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ABSTRACT

This paper reports on the evaluation of several objective quality
measures for predicting the quality of the dereverberated speech
signals. The correlations between subjective quality assessment
for single-channel dereverberation techniques and objective speech
quality as well as speech intelligibility measures are analyzed and
discussed. Six different single-channel dereverberation algorithms
were included in the evaluation to account for different types of
distortions. The subjective quality was assessed along the four at-
tributes reverberant, colored, distorted and overall quality following
the recommendations of ITU-T P.835. The objective measures in-
cluded system-based, i.e. channel-based, as well as signal-based
measures.

Index Terms— Objective quality measures, subjective listening
test, speech dereverberation

1. INTRODUCTION

Generally, the signal quality of an audio signal can be assessed in
two ways: subjectively and objectively. Subjective quality measure-
ments are based on the subjective opinion of the listeners, measured
by e.g. ranking the signal quality on a predetermined scale. To ob-
tain results with a relatively low variation, a reasonable number of
listeners is needed which is time-consuming as well as costly. To
overcome this, a number of objective measures have been developed
to predict speech quality. For this, high correlation to the subjec-
tive rating in the respective task is essential [1, 2]. However, still
no commonly accepted quality measure for assessing of derever-
beration algorithms has been proposed. In this contribution, the
applicability of several objective measures applied to speech sig-
nals processed by single-channel dereverberation algorithms is ana-
lyzed and discussed. Different classes of dereverberation algorithms
(cf. Section 2) are included in the evaluation to account for different
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types of distortions that may be introduced by dereverberation algo-
rithms, e.g. pre-, late-, and ringing echoes, distortions of the remain-
ing speech signal or residual reverberation [3]. The subjective qual-
ity is assessed for the dimensions reverberant, colored, distorted and
overall quality (cf. also Section 3.1) and compared to the results of
the objective measures. While this paper focuses on the correlations
between subjective data and objective quality measures, the detailed
analysis of the raw subjective data can be found in [4]. The objective
measures encompass several system- and signal-based measures that
are summarized in Section 3.2. Section 4 discusses the correlation
analysis and Section 5 concludes the paper.

2. ALGORITHMS UNDER TEST

The following algorithms have been included for the listening
tests: least-squares equalization [5], impulse-response reshaping
by weighting of the error used for least-squares minimization [6]
or by aiming at hiding the equalized impulse response (IR) under
the temporal masking threshold [7]. Furthermore, two spectral sup-
pression methods have been assessed: one based on a statistical
reverberation model [8, 9], and a second one based on an estimate
of the room impulse response (RIR) [10].

The most simple impulse response equalization technique is
known as least-squares (LS) equalization [5] which is defined by

c
LS
EQ = H

+
d, (1)

with H
+ and d denoting the Moore-Penrose pseudo inverse of the

channel convolution matrix and the desired system response, respec-
tively. A weighting of the error signal with an appropriate window
function w, e.g.

W = diag {w} , (2)

w = [1, 1, ..., 1
︸ ︷︷ ︸

N1

, w0, w1, ..., wN2−1
︸ ︷︷ ︸

N2

]T , (3)

wi = 10
3α

log10(N0/N1)
log10(i/N1)+0.5

, (4)

leads to the weighted least-squares (WLS) equalizer

c
WLS
EQ = (WH)+Wd. (5)
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(a) p-norm equalizer with standard window
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(b) p-norm equalizer with adapted window

Fig. 1: RIR h (RT60=1.1 s) and IRs of equalized systems v =
Hc

p−norm
EQ in dB (left) as well as respective transfer functions (right)

for the p-norm equalizer with (a) standard window and (b) adapted
window.

Contrary to complete equalization as in (1), RIR shaping as
e.g. in (5) emphasizes the suppression of late parts of the equal-
ized IR to prevent perceptually disturbing late echoes [2, 3]. In (3)
and (4), the constants N0, N1 and N2 are defined as follows [7]:

N0 = (t0 + 0.2)fs, N1 = (t0 + 0.004)fs and N2 = Lh +
LEQ − 1−N1 with t0, fs, Lh and LEQ being the time of the direct
path, the sampling rate, the length of the RIR and of the equalizer,
respectively. The constant α is a factor that influences the steepness
of the window. For α = 1 the window corresponds to the masking
found in human subjects [11].

The third algorithm under test is the p-norm-based IR shaping
approach according to [7] implemented here in two variants, i.e. (i)
using the window function defined in (4) with α = 1 (p-norm stan-
dard, PNormS) and (ii) using the same approach with a window
function limited to −60 dB (p-norm adapted, PNormA). The latter is
motivated by the assumption that reverberation cannot be perceived
more than -60 dB below the main peak of the RIR. The resulting
equalized IRs and respective transfer functions are shown in Fig. 1.

Furthermore, two methods for dereverberation in the spectral
domain are assessed: For the reverberation suppression rule accord-
ing to [8, 9], the clean speech was estimated using the log-spectral
amplitude estimator [12] and the late reverberant spectral variance
was estimated using [9] assuming that the frequency-independent re-
verberation time RT60 and direct-to-reverberation ratio (DRR) were
known. The last method assessed in the subjective listening tests is
a frequency-domain technique proposed in [10], called F-Inv in this
paper, that designs an approximate regularized inverse filter

Gδ[k] =
H∗[k]

∥H [k]∥2 + δ
, (6)

where k = 0, . . . , K − 1, denotes the frequency index with
K ≥ Lh, H [k] and H∗[k] denote the acoustic transfer function
and it’s conjugate, respectively, and δ is a regularization parame-
ter [10]. Since the filter in (6) is acausal and causes pre-echoes in the
processed signal, a single channel speech enhancement scheme is in-
corporated afterwards, for which the spectral analysis is done using
an FFT size K′ ≪ K. The parameters K = 262144, δ = 10 −4 and
K′ = 512 at an overlap of 50 % [10] were used for processing the
signals under test.

Table 1 summarizes the algorithms under test and their respec-
tive acronyms.

Table 1: Different dereverberation approaches and their respective
acronyms.

Acronym Description of method

LS-EQ
Least-squares equalizer cLS

EQ according to (1)

without weighting of error signal, i.e. wI = 1 if
using (5)

WLS-EQ
Weighted least-squares equalizer cWLS

EQ according to

(5) with window function according to (4)

PNormS
Standard p-norm RIR shaping according to [7] using
the window function according to (4) with α = 1

PNormA
Adapted p-norm RIR shaping according to [7] using
the window function according to (4) with α = 1

limited to a minimum of -60 dB
Spec Sup Spectral reverberation suppression according to [8, 9]

F-Inv
Regularized spectral inverse with pre-echo removal
according to [10]

3. QUALITY ASSESSMENT

3.1. Subjective Quality Assessment

21 normal-hearing listeners were asked to assess the quality of
speech signals regarding four attributes: reverberant, colored, dis-
torted, and overall quality. For each algorithm, speech quality was
assessed for 5 reverberation times (RT60): 0.7 s, 1.0 s, 1.1 s, 1.6 s,
and 3.8 s. The RIRs for RT60s of 0.7 s, 1.1 s, 1.6 s. and 3.8 s were
simulated using the image method [13] for a room size of 6 x 4 x 2.6
m3. The RIR with RT60 of 1 s was measured in a real room having a
size of 3.9 x 3.1 x 2.3 m3. For all RIRs, the source-receiver distance
was fixed at 0.54 m. Each sound sample (sampled at fs = 16 kHz),
consisting of 2 sentences taken from the Oldenburg sentence cor-
pus [14], was convolved with the respective RIRs. The reverberated
speech signals were then processed by the algorithms described
in Section 2. The filter lengths for LS and WLS equalizers were
LEQ = 8192 and for the p-norm approaches LEQ = 16384. The
Spec Sup algorithm processed the reverberant speech signals in the
short-term spectral domain based on an estimate of the RT60 and the
DRR [8, 9]. Altogether, 35 speech samples (5 RT60s x 6 algorithms
and 5 reverberated samples as a reference condition) were included
in the subjective quality assessment. The root mean square (RMS)
values of the processed speech samples were set to the RMS of the
original (clean) signals to allow for a comparison across the different
algorithms. Prior to the measurements, a training session was con-
ducted to familiarize the listeners with the stimuli under test and the
task. All speech samples were presented diotically via headphones
(Sennheiser HDA200) in quiet at a comfortable level which could be
adjusted individually during the training session. The listeners’ task
was to assess the speech quality at the 5-point mean opinion score
(MOS) scale according to the ITU-T P.835 recommendations [15]
(with slight modifications, cf. [2]) ranging from 1 (corresponding to
bad overall quality, very reverberant, distorted or colored signals)
to 5 (corresponding to excellent overall quality, not reverberant,
colored or distorted signals) with steps of 0.1. The order of listening
conditions (RT60s and algorithms) was randomized across listeners.

3.2. Objective Quality Measures

In general, various objective quality measures exist that can be
applied for quality assessment of dereverberated speech signals.
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Following [2, 16, 3], we separated them into (i) measures that are
based on the IR or the transfer function of a system (channel-based,
i.e. system-based measures, cf. Section 3.2.1) and (ii) measures that
are based on signals (cf. Section 3.2.2). The set of the objective
quality measures used in this study is similar to that used in [16, 3].
The detailed description of the implementation of the objective
quality measures for the dereverberation algorithms can be found in
[3]. Generally, for listening-room compensation (LRC) algorithms
(e.g. LS, WLS, p-norm), both the filter impulse response cEQ and
the RIR h are available during simulations, thus system-based mea-
sures can be used. However, e.g. algorithms working in short-term
spectral domain (Spec Sup and F-Inv) can only be assessed based
on processed signal and reference signal (by means of signal-based
measures).

3.2.1. System-Based Measures and Speech Intelligibility Measures

Acoustic impulse responses can be characterized by several objec-
tive measures, see e.g. [1, 3, 17], often based on a ratio between
early and late part of the respective IR.

We will analyse different measures assessing IRs in time- as
well as frequency domain. The ratio between the energy of the
first 50 ms (or the first 80 ms) after the main peak to the over-
all energy of the RIR is called Definition. It is denoted by D50 or
D80, respectively [17]. The Clarity [17] is the logarithmic ratio of
the energy within 50 ms (80 ms) after the main peak to the rest of
the IR, denoted here by C50 and C80, respectively. The Direct-to-
Reverberation-Ratio (DRR) [18] is defined as the logarithmic ratio
between the main peak and all others. The Central Time (CT) [17]
is the center of gravity of the energy of an impulse response (IR). In
addition to the previously introduced six measures commonly used
to describe IRs, two more quality measures are analyzed in this study
developed for assessing reverberation explicitly, i.e. the Reverbera-
tion Quantization Measure (RQ) [19] and the perceivable Reverber-
ation Quantization Measure (pRQ) [20] that assess the energy of the
equalized IR exceeding the temporal masking limit on the logarith-
mic scale, i.e. the amount of reverberation that is perceivable.

Dereverberation by mean of channel equalization often aims at
archiving a flat spectrum of an equalized transfer function. Thus, the
variance (VAR) of the logarithmic equalized transfer function was
proposed in [21] to evaluate LRC algorithms. A second measure
that assesses the flatness of the equalized transfer function is the so-
called Spectral Flatness Measure (SFM) [22].

A further class of objective measures used in this study are
speech intelligibility (SI) measures. We evaluated the Speech Trans-
mission Index (STI) [23], the Rapid STI (RASTI) [24], and the STI
for Telecommunication Systems (STITEL) [25]. Although these al-
gorithms have been developed to assess speech intelligibility rather
than speech quality, they may, in general, be used for both pur-
poses. We chose the implementations of the SI measures based
on the knowledge of the used IRs and therefore the SI algorithms
are considered as system-based measures although signal-based
implementations exist as well.

3.2.2. Signal-Based Measures

For spectral-domain reverberation suppression algorithms (such as
Spec Sup or F-Inv in this study), equalized linear time-invariant
(LTI) IRs or transfer functions are not accessible or appropriate
for objective testing. Thus, these algorithms have to be assessed
based on the processed signals. Several signal-based measures exist
that can, in general, be used for assessment of dereverberation ap-

proaches. Due to the large extent of this topic, the chosen measures
are just briefly summarized in the following and the interested reader
is referred to the respective references for further reading. A more
detailed summary can be found in [3].

Simple measures like the Signal-to-Noise-Ratio (SNR) or the
Segmental Signal-to-Reverberation Ratio (SSRR) [26] have been
adopted from SNR-based measures for noise-reduction quality as-
sessment [27]. The Frequency-Weighted SSRR (FWSSRR) [1] and
the Weighted Spectral Slope (WSS) [1] represent a first step towards
exploiting findings in the human auditory system by analyzing
the SSRR in critical bands. To account for logarithmic loudness
perception within the human auditory system the Log-Spectral Dis-
tortion (LSD) compares logarithmically weighted spectra. Since
dereverberation of speech is the aim in most scenarios, we also
tested measures based on the linear predictive coding (LPC) models
such as the Log-Area Ratio (LAR) [28], the Log-Likelihood Ratio
(LLR) [1], the Itakura-Saito Distance (ISD) [1], and the Cepstral
Distance (CD) [1]. As a further extension towards modeling of the
human auditory system the Bark Spectral Distortion (BSD) [29]
compares perceived loudness based in spectral masking effects.

More recent objective measures like the Reverberation Decay
Tail (RDT) [30], the Speech-to-Reverberation Modulation Energy
Ratio (SRMR) [31] and the Objective Measure for Coloration in Re-
verberation (OMCR) [32] have been specifically designed for the
assessment of dereverberation algorithms.

From quality assessment in the fields of audio coding and noise
reduction it is known that measures that are based on more exact
models of the human auditory system show high correlation with
subjective data [27]. Thus, we also incorporated the Perceptual Eval-
uation of Speech Quality (PESQ) measure [33] and the Perceptual
Similarity Measure (PSM, PSMt) from PEMO-Q [34] that compares
internal representations according to the auditory model described
in [35]. PSMt calculates the 5th percentile of the PSM output vec-
tor and showed high correlation with subjective ratings for quality
assessment of audio codes [34].

4. RESULTS AND DISCUSSION

Table 2 shows the correlations between subjective data and system-
based quality measures and Table 3 the correlations between sub-
jective data and signal-based quality measures. Correlations |r| of
0.75 or greater are highlighted using bold-face letters. Stars indi-
cate statistically significant correlations (p < 0.05). For each quality
measure the correlations are shown (i) for the case that all algorithms
under test are considered (see ’All algos’ in Tables 2 and 3) and (ii)
the mean and standard deviation for the correlations for single al-
gorithms (’Mean (Std)’). It can be seen, that the correlations are
generally higher, if they are applied to single algorithms than if they
are used for comparison over all algorithms.

To illustrate this, Fig. 2 exemplarily shows the correlation plot
for the quality measure PESQ and the respective correlations for
each single algorithm are given in Table 4. It can be seen e.g. for the
attribute distorted (lower left panel) that the subjective and objective
ratings mostly correlate well for the single algorithms (e.g. between
rSpecSup = 0.67 and rPNormA = 0.93 with a mean of rMean =
0.84), however, the correlation if all algorithms are considered is
considerably lower (rAll = 0.43).

The correlations in Tables 2 and 3 indicate, that none of the qual-
ity measures correlates well with the attribute colored which is in
consilience with the findings in [16, 3]. This reflects the difficulties
that listeners reported assessing coloration in general and, further-
more, distinguishing between coloration and distortion in the signals
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Table 2: Pearson correlations coefficient |r| between MOS values
of subjective ratings and system-based objective measures (values
above 0.75 are indicated in boldface).

Measure Method Reverberant Colored Distorted Overall
All algos .30 .45∗ .52∗ .55∗

D50
Mean (Std) .85 (.06) .38 (.34) .81 (.15) .75 (.23)
All algos .27 .41∗ .48∗ .51∗

D80
Mean (Std) .85 (.06) .38 (.34) .77 (.19) .75 (.17)
All algos .30 .44∗ .54∗ .54∗

C50
Mean (Std) .84 (.08) .39 (.34) .82 (.13) .71 (.26)
All algos .25 .41∗ .48∗ .48∗

C80
Mean (Std) .81 (.09) .41 (.32) .77 (.20) .70 (.22)
All algos -.48∗ -.14 -.20 -.50∗

CT
Mean (Std) .91 (.05) .39 (.29) .77 (.10) .81 (.19)
All algos .42∗ .23 .48∗ .56∗

DRR
Mean (Std) .84 (.10) .39 (.30) .80 (.15) .63 (.29)
All algos -.48∗ -.23 -.37 -.47∗

RQ
Mean (Std) .81 (.18) .40 (.38) .79 (.06) .71 (.29)
All algos -.54∗ .06 -.04 -.46∗

pRQ
Mean (Std) .90 (.03) .43 (.23) .78 (.06) .81 (.20)
All algos .03 -.55∗ -.35 -.35

VAR
Mean (Std) .44 (.29) .64 (.25) .60 (.26) .43 (.35)
All algos .13 .52∗ .39 .47∗

SFM
Mean (Std) .50 (.33) .69 (.34) .71 (.21) .52 (.31)
All algos .28 .37 .46∗ .45∗

STI
Mean (Std) .90 (.02) .37 (.33) .79 (.12) .79 (.22)
All algos .27 .35 .40∗ .42∗

RASTI
Mean (Std) .88 (.07) .33 (.34) .78 (.10) .76 (.22)
All algos .27 .38 .44∗ .44∗

STITEL
Mean (Std) .89 (.04) .35 (.34) .81 (.12) .79 (.23)

Table 3: Pearson correlations coefficient |r| between MOS values of
subjective ratings and signal-based objective measures (values above
0.75 are indicated in boldface).

Measure Method Reverberant Colored Distorted Overall
All algos .35∗ .04 .03 .23

BSD
Mean (Std) .59 (.37) .56 (.23) .70 (.24) .58 (.31)
All algos -.81∗ -.56∗ -.45∗ -.81∗

CD
Mean (Std) .89 (.12) .46 (.30) .86 (0.09) .77 (0.26)
All algos .74∗ .65∗ .49∗ .82∗

FWSSRR
Mean (Std) .86 (.14) .37 (.20) .67 (.15) .75 (.23)
All algos -.60∗ -.31 -.36∗ -.60∗

ISD
Mean (Std) .81 (.26) .40 (.25) .80 (.11) .75 (.25)
All algos -.79∗ -.47∗ -.38∗ -.77∗

LAR
Mean (Std) .90 (.07) .38 (.21) .77 (.15) .69 (.36)
All algos -.80∗ -.64∗ -.48∗ -.82∗

LLR
Mean (Std) .88 (.09) .43 (.22) .78 (.18) .73 (.26)
All algos -.29 -.40∗ -.27 -.34∗

LSD
Mean (Std) .73 (.30) .40 (.31) .62 (.24) .56 (.23)
All algos .23 .28 .29 .35∗

OMCR
Mean (Std) .42 (.33) .46 (.32) .52 (.32) .44 (.34)
All algos .70∗ .66∗ .43∗ .77∗

PESQ
Mean (Std) .75 (.15) .53 (.25) .84 (.11) .72 (.27)
All algos .69∗ .52∗ .37∗ .72∗

PSM
Mean (Std) .88 (.09) .52 (.32) .89 (.06) .77 (.34)
All algos .80∗ .27 .24 .68∗

PSMt
Mean (Std) .86 (.12) .46 (.29) .73 (.28) .74 (.31)
All algos -.38∗ -.23 -.11 -.38∗

RDT
Mean (Std) .87 (.13) .47 (.32) .82 (.09) .78 (.29)
All algos .52∗ .22 .23 .50∗

SSRR
Mean (Std) .65 (.29) .36 (.16) .53 (.33) .53 (.33)
All algos .06 .12 -.12 .06

SNR
Mean (Std) .23 (.11) .51 (.22) .37 (.22) .44 (.35)
All algos .49∗ .29 .03 .43∗

SRMR
Mean (Std) .54 (.33) .37 (.24) .52 (.38) .61 (.36)
All algos -0.66∗ -0.65∗ -0.43∗ -0.76∗

WSS
Mean (Std) .85 (.11) .54 (.26) .87 (.16) .79 (.30)

under test. E.g. for the LS equalizer, typical time-domain artefacts
(late echoes) sometimes sound like frequency-domain distortions.

Correlations for the system-based measures shown in Table 2
show that most time-domain measures correlate well with the at-
tribute reverberant and distorted at least on the basis of single algo-
rithms. The correlations for the frequency-domain measures is much
lower (cf. also [16, 3]). Although the speech intelligibility measures
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Fig. 2: PESQ score as function of MOS for the four attributes.

Table 4: Pearson correlation coefficient r, between PESQ scores and
MOS for the four attributes and the algorithms under test.

Reverberant Colored Distorted Overall
Reverberant 0.59 0.72 0.93 0.80
LS-EQ 0.92 0.30 -0.90 -0.16
WLS-EQ 0.83 0.55 0.76 0.88
PNormS 0.84 -0.22 0.92 0.74
PNormA 0.59 0.92 0.93 0.96
Spec Sup 0.57 0.37 0.67 0.84
F-Inv 0.88 0.64 0.74 0.66
Mean (Std) 0.75 (0.15) 0.53 (0.25) 0.84 (0.11) 0.72 (0.27)
All 0.70 0.66 0.43 0.77

(STI and its variants) have not been designed to assess speech qual-
ity, they show very high correlations for all attributes besides col-
ored for the data under test in this study. A thorough study regarding
speech intelligibility measurements will be subject to future work.

The correlations for the signal-based measures in Table 3 show
that high correlations can also be achieved for the attributes rever-
berant and distorted, again mostly for single algorithms. Regarding
comparison between different algorithms (’All algos’), FWSSRR
and LLR show highest correlation (0.82) for the attribute overall
quality and LLR and PSMt show highest correlation (0.8) for the
attribute reverberant.

5. CONCLUSION

This paper presented a correlation analysis between data from sub-
jective listening test for dereverberated sound samples and differ-
ent objective quality measures. While several objective quality mea-
sures showed high intra-class correlations, i.e. for single algorithms
(e.g. for comparison of different parameters), much lower correla-
tion was found if several algorithms are compared with each other.
Surprisingly, speech intelligibility measures like the STI correlate
well with subjective rating for quality although they aim at assessing
speech intelligibility rather than quality.
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