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ABSTRACT

The Gaussian distortion model in the short-time Fourier transform
(STFT) domain is the basis of many of the modern speech enhance-
ment algorithms. One of the reasons is that additive sources and late
reverberation can be analyzed and processed quite efficiently in this
domain. The STFT domain is however not well related to acoustic
quality and is also not well suited for learning models due to the high
variability of speech in this domain. On the other hand, the cepstral
domain has proved to be very well suited for these last two purposes,
however, at the cost of loosing the simple linear relation between de-
sired source and additive interferences. In this paper we explore the
relation between the Gaussian distortion models in the STFT and the
cepstral domain. We show how the assumption of a jointly Gaussian
distortion model in the cepstrum domain is fulfilled for well-known
distortion models in STFT domain. We provide closed-form solu-
tions relating the joint distributions of corrupted and clean speech in
the STFT and the cepstrum domain. We also propose various ways
in which this model can be used to enhance speech.

Index Terms— Speech Enhancement, Cepstrum Domain, Un-
certainty Propagation

1. INTRODUCTION

The Short-time Fourier transform (STFT) domain provides a sim-
ple mean to obtain a time-frequency representation of speech sig-
nals with very desirable properties for signal processing purposes. It
is a linear invertible transform and the modeling of speech corrup-
tion phenomena such as additive noise [1] or late reverberation [2]
is easy compared to other domains. The STFT is however not short
from drawbacks. The perceived quality of speech is better repre-
sented by non-linear features of the STFT [3]. Modeling of speech,
e.g. phonetic units, is also very difficult due to its high variability in
the STFT domain. This work shows that the conventional statistical
distortion model in the STFT domain can be related to an equivalent
model in the cepstral domain thus allowing to optimally exploit the
properties of both domains simultaneously.

The work here presented is related to various pre-existing ap-
proaches that employ corruption models in the STFT domain while
performing estimates or learning of models in non-linear domains.
Approaches like VTS [4] or ALGONQUIN [5], for example, use
Taylor series to approximate the effect of additive and convolutive
STFT domain distortions in the MFCC domain for robust automatic
speech recognition (ASR). Also applied to ASR, short-time Fourier
transform uncertainty propagation (STFT-UP) [6] approximates
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the transformation of the statistical model resulting from the addi-
tive noise assumption in the STFT domain, attaining estimates in
MFCC RASTA-LPCC or MLP domains. In the speech enhancement
field, non-linear minimum mean square error (MMSE) estimators
of speech that employ STFT domain distortion models are very
extended. These include the well known Ephraim-Malah filters,
which provide amplitude (MMSE-STSA) [1] and log-amplitude
(MMSE-LSA) [3] domain estimators and MMSE estimators for
other domains like MFCC [7, 8]. Ephraim and Rahim also derived
a linear MMSE estimator in the cepstral domain which is directly
related to the approach presented here [9]. Other techniques that
combines spectral and cepstral processing for speech enhancement
is that of [10], where it is shown that the estimation of the speech
power spectral density (PSD) is more robust when selective cep-
strum smoothing techniques are employed.

In this work we study the relation between the joint distributions
of corrupted speech and noise in the STFT and cepstrum domains.
We build on the work by Ephraim [9] which initially derived the
means and variances of cepstral coefficients for complex Gaussian
STFT models. We use the approach in [11] to derive formulas that
consider the effect of tapered spectral analysis. We also show that
both posterior and likelihood distributions are accurately described
by Gaussian distributions and propose some possible ways of ex-
ploiting this fact for speech enhancement purposes.

2. THE GAUSSIAN MODEL OF SPEECH DISTORTION IN
STFT DOMAIN

Let y(n) and z(n) denote corrupted and clean speech signals respec-
tively and Y and X their respective complex valued STFT matrices.
Let k and [ denote frequency and analysis frame indices. In this work
we employ the Gaussian model for speech in the STFT domain. This
model assumes that each Fourier coefficient of the observable noisy
signal Y} corresponds to the sum

Yt = Xwt + D, ey

where X}, is the hidden Fourier coefficient of the clean speech
and Dy; is a hidden distortion statistically independent of X;. The
model also assumes following a priori circular symmetric complex
Gaussian distributions

X ~ Ne (0, /\25) , )
Dy~ Ne (0,00) - 3)

In order to determine this model, the variances of the hidden
clean and corrupted speech Fourier coefficients, i.e. the PSDs Apy, =
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E{|Xw|*} and Af; = E{|D|*} have to be estimated. There are
multiple methods available depending on the type of distortion mod-
eled. Within the scope of this work the additive noise case will be
considered, the results can be however extended to late reverberance
suppression [2] or other approaches exploiting the same model.

Once the a priori parameters have been determined MMSE esti-
mators like the Wiener (e.g. [12]) or Ephraim-Malah filters [1, 3] can
be employed to estimate the clean speech. The objective of this work
is however to propagate the statistical relation implied by equations
(1), (2), (3) to cepstrum domain prior to performing any estimation.
In what follows we will then consider the joint distribution of each
corrupted and clean Fourier coefficient, which is given by

Yi 0] S +AE A\
]~ (o) 55 38))

3. DERIVING A MODEL OF SPEECH DISTORTION IN
CEPSTRAL DOMAIN

3.1. Joint Uncertainty Propagation into Cepstrum Domain

Let the clean cepstrum be defined by

x; = IFFT (log (|Xi]?)), 4)

where X is the the [ frame of the clean STFT and magnitude,
square and logarithm operations act element-wise. Let the cepstrum
of the corrupted speech y; be computed in analogous form from Y.
Since X; and Y are correlated also the joint distribution of x; and
y: will include a statistical dependence. The main premise of the
approach presented here is that this distribution can be modeled by
the jointly Gaussian distribution

Yir| ui"-‘l E%’z Z;yzz
|:xil:| N ([Nﬁ:| ’ {Efi” al)’

where we here consider the cepstral coefficients z;; and y;; to
be independent of their adjacent coefficients. This is justified by the
decorrelation properties of the IFFT in (4). The method proposed
here relates the joint distributions of corrupted and clean speech in
STFT and cepstrum domains, similarly to how uncertainty propa-
gation (UP) [6] relates the posterior distributions of clean speech in
both domains. For this reason the method is here termed joint uncer-
tainty propagation (JUP).

3.2. JUP based Estimators and Inference

Once the parameters of the JUP have been determined, it is possi-
ble to perform various types of estimations. The most straightfor-
ward way is to derive the posterior distribution of the clean cepstrum
given the observed cepstrum p(z;;|y:). The mean of the posterior
distribution is in fact the MMSE estimator of the cepstrum given the
available information, thus

MMSE i
& =Y =+ 2 STRA T ®)
il
An equivalent estimator to this was also derived in [9, eq. (32)],
but in difference, our proposal includes the effect of the tapered
spectral analysis windows. Further, in contrast to the result pre-
sented here, the equivalent solution in [9] was found as the linearly-
constrained MMSE estimator without defining the joint distribution
or posterior. Under the assumption of joint Gaussianity the associ-
ated posterior distribution can be propagated back into the amplitude

and MFCC domains using the same formulas as for the RASTA fil-
tered uncertain features in [13] and the residual mean square error
(MSE)

MSE = 5V = %7 — ( ©)
as the source of uncertainty. Interestingly, the assumption of a

jointly Gaussian distribution in the cepstral domain provides also the

possibility of computing the likelihood p(y:i|x:1) with mean
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and variance

(3

This likelihood can be then combined with other models with
richer a priori information obtained from pre-training, or the predic-
tion step of recursive Bayesian estimators. This allows to exploit the
properties of the cepstral domain, more appropriate for modeling of
speech, while using conventional STFT domain distortion models.
Let

wa|m ~ N (uit, Ai') ©)
be a Gaussian prior obtained from this richer a priori information

m. A new MMSE estimator and corresponding residual MSE can be
attained from p(yi;|x) and p(zi;|m) and the Bayes theorem as

il | T4l Tql |
= Pllraplaadm)
Jo p(yatlza)p(zalm)da,
Since both prior and likelihood are Gaussian distribution this
yields another Gaussian posterior with mean

p(Tilyit,

g = =y ZH ey
¥ a7 + Ey\w a4 Eylz
and variance
CLQ)‘ZL E?z‘x
where
»ye
a= Sl (13)
il
and
u=a-yy —a-pf+a’-ph. (14)

Finally, the likelihood can be also used for robust inference in
the cepstrum domain by using Joint Uncertainty Decoding (JUD)
[14], similarly to how UP [6] is used with uncertainty decoding (UD)
[15].

4. DERIVING THE CEPSTRAL MEAN, VARIANCE AND
COVARIANCE

In order to compute the parameters of the JUP, for instance the means
of the posterior and likelihood (5), (7), we need to model the means
Wi, 1y, the variances 25, Y, as well as the covariance %"

For complex Gaussian spectral coefficients where neighboring
frequency bins are uncorrelated, the resulting means and variances of
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cepstral coefficients are derived in [9]. In practice, tapered spectral
analysis windows will be used when computing the STFT. The mul-
tiplication with this analysis window in time domain corresponds
to a convolution in frequency domain. This convolution necessarily
results in a correlation of neighboring frequency coefficients and
results in cepstral variances that are not flat, but decaying from low
to large cepstral coefficients. The general effect of a correlation of
neighboring complex Gaussian distributed frequency coefficients
on the cepstral variance is given in [16]. In [11] the results for the
mean and variance of cepstral coefficients are generalized when
the magnitude-square of complex spectral coefficients are Gamma
(x?) distributed. This parameterizable distribution comprises the
results for complex-Gaussian distributions but can also be used to
model super-Gaussian distributed complex spectral coefficients and
smoothed periodograms. Further, in [11] compact solutions are
given for the effect of tapered spectral analysis windows on the
cepstral variance. In this section we also derive the cross-covariance
between the clean and corrupted speech in the cepstral domain,
when tapered spectral analysis windows are employed that result in
a correlation of neighboring frequency coefficients.

For a real-valued time domain signal, for large frame sizes
the complex cepstral coefficients are asymptotically Gaussian dis-
tributed. In particular, the DC and Nyquist bin are real-valued and
Gaussian distributed, while the remaining coefficients are complex
with Gaussian distributed real and imaginary parts. As a result, we
obtain for the mean of the cepstrum [11]

1y = IDFT {E{log(|X;|*)} }

= IDFT {log(E{|X:[*})} — ¢, (15)
with
C+ 2log(2) ,i=0
e=1< 2log(2) , 1 even (16)
0 ;4 odd,

where we employed [17, Sec. 8.366] and C = 0.5772... is the Euler
constant [17, Sec. 9.73]. The same results hold for ufl correspond-
ingly. For the large K usually employed in speech processing, the
term = log(2) can be neglected.

For Gaussian distributed and spectrally uncorrelated coefficients
the variance of cepstral coefficients is derived to be 7*/(6K) and
twice as high at the zeroth and K'/2th cepstral coefficient [9]. How-
ever, the spectral correlation caused by a tapered spectral analysis
window results in the cepstral variance [11]
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For the Hann spectral analysis window we have M = 2 and k1 =
0.507 and k2 = 0.028 [11]. The same results hold for XY corre-
spondingly.

To compute the covariance of cepstral coefficients, we will first
consider the correlation in the spectrum domain. For neighboring
frequency coefficients, the correlation coefficient is defined as

B P
B{IXkPY B Xerm '}

px x (m) (18)

Assuming speech and noise are uncorrelated, the correlation be-
tween the clean and corrupted speech can be computed as

Py (m) = E{XeYend P [B{XeXE
E{Xk P E{Yirm[?}  E{|Xk[?} E{|Yitm[?}
E{|Xk+m|2}

E{|Xk+m|2} + E{|Dk+m|2} .

= P%(X(m) (19)

Thus, with the correlation introduced by a Hann window px x (0) =
1,pxx(1) = 2/3, pxx(2) = 1/6, we can determine correlation
between clean and corrupted speech from the speech and noise PSDs
Ay = E{|Xu|*} and \fy = E{|Dw|*}. Similar to [9, 16], for
complex Gaussian distributed spectral coefficients, we can obtain
the covariance in the log-domain as

oo

1 9,
cov(log | Xx|*, log|Yitm[*) = Y ¥ (m).  (20)

n=1

A more general solution is obtained by modeling the periodograms
| X1|?,|Y|? by the parameterizable Gamma () distribution. The
results for this generalized model are given in [11, Eq. (16)]. The
cepstral covariance %" is finally obtained by taking a 2D inverse
Fourier transform of (20).

5. EXPERIMENTS AND RESULTS

5.1. Monte Carlo Simulation Tests

In order to asses the accuracy of the proposed propagation algorithm
a Monte Carlo simulation was used. Two stationary white signals of
le6 samples where generated in the time domain simulating decor-
related clean speech and noise processes. Both the clean signal and
the corrupted signal, the addition of both signals, were firstly trans-
formed into the STFT domain using Hann spectral analysis windows
where they were scaled with random variances to meet a given seg-
mental signal to noise ratio [18]. The SNR ranged from —10dB to
40dB. These were later transformed into the cepstrum domain where
the statistics were computed and compared with the JUP analytic so-
lution derived in Section 4.

Figure 1 compares the Monte Carlo and JUP estimated param-
eters of the joint distribution of clean and corrupted speech in the
cepstrum domain. The quefrency shown corresponds to the average
case, although there is not much difference between different que-
frencies. As it can be seen, the JUP estimates are very accurate for
the whole range of SNR explored and the small variations observed
are due to the intrinsic variability of Monte Carlo estimates.

Figure 2 compares the Monte Carlo and JUP estimated poste-
rior and likelihood distributions for two selected SNRs of around
0dB and 20dB respectively. The JUP estimated distributions are as-
sumed to be Gaussian with parameters given by (5) (6) (7) (8) while
the Monte Carlo estimate is an histogram attained by selecting sam-
ples of a very thin interval of either x;; or y;;. As it can be seen
the estimated JUP posteriors and likelihoods accurately match the
empirical data and the Gaussian assumption under which this model
was derived. A slight overestimation of the variance can be observed
at high SNR, this is nevertheless small compared with the range of
variation of the cepstra.

5.2. Speech Enhancement Tests

To provide some practical application of the presented technique,
speech enhancement tests were carried out using the AURORA4
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Fig. 1. Estimated parameters of the joint distribution of corrupted
and clean speech in the cepstrum domain against SNR. Montecarlo
(solid grey) versus JUP (dashed black).

large vocabulary corpus [19]. This corpus provides speech artifi-
cially corrupted with a variety of noises. The 166 sentence car noise
test set was selected for this experiment. The estimation of the a pri-
ori parameters A, and A5} was carried out using [20] and [10] with
the bias compensation from [11]. Two measures of acoustic quality
were used, perceptual evaluation of speech quality (PESQ) [21] and
MSE in the cepstral domain.

The test compared three conventional estimators derived from
the Gaussian model of speech distortion, Wiener, MMSE-STSA [1]
and MMSE-LSA [3] against two estimators derived from JUP. The
first estimator was the JUP-MMSE-ceps estimator in (5), obtained
from the posterior. The second was a proof-of-concept regarding
the use of additional a prior information in the cepstrum domain.
For this purpose an oracle prior, a Dirac delta centered on the clean
cepstrum, was used. To artificially vary the amount of a priori in-
formation a distortion was added to the mean of the oracle prior at a
given SNR. The variance of the prior was also modified accordingly
to reflect the lack of information. This prior was then used together
with the JUP likelihood defined by (7) and (8) to attain the estimate
given by (11). This was termed JUP-MMSE-ceps-OP.

As shown in Table 1 the results for the three estimators are very
similar in terms of PESQ performance when compared to the stan-
dard deviation. The performance of the JUP-MMSE-ceps remains
between the Wiener and the MMSE-STSA and MMSE-LSA. In the
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Fig. 2. Posterior and likelihood distributions of corrupted and clean
speech in the cepstrum domain. 0dB SNR (left) compared to 20dB
SNR (right). Montecarlo (solid grey) versus JUP (dashed black) es-
timates.

Table 1. PESQ and SNR Values

PESQ MSE

mean std mean std
Noisy 2.62 | 024 | 587 | 2.29
MMSE-LSA 3.09 | 020 | 543 | 0.54
MMSE-STSA 3.08 | 0.20 | 473 | 045
Wiener 3.00 | 0.20 | 23.94 | 247
JUP-MMSE-ceps 303 | 022 | 3.77 | 1.33
JUP-MMSE-ceps (OP0dB) | 293 | 0.29 | 4.85 1.57
JUP-MMSE-ceps (OP 3dB) | 3.12 | 0.25 | 3.97 1.26
JUP-MMSE-ceps (OP 5dB) | 3.23 | 0.24 | 2.68 | 0.87

case of cepstral MSE, however, the JUP based estimators outper-
form all other estimators. For the estimator with oracle prior JUP-
MMSE-ceps-OP the behavior is as expected. For poor a priori in-
formation the performance is below that of the conventional estima-
tors. As the a priori information increases the performance of the
JUP-MMSE-ceps-OP estimator increases and outperforms all other
estimators. Although not included here, results show that the gap
between MMSE-STSA, MMSE-LSA and the JUP-MMSE-ceps is
further reduced for ideal estimations of Ay and AL). This indicates
that JUP based estimators are more sensitive to errors in the a priori
estimation of parameters, an aspect that will have to be studied in
further works.

6. CONCLUSIONS

In this work we have shown that the joint distribution of clean and
corrupted cepstrum can be accurately modeled by a jointly Gaus-
sian distribution given the parameters of the conventional Gaussian
model of speech distortion in STFT domain. We have derived closed
form solutions to compute the parameters of this joint distribution
when using tapered spectral analysis window and discussed differ-
ent applications for enhancement purposes.
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