved performance, e.g. a large speech SNR indicates that speech
is well preserved. To estimate the clean speech amplitude, we em-
ploy the super-Gaussian estimator described in [10], with parameters
γ = 1 and ν = 0.6, and the a priori SNR estimated using the DD
approach with smoothing constant αdd = 0.98.

The results are given in Figure 1 and Figure 2. It can be seen
that the proposed TCS-based approach results in lower values for the
LogErr than the MMSE-ref approach [1] and the MS approach [2].
It can be seen that the MS approach results in a higher speech SNR
than the proposed approach and the MMSE-ref, however in the low-
est amount of noise reduction. The MMSE-based approaches result
in a better trade-off between speech distortions and noise reduction
as indicated by a larger gain in the segmental SNR. The proposed
approach results in the largest noise reduction and largest SNR im-
provement while exhibiting a similar speech SNR as the MMSE-ref.
For babble noise the SNR improvement is approximately 1 dB at
0 dB input SNRwith respect to the competing approaches. The price
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Fig. 1. Quality measures for modulated white Gaussian noise. The
lower part of the bars in Subfigure (a) represents the noise overesti-
mation LogErrOver, while the upper part represents the noise un-
derestimation LogErrUnder. The total height of the bars gives the
LogErr.

for the increased performance are two additional real-valued Fourier
transforms required for computing the cepstrum and its inverse. This
computational complexity can be reduced by using pruned Fourier
transforms [11].

6. CONCLUSIONS

In this paper we revisited minimum mean-square error (MMSE)-
based noise power spectral density (PSD) estimation. We showed
that using temporal cepstral smoothing for speech PSD estimation,
better results in terms of a lower LogErr and, a larger signal-to-
noise ratio (SNR), a larger noise reduction and similar speech SNR
can be achieved. As opposed to the MMSE-ref [1] only one speech
PSD estimate is needed to estimate the noise PSD. The compu-
tational costs for the improved performance are dominated by two
real-valued Fourier transforms for the cepstral transform and its in-
verse.
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