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ABSTRACT

In state-of-the-art single channel short-time Fourier transform
(STFT) based speech enhancement algorithms only the amplitude of
the noisy speech signal is improved, but its phase is left unchanged.
It is commonly assumed that the noisy phase is the best estimate
of the clean phase available. While using the noisy phase is in-
deed optimal under certain statistical assumptions, in this paper we
show that blindly improving the noisy phase is possible when these,
potentially limiting, assumptions are dropped. Without modifying
the amplitude, the proposed algorithm leads to frequency weighted
SNR improvements of up to 1.8 dB. Further, the presented phase
enhancement scheme is real-time capable and can be combined with
any off-the-shelf STFT-based amplitude estimator.

Index Terms— speech enhancement, phase estimation, noise
reduction, signal reconstruction

1. INTRODUCTION

Algorithms for the enhancement of single-channel noisy speech are
commonly defined in the short-time Fourier transform (STFT) do-
main due to, among other reasons, the fact that it allows for perfect
reconstruction and that computationally efficient implementations
exist. During the past 30 years, huge efforts have been expended
in deriving and developing effective STFT-based speech enhance-
ment algorithms, with quite some success. A well-known example
of such algorithms is the amplitude estimator presented by Ephraim
et al. [1]. Like many popular approaches, the algorithm aims at
enhancing only the amplitude of the complex spectrum of a speech
signal degraded by additive noise. The phase - which clearly is de-
graded as well - is, however, not modified. This is often motivated
by the work of Vary [2] as well as Wang and Lim [3], where it is
stated that the possible gain achieved by STFT-phase enhancement
is small compared to the one possible through amplitude enhance-
ment. In contrast to [3], Paliwal et al. [4] have shown that using
the clean phase can indeed result in an increased performance of sin-
gle channel speech enhancement algorithms. Further, they propose
to use different spectral analysis windows for computing amplitude
and phase, respectively [4]. While it is interesting to see that this
results in a reduction of noise, with these modifications the perfect
reconstruction property of the STFT is lost, meaning that their ap-
proaches necessarily also result in speech and signal distortions.

In this work, given noisy speech, we blindly reconstruct the
phase of voiced clean speech directly in the STFT-domain. From
a statistical point of view, if histograms are computed from STFT-
bins that exhibit a similar estimated speech power spectral density,
it has been shown that the phase is uniformly distributed and inde-
pendent of the amplitude [5]. Under these assumptions, the MMSE-
optimal estimate for the clean phase is known to be the noisy phase
[1] — as long as no further information is utilized. However, in

this work we point out that in voiced sounds neighboring phase val-
ues are in fact highly correlated and also that phase trajectories are
highly correlated with spectral amplitudes. We present an algorithm
that is capable of exploiting these correlations to blindly reconstruct
the clean phase and show that this results in an improved speech en-
hancement performance. From these results we conclude that using
the noisy phase is only optimal under the limiting assumptions of
independence and a uniform phase distribution. By dropping these
assumptions we can indeed improve speech enhancement algorithms
further. The proposed phase estimation scheme is designed in the
STFT domain, such that it can be easily combined with state-of-the-
art spectral amplitude estimators.

2. SIGNAL MODEL

At each sample n the noisy observation y(n) is given by an ad-
ditive superposition of speech s(n) and noise v(n), i.e. y(n) =
s(n) + v(n). The noisy signal is split into segments of length N ,
overlapping by N−L samples. To each segment, the window w(n)
is applied prior to a Discrete Fourier Transform (DFT), yielding its
STFT representation

Y (k, l) =
N−1∑

n=0

y(lL+ n)w(n)e−jΩkn

= S(k, l) + V (k, l)

= |Y (k, l)|ejφY (k,l), (1)

with frequency index k, segment index l, and normalized angular
frequency Ωk = 2πk/N , k = 0, 1, ..., N − 1. Note that (1) is
the standard definition of the STFT-representation, which typically
yields the basis to spectral amplitude enhancement algorithms. Any
off-the-shelf amplitude enhancement algorithm can be applied to the
noisy amplitude |Y (k, l)|, yielding an estimate for the clean speech

amplitude, |Ŝ(k, l)|, which is finally combined with the noisy phase
for signal reconstruction. In this work, we put amplitude estimation
aside and show that a significant noise reduction can be obtained
only by improving the phase in a controlled way. This algorithm can
then be combined with any amplitude estimator.

First, let us recall that the STFT representation Y (k, l) in (1)
can be interpreted as the output of a band-pass filter bank with N
bands, where the window function w(n) defines the prototype low-
pass [2]. We now transform each band k of the noisy STFT Y (k, l)
into its baseband. Multiplication of both sides of (1) yields

YB(k, l) = Y (k, l)e−jΩklL

=
N−1∑

n=0

w(n)y(n+lL)e−jΩk(n+lL) (2)
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where YB(k, l) can now be thought of as the output of a complex
demodulator followed by a low-pass filter defined by window w(n),
subsampled by a factor L. In this context, B is used to distinguish
the ”baseband” representation from its STFT counterpart. It can be
shown that some clear structure is inherited in the baseband phase of
clean speech, ∠YB(k, l) = φYB

(k, l). This is depicted in the lower
left of Fig. 3, where not the phase directly, but the phase difference
from one segment to the next, φYB

(k, l)−φYB
(k, l−1), is presented

for a clean speech example, i.e. v(n) = 0, ∀n. The corresponding
amplitude spectrogram is presented in the upper left panel of Fig. 3.
Indeed, the structures in the amplitude and phase spectra are quite
related and also appear to be correlated along time, especially dur-
ing voiced speech segments. A significant portion of these structures
is lost, both, in the amplitude and the phase spectra if noise is added
to the speech signal, exemplarily shown for white noise and a global
SNR of 0 dB in the middle section of Fig. 3. We now aim at recon-
structing the structures of the phase spectrum from the noisy signal
during voiced speech segments.

A voiced speech sound can be modeled as a weighted superpo-
sition of H sinusoids, leading to the harmonic signal model

s̃(n) =
H−1∑

h=0

2Ah cos(Ωhn+ ϕh), (3)

with the real-valued amplitude 2Ah, time-domain phase ϕh, and
normalized angular frequency

Ωh=2πfh/fS=2π(h+ 1)f0/fS. (4)

Here, fS, f0, and fh denote the sampling, fundamental and harmonic
frequency, respectively.

With (2) and (3) we obtain the baseband STFT representation of
the voiced speech model s̃(n):

S̃B(k, l)

=
N−1∑

n=0

w(n)
(

s̃(n+lL)e−jΩk(n+lL)
)

=
N−1∑

n=0

w(n)
H−1∑

h=0

Ah

(

ej((Ωh−Ωk)(n+lL)+ϕh)

+ e−j((Ωh+Ωk)(n+lL)+ϕh)). (5)

In case the segment length N is chosen large enough and the low-
pass defined by w(n) is sufficiently narrow and steep to effectively
separate the spectral harmonics, (5) can be simplified by assuming
that each STFT bin k is dominated only by the closest complex ex-
ponential, denoted by

Ωk
h = argmin

Ωh

(|Ωk − Ωh|). (6)

Please note that ΩkN/(2π) = k is an integer, while Ωk
hN/(2π) ∈

R, i.e. the harmonic frequency is not necessarily identical to one of
the center frequencies of the DFT.

Equation (5) now reduces to

S̃B(k, l) ≈ Ah

N−1∑

n=0

w(n)ej((Ω
k
h
−Ωk)(n+lL)+ϕh). (7)

This simplification is symbolically depicted in Fig. 1 for H=2 har-
monics and band k, where in this example band k is the STFT-band
with the center frequency closest to Ωh=0. All but the harmonic clos-
est to Ωk are canceled out by the low-pass filter W (k) introduced by
the analysis window w(n).

ΩΩh=0 Ωh=1−Ωh=0−Ωh=1

ΩΩh=0−Ωk Ωh=1−Ωk−Ωh=0−Ωk−Ωh=1−Ωk

W (Ω)

Fig. 1. Symbolic spectrum of a harmonic signal according to (3)
(top) and its baseband version for band k (bottom), with H=2 har-
monics. The low-pass filter W (k), introduced by the time-domain
window w(n), effectively suppresses all components but the one
closest to the frequency bin of interest, k.

3. PHASE RECONSTRUCTION ALONG TIME

With the simplifications made above it is possible to derive a for-
mula for recursive segment-to-segment computation of the baseband
STFT-phase, φS̃B

(k, l), of the harmonic signal model introduced in
(3). To this end we reformulate (7), giving

S̃B(k, l) ≈ ej(Ω
k
h
−Ωk)lLejϕhAh

N−1∑

n=0

(

w(n)ejΩ
k
h
n
)

e−jΩkn

= ej(Ω
k
h
−Ωk)lLejϕhAhW (k − Ωk

h
N
2π

)

= |S̃B(k, l)|e
jφ

S̃B
(k,l)

, (8)

where W (k) is the spectral representation of w(n). Note that

ej(Ω
k
h
−Ωk)lL is the only part of (8) that depends on the segment in-

dex l. Therefore, given the harmonic frequency Ωk
h, we can compute

the phase shift from segment to segment analytically as

∆φS̃B
(k, l) = φS̃B

(k, l)− φS̃B
(k, l − 1)

=
(

Ωk
h − Ωk

)

L. (9)

Straightforward reformulation of the above equation leads to the re-
cursive formula

φS̃B
(k, l) = φS̃B

(k, l − 1) +
(

Ωk
h − Ωk

)

L, (10)

stating that the change of the baseband phase from one segment to
the next depends only on the difference between the normalized fre-
quency of the closest harmonic Ωk

h and STFT center-frequency Ωk

in combination with the segment shift L.
Now we transfer the statements made above to the enhancement

of noisy speech. As stated in the previous section, voiced speech can
be modeled via the harmonic model given in (3). If an initial estimate
of the clean speech baseband phase is available at the beginning of
a voiced sound, i.e. at segment l = l0, then φS̃B

(k, l0 + 1) can be

computed based on φS̃B
(k, l0) and the current harmonic frequency

Ωh via (10) and (6). However, in practice the clean phase will always
be disturbed by noise.

The harmonic frequencies Ωh are directly related to the funda-
mental frequency f0 as given in (4). For the estimation of the fun-
damental frequency some robust algorithms are available, e.g. [6].



Unfortunately, this is not the case for the problem of estimating the
initial clean phase at the beginning of a voiced sound. However, at
harmonic frequencies the energy of the speech signal exhibits lo-
cal maxima. Thus, in the corresponding STFT bands, denoted by
k′, the instantaneous SNR is likely to show local maxima as well.
Therefore, in bands directly containing a harmonic speech compo-
nent, the noisy phase is considered to be a decent estimate of the
clean speech phase, φS̃B

(k′, l0)≈φYB
(k′, l0), see also [2]. Starting

from φS̃B
(k′, l0), the clean phase is then reconstructed via (10) from

segment to segment.
In STFT bands in between the harmonics the SNR is typically

much lower, and estimation of the initial clean speech phase is hardly
possible. Hence, instead of trying to reconstruct the phase in these
bands along time, the phase is estimated along frequency for every
segment separately, based on the bands k′. This method is presented
in the following section.

4. PHASE RECONSTRUCTION ALONG FREQUENCY

Besides the phase reconstruction along time, which makes use of
segment-to-segment correlation, we now propose a technique to en-
hance the phase for each segment separately along frequency bin k.
Again, the algorithm is defined in the baseband STFT domain and
uses the harmonic speech model in (3) as well as the simplifications
in (7). In Section 3 we have obtained the clean phase of the STFT-
bands k′ dominated by spectral harmonics. With this clean speech
phase estimate at hand, we estimate the phases in neighboring bands,
for which the local SNR is probably poor compared to the reference.
First, we rewrite the second equation of (8):

S̃B(k
′, l) ≈ Ahe

j(Ωk
′

h
lL+ϕh) e−jΩ

k′ lLW (k′ − Ωk
h
N
2π

)
︸ ︷︷ ︸

f(k′)

, (11)

where only f(k′) depends on the frequency bin k′. The equation
above not only holds for band k′, but for all STFT-bands for which

Ωk′

h is the closest and hence dominant harmonic, i.e. bands k′+ i,
with i ∈ [ ⌈− f0/2

fS
N⌉, . . . , ⌈ f0/2fS

N⌉ ] and ⌈·⌉ rounds up to the next

largest integer. Thus, we can estimate the phase φS̃B
(k′+i, l) based

on the reference φS̃B
(k′, l) via

φS̃B
(k′+ i, l)

= φS̃B
(k′, l)− i

2π
N

lL+ φW (k′+ i−
Ωk

hN
2π

)− φW (k′−
Ωk

hN
2π

).

(12)

Note that φW (·) is the phase of the spectral representation of the
analysis window, which can be computed offline for any analysis
window w(n). In combination with the segment-to-segment phase
reconstruction for the bands k′ presented in the previous section, it is
now possible to estimate the clean speech baseband-phase in every
time-frequency point of a voiced speech signal. The reconstructed
phase is combined with the noisy amplitude and then demodulated
by multiplying by ejΩklL, which yields the clean speech estimate

Ŝ(k, l) =
(

|YB(k, l)|e
jφ

S̃B
(k,l)

)

ejΩklL. (13)

In unvoiced segments, however, the noisy phase is employed di-
rectly. Note that in (13) it is easily possible to incorporate any
amplitude estimator for the enhancement of the noisy amplitude,
|YB(k, l)|. Finally, the enhanced time domain signal is obtained by

Input SNR [dB]

PESQ Score

noisy

f̂0 real
f̂0 ideal

-10 -5 0 5 10 15

1.4

1.8

2.2

2.6

Input SNR [dB]

Frequency Weighted SNR [dB]

noisy

f̂0 real
f̂0 ideal

-10 -5 0 5 10 15
4

6

8

10

12

Fig. 2. PESQ Score and frequency weighted SNR, respectively, as a
function of the input SNR for white Gaussian noise.

applying an inverse DFT followed by an overlap-add procedure. The
performance of the proposed algorithm is presented and discussed in
the following.

5. EVALUATION

For the evaluation of the proposed algorithm, a randomly chosen
subset of 10 female and 10 male speakers taken from the TIMIT
database is deteriorated by additive white Gaussian noise with global
SNRs ranging from -10 dB to 15 dB in steps of 5 dB. The segment
length is set to 32 ms and a segment shift of 4 ms is chosen to al-
low for a high temporal resolution. With a sampling frequency of
8 kHz, this corresponds to N = 256 samples and L= 32 samples.
PESQ and frequency weighted SNR are employed as objective mea-
sures for speech quality and presented in Fig. 2. Implementations
of these measures are taken from [7]. The fundamental frequency is
estimated on the noisy signal using YIN implemented according to
[6], but with the threshold for minimum selection set to 0.5 and a
segment advance of 4 ms. For an analysis of the upper bound, we
also present the results when the fundamental period is estimated on
clean speech.

In Fig. 2 it can be seen that the proposed algorithm achieves im-
provements of the PESQ score as well as of the frequency weighted
SNR for the whole range of evaluated input SNRs. Towards even
higher SNRs, the possible enhancement reduces due to the fact that
the noisy phase for higher SNRs is indeed a decent estimator for the
clean phase. This is stated also in [2], where it is found that above a
certain SNR, phase errors are not perceived by human listeners. First
studies showed that a comparable performance can be achieved also
for more realistic noise types like babble noise.

Instrumental measures are computed on the entire speech sig-
nals, while phase enhancement is only performed during voiced
speech as detected by YIN. Hence, the results depend on the re-
lation of voiced speech to the total signal length as well as on the
percentage of voiced speech that is detected by YIN. For low SNR
conditions, YIN detects only few voiced sounds due to the strong
influence of the background noise on the estimation of f0. Although
the performance within the detected segments is still good, the over-
all performance gain reduces. Towards higher SNRs, the influence
of the noise to the pitch estimation reduces and more voiced sounds
are detected. This can be seen in Fig. 2, where for high input SNRs
the difference between the ideal f0-estimation, based on the clean
speech, and the one based on the noisy signal becomes minor. For
lower SNRs, however, the pitch estimation deteriorates. Hence, a
more sophisticated pitch estimation algorithm might help to improve
the performance, especially for low input SNRs.

On the right hand side of Fig. 3 the amplitude spectrogram and
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Fig. 3. Amplitude spectra of clean (left), noisy (middle), and enhanced (right) speech signals are presented in the upper row, together with the
corresponding baseband phase difference from segment to segment, φ(k, l)− φ(k, l− 1), in the lower row. The speech signal is degraded by
white noise with a global SNR of 0 dB. Note that the noise reduction between the harmonics - visible on the top right - is achieved by phase
enhancement alone, no amplitude enhancement scheme is applied.

the baseband phase difference from one segment to the next is de-
picted for the signal enhanced by the proposed algorithm. It is com-
pared to the noisy input signal in the middle, degraded by white noise
at a global SNR of 0dB, together with the clean speech signal on
the left. Pitch estimation as well as voiced/unvoiced classification is
performed on the noisy input. It can be observed that, during voiced
sounds, structures in the phase that were lost due to noise are suc-
cessfully reconstructed. More importantly, after reconstructing the
enhanced signal via overlap-add and recomputing the STFT-spectra
for visualization, the amplitude appears enhanced as well. Not only
is the noise reduced in between the harmonics, but even harmonic
components in very low SNR regions are reconstructed. Note, again,
that this noise reduction after reconstruction is only achieved based
on phase improvement.

Informal listening tests further confirm the presented results,
where speech enhancement is perceived in terms of noise reduction.
Especially for vowels of longer duration the ’roughness’ introduced
by the noisy phase [2] is reduced. However, in the current version
also some artifacts are introduced: firstly, at changes from voiced,
processed to unprocessed regions the noise floor changes abruptly.
Secondly, the employed harmonic model (3) does not hold perfectly
for all voiced speech sounds, like sounds with mixed excitation. Fu-
ture work will aim at reducing these artifacts and increasing the nat-
uralness of the enhanced signal.

6. CONCLUSION

In this paper we propose an algorithm for the enhancement of
noisy speech, based on STFT-phase reconstruction during voiced
segments. It is shown that with phase enhancement alone, an im-
provement of signal quality can be achieved. Besides the stand-alone
performance of this method, a combination with STFT-amplitude

enhancement algorithms seems promising and will be subject of
future work.
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