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ABSTRACT 

Many noise reduction algorithms are designed in the short-
time Fourier transform (STFT) domain. The STFT analysis 
results in frequency bands with a constant bandwidth. In 
contrast, perceptually motivated analysis-resynthesis 
filterbanks, such as the Gammatone filterbank, result in a 
higher frequency resolution in low frequencies as compared 
to high frequencies. This variable frequency resolution goes 
along with a changed temporal resolution and thus 
potentially different temporal correlations in the different 
frequency bands. In this paper, we design a noise power 
spectral density estimator at the output of a Gammatone 
filterbank. For this, we employ the state-of-the-art speech 
presence probability based estimator [13]. While [13] was 
designed in the STFT domain, in this paper the parameters 
of [13] are adjusted based on a statistical analysis of the 
changed temporal correlation at the output of the 
Gammatone filters. The proposed approach yields a 
comparable instrumentally predicted quality as the STFT-
based baseline approach and thus allows for the integration 
of noise reduction with other algorithms that work in a 
perceptually motivated spectral domain. 

Index Terms— speech enhancement, noise reduction, 
gammatone filter, auditory model 

1. INTRODUCTION 

Single-channel noise reduction algorithms (NRA) are often 
formulated in the frequency domain, e.g. using the short-
time discrete Fourier transform (STFT) due to, among other 
reasons, the presence of computationally efficient 
implementations. Clean speech is estimated from the noisy 
speech by applying a time-variant gain function to the STFT 
coefficients. In the simplest approaches, a complex Gaussian 
distribution is assumed for the clean speech and noise STFT 
coefficients, resulting in the Wiener filter [19] as the 
minimum mean square error (MMSE)-optimal estimator of 
the complex clean speech coefficients or Ephraim and 
Malah’s [6] MMSE-optimal estimator of the STFT-
amplitudes. Spectral noise power estimators are often based 
on minimum statistics [22]. In contrast, [12, 13] propose a 
noise power estimator based on the speech-presence-
probability (SPP) in each time-frequency point. Estimation 

of the spectral speech power can be performed by, e.g., 
employing the decision-directed approach [6] or cepstral 
smoothing techniques [3]. 

It was shown that adequate spectral smoothing is a 
necessary step for high-quality noise reduction systems, e.g. 
[2, 3, 7]. This smoothing can be obtained, for instance, by 
averaging adjacent spectral coefficients. In contrast to 
conventional STFT-based approaches, the transformation of 
the input signal to the spectral domain is performed by 
applying a filterbank with fewer frequency channels. Several 
analysis-synthesis filterbanks have been used successfully in 
speech enhancement applications, like the low-delay 
filterbanks with adaptive subband filtering proposed by [21], 
which can achieve a comparable quality of enhanced speech 
but with lower signal delay. For our proposed noise 
reduction scheme, we use an auditorily-motivated analysis-
resynthesis filterbank based on Gammatone filters [23] with 
a low-delay and nearly perfect signal reconstruction [17]. 
Such a system closely mimics the auditory spectro-temporal 
resolution and potentially offers perceptual advantages 
regarding the time-frequency distribution of artifacts 
originating from NRA. The noise power estimation is 
implemented analogous to the algorithm proposed in [12, 
13]. For this, the STFT-based a posteriori SPP estimation 
and its proposed parameter optimization [11] are adapted to 
the GFB analysis system. The proposed multiband noise 
reduction scheme can be easily combined with, e.g., state-
of-the-art dynamic compressors using an auditory filterbank 
[8, 9]. 

2. ALGORITHM OVERVIEW 

2.1. Analysis, resynthesis and frame processing 

As applied in an auditory perception model [5], 4th-order 
linear Gammatone filters can be used to mimic human 
auditory filters. A Matlab implementation of the 
Gammatone filterbank (GFB) with the analysis-synthesis 
system proposed in [17] was used in the proposed algorithm. 
The GFB was realized using cascaded first-order complex-
valued bandpass filters in an all-pole design, resulting in 
computationally efficient infinite impulse response bandpass 
filters. 

2014 14th International Workshop on Acoustic Signal Enhancement (IWAENC)

978-1-4799-6808-4/14/$31.00 ©2014 IEEE 283



 
Fig. 1. Block diagram of the proposed noise reduction algorithm 
with Gammatone filterbank analysis and resynthesis. 
 
The block diagram of the algorithm is shown in Fig. 1. The 
input signal (at a sampling rate of 16 kHz) is processed by a 
4th-order Gammatone analysis filterbank. The center 
frequencies are linearly spaced on the equivalent rectangular 
bandwidth (ERB) frequency scale [14]. The filter 
bandwidths were set to 1 ERB resulting in 33 bands with 
center frequencies ranging from 26.1 to 7792.7 Hz and 
bandwidths from 27.5 to 864.5 Hz, approximately 
overlapping at their 3-dB point. In each GFB channel k, the 
absolute value of the complex-valued output represents an 
approximation of the bandpass filtered Hilbert envelope. 
After GFB analysis, Hann-windows ݓ(݊) with a constant 
duration of ௪ܶ = 32 ms (ܰ = 512 samples), where successive 
segments overlap by 50%, were used in an overlap-add 
(OLA) manner. In this way, all estimates in the subsequent 
stages are updated each 16 ms. This approach is referred to 
as GFB1 in the following. In an alternative approach, GFB2, 
the frame duration was inversely related to the filter 
bandwidth (see Sec. 3.1. for details). 

The resulting Wiener Gain ܩௐ from the NRA system 
(gray block in Fig. 1) is applied to each segment. After the 
segments are added up again in each channel, a 2nd-order 
Gammatone resynthesis filterbank is applied to attenuate 
frequency components outside the desired channel and thus 
reduce distortions. Before summation and taking the real 
value as output, all channels were time aligned to 
compensate for their different group delays, resulting in an 

overall delay of 6.25 ms (corresponding to 100 samples; see 
[16, 17] for details). 

2.2. Noise and speech power estimation 

The noise and speech power estimation stage is indicated by 
a gray background in Fig. 1. The noise power estimation is 
realized analogously to [12, 13], but adapted to the GFB 
output. In each GFB channel k and windowed segment ݈, a 
short-term periodogram-like energy estimate of the (noisy) 
input signal Y is calculated as 

| ௞ܻ(݈)|ଶ = ଵ
ே ∑ ൫|݃௞(݊)| ∙ ൯ଶ(݊)ݓ

௡ , (1) 

where ݊ denotes the segment sample index, N denotes the 
total segment length and ݃௞ denotes the complex GFB 
output of channel k, whose absolute value (Hilbert envelope) 
is multiplied with the Hann-window ݓ(݊). It is assumed 
that the speech (S) and the noise (N) power are additive: 
| ௞ܻ(݈)|ଶ = |ܵ௞(݈)|ଶ + |ܰ(݈)|ଶ. The bandpass filtered noise 
and speech power is defined as the expected value of the 
corresponding periodogram estimate ߪොௌ

ଶ =  and {ଶ|ܵ|}ܧ
ොேߪ

ଶ =  .respectively ,{ଶ|ܰ|}ܧ
Introducing the a posteriori signal-to-noise ratio (SNR), 

ߛ = |ܻ|ଶ ොேߪ
ଶ⁄ , the probability of speech presence (SPP) 

given the observation ߛ, can be written as a function of the 
generalized likelihood ratio (GLR), Λ: 

ܲ(Ηଵ|ߛ) = ஃ
ଵାஃ, (2) 

where Λ is defined as the ratio of the likelihood of speech 
presence and the likelihood of speech absence, weighted by 
their prior probabilities of speech presence: 

Λ(ߛ) = ௉(୿భ) ௣(ఊ|୿భ)
௉(୿బ) ௣(ఊ|୿బ), (3) 

where ܲ(Ηଵ) is the a priori SPP, ܲ(Η଴) =  1 − ܲ(Ηଵ), and 
 are the likelihoods of speech presence (Η଴|ߛ)݌ and (Ηଵ|ߛ)݌
and absence. Assuming that the real and imaginary parts of 
the complex GFB output are Gaussian distributed, the 
likelihoods of the a posteriori SNR follow a ߯²-distribution. 
With these assumptions, equation (3) results in: 

        Λ(ߛ) = ܲ(Η1)
ܲ(Η0) ∙ ൬ 1

ݐ݌݋ߦ+1
൰

2/ݎ
exp ൬ ݐ݌݋ߦ

ݐ݌݋ߦ+1

ݎ
2  ൰, (4)ߛ

where the parameter ߦ௢௣௧ reflects the SNR that can be 
expected in speech presence, and the parameter r is referred 
to as the degrees of freedom of the ߯²-distribution. 

By averaging the Gammatone filter outputs in frames of 
32 ms (see Fig. 1), the degrees of freedom r increase. The 
amount of increase depends on the correlation of the data 
that is averaged [11]. The larger the correlation, the higher 
the increase in the degrees of freedom r. The parameter ߦ௢௣௧ 
and ݎ were fitted and optimized to the proposed GFB 
analysis system as described in [11] in section 2.3.  
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For each frame in each channel, the a posteriori speech 
presence probability (SPP) is calculated according to Eqs. 
(2, 4) using the noise power estimate of the previous frame 
for the calculation of a posteriori SNR. Thereafter, the noise 
periodogram estimate ห ෡ܰห is updated as 

ห ෡ܰหଶ = ܲ(Η଴|ܻ) |ܻ|ଶ + ܲ(Ηଵ|ܻ) ߪොே
ଶ. (5) 

The spectral noise power estimate ߪොே
ଶ is then obtained by 

temporal smoothing: 

ොேߪ 
ଶ(݊) = ேߙ ∙ ොேߪ

ଶ(݊ − 1) + (1 − ே) หߙ ෡ܰ(݊)ห. (6) 

In each channel, the recursive smoothing factors ߙே are set 
to correspond to a time constant of 64 ms (here: 0.8 for a 
parameter update rate of 16 ms). The final speech power 
estimation for noise reduction purpose consists of three 
parts. First, the noise power spectral density (PSD) is 
estimated as previously described. Secondly, a decision-
directed approach [6] is used to get an estimate of the speech 
PSD: 

ොௌߪ
ଶ(݊) = ݊)ොܵ| ܵߙ − 1)|2 + (1 − max{|ܻ|2 (ܵߙ − ܰߪ

2 , 0}. (7) 

As a first approximation, the filter coefficients ߙௌ are set to 
correspond to an equivalent time constant of 784 ms of a 1st-
order lowpass filter (here: 0.98 for a parameter update rate 
of 16 ms). Thirdly, a Wiener gain ܩௐ is calculated, limited 
to Gmin = -12 dB and applied as follows: 

ห መܵหଶ = ௐܩ
ଶ|ܻ|ଶ = ൬ ఙෝೄ

మ

ఙෝೄ
మାఙෝమಿ ൰

ଶ
|ܻ|ଶ. (8) 

2.3. Optimal parameters for SPP estimation 

In each channel, the degrees of freedom ݎ were estimated 
according to [11]. For this, Gaussian white noise is created 
with zero mean and variance (VAR) of 1. With the a 
posteriori SNR, defined as 

(݊)௞ߛ = | ௞ܻ(݊)|ଶ ොே,௞ߪ
ଶൗ , (9) 

the degrees of freedom are obtained as [11] 

௞ݎ̅ = ଶ
VAR{ఊೖ}. (10) 

As a consequence of the frequency-dependent bandwidth of 
the GFB channels, the resulting degrees of freedom are 
channel dependent (proportional to the filter bandwidth of 1 
ERB). The resulting values are given in the middle column 
of Tab. 1 (GFB1) ranging from from 2.5 to 55.9.  

The assumed a priori SNR ߦ௢௣௧ is chosen to obtain a 
specified performance in terms of false alarms and missed 
detections for a given range of input SNRs between −10 and 
15 dB, as detailed in [11]. The resulting ߦ௢௣௧ ranges from 11 
dB for the lowest channel up to 3 dB for the highest channel. 

3. EVALUATION 

3.1. Algorithms and stimuli 

For further analysis, three different approaches were 
considered: GFB1 had a fixed frame duration of 32 ms. In 
GFB2, the frame durations were selected in such a way that 
the a posteriori SNRs at the output of the Gammatone filters 
exhibit the same variance and thus the same degrees of 
freedom. For this purpose, the frame durations were set to 5 
times the inverse filter bandwidth in Hz (from 182 ms to 6 
ms; see Table 1). In addition to the GFB approaches, a 
conventional STFT-based algorithm was tested. A square-
root Hann-window of length ௪ܶ = 32 ms with 50% overlap 
was applied to each frame prior to a DFT analysis and after 
application of the inverse DFT. The a posteriori signal-to-
noise ratio is smoothed as proposed by [11] to reduce the 
variance of the SPP estimate and thus decrease local 
distortions. The smoothing spans a range of 105.5 Hz along 
frequency and 64 ms along time. For the STFT and GFB2 
approach, the values of r were averaged over the frequency 
channels, and resulted in ݎ = 11, respectively (see Table 1). 
For ߦ௢௣௧, a value of 8 dB for both STFT and GFB2 was 
obtained. The a priori SPP was set to ܲ(Ηଵ) = 0.5. 

In further evaluations, results are given as the average of 
20 sentences from the TIMIT database [10] (10 male, 10 
female), for input SNRs between -10 dB and 15 dB. Noise 
signals were stationary white Gaussian noise and babble 
noise in a cafeteria taken from the NOISEX-92 database 
[24]. 

 
 STFT GFB1 GFB2 
௪ܶ 32 ms 32 ms (182…6) ms 
 11 55.9 … 2.5 11 ݎ

 ௢௣௧ 8 dB (11 … 3) dB 8 dBߦ

Tab. 1. Parameter settings for the three considered algorithms. 

3.2. SNR improvement 

In addition to the noisy signal, the same speech 
enhancement Wiener gains are applied block-wise to the 
speech-only and the noise-only signals. This linear filtering 
procedure is referred to as shadow filtering. The segmental 
noise reduction (NR), as well as the segmental speech SNR 
(spSSNR) as proposed by [20] were used for evaluation. 
The resynthesized time-domain signals were segmented into 
non-overlapping 10-ms segments. To focus on the noise 
reduction during speech, only signal frames with energy 
larger than −45 dB compared to the maximum frame energy 
were considered. While NR is a measure of the relative 
noise reduction, spSSNR takes into account undesired  
speech distortions and becomes larger the lower the speech 
distortions are. 
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Fig. 2. Simulation results as a function of the input SNR for white 
Gaussian noise (left) and babble noise (right). Top: Segmental 
speech SNR (filled bars) and the segmental noise reduction (white 
bars). The mean standard deviations (msd) of the 20 TIMIT 
sentences averaged across all input SNRs amount to 1.1 dB and 1.5 
dB, respectively. Middle: PEMO-Q Score (PSM; msd: 0.0045). 
Bottom: PESQ Score (MOS; msd: 0.20). The light lines in the 
lower two panels refer to the speech-based quality measures 
(spPSM and spMOS with a msd of 0.0019 and 0.091, respectively). 
 
The upper panels of Fig. 2 show the results for stationary 
white Gaussian noise (left) and babble noise (right) as a 
function of the input SNR for spSSNR (filled bars) and NR 
(white bars). The total height of both bars is thus a measure 
of the overall performance. For both noises, the STFT 
algorithm reaches higher values of the spSSNR because of 
the higher frequency resolution. Regarding the NR, the 3 
NRAs perform similar in white noise. However, in babble 
noise, the GFB approaches reach higher noise reductions at 
low SNRs compared to the STFT implementation. Only low 
to negligible influence of the adapted window length 
(GFB2) can be observed. 

3.3. Instrumental prediction of perceived quality 

The perceived audio quality was predicted based on two 
reference-based instrumental audio quality measures. 
PEMO-Q [18] evaluates the similarity between internal 
representations of the noisy and reference audio signal after 
applying an auditory perception model [5]. The resulting 
correlation is referred to as Perceptual Similarity Measure 
(PSM). The second measure was the ITU standardized 
(ITU-T P.862) PESQ (“Perceptual Evaluation of Speech 

Quality”, [1]). The PESQ score is mapped to a mean opinion 
score (MOS), which gives values between 0.5 and 4.5. Both 
measures have been shown to have reasonably high 
correlations with the perceived quality of noise-reduced 
speech [15]. PSM and MOS values were assessed using the 
processed noisy speech signal as a target signal and a noisy 
input signal with a 12-dB improved SNR (equal to Gmin) as 
reference. Additionally, the measures were applied to the 
shadow-filtered speech, where the same Wiener gains were 
applied block-wise to the clean speech alone. Here, the clean 
speech signal was used as reference. The respective outcome 
is referred to as spPSM and spMOS, respectively, and may 
predict perceptual speech distortions.  

The quality predictions are given in Fig. 2 for the white 
Gaussian noise (left panels) and the babble noise (right 
panels) as a function of the input SNR. Results from the 
PEMO-Q scores are given in the medium panels (PSM in 
dark and spPSM in light colors) while the PESQ scores are 
given in the lower panels (MOS in dark and spMOS in light 
colors). While in stationary noise the STFT approach 
appears to slightly outperform the GFB algorithms in terms 
of audio quality, the PEMO-Q score indicates improved 
audio quality for the GFB algorithms in babble at low SNRs. 
Speech distortions are generally similar or even better (at 
low SNRs). 

4. CONCLUSION 

In this work, we present an algorithm for single channel 
speech enhancement at the output of the auditorily-
motivated Gammatone filterbank. The employed Wiener 
filter based single channel speech enhancement algorithm 
requires an estimate of the noise power spectral density. 
This noise power spectral density can for instance be 
estimated based on the a posteriori speech presence 
probability. In this paper, we optimize the statistical 
parameters of the speech presence probability estimator to 
the different temporal correlation at the output of individual 
Gammatone channels. The optimization is done by 
interpreting the speech presence probability estimator as a 
detector and minimizing the missed hit and false alarm rates 
in each channel. The resulting speech presence probability 
estimator was then used to estimate the noise power spectral 
density employed in Wiener filtering. 

Two Gammatone-based approaches were compared to 
an STFT approach. The proposed systems show lower 
segmental speech SNR values. However, an increase in the 
segmental noise reduction can be achieved in babble noise.  
All algorithms perform comparably in instrumentally 
predicted sound quality with a small benefit for the 
Gammatone based approaches in strong babble noise. The 
proposed noise reduction scheme provides the capability for 
an integration into other perceptually motivated multiband 
systems. 
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