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ABSTRACT

To improve speech communication in noisy and reverberant envi-

ronments, an increased interest is shown to develop algorithms that

make efficiently use of acoustic wireless sensor networks (WSNs).

The processors and sensors forming these WSNs can be owned by

multiple users. Sending private data across such a WSN can lead to

severe privacy and security issues and may limit its acceptance. Us-

ing the advantages of WSNs, while guaranteeing people’s privacy,

requires therefore to share processors and data in a privacy preserv-

ing manner.

In this paper we raise attention to the problem of privacy and

security for distributed speech enhancement and propose the new

paradigm of privacy preserving distributed beamforming. Using

cryptographic techniques, particularly homomorphic encryption,

we demonstrate how distributed beamforming techniques can be

computed in a privacy preserving manner in the encrypted domain.

Index Terms— wireless sensor networks, distributed algo-

rithms, speech enhancement, encryption

1. INTRODUCTION

Digital speech processing applications play an important role in the

world of today. Examples can be found in all sorts of communica-

tion devices like mobile telephony, (smart) phone applications, voice

controlled devices, hearing aids and cochlear implants. These appli-

cations have in common that both speech quality and speech intel-

ligibility degrades under noisy conditions, e.g. at a cocktail party.

An effective way to increase quality and intelligibility is to equip

these applications with a multi-microphone noise reduction algo-

rithm, e.g., [1–3]. These methods can use spatial and temporal filter-

ing. As a consequence, speech quality and speech intelligibility can

be increased [4]. This is in contrast to the single-channel noise re-

duction algorithms that generally show no speech intelligibility im-

provement [4, 5] or only very modest improvements, see e.g., [6].

Unfortunately, due to physical limitations, e.g., size and battery

power, most applications with multi-microphone noise reduction al-

gorithms are only equipped with a small number of microphones, of-

ten at most two or three. This severely limits the performance. The

advances in wireless sensor networks (WSNs), allows to develop fu-

ture applications that can use a much larger number of additional

microphones and processors that are present in the environment.

An application scenario would be a room with a pre-installed

WSN of microphones, each equipped with a processing unit. In ad-

dition, speech processors like hearing aids and mobile phones that

are present in the room can connect to the WSN and extend it.

This research is supported by the Dutch Technology Foundation STW.

However, for a large WSN, the conventional centralized multi-

channel noise reduction algorithms (for example [1–3]) are neither

robust nor scalable, since all processing is done at a single processor

and all data in the network needs to be transmitted to this proces-

sor. In addition, WSNs may be dynamic as sensor nodes may join

or leave the network due to a defect or empty battery, resulting in

unpredictable changes in network size and topology.

This requires the development of distributed noise reduction al-

gorithms that work in a decentralized manner. Ideally, they should

only make use of local information and be robust in dynamic net-

works, where microphones may leave or enter the network or even

move throughout the environment. This will make them favorable

to use in future WSNs over the use of the more conventional cen-

tralized multi-microphone noise reduction algorithms that are often

constraint to a fixed non-dynamic microphone configuration.

Recently, these requirements led to an increased interest to de-

velop distributed noise reduction algorithms. For example, in [7],

a distributed binaural multi-channel Wiener filter (MWF) was pre-

sented that uses two hearing aids and converges to the (centralized)

binaural MWF presented in [8] for a single target speaker. This work

has been generalized in [9] to the distributed adaptive node-specific

signal estimation (DANSE) algorithm to handle more sensors and

target speakers for distributed estimation of the centralized filter co-

efficients. In [10] the DANSE algorithm was used in a linearly con-

strained fashion, to construct a node-specific linearly constrained

minimum variance beamformer. Related to this, in [11] a distributed

version of the minimum variance distortionless response (MVDR)

beamformer was presented exploiting an efficient distributed single

constraint generalized sidelobe canceler. Different approaches were

followed in [12, 13] and [14], where distributed beamformers were

presented based on the randomized gossip algorithm [15] and dis-

tributed message-passing algorithms [16, 17], respectively.

While the distributed binaural MWF from [7] involves only two

devices each equipped with several sensors and both owned by the

same user, the algorithms presented in [9–14] allow the use of many

sensors in a distributed fashion not specifically owned by one user.

The fact that the WSN can be formed by processors and sensors that

are owned by multiple users can lead to severe privacy and security

issues. It can lead to the situation that other users of the same WSN

know with certainty to which person a hearing aid user intends to lis-

ten. Moreover, potentially untrusted people can access the WSN and

eavesdrop conversations. More specifically, with distributed beam-

forming some of the information related to the conversation the user

intends to follow will be part of the information flowing through

the WSN, e.g., the direction or position of the source of interest by

means of the acoustic transfer function, or, intermediate estimates of

the signal of interest. Also, as the user might share his own hearing

aids or mobile phone as part of the WSN, other users have access to
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his processors and microphones as well, while the owner of this de-

vice probably does not want to share any details of his conversation

or knowledge on the signal he is listening to.

Looking at the recent development on distributed speech en-

hancement described above and the advances in WSNs, we envision

that distributed processing in WSNs will play an important role for

future speech communication. At the same time, privacy is one of the

most important values of our society. However, despite the increased

interest to develop distributed speech enhancement algorithms for

WSNs, privacy and security aspects are currently unaddressed. We

strongly believe that a key feature for the success and acceptance

of WSNs in speech communication systems is the development of

algorithms that can guarantee the privacy of the users.

To achieve privacy-protection, the principles of secure signal

processing (SSP) [18] [19] can be applied. In SSP, data is encrypted

using a homomorphic encryption scheme [20] that allows to perform

linear operations on the encrypted data. The decryption key will be

generated by one of the users and is unavailable to any other party.

This means that no other entity can access the private (encrypted)

data. However, using so-called homomorphic properties for linear

operations, other entities in the WSN can still process the encrypted

data. This allows the WSN to perform noise reduction for speech

enhancement, even though the data itself is encrypted and not acces-

sible without intervention of the owner of the decryption key.

In recent years, SSP has proved itself as a promising direction

for privacy-enhanced technologies as it is applied for a wide range

of signal processing applications, e.g., secure face recognition [21],

biometric data matching [22], data clustering [23] and Fourier trans-

formation [24]. In this paper we raise attention to the currently com-

pletely untouched, but relevant problem of privacy and security for

distributed speech enhancement algorithms and attract awareness to

the new and challenging problems that this brings. We demonstrate

how existing distributed multi-microphone algorithms can be used

within a secure environment using homomorphic encryption.

2. PROBLEM FORMULATION AND NOTATION

To illustrate the problem of privacy preservation for distributed

speech enhancement, we use as an example a special case of the

distributed delay and sum beamformer (DDSB) presented in [12] in

order to estimate a certain target signal from a mix of sources. We

consider a situation with multiple users, multiple sources and multi-

ple processing entities, where each processing entity, e.g., a hearing

aid, mobile phone or a microphone that is pre-installed in the room,

is owned by a (possibly different) user and consists of a microphone

and processor. However, notice that the presented framework for

privacy preservation is not limited to the method presented in [12].

Consider the situation where a user is interested in a specific

source at a certain location. This user considers the remaining

sources as noise sources. The DDSB estimates the target signal

by processing the microphone data on a frame-by-frame basis in

the Fourier domain. Let Yi(k,m) denote a discrete Fourier trans-

form (DFT) coefficient at entity i, frequency bin k and time-frame

m. We assume that all sources are mutually uncorrelated and that

the noise sources are additive to the target source, that is,

Yi(k,m) = Si(k,m) +Ni(k,m), (1)

where Si(k,m) denotes the target (speech) DFT coefficient and

Ni(k,m) denotes the noise DFT coefficient at entity i.
The target and noise DFT coefficients are assumed to be in-

dependent across time and frequency, which allows us to omit the

time and frequency indices for notational convenience. Further, for

ease of notation we will use a stacked vector notation, i.e., Y =
[Y1, · · · , YM ]T , with M the number of entities (i.e., wireless sen-

sors in the WSN equipped with a processor) and where the super-

script (·)T denotes transposition of a vector or a matrix. The speech

and noise vector S and N are defined similarly as Y. Let d =
[d1, · · · , dM ]T be the acoustic transfer function from the speech

source to all entities. In order to concentrate on the privacy pre-

serving context, we assume in this work for simplicity a free field

situation without damping. This implies that |di| = 1 ∀ i and that

di ∀ i can be computed given the knowledge of the sensor positions

and the position of interest. In closed environments, the exact value

of di also depend on the room acoustics, which we will neglect in

this paper for simplicity. Altogether we can then write

Y = S+N = Sd+N, (2)

with S the target DFT coefficient at the target location.

Although there are many possible multi-microphone estimators

in order to estimate S, we use for illustrative purposes the delay

and sum beamformer. Under the above assumptions of a free field

without damping, this beamformer is given by

Ŝ =
1

M

M∑

i=1

d∗i Yi = Ỹave, (3)

with Ŝ the estimator of S and (·)∗ complex conjugation.

2.1. Distributed Delay and Sum Beamformer based on Ran-

domized Gossip

In order to facilitate the discussion on distributed speech enhance-

ment in a privacy preserving context, we briefly summarize in this

section the main aspects of the DDSB algorithm presented in [12].

The randomized gossip algorithm [15] can be used to solve con-

sensus problems in a distributed way. Given a connected network of

M nodes and initial scalar value gi(0) at each node i, the randomized

gossip algorithm estimates the average value gave = 1

M

∑M

i=1
gi(0)

using an iterative scheme using only local information and local pro-

cessing. Let gi(t) denote the value available at node i in iteration t.
Each iteration, a node i and a node j exchange their local informa-

tion and update their current local estimates as

gi(t) = gj(t) = (gi(t− 1) + gj(t− 1))/2. (4)

Given that the network is connected, this will converge to the average

value gave [15].

The estimator in Eq. (3) can be seen as a (weighted) average. Us-

ing the randomized gossip algorithm this average can be computed

in a distributed fashion, for each time frame m and frequency bin k.

Let Ỹi(t) denote the value available at node i and iteration t. The

initial value at node i is then given by

Ỹi(0) = d∗i Yi. (5)

Given this initial value, the randomized gossip algorithm can be used

to compute the average Ỹave in Eq. (3) per time frame in an itera-

tive and distributed fashion. This is done by exchanging information

across randomly selected node pairs, that is, equivalent to Eq. (4),

Ỹi(t) = Ỹj(t) = (Ỹi(t− 1) + Ỹj(t− 1))/2. (6)

The DFT coefficient Yi, needed to compute the initial value Ỹi(0),
can be obtained from the noisy data available at node i. The quantity
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d∗i in Ỹi(0) depends on the (relative location of the) target source

and sensor position, and can be provided by the user. In this work,

we consider this information about source and sensor positions as

private data, as discussed next.

2.2. Targeted Scenario for Privacy Preservation

There are many imaginable scenarios in the distributed speech en-

hancement context where privacy preservation plays an important

role. For illustrative purposes we focus here on the privacy sensitiv-

ity of di, the acoustic transfer function from source to microphone i.
Knowing di, anybody with access to the same WSN knows to which

source this user is listening to and is able to reconstruct this signal.

These di’s thus convey privacy sensitive information. In our scenario

a user wants to keep this information private, while still making use

of other (untrusted) entities to estimate a certain desired signal.

Clearly, encryption of di ∀ i will prevent information leakage on

the specific source the user is interested in. However, encrypting di
may also make it impossible to perform the necessary mathematical

operations in Eq. (3) in distributed manner. In the case of the DDSB,

these mathematical operations are scaling of d∗i and adding several

scaled d∗i values together. This thus leads to two conflicting require-

ments. While the privacy of the user can be provided by encrypting

the di’s, this encryption may make it infeasible to estimate S in dis-

tributed way. Hence, special encryption techniques are needed that

perform operations like scaling and addition of the original data, i.e.,

the plain data, by manipulating the encryptions.

3. HOMOMORPHIC ENCRYPTION

An example of an encryption system that preserves some structure

and allows to perform operations like scaling and addition on the

plain data by manipulating the encrypted data is the homomorphic

Paillier cryptographic system [25]. This is a so-called asymmetric

encryption system with two keys, that are, a public key (PK) that

can be used for encryption, and a secret key (SK) that can be used for

decryption. Let Epk and Dsk denote the encryption and decryption

operations with the public and the secret key, respectively.

The Paillier cryptosystem is additive, meaning that multiplica-

tion of two Pailler encrypted numbers yields the encryption of the

sum of the numbers, that is,

Dsk(Epk(m1) · Epk(m2)) = m1 +m2. (7)

As a consequence of the additive homomorphism, a number can also

be scaled by exponentiating its encryption by a constant, that is,

Dsk(Epk(m)c) = m · c. (8)

Generally, the signal samples involved in speech enhancement

problems are within a relatively small range. Homomorphic cryp-

tosystems such as Paillier, on the other hand, have very large mes-

sage spaces, e.g. 1024 bits, as these cryptosystems rely on mathemat-

ical hard problems like nth residues and factorization that requires

using very large numbers. An important aspect of the Paillier cryp-

tosystem is the fact that it is probabilistic, i.e., in every encryption a

random factor is introduced such that encryption of the same number

will result in a different encrypted number. The Paillier encryption

function for encrypting the number m ∈ Zn is given by,

c = Epk(m) = gm · rn mod n2, (9)

where n = p · q is a product of two large prime numbers p and q, g
is a generator of the group with order n (i.e., gn = 1 mod n2) and

can always be chosen as g = n+ 1, and r is randomly chosen from

a specific set of numbers that are co-prime1 with n. The private key

is the tuple (p, q), from which the public key follows as the tuple

(n, g). The decryption function for encryption c is defined as

Dsk(c) =
L(cλ mod n2)

L(gλ mod n2)
mod n, (10)

where L(u) = (u − 1)/n, λ = lcm(p − 1, q − 1), with lcm(a, b)
the least common multiple of two integers a and b, i.e., the smallest

positive integer that is divisible by both a and b. Notice that as we

work with modular arithmetic, a−1 is the modular inverse, defined

as, a · a−1 = 1 mod n.

As an example, we consider the encryption of the number m =
5. In this example, the secret key is chosen as (p, q) = (3, 5) leading

to a public key (n, g) = (15, 16). The numbers p and q in this

example are relatively small for demonstration purpose. In practice

they are of a much higher order for security purposes. Even with

this small number n = 15, there are already eight numbers r that are

co-prime with n, e.g., r = 7 or r = 8. Encryption of the number 5
can then lead to eight different possible outcomes, e.g.,

Epk(5) = 165715 mod 152 = 193

or

Epk(5) = 165815 mod 152 = 32.

As in practice the number n is very large, it is practically infeasible

to determine the plain data m without knowledge of the secret key.

To decrypt the encryption 193, we need to compute λ, which is in

this example given by lcm(2, 4) = 4. Then,

Dsk(193) =
L(1934 mod 152)

L(164 mod 152)
mod 15 =

5

4
mod 15 = 5 .

Notice, that as we work with modular arithmetic, 1

4
needs to be com-

puted as the modular inverse of 4, that is, 1

4
= 4 mod 15.

An important aspect of this encryption scheme is the fact that it

operates in a modular domain and that the message m needs to be

representable in this domain. This means that m should be an integer

number in the range m ∈ [0, n − 1]. Notice that negative numbers

can still be represented by either using a constant shift, or, recoding

the negative number, say −m, using its modular inverse.

4. PRIVACY-PRESERVING DISTRIBUTED SPEECH

ENHANCEMENT

In this section we will give a description on how a distributed speech

enhancement algorithm can be computed in a privacy-preserving

manner. As mentioned before, we use as an example a special case

of the DDSB presented in [12] that was briefly described in Sec. 2.1.

Speech enhancement algorithms operate on complex, non-

integer numbers, while the homomorphic encryption algorithms

work on integer numbers from a limited range. This means that

the data in a privacy-preserving distributed speech enhancement

algorithm based on homomorphic encryption needs to be scaled

(depending on the level of significance), quantized, and transformed

into real integers. This can be done by scaling and quantizing the

data and processing the real and imaginary numbers separately. The

scaling and quantization operation will be denoted by [ · ].

1Two numbers are co-prime if there is no positive divisor that can divide
both, except the number one.

7007



As Ỹi(t) in Eq. (6) is complex, it should be evaluated over the

real and imaginary parts separately. Let the subscripts ℜ and ℑ de-

note the real and imaginary part of a certain variable. Splitting the

initial values Ỹi(0) into its real and imaginary parts, we obtain

Ỹi(0)ℜ = d∗i ℜYiℜ − d∗i ℑYiℑ, (11)

and

Ỹi(0)ℑ = d∗i ℑYiℜ + d∗i ℜYiℑ, (12)

respectively.

Applying the DDSB in the encrypted domain requires three

steps. At first, the user should send encryptions of d∗i to every entity

i in the network. In the case that reverberation can be neglected,

di can be obtained based on the positions of the entities relative to

the source. Otherwise, it should be estimated, using for example

an estimate of the relative transfer function [26]. To focus on the

privacy preservation aspect, we put estimation of the quantities di
in this paper aside, and assume the user has perfect knowledge of

them.

Prior to encryption, d∗i needs to be scaled to integers, and split

into its real and imaginary parts leading to [d∗i ℜ] and [d∗i ℑ], respec-

tively. Together with the public key, the user sends then the encryp-

tions Epk([d
∗
i ℜ]) and Epk([d

∗
i ℑ]) to each entity i.

Secondly, in every time frame, each entity has to compute the

initial values Ỹi(0)ℜ and Ỹi(0)ℑ in the encrypted domain. Let cℜ
and cℑ denote the quantized values cℜ = [Yiℜ] and cℑ = [Yiℑ],

respectively. The initial values Ỹi(0)ℜ and Ỹi(0)ℑ can then be com-

puted in the encrypted domain as

Epk(Ỹi(0)ℜ) = Epk([d
∗

i ℜ])
cℜEpk([d

∗

i ℑ])
−cℑ , (13)

and

Epk(Ỹi(0)ℑ) = Epk([d
∗

i ℑ])
cℜEpk([d

∗

i ℜ])
cℑ , (14)

respectively.

Thirdly, given the initial values in Eqs. (13) and (14), the ran-

domized gossip algorithm can be run on the encrypted data. To do

so, Eq. (6) should be translated to the encrypted domain. Given that

nodes i and j communicate in iteration t, they compute

Epk(Ỹi(t)ℜ)=Epk(Ỹj(t)ℜ)=Epk(Ỹi(t−1)
ℜ
)2

−1

Epk(Ỹj(t−1)
ℜ
)2

−1

,

and

Epk(Ỹi(t)ℑ)=Epk(Ỹj(t)ℑ)=Epk(Ỹi(t−1)
ℑ
)2

−1

Epk(Ỹj(t−1)
ℑ
)2

−1

,

where 2−1 denotes the modular inverse of 2. Further, notice that

the scaling operation [ · ] should be a multiple of two, related to the

number of applied iterations to guarantee that Ỹi(t) stays in the inte-

ger domain. After a pre-chosen number of iterations T , the user can

decrypt the quantities Epk(Ỹi(t)ℜ) and Epk(Ỹi(t)ℑ) using the secret

key, compensate for the applied scaling, and subsequently compute

the estimate Ŝ and construct the time-domain waveform by comput-

ing an inverse DFT followed by an overlap-add.

Although all entities in the network collaborate in estimating Ŝ
for one specific user, no information on the source of interest will

leak to these entity, as the secret key is only known by the user.

5. CHALLENGES IN SECURE SIGNAL PROCESSING FOR

DISTRIBUTED SPEECH ENHANCEMENT

Homomorphic cryptosystems like Paillier depend on hard problems,

which rely on large numbers of hundreds of bits. Consequently, en-

crypting signal samples, which are usually a couple of bits in size,

results in very large numbers, introducing data expansion. Repre-

sentation of the signal samples in the encrypted domain and their

transmission and storage are challenging tasks [27]. Moreover, due

to working with large integer numbers in the encrypted domain, op-

erations like exponentiation become significantly expensive in terms

of run-time compared to operations in the non-encrypted domain.

Another challenge is that existing practical homomorphic cryp-

tosystems allow to realize either addition or multiplication of non-

encrypted numbers, but not both. That is, they allow to either com-

pute Epk(a + b) or Epk(a · b). In the current application this means

that with respect to Eqs. (11) and (12) we either encrypt the di val-

ues and consider the noisy DFT coefficients Yi as constants or vice

versa. Multiplying two encrypted numbers is thus problematic in

the homomorphic encryption scheme. Realizing such operations in

the encrypted domain requires other cryptographic tools, namely se-

cure function evaluation techniques (see e.g. [19]). These techniques

mostly consist of interactive protocols. Besides multiplication, this

also holds for operations like the logarithm, exponentiation, compar-

ison, division, etc. Unfortunately, existing cryptographic protocols

in literature for operations like division and comparison are very

generic as they are not designed by taking the signal nature of the

data into account. If used naively, the resulting cryptographic proto-

cols for the signal processing algorithms will be impractical in terms

of run-time, bandwidth and storage.

A way to reduce the costs is to design tailor-made protocols.

This can be achieved in two steps: 1) the signal processing algo-

rithm can be optimized in the numbers of operations, and 2) the

cryptographic protocols, particularly the interactive ones with com-

plex operations, can be designed by taking the signal nature of the

data into account. To be more precise, a certain signal processing op-

eration does not need to be exact and can still be usable in practice.

This optimized version of the algorithm with an estimate of the re-

sult could be implemented more efficiently in the encrypted domain.

For distributed speech enhancement, there are also other challenges

like fully distributed microphone systems with no central authority

to control the system and extremely limited processing power and

storage capacity. This makes it obligatory to design cryptographic

protocols using lightweight cryptographic tools, which are designed

for limited devices such as RFID tags [28]. Nevertheless, to ad-

dress such problems for speech enhancement, a deep understanding

in both cryptography and signal processing is required.

6. CONCLUDING REMARKS

In this work we raised attention to the fact that privacy preservation is

a serious issue for distributed multi-microphone noise reduction. We

presented a new paradigm of privacy preserving distributed beam-

forming and proposed a secure distributed speech enhancement tech-

nique based on homomorphic encryption. Via an example of a sum

and delay beamformer we have shown that privacy preserving beam-

forming is feasible by processing in the encrypted domain. How-

ever, to make privacy preserving beamforming applicable to more

advanced distributed multi-microphone noise reduction algorithms,

cryptographic protocols should be designed that are adjusted to the

specific application in order to reduce communication and compu-

tational costs. On the other hand, when designing signal processing

algorithms, the potentials and limitations of cryptographic tools have

to be accounted for. Thus, to achieve the goal of privacy preserving

speech enhancement, an integrated approach between the fields of

cryptography and speech signal processing is necessary.
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