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ABSTRACT
Explicit information about speech presence or absence is
needed in many speech processing applications. In a Bayesian
estimation framework, this information can be provided by an
a posteriori speech presence probability (SPP) estimator. Re-
cent improvements in SPP estimation include likelihoods of
speech presence based on a super-Gaussian speech model or,
alternatively, based on averaged observations. In this paper,
we combine these aspects and derive a closed form solution
for the likelihood of speech presence based on both averaged
observations and a super-Gaussian speech model. The new
approach is shown to outperform competing methods that
either include averaging or super-Gaussian speech models.

1. INTRODUCTION

It was shown, e. g., in [1, 2] that minimum mean squared error
(MMSE) based clean speech estimators can be enhanced by
taking speech presence uncertainty (SPU) into account. As a
result, MMSE estimation under SPU turns out to be a product
of a common MMSE estimator for the speech and an a poste-
riori speech presence probability (SPP) estimator [1]. A pos-
teriori SPP estimators are most commonly based on a Gaus-
sian assumption for the speech [2–4], however, it was shown,
e. g., in [5] that speech discrete Fourier transform (DFT) coef-
ficients can better be modeled by super-Gaussian distributions
than by a Gaussian. Accordingly, also a posteriori SPP esti-
mators based on a super-Gaussian speech model have been
proposed, e. g., [6, 7].

While common a posteriori SPP estimators are able to
successfully achieve values close to one if speech is present,
many estimators return only the a priori SPP if speech is ab-
sent [4]. This problem is mended in [3] by adapting the a
priori SPP. In contrast to this, in [4] it was shown that SPP es-
timates close to zero in speech absence can also be obtained
by choosing both a fixed a priori SPP and a fixed a priori
signal-to-noise ratio (SNR). While in [2, 3] the a priori SNR
reflects an SNR which is present in a local time-frequency
unit, in [4] it is argued that in order to distinguish between
speech presence and absence, the a priori SNR employed

in the likelihood of speech presence should reflect an SNR
which is typical for speech presence. This SNR can be math-
ematically optimized for typical application scenarios [4].

Outliers in a posteriori SPP estimation can be reduced,
e. g., by driving the likelihood functions by averaged observa-
tions [4] or by employing hidden Markov models [8]. How-
ever, deriving likelihood functions for averaged observations
based on super-Gaussian priors can be difficult and so far only
approximate solutions have been proposed [9].

In this paper, however, we present a closed-form solution
for likelihood functions based on both averaged observations
and a super-Gaussian speech model. Additionally, the cor-
responding new a posteriori SPP estimator makes use of the
advantage of a fixed a priori SNR.

This paper is organized as follows: Section 2 gives an
introduction to a posteriori SPP estimation with averaged ob-
servations assuming a Gaussian speech model, a posteriori
SPP estimation without averaging assuming a super-Gaussian
speech model, and a posteriori SPP estimation using fixed
prior parameters. Our proposed approach that unifies the ad-
vantages of averaged observations, a super-Gaussian speech
model, and fixed a posteriori SPP parameters is introduced in
Section 3. In Section 4 the advantage of the proposed estima-
tors are demonstrated, while Section 5 concludes this paper.

2. MMSE ESTIMATION UNDER SPU

We assume the following short-time Fourier transform (STFT)
domain signal model: We observe noisy speech Y (ℓ, k) =
S(ℓ, k) +N(ℓ, k) where the clean speech coefficients S(ℓ, k)
are disturbed by additive noise N(ℓ, k). Here, ℓ and k denote
the frame index and the frequency bin index, respectively.
Using polar notation, the speech S(ℓ, k) = A(ℓ, k) · ejα(ℓ,k)
can be described by the speech spectral amplitude A(ℓ, k)
and the speech spectral phase α(ℓ, k). Note that in the se-
quel, we will omit the indices ℓ, k for ease of readability.
Employing MMSE short-time spectral amplitude (STSA) es-
timation [2], the absolute value of speech is estimated using
the observed noisy speech Y and some a priori knowledge
about the speech and the acoustic channel. Furthermore,
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taking SPU into account, i. e., introducing the hypothesis
of speech presence H1 and speech absence H0, the speech
spectral amplitude A = |S| estimate results in [1]

Â = P (H1|Y ) · E{A|Y,H1} (1)

with the a posteriori SPP estimator P (H1|Y ), the statistical
expectation E{·}, and the MMSE estimator for the speech
amplitude under speech presence E{A|Y,H1}. In this paper
we make the common assumptions that the speech S and
the noise N are statistically independent, the speech spectral
phase α is uniformly distributed and statistically indepen-
dent of the speech spectral amplitude A [10, 11], and that
the complex-valued noise DFT coefficients N are bivari-
ate Gaussian distributed [2]. Accordingly, the a posteriori
SNR γ = |Y |2/σ2

N with σ2
N being the noise power spectral

density (PSD) turns out to be independent of the speech spec-
tral phase. Therefore, the a posteriori SPP can also be written
as a function of γ, i. e., P (H1|Y ) = P (H1|γ) [12].

2.1. SPP Estimation Assuming Averaged Observations
Random fluctuations in the noisy observation may cause es-
timation outliers in the a posteriori SPP that may result in
annoying musical noise in a speech enhancement task. To
improve estimation robustness, these outliers can be reduced
by averaging a posteriori SNRs in adjacent time-frequency
bins as [4]

γ̄(ℓ, k) =
1

ν

∑

λ∈L
κ∈K

γ(λ,κ) (2)

with L and K being a set of frames and a set of frequency bins
within the averaging window, respectively. Furthermore, ν =
|L| · |K| is the total number of a posteriori SNR values within
the averaging window. Driven by the averaged a posteriori
SNRs γ̄, the a posteriori SPP can be written as a function of
the generalized likelihood ratio (GLR) Λ̄

P (H1|γ̄) =
Λ̄

1 + Λ̄
(3)

with
Λ̄ =

P (H1)

P (H0)
· p(γ̄|H1)

p(γ̄|H0)
. (4)

Here, P (H1) and P (H0) = 1 − P (H1) are the a priori SPP
and speech absence probability, while p(γ̄|H1) and p(γ̄|H0)
are the likelihood of speech presence and the likelihood of
speech absence, respectively, both based on averaged obser-
vations.

Assuming a bivariate Gaussian distribution for the speech S
and the noise N , the a posteriori SNR values γ = |S +
N |2/σ2

N follow the exponential distribution, which is a spe-
cial case of the chi-squared distribution with shape parameter
νχ2 = 1 [4]. Furthermore, averaged a posteriori SNR val-
ues γ̄ can be modeled by a chi-squared distribution [4] with
an increased shape parameter [13]. Accordingly, the GLR for
averaged observations (4) turns out to be [4]

Λ̄[4] =
P (H1)

P (H0)
·
(

1

1 + ξ

)νχ2

· exp
(
νχ2

ξ

1 + ξ
γ̄

)
(5)

with the a priori SNR ξ = σ2
S/σ

2
N and the speech PSD σ2

S .

2.2. SPP Estimation for Super-Gaussian Speech
While (5) is based on a Gaussian assumption for the speech, it
was shown in [5] that speech can better be modeled by super-
Gaussian distributions. As in [6, 14], the super-Gaussian char-
acter of speech is modeled by assuming that the speech spec-
tral amplitudes A follow a chi-distribution with a shape pa-
rameter µ < 1. Without averaging, the likelihood of speech
presence can be obtained by [6, Eq. (20)]

p(γ|H1) = p(γ|H0) ·
(

µ

µ+ ξ

)µ

· 1F1

(
µ; 1;

ξ

µ+ ξ
γ

)
(6)

where 1F1(·) is the confluent hypergeometric function [15].
The novelty of this paper is that in Section 3 we will derive a
closed form solution for the likelihood of speech presence for
averaged observations (2) assuming a super-Gaussian speech
model as in (6).

2.3. SPP Estimation with Fixed Parameters
Generally, the likelihood of speech presence is a function of
the a priori SNR ξ (cf., e. g., (6)). While in MMSE spec-
tral estimation ξ represents the local SNR in each time fre-
quency unit, in a posteriori SPP estimation the situation is
different. As the likelihood of speech presence (e. g., (6)) is
a model for speech presence, also its parameter ξ can be in-
terpreted as a model parameter for speech presence. How-
ever, if ξ represents the local SNR, in speech absence we
have ξ = 0 and, thus, p(γ|H1) = p(γ|H0) results in (6).
As a consequence, the distinction between speech presence
and absence using the likelihoods is not possible and the a
posteriori SPP simply outputs the a priori SPP (cf. (3) and
(4) with p(γ|H1) = p(γ|H0)), instead of a value close to
zero. To overcome this issue, instead of adapting ξ to follow
the local SNR in each time-frequency bin, in [4] it was pro-
posed to find a fixed a priori SNR that reflects a typical SNR
which can be expected in speech presence. With this fixed
a priori SNR ξ, the a posteriori SPP estimate is capable of
yielding values close to zero in speech absence. The fixed a
priori SNR ξ is obtained by interpreting the a posteriori SPP
estimator as a detector and minimizing the total probability of
false detections for a typical range of input SNRs [4].

3. PROPOSED SPP ESTIMATOR
In this section, we extend (6) to averaged a posteriori SNRs
obtained by (2). Assuming statistically independent observa-
tions, the probability density function (PDF) of the sum of
two random a posteriori SNR values can be obtained by con-
volving (6) with itself. If the resulting PDF is again convolved
with (6) we obtain the PDF for the sum of three random vari-
ables and so forth. Accordingly, using one-sided convolu-
tion [16, Eq. (15.93)] by [15, Eq. (7.613.4)] and induction,
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we obtain the likelihood of speech presence for averaged ob-
servations and a super-Gaussian speech model

p(γ̄|H1) = p(γ̄|H0) ·
(

µ

µ+ ξ

)νµ
· 1F1

(
νµ;µ;

ν · ξ
µ+ ξ

γ̄

)
(7)

where, as in Section 2.1, p(γ̄|H0) is a chi-squared distribution
with shape parameter ν. As can be seen, this likelihood is a
function of both the shape parameter of the chi distribution µ
(cf. Section 2.2) and the number of averaged SNR values ν
(cf. (2)). Inserting (7) into (4) results in the GLR for averaged
a posteriori SNRs assuming chi-distributed speech spectral
amplitudes

Λ̄[new] =
P (H1)

P (H0)
·
(

µ

µ+ ξ

)νµ

· 1F1

(
νµ;µ;

ν · ξ
µ+ ξ

γ̄

)
. (8)

Note that (8) generalizes both the GLR for averaged ob-
servations under a Gaussian speech model and the GLR
for non-averaged observations but a super-Gaussian speech
model: For µ = 1 we obtain the GLR for averaged Gaussian
speech (5) derived in [4], while for ν = 1 we obtain the
GLR for non-averaged super-Gaussian speech [6] with the
likelihood of speech presence (6).

3.1. Parameter Choice
Just as in [1], we employ P (H1) = 0.5. Furthermore, we
model the speech spectral amplitudes with a shape parame-
ter µ= 0.5 which has been shown to be a good compromise
between musical noise and speech preservation in speech en-
hancement [6]. Moreover, the proposed a posteriori SPP es-
timator reduces estimation outliers using averaging. It was
shown in [3] that a good tradeoff between speech distortion
and the amount of estimation outliers can be achieved by us-
ing two averaging processes, instead of one. Accordingly, we
used (2) to obtain averaged a posteriori SNRs within a local
and a global window, resulting in the averaged a posteriori
SNR γ̄Θ with Θ ∈ {local, global} [4]. Each averaging win-
dow covers the current frame ℓ and the previous ∆ℓΘ frames
and, therefore, has the width |LΘ|=∆ℓΘ+1. The height of
each averaging window is |KΘ| = 2 · ∆kΘ+1, i. e., besides
the current frequency bin k, ∆kΘ frequency bins below it
and ∆kΘ frequency bins above it are employed for averaging.
Therefore, each averaging window contains νΘ= |KΘ| · |LΘ|
a posteriori SNR values. In this paper, we use the same win-
dow sizes as in [4] (cf. Table 1).

Then, applying the resulting averaged a posteriori SNRs
to the new GLR (8) results in two likelihood ratios, de-
noted by Λ̄Θ with Θ ∈ {local, global}. However, as in
Section 2.3, we employ a fixed a priori SNR ξΘ for calculat-
ing the GLR Λ̄Θ, instead of an adapted one. For the training
of ξΘ, the same training steps were employed as in [4] and
the resulting ξΘ values are given in Table 1. Accordingly,
Λ̄Θ is calculated by (8) using the averaged SNR γ̄Θ from (2)
as well as ξ = ξΘ, ν = νΘ, and µ from Table 1. Assuming
that the time-frequency units in each averaging window are

Θ ∆kΘ ∆ℓΘ νΘ µ ξΘ
local 1 2 9 0.5 12.6 dB

global 8 2 51 10.4 dB

Table 1. Parameters of the averaging framework

uncorrelated, νΘ= |KΘ| · |LΘ| corresponds to the number of
time-frequency points in the respective averaging window.

The local and global a posteriori SPP can be obtained
by applying Λ̄Θ to (3), resulting in P (H1|γ̄Θ) with Θ ∈
{local, global}. Similar to the proposals in [3, 4] we ob-
tain the final a posteriori SPP estimate by P (H1|γ̄) =
P (H1|γ̄local) · P (H1|γ̄global) which can directly be used
in (1) [4].

4. PERFORMANCE EVALUATION

The proposed approach and the reference approaches were
evaluated by the following simulations: As speech data,
we employed the English subset of the NTT Multi-Lingual
Speech Database [17]. As noise data, we used car, factory,
and babble noise from the NTT Ambient Noise Database [18].
First, the database signals were downsampled to 8 kHz sam-
pling rate. The input SNR was adjusted between -5 dB and
20 dB in 5 dB steps by scaling the speech and noise com-
ponents separately by means of the active speech level and
the root mean square (RMS) noise level, respectively, as
recommended by ITU-T P.56 [19]. The noisy speech signal
was then transformed into the STFT domain using frames
with a length of L = 256 samples, a frame shift of 50 %,
a square-root Hann window for both spectral analysis and
synthesis, and a DFT. Using the resulting noisy speech STFT
coefficients, the noise power was estimated by the minimum
statistics approach [20]. Subsequently, the a priori SNR was
obtained by the well-known decision-directed approach [2]
with the smoothing factor 0.98. The speech DFT coefficients
were estimated by (1) and then transformed back into the
time domain using an inverse DFT, synthesis windowing, and
an overlap-add step.

The proposed and the reference approaches were eval-
uated with respect to the speech component quality, the
amount of noise attenuation, and the amount of musical noise
in a signal-component-wise manner: Applying the spectral
weights to the signal components of the noisy speech, namely
the speech component and the noise component, results in
the processed speech and the processed noise component,
respectively. Accordingly, the speech component quality was
measured by the segmental speech-to-speech distortion ra-
tio SSDRseg using the speech component and its processed
replica [21]. The larger the SSDRseg, the less distortion was
introduced to the speech component through processing. The
amount of noise attenuation was measured by the segmental
noise attenuation measure NAseg based on the noise com-
ponent and its processed noise replica [21]. The larger the
NAseg, the more is the noise component attenuated through
processing. The amount of musical noise was measured by
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Fig. 1. Evaluation results in terms of segmental speech-to-
speech distortion ratio (SSDRseg, the larger the better) and
segmental noise attenuation (NAseg, the larger the better) [21]

the weighted log-kurtosis ratio (LKR) [22]. This measure
compares the kurtosis of the noise component of the noisy
speech signal before and after processing in speech pauses,
resulting in the LKR [22]. Large values of the LKR indicate
a large amount of processing outliers that may be perceived
as annoying musical noise.

The proposed and the reference approaches were of the
form (1), i. e., they consist of a common MMSE estimator
for the speech and an a posteriori SPP estimator. The first
reference approach (denoted as “G-SPP with adapted ξ [2]”)
consists of the MMSE estimator [2, Eq. (7)] and the a posteri-
ori SPP with the GLR in [2, Eq. (27)] both based on Gaussian
speech and noise models. The SPP parameter ξ was adapted
using the decision-directed approach and thus follows the lo-
cal SNR in the time-frequency plane. The second reference
approach (denoted as “SG-SPP with adapted ξ [6]”) consists
of the MMSE estimator [14, Eq. (6)] and the corresponding
a posteriori SPP estimator with the GLR [6, Eq. (20)]. Both
the MMSE and the SPP estimator assume a super-Gaussian
speech model, i. e., chi-distributed speech amplitudes with the
shape parameter µ = 0.5. Again, the model parameter ξ of
the GLR is adapted and follows the local SNR in the time-
frequency plane. The third reference approach (denoted as
“G-SPP with fixed ξ [4]”) consists of the MMSE estimator [2,
Eq. (7)] and the a posteriori SPP estimator with the GLR (5).
This GLR is driven by averaged a posteriori SNRs (2) and has
fixed parameters, such as a fixed a priori SNR [4]. Both esti-
mators are based on a Gaussian speech model. The proposed
approach (denoted as “SG-SPP with fixed ξ [new]”) consists
of the MMSE estimator [14, Eq. (6)] and the a posteriori SPP
estimator with the new GLR (8). This GLR is driven by aver-
aged a posteriori SNRs and its fixed parameters are from Ta-
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Fig. 2. Evaluation results in terms of the amount of musi-
cal noise based on the weighted log-kurtosis ratio (LKR, the
smaller the better) [22]

ble 1. Both estimators are based on a super-Gaussian speech
model (chi-distributed speech amplitudes with the shape pa-
rameter µ=0.5).

The results are depicted in Figures 1 and 2. As can be
seen in Figure 1, all approaches achieve approximately the
same speech component quality SSDRseg with a slight advan-
tage for the proposed approach “SG-SPP with fixed ξ [new]”.
Since a posteriori SPP estimation approaches with fixed pa-
rameters are able to gain values close to zero, correspond-
ing approaches (“G-SPP with fixed ξ [4]” and “SG-SPP with
fixed ξ [new]”) achieve significantly larger noise attenuation
levels compared to usual SPP approaches with an adapted ξ
(“G-SPP with adapted ξ [2]” and “SG-SPP with adapted ξ
[6]”). As can be seen in Figure 2, the proposed approach
nicely achieves the lowest musical noise levels, reflected by
small LKR values, for car noise and babble noise at all input
SNR levels. In case of factory noise, the proposed approach
achieves the best LKR values above 5 dB input SNR.

5. CONCLUSIONS

This paper presents an a posteriori SPP estimation approach
which unifies the advantages of a super-Gaussian speech
model, averaged observations, and a fixed a priori SNR. Ac-
cordingly, a new generalized likelihood ratio for averaged a
posteriori SNRs is derived taking a super-Gaussian speech
model into account. To obtain SPP estimates close to zero in
speech absence, fixed SNR and SPP priors are employed. The
resulting new approach is shown to outperform reference ap-
proaches that consider averaged observations but a Gaussian
speech model, a super-Gaussian model but no averaging, and
also approaches that are based on a Gaussian model without
averaging.
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