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ABSTRACT

Recordings of a speech signal in an enclosed space are typically cor-
rupted with reverberation. In combination with background noise,
these effects may severely degrade the speech quality. In this paper
we aim to blindly recover the speech signal from the reverberant and
possibly noisy observations, where the signals are represented using
the convolutive transfer function model in the STFT domain. The
problem of blind speech dereverberation is decomposed into a set of
independent blind deconvolution problems that we propose to solve
using a maximum a posteriori approach and a variational approach,
exploiting the sparsity of the speech signal in the STFT domain. The
corresponding optimization problems can be solved using an alter-
nating optimization procedure. Experimental results show that the
proposed approach based on variational estimation results in con-
sistent improvements of the instrumentally predicted measures of
speech enhancement and dereverberation.

Index Terms— Dereverberation, speech enhancement, model-
based signal processing

1. INTRODUCTION

When recording speech signals in an enclosure, they are typically
corrupted by reverberation, due to reflections of the sound against the
walls and objects in the room. While moderate reverberation can be
perceptually beneficial, in severe cases reverberation can lead to sig-
nificantly decreased speech quality and intelligibility [1–3]. There-
fore, effective reverberation suppression is crucial for applications
such as hands-free telephony or other voice-based systems. Because
of its practical significance, speech dereverberation has been an ac-
tive research field in recent years [4]. Several dereverberation tech-
niques have been proposed, which are based on, e.g., multichannel
equalization [5, 6], spectral enhancement [7], or probabilistic mod-
eling of speech signals [8–12].

In this paper, we consider speech dereverberation in the short-
time Fourier transform (STFT) domain, where the reverberant
recordings are modeled using a convolutive transfer function (CTF)
model: the time-domain convolution between the speech signal and
the room impulse responses (RIRs) is approximated by a convo-
lution between the speech signal STFT coefficients and a CTF in
each frequency bin independently [13]. Independent modeling of
reverberation in each frequency bin was also used in [9, 14], where
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an autoregressive model was employed. Speech dereverberation,
under the CTF model, can essentially be performed in each fre-
quency bin independently, by estimating the unknown speech signal
and the CTFs. In [12], the microphone signals are represented in a
state-space form, and an expectation-maximization (EM) algorithm
was derived. The Kalman smoother was applied in the E step to
estimate the speech signal and its covariance, and the remaining
parameters are estimated in the M step. In a similar fashion, we
formulate dereverberation in each frequency bin based on cost func-
tions obtained from maximum a posteriori (MAP) and variational
estimation [15]. Formally, the main difference between the two
methods is that point estimates are used in MAP, while variational
approaches estimate distributions for the unknown parameters. For
the latter, we use a cost function that corresponds to an estimation
procedure that is variational in the estimated speech signal only.
The obtained cost functions are minimized using an alternating opti-
mization strategy. In both cases, the speech signal is modeled using
a time-varying Gaussian (TVG) model with unknown variances, as
in [9, 12], that can be equivalently represented as a sparse prior on
the speech signal [16]. The experimental results show that the ob-
tained MAP estimation procedure is not suitable for dereverberation
in the presented scenario, while the variational estimation reduces
reverberation, as indicated by the evaluated measures.

The paper is organized as follows. In Section 2 we introduce the
notation and formulate the problem of speech dereverberation using
the CTF model. The proposed approaches are formulated in Section
3, with experimental results given in Section 4.

2. PROBLEM FORMULATION

We assume that a speech signal s(t) is recorded by a set of M micro-
phones in an enclosed space. The microphone signals are typically
corrupted by reverberation and additive noise. Assuming that the
RIRs between the source and the microphones are time-invariant, the
m-th microphone signal ym(t) can be modeled in the time-domain
as

ym (t) =
Nr−1∑

i=0

rm (i) s (t− i) + wm (t) , (1)

where Nr is the length of the RIR rm(t), and wm(t) is the addi-
tive noise. The time-domain convolution in (1) can be exactly rep-
resented in the STFT domain using the cross-band filter represen-
tation [13]. However, a reasonable model can be obtained if the
cross-band filters are neglected, i.e., the time-domain convolution
can be approximated using the convolutive transfer function model,
e.g., as used in [7, 12]. Let ym(n, k) and s(n, k) denote the STFT
representations of the m-th microphone signal and the speech signal,
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with time frame index n and frequency bin index k. Using the CTF
model, ym(n, k) can be written as

ym(n, k) =
Nh−1∑

l=0

hm(l, k)s(n− l, k) + vm(n, k), (2)

where hm(n, k) denotes the n-th temporal coefficient of the m-th
microphone’s CTF in the k-th frequency bin with length Nh, and
vm(n, k) jointly represents the additive noise and the error of the
CTF model approximation. The CTF model in (2) can be written
more compactly, with ∗ denoting convolution across the frames, as

ym(k) = hm(k) ∗ s(k) + vm(k), (3)

with the CTF hm(k) = [hm(0, k), . . . , hm(Nh − 1, k)]T , the
speech signal coefficients s(k) = [s(1, k), . . . , s(Ns, k)]

T , Ns

denoting the length of s(k), and ym(k),vm(k) ∈ CNy defined
similarly as s(k) with Ny = Ns + Nh − 1. The expression in (3)
can be written as

ym(k) = Hm(k)s(k) + v(k) = S(k)hm(k) + vm(k), (4)

where H(k) ∈ CNy×Ns and S(k) ∈ CNy×Nh are convolution ma-
trices constructed using the CTF hm(k) and the speech s(k), re-
spectively. Blind speech dereverberation can now be formulated as
estimating the clean speech coefficients s(k) and the CTFs hm(k),
given only the STFT coefficients of the reverberant and possibly
noisy microphone signals ym(k).

3. PROPOSED METHODS

The formulated blind dereverberation problem is ill-posed, e.g., its
solution is in general not unique, since neither the clean speech sig-
nal s(k), the CTFs hm(k) or the noise signals vm(k) are available.
In this section we make assumptions about the speech and noise sig-
nals, and use them to formulate two different estimation procedures.
Unknown parameters for the deconvolution problem in (4) are esti-
mated using a maximum a posteriori procedure in Section 3.2, and
using an alternative estimator based on a variational method in Sec-
tion 3.3. Both procedures are formulated as optimization problems
that are tackled using an alternating optimization strategy.

3.1. Speech and noise model

Many probabilistic speech dereverberation methods, e.g. [9, 12], as-
sume that the speech signal can be modeled using a time-varying
Gaussian (TVG) model, i.e., the coefficients of the speech signal in
each time-frequency bin are modeled as independent zero-mean ran-
dom variables with a circular complex Gaussian distribution with an
unknown and time-varying variance. The probability density func-
tion (PDF) associated with the unknown STFT coefficient s(n, k) is
then assumed to be

NC (s(n, k); 0,λ(n, k)) =
1

πλ(n, k)
e
− |s(n,k)|2

λ(n,k) , (5)

with the variance λ(n, k) considered as an unknown parameter that
needs to be estimated. Since this model assumes speech coeffi-
cients to be independent across frequencies, in the sequel the fre-
quency bin index k is omitted and it is assumed that we operate
in each frequency bin independently. In each frequency bin we
then have a set of unknown speech coefficients s that are modeled
as independent Gaussian random variables with unknown variances

λ = [λ(1), . . . ,λ(Ns)]
T . The variances λ can for instance be esti-

mated by maximizing the likelihood [9,12]. As noted in [16], this is
equivalent to assigning an improper prior for the speech coefficients
in the form

p (s(n)) = max
λ(n)>0

NC (s(n); 0,λ(n)) ∝
1

|s(n)|2 , (6)

which strongly promotes sparsity of the coefficients in a single fre-
quency bin [16]. In general, various sparse priors can be repre-
sented similarly as in (6) as maximization over scaled Gaussian den-
sities [17]. Since the speech coefficients in different time-frequency
bins are assumed to be independent, we can write

p (s) =
Ns∏

n=1

p (s(n)) = max
λ>0

Ns∏

n=1

NC (s(n); 0,λ(n)) , (7)

for each frequency bin independently. By plugging (5) into (7) and
taking the negative logarithm, we obtain

− log p (s) = min
λ>0

sHΛ−1s+
Ns∑

n=1

log λ(n) + const, (8)

where Λ = diag(λ), and the constant term is not important for
minimization as it is not function of λ. For the error term vm in
(3), we assume that it can be modeled as independent and iden-
tically distributed noise with probability density function given as
p (vm(n)) = NC

(
vm(n); 0,σ2

m

)
, such that

− log p (vm) =
1
σ2
m
∥vm∥22 +Ny log σ

2
m + const. (9)

Using the speech and noise models in (8) and (9) we can now for-
mulate estimators for the deconvolution problem in (4).

3.2. Estimation using a MAP cost function

We start by formulating the MAP estimation problem using a single
microphone signal. The posterior distribution for the unknowns can
be written as

p
(
s,hm,σ2

m|ym

)
∝ p

(
ym, s,hm,σ2

m

)
∝ p (ym|s,hm) p (s) ,

(10)
where we assumed that the speech, the CTF and the noise variance
are independent, and no prior knowledge is available for the CTF
and the noise variance, i.e., their PDFs are constant. The first term on
the right-hand side is the likelihood p (ym|s,hm) that is determined
by the noise model in (9), and the second term is determined by the
speech model in (8). The MAP estimation problem for the unknowns
s,λ,hm,σ2

m can be reformulated as minimizing the negative log-
posterior, using (8), (9) and (10) , as

min
s,λ>0

hm,σ2
m>0

1
σ2
m
∥ym − hm ∗ s∥22 + sHΛ−1s+

+
Ns∑

n=1

log λ(n) +Ny log σ
2
m. (11)

The optimization problem can be solved by applying an alternating
optimization strategy. When multiple microphone signals are avail-
able, for simplicity assuming the error term is spatially white, the
optimization problem can be obtained by averaging the cost func-
tion in (11) over the M microphones. This results in the following
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optimization problem

min
s,λ>0

{hm,σ2
m>0}

1
M

M∑

m=1

1
σ2
m
∥ym − hm ∗ s∥22 + sHΛ−1s+

+
Ns∑

n=1

log λ(n) +
1
M

M∑

m=1

Ny log σ
2
m, (12)

where
{
hm,σ2

m

}
=

{
hm,σ2

m

}M

m=1
denotes the set of all CTFs and

noise variances. Finally, the obtained non-convex optimization prob-
lem is solved by applying an alternating optimization strategy. This
results in the updates for all of the unknowns, as given in Algorithm
1, that are iteratively repeated for a fixed number of iterations or until
convergence is attained. The two main subproblems for estimating
the speech coefficients s and the CTFs {hm} are

ŝ = argmin
s

M∑

m=1

1
M σ̂2

m
∥ym − Ĥms∥22 + sHΛ̂−1s (13)

ĥm = argmin
hm

∥ym − Ŝhm∥22. (14)

The obtained problems are quadratic and convex, with their closed-
form solutions given in Algorithm 1. The subproblem in (13) is a
non-blind deconvolution using the estimated CTFs, with an addi-
tional quadratic penalty on s. The weights in the quadratic penalty
are equal to the inverse of the previously estimated variances (cf. Al-
gorithm 1), resulting in relatively larger weights for the coefficients
in s with a small amplitude. This type of reweighting mimics the
behiavior of ℓ0-norm on s, that is invariant to scaling of the coeffi-
cients, thus favoring a sparse estimate ŝ [18]. By solving the sub-
problem in (14) a new estimate for the m-th CTF is obtained, using
the previously estimated speech signal ŝ. In terms of computational
complexity, the subproblem for estimation of ŝ is dominant, since its
dimension depends on the length of the signal, and the matrix to be
inverted is of size Ns × Ns (cf. Algorithm 1). However, efficient
conjugate gradient solvers can be applied in case of long signals (i.e.,
large Ns), and the inverse in Algorithm 1 does not have to be explic-
itly calculated to solve the linear system. A small lower bound for
variances λlb is included in Algorithm 1 to prevent the estimates
from going to zero. The noise variance update in Algorithm 1 also
includes a heuristically set lower bound σ2

lb, to prevent σ2
m from go-

ing to zero. To avoid scaling ambiguity, the estimate ŝ is rescaled
after each iteration to have the same norm as y1, ensuring that the
average power spectrum of the estimated speech is the same as on
the first microphone [12].

3.3. Estimation using a cost function based on variational esti-
mation

Several blind deconvolution methods are based on a variational
estimation, mainly in the context of image deblurring [15, 18–20].
In this section we apply an estimation strategy variational in s for
speech dereverberation using the CTF model in (4). Again, we
start by formulating the estimation problem for a single microphone
signal. The main idea is to perform marginalization over s, and
then estimate the remaining parameters hm,λ,σ2

m by maximizing
the obtained marginalized posterior [18]. To make the calculations
tractable the mean field approximation is employed [21], i.e., the
posterior p (s,λ,hm|ym) is approximated by a factorized distribu-
tion q (s) q (λ) q (hm), with q (s) q (λ) =

∏
n q (s(n)) q (λ(n)),

and the latter factorization resulting in a posterior for s with a diago-

Algorithm 1 Dereverberation based on MAP estimation, performed
independently for each frequency bin. (.)† denotes pseudoinverse,
and |.| denotes element-wise absolute value.

parameters Nh in (2), lower bounds λlb,σ
2
lb, maximum number

of iterations imax

input M signals {ym}
initialization ĥm, λ̂, σ̂2

m

repeat
ŝ ←

(∑
m

ĤH
mĤm

M σ̂2
m

+ Λ̂−1
)−1 ∑

m
ĤH

mym

M σ̂2
m

ŝ ← ŝ · ∥y1∥2/∥ŝ∥2
λ̂ ← |ŝ|2 + λlb

ĥm ← Ŝ†ym

σ̂2
m ← ∥ym−Ĥm ŝ∥22

Ny
+ σ2

lb

until convergence or imax exceeded

nal covariance [15,19]. In [18] it has been shown that the estimation
procedure can be equivalently formulated in a penalized form, simi-
lar to the MAP estimation problem in (11). Using the results in [18],
the following optimization problem is formulated

min
s,λ>0

hm,σ2
m>0

1
σ2
m
∥ym − hm ∗ s∥22 + sHΛ−1s+

+
Ns∑

n=1

log
(
σ2
m + λ(n)∥hm∥22

)
. (15)

The main difference when compared to the MAP problem in (11)
is that the noise variance, the speech variance and the CTF are cou-
pled in the last penalty term. When multiple microphone signals are
available, assuming the error term is spatially white, the optimiza-
tion problem can be obtained by averaging the cost function in (15)
over the M microphones, similarly as in [20]. This results in the
following optimization problem

min
s,λ>0

{hm,σ2
m>0}

1
M

M∑

m=1

1
σ2
m
∥ym − hm ∗ s∥22 + sHΛ−1s+

+
1
M

M∑

m=1

Ns∑

n=1

log
(
σ2
m + λ(n)∥hm∥22

)
. (16)

Again, the obtained non-convex optimization problem in (16) can
be solved by applying an alternating optimization strategy. How-
ever, the variables are coupled and convenient upper bounds have to
be used, as derived in [18]. This results in the updates as given in
Algorithm 2, that are iteratively repeated for a fixed number of iter-
ations or until convergence is attained. The main two subproblems
for estimating s and hm are given as

ŝ = argmin
s

M∑

m=1

1
M σ̂2

m
∥ym − Ĥms∥22 + sHΛ̂−1s (17)

ĥm = argmin
hm

∥ym − Ŝhm∥22 + α̂m∥hm∥22, (18)

where α̂m is a regularization parameter for estimation of the CTF
hm. The subproblem for estimating s in (17) has the same structure
as the one in (13), but with different estimation of the variances λ̂
(cf. Algorithm 2), that are now calculated using the estimate ŝ and
the vectors cm (that give a diagonal approximation of the covariance
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of ŝ). As a result, the penalty term is less concave when the co-
variance of the estimate ŝ is large, while it becomes more similar to
the reweighting in (13) when the covariance is decreased [18]. Intu-
itively, a less aggressive sparse penalty helps to avoid local minima
when the estimate ŝ is not reliable (in terms of a large covariance).
By comparing (18) with (14), it can be seen that the subproblem in
(18) includes an additional quadratic penalty on the CTF, with the
amount of regularization α̂m automatically determined (cf. Algo-
rithm 2). Also, the noise variance update has an additional term
dependent on the CTF estimate, that prevents a fast reduction of the
noise variance estimate. Similar as for MAP estimation, the final
estimate of the speech is scaled to have the same average power
spectrum as the first input. The cost function in (16) is invariant in
the sense that replacing s,λ, {hm} with cs, c2λ, {c−1hm}, c ∈ R,
does not change the cost function value. Therefore, only the final
estimate is rescaled to have the desired norm ∥y1∥2. The obtained
estimation procedure is similar to the EM-based estimation in [12],
where a Kalman smoother was applied to estimate the mean and
covariance of the speech, that are used to update the remaining pa-
rameters.
Algorithm 2 Dereverberation based on variational estimation, per-
formed independently for each frequency bin. 1/. denotes element-
wise division, and |.| denotes element-wise absolute value.

parameters Nh in (2), lower bounds λlb,σ
2
lb, maximum number

of iterations imax

input M signals {ym}
initialization ĥm, λ̂, σ̂2

m

repeat
ŝ ←

(∑
m

ĤH
mĤm

M σ̂2
m

+ Λ̂−1
)−1 ∑

m
ĤH

mym

M σ̂2
m

ĉm ← 1

(∥ĥm∥22/σ̂2
m+1/λ̂)

λ̂ ← |ŝ|2 + 1
M

∑
m ĉm + λlb

α̂m =
∑

n ĉm(n)

ĥm ←
(
ŜH Ŝ+ α̂mI

)−1
ŜHym

σ̂2
m ← ∥ym−Ĥm ŝ∥22+α̂m∥ĥm∥22

Ny
+ σ2

lb

until convergence or imax exceeded
ŝ ← ŝ · ∥y1∥2/∥ŝ∥2

4. EXPERIMENTS

In this section we investigate the performance of the presented dere-
verberation approaches for several experimental conditions. We use
a set of 10 sounds samples with utterances from different speakers,
where the average length of the utterances is approximately 3.3 s and
the sampling frequency is fs = 16 kHz. The microphone signals are
generated by convolving an utterance with RIRs that were measured
in a room with reverberation time RT ≈ 750 ms, and the source po-
sitioned 2.3 m from the microphones. In the experiments we use a
setup with M = 1 and M = 4 microphones. The obtained reverber-
ant signals are further degraded with spatially white speech-shaped
noise at a reverberant speech to noise ratio (RSNR) of {10, 20, 30}
dB. The STFT is computed using a 64 ms Hanning analysis window
with 16 ms frame shift. In all experiments the CTFs length was set
to Nh = 47, to approximately match the reverberation time. The
initialization for both MAP and variational approaches is performed
as follows. The first 4 taps of the CTFs are initialized to 1 and the
remaining taps were set to zero, just to avoid a trivial solution. The
variances are initialized using the signal from the first microphone
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Fig. 1. Evaluated objective measures for the setup with (a) one mi-
crophone and (b) four microphones.

as λ̂(n) = |y1(n)|2 for each frequency bin, with the lower bound
λlb set to 10−8. The noise variance σ̂2

m is initialized as the average
power of y1 and the lower bound was set to 1% of the initial value.
Ten iterations are performed for both approaches.

The performance is evaluated in terms of cepstral distance (CD),
frequency-weighted segmental signal-to-noise ratio (FWSSNR), and
speech-to-reverberant modulation energy ratio (SRMR) [22]. The
measures are evaluated with the anechoic speech as reference, and
the values reported in Figure 1 are obtained by averaging over all
utterances. The presented results show that the proposed method
based on variational estimation performs better than MAP estima-
tion in terms of objective measures, both for single microphone and
multiple microphones. The MAP estimation does not necessarily
perform better when multiple microphones are available, since the
noise variance update and a fixed speech penalty result in the opti-
mization being trapped in a bad local minima. Both of these prob-
lems are handled better by the variational estimation procedure, that
results in a better performance in terms of the evaluated measures
when compared to the MAP-based procedure.

5. CONCLUSIONS

We have presented a framework for blind speech dereverberation in
the STFT domain, using the CTF model approximation and blind
deconvolution techniques. The presented algorithms are based on
the cost functions obtained using MAP estimation and an estima-
tion procedure variational in s. Sparsity of the STFT coefficients of
the speech signal is exploited in both approaches. The experimental
results show that direct application of the proposed MAP estima-
tion procedure is not suitable for dereverberation in the presented
scenario, while variational estimation procedure results in improved
speech quality in terms of the evaluated measures when compared to
the reverberant and noisy microphone signal.
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