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ABSTRACT

The REVERB challenge provides a common framework for
the evaluation of speech enhancement algorithms in the pres-
ence of both reverberation and noise. This contribution pro-
poses a system consisting of a commonly used combination
of a beamformer with a single-channel speech enhancement
scheme aiming at joint dereverberation and noise reduction.
First, a minimum variance distortionless response beam-
former with an on-line estimated noise coherence matrix is
used to suppress the noise and possibly some reflections. The
beamformer output is then processed by a single-channel
speech enhancement scheme, incorporating temporal cep-
strum smoothing which suppresses both reverberation and
residual noise. Experimental results show that improvements
are particularly significant in conditions with high reverbera-
tion times.

Index Terms— REVERB challenge, dereverberation,
noise reduction.

1. INTRODUCTION

In teleconferencing applications, voice-controlled systems
and hearing aids, the recorded speech signals are often cor-
rupted by both reverberation and noise, resulting in speech
quality and speech intelligibility degradation, as well as de-
terioration in automatic speech recognition (ASR) perfor-
mance. Several algorithms have been proposed in the litera-
ture to deal with these issues [1–6], but the lack of a common
evaluation framework made the comparison between differ-
ent approaches difficult. The REVERB challenge proposes
an evaluation framework aiming to facilitate the progress of
speech enhancement algorithms for noisy and reverberant
environments [7].

The research leading to these results has received funding from the EU
Seventh Framework Programme project DREAMS under grant agreement
ITN-GA-2012-316969, from the DFG Cluster of Excellence 1077 Hear-
ing4All, from a GIF grant, and from the MWK PhD Program Signals and
Cognition.

The system proposed in this contribution consists of a
commonly used combination of a beamformer and a single-
channel speech enhancement scheme. First, the multi-channel
input signals are processed using a minimum variance distor-
tionless response (MVDR) beamformer [8], which aims to
suppress sound sources not arriving from the direction of ar-
rival (DOA) of the target speaker. The noise coherence matrix
in the MVDR beamformer is estimated from noise-only peri-
ods, determined using a voice activity detector (VAD) [9], and
the DOA of the target speaker is estimated using the multiple
signal classification (MUSIC) algorithm [10, 11].

The beamformer output is then processed using a single-
channel speech enhancement scheme, which aims at jointly
suppressing the remaining noise and reverberation and relies
on estimates of the power spectral densities (PSDs) of the
noise and of the reverberation similarly as in [5]. The pro-
posed scheme computes a real-valued gain function combin-
ing the clean speech amplitude estimator in [12], the noise
PSD estimator based on minimum statistics in [13], and the
estimator of the PSD of the late reverberation based on statis-
tical room acoustics in [14]. In addition, adaptive smoothing
in the cepstral domain is used to estimate the speech PSD in
order to reduce the musical noise which is often a byproduct
of spectral enhancement schemes [15].

This paper is organized as follows. In Section 2 the no-
tation is introduced and the proposed system is described. A
description of the used beamformer is provided in Section 3,
while the single-channel spectral enhancement scheme is de-
scribed in Section 4. The challenge and the evaluation corpus
are introduced in Section 5 and the results achieved by the
proposed system are presented in Section 6.

2. NOTATION AND CONFIGURATION

Consider an acoustic system with a single speech source and
M microphones. The reverberant and noisy m-th microphone
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Fig. 1. Overview of the proposed system.

signal ym(n) at time index n is given by

ym(n) = s(n) ∗ hm(n) + vm(n)

= xm(n) + vm(n), m = 1, · · · , M,
(1)

with s(n) being the clean speech signal, hm(n) being the
room impulse response (RIR) between the source and the m-
th microphone, and xm(n) and vm(n) denoting the reverber-
ant speech component and the additive noise component of
the m-th microphone signal, respectively. Aiming to obtain
an estimate ŝ(n) of the clean speech signal s(n), the speech
enhancement scheme depicted in Fig. 1 is proposed.

First, the received microphone signals ym(n) are used to
estimate the noise coherence matrix and the DOA of the target
speech signal. The DOA estimation is based on the MUSIC
algorithm [10, 11] which will be briefly described in Sec-
tion 3.2. The estimated noise coherence matrix and DOA are
then used to design an MVDR beamformer, which aims at
noise reduction and some dereverberation by suppressing the
sound sources not arriving from the target DOA while provid-
ing a unity gain in the direction of the target speaker. Finally,
the beamformer output x̂(n) is processed by a single-channel
speech enhancement scheme, described in Section 4, which
aims at joint noise and reverberation suppression.

In the remainder of this paper, the short-time Fourier
transform (STFT) representations of s(n), xm(n), vm(n),
ym(n) and x̂(n) are denoted by S(k, ℓ), Xm(k, ℓ), Vm(k, ℓ),
Ym(k, ℓ) and X̂(k, ℓ), respectively, with k and ℓ representing
the frequency bin and frame indices.

3. BEAMFORMER

3.1. MVDR beamformer

The M -dimensional stacked vector of the received micro-
phone signals Y(k, ℓ) can be written as

Y(k, ℓ) = X(k, ℓ) +V(k, ℓ), (2)

with

Y(k, ℓ) = [Y1(k, ℓ) Y2(k, ℓ) . . . YM (k, ℓ)]T , (3)

and X(k, ℓ) and V(k, ℓ) defined similarly as in (3). The
beamformer output signal X̂(k, ℓ) is obtained by filtering and
summing the microphone signals, i.e.,

X̂(k, ℓ) = W
H
θ (k)Y(k, ℓ)

= W
H
θ (k)X(k, ℓ) +W

H
θ (k)V(k, ℓ),

(4)

with Wθ(k) denoting the stacked filter coefficient vector of
the beamformer steered towards the angle θ. Aiming at min-
imizing the noise output power while providing a unity gain
in the direction of the target speaker, the filter coefficients of
the MVDR beamformer are computed as

Wθ(k) =
Γ−1(k)dθ(k)

dH
θ (k)Γ−1(k)dθ(k)

, (5)

with dθ(k) denoting the steering vector of the target speaker
and Γ(k) denoting the noise coherence matrix. Using a far-
field assumption, the steering vector is equal to

dθ(k) = [e−j2πfkτ1(θ) e−j2πfkτ2(θ) · · · e−j2πfkτM (θ)], (6)

with fk denoting the center frequency of bin k and τm(θ)
denoting the time difference of arrival of the source signal
between the m-th microphone and a reference position, which
has been arbitrarily chosen as the center of the microphone
array.

As can be clearly seen from equations (5) and (6), in order
to compute the beamformer filter coefficients, the DOA of the
target speaker as well as the noise coherence matrix need to
be estimated. Estimation of the target DOA will be discussed
in Section 3.2. To estimate the noise coherence matrix Γ(k),
the VAD described in [9] is used and Γ(k) is computed using
all detected noise-only frames. However, if the length of the
detected noise-only period is too short (cf. Section 5), the co-
herence matrix Γdiff(k) of a diffuse noise field is used instead,
resulting in the well-known superdirective beamformer [8].
Since superdirective beamformers are known to be sensitive
to uncorrelated noise, a white noise gain constraint WNGmax
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Fig. 2. Overview of the proposed single-channel enhancement scheme for a single frame.

is imposed in this case. With such a constraint the filter coef-
ficients are computed as

Wθ(k) =
(Γdiff(k) + ϱ(k)IM )−1

dθ(k)

dH
θ (k) (Γdiff(k) + ϱ(k)IM )−1

dθ(k)
(7)

with IM the M ×M -dimensional identity matrix and ϱ(k) a
frequency-dependent regularization parameter which is iter-
atively computed such that WH

θ (k)Wθ(k) ≤ WNGmax [16]
.

3.2. DOA estimation

Since an error in the DOA estimate θ̂ of the target speech sig-
nal can lead to the beamformer suppressing the desired signal,
a robust subspace-based algorithm (MUSIC) has been used to
estimate the DOA of the target speaker [10, 11]. Using the
MUSIC algorithm, this DOA can be estimated as

θ̂ = argmax
θ

1

K

khigh
∑

klow

Uθ(k, ℓ), (8)

where K denotes the total number of considered frequency
bins k = klow . . . khigh and U(k, ℓ, θ) denotes the so-called
MUSIC pseudo-spectra, which are calculated as

Uθ(k, ℓ) =
1

dH
θ (k)E(k, ℓ)EH(k, ℓ)dθ(k)

. (9)

The noise subspace

E(k, ℓ) = [eQ+1(k, ℓ) . . .eM (k, ℓ)] , (10)

is an M × (M − Q)-dimensional matrix, with Q being the
number of sources (i.e. Q = 1 in this case), composed of the
eigenvectors of the covariance matrix of Y(k, ℓ) correspond-
ing to the (M −Q) smallest eigenvalues.

Assuming that speech and noise are uncorrelated, the
steering vector corresponding to the true DOA is orthogonal
to the noise subspace such that the DOA of the target speaker
can be estimated as the angle maximizing the sum of the
MUSIC-pseudo-spectra in equation (9).

4. SINGLE-CHANNEL ENHANCEMENT

The single-channel enhancement scheme which is applied to
the output signal x̂(n) of the MVDR-beamformer is sum-
marized in Fig. 2. The signal x̂(n) is assumed to contain
the clean speech signal s(n) as well as residual reverberation
r(n) and noise ṽ(n), i.e.

x̂(n) = s(n) + r(n) + ṽ(n). (11)

In the STFT domain, (11) is expressed as

X̂(k, ℓ) = Z(k, ℓ) + Ṽ (k, ℓ), (12)

where

Z(k, ℓ) = S(k, ℓ) +R(k, ℓ). (13)

Aiming at jointly reducing reverberation and noise, a real-
valued gain G(k, ℓ) is applied to the beamformer output sig-
nal, i.e.

Ŝ(k, ℓ) = G(k, ℓ)X̂(k, ℓ), (14)

with Ŝ(k, ℓ) being the STFT of the estimated target signal.

The gain is computed by using the minimum mean square
error (MMSE) estimator for the clean speech magnitude pro-
posed in [12]. This estimator, similarly to the Wiener filter,
requires the PSDs of the clean speech, of the noise and of the
reverberation components, which have to be estimated from
the beamformer output signal. First, an estimate of the noise
PSD is obtained using minimum statistics [13] and further
used to estimate the reverberant speech PSD. As the dere-
verberation task is treated separately from the denoising task,
care has to be taken that no reverberation leaks into the noise
PSD estimate and vice versa. Thus, in order to avoid the
reverberation leaking into the noise PSD estimate, a longer
minimum search window is used in the minimum statistics
approach as compared to [13] (cf. Section 5).

The PSD of the reverberant speech is estimated using tem-
poral cepstrum smoothing [15] and the late reverberation PSD
is estimated from the reverberant speech PSD using the ap-
proach proposed in [17]. This approach requires an estimate
of the reverberation time T60, which has been obtained using
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the estimator described in [18]. The PSD of the clean speech
component is finally obtained by a re-estimation, again using
temporal cepstrum smoothing. The following sections give a
more detailed description of the different components of the
proposed single-channel enhancement scheme.

4.1. Gain function

In [12], it is assumed that the speech magnitude |S(k, ℓ)| fol-
lows a chi probability density function (PDF) with a shape
parameter µ, while the phase of S(k, ℓ) is assumed to be uni-
formly distributed between −π and π. Furthermore, the in-
terference J(k, ℓ) = R(k, ℓ) + Ṽ (k, ℓ) is modeled by a com-
plex Gaussian random variable with PSD σ2

j (k, ℓ). Assuming

that R(k, ℓ) and Ṽ (k, ℓ) are uncorrelated, σ2
j (k, ℓ) can be ex-

pressed as

σ2
j (k, ℓ) = E

{

|J(k, ℓ)|2
}

= σ2
ṽ(k, ℓ) + σ2

r (k, ℓ), (15)

with σ2
r (k, ℓ) and σ2

ṽ(k, ℓ) denoting the PSDs of the reverber-
ation and of the noise component, respectively. With σ2

s (k, ℓ)
denoting the PSD of the clean speech and ξ(k, ℓ) denoting the
a priori signal-to-interference ratio (SIR) defined as,

ξ(k, ℓ) =
σ2
s (k, ℓ)

σ2
r(k, ℓ) + σ2

ṽ(k, ℓ)
, (16)

the clean speech magnitude is estimated by optimizing the
MMSE criterion
∣

∣

∣
Ŝ(k, ℓ)

∣

∣

∣
= argmin

|Ŝ(k,ℓ)|
E
{

ϵ(k, ℓ)|X̂(k, ℓ),σ2
j (k, ℓ), ξ(k, ℓ)

}

,

(17)
with

ϵ(k, ℓ) =

(

|S(k, ℓ)|β −
∣

∣

∣
Ŝ(k, ℓ)

∣

∣

∣

β
)2

, (18)

where the parameter β is a compression factor such that a
different emphasis is given on estimation errors for small am-
plitudes in relation to large amplitudes.

According to [12], with γ(k, ℓ) denoting the a posteriori

SIR defined as

γ(k, ℓ) =
|X(k, ℓ)|2

σ2
r(k, ℓ) + σ2

ṽ(k, ℓ)
, (19)

and

ν(k, ℓ) =
γ(k, ℓ)ξ(k, ℓ)

µ+ ξ(k, ℓ)
, (20)

the solution to (17) leads to the gain function G̃(k, ℓ)

G̃(k, ℓ) =

√

ξ(k, ℓ)

µ+ ξ(k, ℓ)
×

⎡

⎣

Gam
(

µ+ β
2

)

Gam (µ)

Φ
(

1− µ− β
2 , 1;−ν(k, ℓ)

)

Φ (1− µ, 1;−ν(k, ℓ))

⎤

⎦

1/β

×

(

√

γ(k, ℓ)
)−1

,

(21)

where Φ(·) denotes the confluent hypergeometric function
while Gam (·) denotes the complete Gamma function. De-
pending on the choice of β and µ, this estimator can resemble
other well known estimators, such as the short-time spectral
amplitude estimator [19] or the log-spectral amplitude esti-
mator [20]. To compute the expression in (21), the PSDs
σ2
s(k, ℓ), σ

2
ṽ(k, ℓ) and σ2

r (k, ℓ) have to be estimated from the
beamformer output.

In order to reduce artifacts which may be introduced
by (21), the gain G(k, ℓ) used in (14) is restricted to values
larger than a spectral floor Gmin (cf. Section 5), i.e.,

G(k, ℓ) = max
(

G̃(k, ℓ), Gmin

)

. (22)

4.2. Noise PSD estimator

The noise PSD σ2
ṽ(k, ℓ) is estimated using the minimum

statistics approach [13], which tracks the minima of the input
signal PSD over a sliding window and has been shown to be
reliable for slowly varying and stationary noises. A realiza-
tion of the PSD of the noise signal is first estimated as the
smoothed periodogram of the input signal which is obtained
as

Pṽ(k, ℓ) = αPṽ(k, ℓ− 1) + (1− α)|X(k, ℓ)|2, (23)

with α denoting a smoothing parameter. The PSD σ2
ṽ(k, ℓ) is

estimated as the minimum of Pṽ(k, ℓ) over a short temporal
sliding window, with a usual length corresponding to 1.5 s.
This technique relies on the assumption that the minimum of
Pṽ(k, ℓ) within a 1.5 s window is not affected by speech, al-
lowing for an inference of the noise PSD. In reverberant envi-
ronments, however, the decay time in speech pauses may be
increased. Thus, in order to avoid reverberant speech to affect
the noise PSD estimate σ2

ṽ(k, ℓ), a longer tracking window is
used (cf. Section 5).

Tracking the minimum of the PSD using a time-frequency
independent α can lead to an inaccurate estimate of Pṽ(k, ℓ)
and a delay in detecting augmentation of the noise power.
In order to circumvent these issues, a time-frequency variant
smoothing constant α(k, ℓ) has been derived in [13], which
aims to minimize the MMSE

α(k, ℓ) = argmin
α(k,ℓ)

E
{

Pṽ(k, ℓ)− σ2
ṽ(k, ℓ)|Pṽ(k, ℓ− 1)

}

. (24)

The solution to (24) is given by

α(k, ℓ) =
1

1 +
(

Pṽ(k,ℓ−1)
σ2

ṽ
(k,ℓ)

− 1
)2 , (25)

in which σ2
ṽ(k, ℓ) is in practice unavailable and replaced by

σ2
ṽ(k, ℓ − 1). In order to compensate for the delay in the
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adaptation of σ2
ṽ(k, ℓ), which could lead to overestimation or

underestimation, the smoothing parameter is corrected as

α(k, ℓ) =
αmaxαc(k, ℓ)

1 +
(

Pṽ(k,ℓ−1)
σ2
ṽ
(k,ℓ−1)

− 1
)2 , (26)

where αmax is the maximum allowable smoothing constant
and αc(k, ℓ) is given by

αc(k, ℓ) = 0.7 αc(k, ℓ− 1) + 0.3 max (α̃c(k, ℓ), 0.7) ,

α̃c(k, ℓ) =
1

1 +
(∑

L−1

k=0
Pṽ(k,ℓ−1)

∑
L−1

k=0
|X(k,ℓ)|2

− 1
)2 . (27)

Additionally, a lower limit αmin(k, ℓ) is applied to αc(k, ℓ) in
order to improve the performance of the estimator in high lev-
els of non-stationary noise. The resulting estimate σ̂2

ṽ (k, ℓ) of
σ2
ṽ(k, ℓ) is used to estimate both σ2

s (k, ℓ) and σ2
r (k, ℓ) as de-

scribed in the following section.

4.3. Speech PSD estimator

Once the estimate σ̂2
ṽ (k, ℓ) is available, temporal cepstrum

smoothing, proposed in [15], is used to estimate the PSD
σ2
z(k, ℓ) of the reverberant speech component Z(k, ℓ). The

same method can also be used to estimate the dereverberated
speech component σ2

s (k, ℓ) if an estimate of the reverberation
power σ2

r(k, ℓ) is available. The modifications of the formula
required for the latter case are described in the end of this
section.

In order to estimate the reverberant speech PSD σ2
z(k, ℓ),

the maximum likelihood (ML) estimator of the a priori signal
to noise ratio (SNR)

ξml
z (k, ℓ) =

|X(k, ℓ)|2

σ2
ṽ(k, ℓ)

− 1 (28)

is employed. The speech power Pz(k, ℓ) can then be obtained
as

Pz(k, ℓ) = σ2
ṽ(k, ℓ) max

(

ξml
z (k, ℓ), ξml

min

)

, (29)

where ξml
min > 0 is a lower bound to avoid negative or very

small values of ξml
z (k, ℓ). In the cepstral domain, Pz(k, ℓ)

can be represented by λml
z (q, ℓ) as

λml
z (q, ℓ) = IDFT

{

log
(

Pz(k, ℓ)|k=0,··· ,(L−1)

)}

, (30)

where q is the cepstral bin index. A recursive temporal
smoothing is applied to λml

z (q, ℓ), i.e.,

λz(q, ℓ) = δ(q, ℓ)λz(q, ℓ− 1)+ (1− δ(q, ℓ))λml
z (q, ℓ), (31)

With δ(q, ℓ) being a time-quefrency dependent smoothing pa-
rameter. Finally, σ̂2

z (k, ℓ) can be obtained by transforming
λz(q, ℓ) into the spectral domain as

σ̂2
z (k, ℓ) = exp

(

κ+ DFT {λz(q, ℓ)} |q=0,··· ,(L−1)

)

, (32)

Simulated Real

# of sentences 2176 (∼ 4.8 hrs.) 372 (∼ 0.6 hrs.)

# of speakers 28 10

Table 1. Quantity of data in the evaluation set.

where κ, estimated as in [21], is a constant introduced to com-
pensate for the bias due to the recursive smoothing in the log-
domain in (31). Only little smoothing is applied to the cep-
stral bins which are mainly related to speech while for the re-
maining coefficients a stronger smoothing is employed. Con-
sequently, small smoothing constants are chosen for the low
quefrencies, as they contain information about the vocal tract
shape. The same holds for the coefficients corresponding to
the fundamental frequency f0 in voiced speech. In order to
protect these quefrencies, especially the ones corresponding
to the fundamental frequency, the constant δ(q, ℓ) in (31) is
adapted. After determining f0 by picking the highest peak in
the cepstrum within a limited search range, δ(q, ℓ) is defined
as

δ(q, ℓ) =

{

δpitch if q ∈ Q

δ̄(q, ℓ) if q ∈ {0, · · · , L/2} \ Q
(33)

where Q is a small set of cepstral bins around the quefrency
corresponding to f0 and δpitch is the smoothing constant for
the pitch coefficients [15]. The quantity δ̄(q, ℓ) is given as

δ̄(q, ℓ) = ηδ(q, ℓ− 1) + (1− η)δ̄const(q), (34)

where δ̄const(q) is time-independent and chosen such that
less smoothing is applied in the lower cepstral bins. Further-
more, η is a forgetting factor which defines how fast the tran-
sition from δ(q, ℓ) to δ̄const(q) can occur.

The reverberant speech PSD can be used to estimate
the PSD of the late reverberation σ2

r (k, ℓ) as shown in the
following section. After having estimated σ2

r (k, ℓ), cep-
stral smoothing is also used to estimate the dereverberated
speech PSD σ2

s (k, ℓ). In this case, the noise PSD σ2
ṽ(k, ℓ) in

equation (28) and (29) is replaced by the interference PSD
σ2
j (k, ℓ) = σ2

ṽ(k, ℓ) + σ2
r(k, ℓ). The dereverberated speech

PSD Ps(k, ℓ) can finally be computed and used to obtain the
estimate σ̂2

s (k, ℓ) of σ2
s (k, ℓ).

4.4. Reverberation estimation

The reverberant PSD σ2
r(k, ℓ) is estimated using the method

described in [17], which is based on the RIR model suggested
in [14] that represents the RIR as a Gaussian stationary noise
signal multiplied by an exponential decay rate ∆ dependent
of the T60

∆ =
3 ln 10

T60fs
. (35)

This estimator represents the PSD of the reverberant speech
σ2
z(k, ℓ) as

σ2
z(k, ℓ) = σ2

r(k, ℓ) + σ2
s (k, ℓ), (36)
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Simulated Data Real Data
T60=250ms T60=500ms T60=700ms

Mean
T60=700ms

Mean
near far near far near far near far

1
ch

an
n

el

SRMR [dB] 4.7(4.5) 4.8(4.6) 4.3(3.8) 3.9(3.0) 4.3(3.6) 3.9(2.7) 4.3(3.7) 4.9(3.2) 4.8(3.2) 4.8(3.2)

FWSSNR [dB] 10.3(8.2) 8.9(6.8) 6.2(3.3) 3.5(1.0) 4.9(2.3) 2.8(0.3) 6.0(3.6)

CD [dB] 2.0(2.0) 2.7(2.7) 3.8(4.6) 4.7(5.2) 3.7(4.4) 4.4(5.0) 3.6(4.0)

LLR 0.5(0.4) 0.4(0.4) 0.5(0.5) 0.8(0.8) 0.6(0.7) 0.8(0.9) 0.6(0.6)

PESQ 2.4(2.2) 1.7(1.6) 1.7(1.4) 1.3(1.2) 1.6(1.4) 1.3(1.2) 1.7(1.5)

8
ch

an
n

el
s SRMR [dB] 6.7(4.5) 5.3(4.6) 3.7(3.8) 3.4(3.0) 5.3(3.6) 4.4(2.7) 4.8(3.7) 4.9(3.2) 4.8(3.2) 4.8(3.2)

FWSSNR [dB] 11.3(8.2) 10.4(6.8) 6.9(3.3) 4.1(1.0) 7.0(2.3) 4.5(0.3) 7.3(3.6)

CD [dB] 2.4(2.0) 2.8(2.7) 3.0(4.6) 4.1(5.2) 3.6(4.4) 4.4(5.0) 3.4(4.0)

LLR 0.5(0.5) 0.5(0.4) 0.6(0.5) 0.8(0.8) 0.7(0.7) 0.8(0.9) 0.6(0.6)

PESQ 2.9(2.2) 2.1(1.6) 2.5(1.4) 1.5(1.2) 1.8(1.4) 1.3(1.2) 2.0(1.5)

Table 2. Mean signal-based measures over all utterances using either 1 or 8 channels. The scores of the unprocessed signals
are displayed between parentheses.

which leads to the estimate of σ2
r (k, ℓ),

σ̂2
r (k, ℓ) = e−2∆Tdfsσ2

z(k, ℓ− Td/Ts). (37)

In (37), Ts denotes the frame shift whereas Td is the duration
of the direct path and early reflections of the RIR, typically
set between 50 ms and 80 ms. As a result, σ̂2

r (k, ℓ) can be
estimated using σ̂2

z (k, ℓ) and the reverberation time.

5. EXPERIMENTAL SETUP

5.1. Corpus description

The results presented in this contribution have been obtained
using the evaluation set of the REVERB challenge [7], which
consists of a large corpus of speech corrupted by reverbera-
tion and noise. This corpus is divided into simulated and real
data as described in Table 1. All recordings have been made
at a sampling frequency of 16 kHz with a circular array with
20 cm diameter and 8 equidistant microphones.

The simulated data is composed of close talk speech taken
from the WSJCAM0 corpus [22] which has been convolved
with recorded RIRs and to which measured noise signals at a
fixed SNR of 20 dB have been added. The RIRs have been
measured in three different rooms with reverberation times of
250, 500 and 700 ms. The distance between the source and
the array is either 0.5 m (condition “near”) or 2 m (condition
“far”).

The real data is composed of utterances from the MC-
WSJ-AV corpus [23] and contains speech recorded in a noisy
reverberant room with T60 ≈ 700 ms at a distance between
the source and the array of either 1 m (condition “near”) or
2.5 m (condition “far”). Utterances have been spoken from
different unknown positions within the room but the position
was constant during each utterance.

5.2. Algorithm settings

The proposed system, described in Section 2, has been ap-
plied using utterance-based processing, assuming that the T60

and the DOA of the target speaker remained constant within
each utterance. The STFT has been computed using a 32 ms
Hann window with 50 % overlap. The DOA as been esti-
mated as the angle minimizing the sum of the MUSIC pseudo-
spectra, for θ = 0◦ . . . 360◦ for every 2◦, using all 8 micro-
phones of the circular array for a frequency range from 50 Hz
to 5 kHz. The beamformer, described in Section 3, uses a
theoretically diffuse noise field and a white noise constraint
WNGmax =-10 dB if less than 10 frames of noise-only pe-
riod have been detected within the utterance. The speech
amplitude estimator in Section 4.1 assumed a chi PDF with
µ = 0.5, a minimum gain Gmin of -10 dB and a compression
parameter β = 0.5. The noise PSD estimator described in
Section 4.2 uses the same parameters as in [13], except for the
length of the sliding window used for minima tracking which
has been set to 3 s. In Section 4.3, the parameters used to es-
timate the speech PSD have been set as in [12] while in Sec-
tion 4.4, Td has been set to 80 ms. The evaluation has been run
for 1 channel and for 8 channels, with the single-channel sce-
nario referring to only applying the proposed single-channel
enhancement scheme to the first microphone signal, y1(n).

6. RESULTS

6.1. Signal-based quality assessment

The different performance for each condition, as well as the
mean performance over all conditions are presented in Ta-
ble 2. The performance of the proposed system has been
evaluated using the signal-based measures defined in [7],
i.e., the signal to reverberant modulation ratio (SRMR) [24],
the frequency-weighted segmental SNR (FWSSNR) [25],

6



 

 

-2
5

.8
5

-2
5

.7
6

-2
5

.9
3

-1
2

.1
1

-1
1

.4
8

-1
2

.7
4

Real

Unprocessed
8 Channels
1 Channel

W
E

R
%

-1
9

.1
7

-3
0

.4
8

-2
1

.6
3

-4
2

.5
3

-2
4

.9
1

2
.8

3

1
.6

5

-1
0

.1
8

-1
8

.6
9

-1
5

.7
8

-2
0

.3
1

-1
1

.9
4

3
.2

7

2
.3

3

Simulated

700, near 700, far Mean250, near 250, far 500, near 500, far 700, near 700, far Mean

20

40

60

80

100

20

40

60

80

100

Fig. 3. WER obtained using the baseline recognizer of the REVERB challenge trained on clean data. Numbers indicate the
difference with the WER obtained on unprocessed data.

the cepstral distance (CD) [25], the log-likelihood ratio
(LLR) [25] and the perceptual evaluation of speech qual-
ity (PESQ) [26]. Among these 5 measures, the SRMR is the
only non-intrusive measure and is hence the only measure
that can be used to evaluate the performance for real data, for
which no reference signal is available. The other measures
use the clean speech s(n) as reference signal.

The increase in SRMR for all considered conditions
shows that reverberation is reduced for both the single- and
multi-channel scenarios, with the results being more sig-
nificant for higher reverberation times as expected. While
the SRMR increase is typically higher for the multi-channel
scenario, for the condition of T60 = 500 ms, the single-
channel scenario seems to achieve a higher dereverberation
performance. The reason behind this performance difference
might lie in the fact that the statistical model of the RIR used
in Section 4.4 may not hold for the output of the MVDR-
beamformer. However, further investigations are needed to
derive a sound explanation.

Furthermore, the presented FWSSNR values depict a
significant increase in comparison to the unprocessed micro-
phone signal, illustrating the noise reduction capabilities of
the proposed system. The difference in the FWSSNR values
between the single- and multi-channel scenario further illus-
trates the benefit of using an MVDR beamformer aiming at
noise reduction in the first stage. Finally, the improvement
in the overall perceptual quality of the processed signal is
illustrated in the average PESQ score increase of 0.5 and 0.2
for the multi- and single-channel scenarios, respectively.

6.2. Word error rate

In order to evaluate the potential benefit of the proposed
scheme on the performance of an ASR system, the pro-
cessed data have been used as the input for the baseline
speech recognition system provided by the REVERB chal-
lenge [7]. This system is based on the hidden Markov model
toolkit (HTK) [27] and uses mel-frequency cepstral coeffi-

cients, including Deltas and double-Deltas, as features and
acoustic models using tied-state hidden Markov models with
10 Gaussian components per state. In this contribution, the
models have been trained on clean data containing 7861 sen-
tences uttered by 92 speakers for a total of approximately
17.5 hours. The achieved performance is measured in terms
of word error rate (WER) as depicted in Fig. 3.

Compared to the scores obtained using the unprocessed
signals, the absolute WER improvement on simulated data is
of 19.17 % and 10.18 % for the multi- and single-channel
scenarios, respectively. Greater absolute WER improvement
is obtained on real data, i.e. 25.85 % for the multi-channel and
12.11 % for the single-channel scenario. On the other hand,
the WER increases slightly for the conditions with the lowest
reverberation time, i.e. T60 = 250 ms. This suggests that
spectral coloration introduced by the enhancement scheme
may reduce the performance of the ASR system while the
benefit of dereverberation is limited for small reverberation
times. This drawback could be avoided by training the acous-
tic models on processed signals.

7. CONCLUSION

This contribution proposes to achieve joint dereverberation
and noise reduction a combination of an MVDR-beamformer
and a single-channel speech enhancement scheme. In the
MVDR-beamformer the noise coherence matrix is estimated
on-line using a VAD and the DOA of the target speaker, which
is required to compute the steering vector, is obtained using
the MUSIC algorithm.

The output of this beamformer is processed using a
speech-enhancement scheme combining statistical estima-
tors of the speech, noise and reverberant PSDs and aiming
at joint dereverberation and residual noise suppression. The
evaluation of the proposed system, carried out using signal-
based quality measures and a speech recognizer trained on
clean speech, illustrates the benefit of the proposed scheme.
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