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ABSTRACT
This paper addresses the problem of speech segregation by es-
timating the ideal binary mask (IBM) from noisy speech. Two
methods will be compared, one supervised learning approach
that incorporates a priori knowledge about the feature distri-
bution observed during training. The second method solely
relies on a frame-based speech presence probability (SPP) es-
timation, and therefore, does not depend on the acoustic con-
dition seen during training. We investigate the influence of
mismatches between the acoustic conditions used for training
and testing on the IBM estimation performance and discuss
the advantages of both approaches.

Index Terms— ideal binary mask, speech segregation,
generalization, speech presence probability

1. INTRODUCTION

In speech communication devices, like mobile telephones or
hearing aids, the captured speech is often disturbed by addi-
tive noise. This additive noise can reduce both the speech
quality and the speech intelligibility. Speech enhancement al-
gorithms can be employed to improve speech quality, while
blindly improving speech intelligibility is considered a diffi-
cult task [1, 2].

It was shown that if an ideal binary mask (IBM) or an
ideal continuous gain (CG) function is available in the short-
time spectral domain, intelligible speech can be obtained even
at a very low signal-to-noise ratio (SNR) [3, 4]. In this pa-
per we focus on the IBM, which is a binary matrix that clas-
sifies a time-frequency (T-F) representation of noisy speech
into target-dominated and masker-dominated T-F units. To
construct the IBM a priori knowledge about the target and
the masker is required. However, while the IBM is capable of
improving speech intelligibility, the IBM is not available in
practice and hence has to be blindly estimated from the noisy
mixture.

Considering the problem of single-channel binary mask
estimation, recent studies have employed the supervised
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learning of amplitude modulation spectrogram (AMS) fea-
tures [5, 6]. In general, classification-based approaches ex-
ploit a priori knowledge about the distribution of acoustic
features that are extracted from speech and noise signals
during an initial training stage. We will refer to these ap-
proaches as pre-trained. Any mismatch between the acoustic
conditions that occur during training and testing can distort
the observed feature distribution, which in turn is likely to
degrade classification performance. Often this problem is
avoided by evaluating classification-based systems only un-
der those acoustic conditions that have been included also in
the training stage [5, 6]. Therefore, one of the biggest chal-
lenges is to design classification-based segregation systems
that are able to generalize to unseen acoustic conditions.

The problem of separating the contribution of speech and
noise given the noisy mixture has strong similarities with
speech enhancement algorithms, where typically an estima-
tion of the background noise power spectral density (PSD) is
employed to determine the SNR or the speech presence prob-
ability (SPP) in individual discrete Fourier transform (DFT)
bins [7, 8, 9]. In contrast to classification-based systems,
these approaches are not trained for a specific acoustic envi-
ronment. Instead, rather general assumptions are made on the
prior probability density function (PDF) of clean speech and
the background noise. Typical examples are a Gaussian dis-
tribution for the complex noise coefficients in the short-time
Fourier domain, and a Gaussian or super-Gaussian distribu-
tion for the speech coefficients [9]. We will refer to these
approaches as generic approaches.

The aim of this study is to analyze the influence of a pri-
ori knowledge on speech segregation performance by means
of estimating the IBM. A generic SPP-based approach for the
estimation of the IBM is presented that does not rely on an
initial training stage. This approach is then compared to a
pre-trained supervised-learning strategy where the distribu-
tion of AMS features is learned by a Gaussian mixture model
(GMM) classifier [5, 6]. During evaluation, the mismatch be-
tween the acoustic conditions used for training and testing
is systematically varied and the influence on IBM estimation
performance is investigated. Specifically, different forms of
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mismatch are considered, ranging from solely spectral distor-
tions due to band-pass filtering, to spectro-temporal smearing
caused by room reverberation. In addition, the ability to seg-
regate speech in the presence of noise that has not been seen
during training is evaluated. We discuss the advantages of
both methods for the task of IBM estimation.

2. SYSTEM DESCRIPTION

2.1. Ideal binary mask

The IBM requires a priori knowledge about the short-time
DFT representation of speech Sk(ℓ) and noise Nk(ℓ), where
k denotes the frequency index and ℓ indexes the time segment.
If speech and noise are given, the IBM can be determined by
comparing the local a priori SNR to a local criterion (LC)

IBMc(ℓ) =

⎧
⎨

⎩
1 if 10 log10

(∑
k Gk,c|Sk (ℓ) |2∑
k Gk,c|Nk (ℓ) |2

)
> LC

0 otherwise.
(1)

An element in the IBM is 1 if the local a priori SNR is larger
than the LC and is 0 otherwise. The spectral resolution is
inspired by the human auditory system, where Gk,c reflects
the frequency-dependent response of 25 auditory filters that
cover a frequency range between 80Hz and 8000Hz accord-
ing to the mel-frequency spacing [10]. We denote the index of
a frequency band in the auditory domain by c. In the follow-
ing, the generic SPP-based and the pre-trained classification-
based approach are described in detail.

2.2. Generic speech presence probability (SPP)-based
mask estimation

In the short-time DFT-domain, we observe the noisy speech
Yk(ℓ) as the linear superposition of speech Sk(ℓ) and additive
noise Nk(ℓ). To estimate the IBM without pre-training, we
first estimate the a posteriori SPP in the DFT-domain using
[7]. The a posteriori SPP is defined as the probability that
speech is present in a certain T-F unit, given the noisy obser-
vation Yk(ℓ). Introducing the hypothesis of speech presence
H1, this a posteriori SPP can be written as P (H1 | Yk(ℓ)).

The approach in [7] estimates the noise PSD based on an
estimate of the a posteriori SPP. Given a previous estimate
of the noise PSD σ̂2

N,k(ℓ − 1), under the assumption of com-
plex Gaussian distributed speech and noise short-time DFT
coefficients, the a posteriori SPP is obtained as

Pk(ℓ) = P (H1 | Yk(ℓ))

=

(
1+(1+ξ) exp

(
− |Yk(ℓ) |2

σ̂2
N,k(ℓ− 1)

ξ

1 + ξ

))−1

. (2)

Here, ξ represents the SNR that can be expected in speech
presence. Minimizing the total probability of error, ξ corre-
sponds to 15 dB [7]. The estimate of the noise PSD is then

updated based on the a posteriori SPP [7]

̂|Nk(ℓ) |2 = (1− P (H1 | Yk(ℓ))) |Yk(ℓ) |2

+ P (H1 | Yk(ℓ)) σ̂
2
N,k(ℓ− 1) (3)

and recursive smoothing

σ̂2
N,k(ℓ) = 0.8 σ̂2

N,k(ℓ− 1) + 0.2 ̂|Nk(ℓ)|2. (4)

To facilitate the comparison of the generic approach and
the pre-trained approach, we integrate the DFT-domain a pos-
teriori SPP information Pk(ℓ) into auditory channels by con-
sidering the frequency-dependent contribution to the overall
auditory channel energy

P̃c(ℓ) =

∑
k Gk,cPk(ℓ) |Yk (ℓ) |2∑

k Gk,c|Yk (ℓ) |2
. (5)

In the context of SPP estimation [11] as well as IBM esti-
mation [6] it has been shown that the exploration of informa-
tion present in neighboring T-F units is beneficial. Therefore,
we follow the approach presented in [6] and integrate the esti-
mated a posteriori SPP in the auditory domain P̃c(ℓ) across a
plus-shaped neighborhood function that spans over 5 auditory
channels and 5 time frames.

Finally, an estimate of the IBM is obtained by applying a
noise-specific threshold Ψ to the estimated SPP, as

ÎBMc(ℓ) =

{
1 if P̃c(ℓ) > Ψ
0 otherwise.

(6)

2.3. Classification-based mask estimation

The classification-based approach exploits a priori knowl-
edge about the feature distribution of speech-dominated and
noise-dominated T-F units during an initial training stage.

Firstly, the AMS features are extracted according to [6].
Therefore, the noisy speech is normalized according to its root
mean square (RMS) value and then divided into overlapping
frames of 4ms duration with a shift of 0.25ms. Each frame
is Hamming windowed and zero-padded to a length of 128
samples and a 128-point DFT is computed. The DFT mag-
nitudes are multiplied by 25 auditory filters that covered a
frequency range between 80Hz and 8000Hz according to the
mel-frequency spacing [10]. The envelope in each auditory
filter is extracted by full-wave rectification and further ana-
lyzed for segments of 32ms duration by 15 triangular-shaped
modulation filters that are linearly-spaced between 15.6 and
400Hz, resulting in a set Xc (ℓ) of 15 AMS features Mc (ℓ)
for each auditory channel and each time frame, as Xc (ℓ) =
{M1

c (ℓ) , . . . ,M15
c (ℓ)}T . In this contribution we extend the

AMS feature extraction, as described in [5, 6], by a normal-
ization stage. More specifically, we propose to normalize the
envelope in each auditory channel by its median prior to mod-
ulation analysis. The required normalization statistics were
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computed over the entire sentence. This new normalization
stage aims at reducing the influence of the overall background
noise level on the AMS feature distribution, which is expected
to improve the generalization of the pre-trained approach to
unseen acoustic conditions.

Secondly, a two-class Bayesian classifier is trained to dis-
tinguish between speech-dominated and noise-dominated T-F
units for each auditory channel, denoted as λc

1 and λc
0 respec-

tively. Given the AMS feature vector Xc (ℓ), the IBM is esti-
mated by comparing two a posteriori probabilities [5, 6]

ÎBMc(ℓ) =

{
1 if P (λc

1|Xc (ℓ)) > P (λc
0|Xc (ℓ))

0 otherwise.
(7)

Following [6], the IBM estimation can be improved by
exploiting the a posteriori probability of speech and noise
presence, P (λc

1|Xc (ℓ)) and P (λc
0|Xc (ℓ)), over neighbor-

ing T-F units. Similar to the SPP-based approach, we use a
plus-shaped neighborhood function that spans over 5 auditory
channels and 5 adjacent time frames.

3. EVALUATION

Signals are processed in 32ms frames with 50% overlap
at a sampling frequency of fs = 16 kHz. Noisy speech
with an average length of 3 s is created by corrupting ran-
domly selected male and female sentences from the TIMIT
database [12] with a randomly chosen excerpt of one of four
background noises listed in Tab. 1. The speech and noise cor-
pora are split in two halfs of equal size to ensure that there is
no overlap between the signals used for training and testing.

The GMM-based classification system is trained with 60
sentences at −5, 0 and 5 dB SNR. During training, a LC
of −5 dB is used to separate the AMS features into speech-
dominated and noise-dominated elements based on the local a
priori SNR. For each background noise and auditory channel,
a separate GMM classifier is trained with 16 Gaussian com-
ponents and full covariance matrices. To analyze the bene-
fit of the feature normalization stage and the exploration of
neighboring T-F units, we evaluate three GMM classifiers:
GMM1 denotes a GMM classifier based on AMS features,
GMM2 is a GMM classifier based on normalized AMS fea-
tures and GMM3 refers to a GMM classifier based on nor-
malized AMS features which exploits the plus-shaped neigh-
borhood function as proposed in [6]. Furthermore, SPP1 de-
notes the SPP-based IBM estimation and SPP2 additionally
exploits the plus-shaped neighborhood function.

The speech segregation performance is measured by com-
paring the estimated binary mask with the IBM. Specifically,
the percentage of correctly classified speech-dominated T-F
units (HIT rate) and the percentage of erroneously identified
noise-dominated T-F units (FA rate) are computed. As pro-
posed in [5] we report their difference, HIT - FA, as a mea-
sure of the overall segregation performance. The evaluation
is based on 60 sentences mixed at−5 and 0 dB SNR. To study

Table 1. Types of background noises.
Noise type Description Sec.
ICRA1 [13] Stationary speech-shaped noise 120
ICRA7 [13] Speech-shaped and modulated noise 1200
Factory [14] Noise inside a car production hall 235
Cockpit [14] F-16 traveling at 500 knots 235

Fig. 1. Noise-specific selection of the SPP threshold Ψ used
for the IBM estimation in (6).

the influence of mismatches between the acoustic conditions
used for training and testing, the pre-trained and the generic
systems are evaluated under four conditions:

1. Matched: no mismatch between training and testing.
2. BP: speech and noise signals are band-limited to the

frequency range 1000−3500Hz by a second-order but-
terworth band-pass filter to simulate effects similar to
that of a narrow band telephone transmission channel.

3. BRIR: speech and noise signals are convolved with a
binaural room impulse response (BRIR) correspond-
ing to Room A [15], with a reverberation time of
T60 = 0.32 s and a direct-to-reverberant ratio (DRR)
of 6.06 dB. The azimuth is randomly selected for each
mixture and the impulse response corresponding to the
better ear is chosen.

4. Noise: for a given background noise, the segregation
systems are trained with the three background noises
that are not used for evaluation.

The only training aspect of the generic approach is the se-
lection of the noise-specific threshold Ψ, employed in (6), that
maximizes the HIT - FA on the training data, as illustrated in
Fig. 1 for SPP2. Best results are obtained when a conservative
threshold is used. For ICRA7, a flat curve without a distinct
maximum is observed, which indicates that the SPP-based
approach is not able to track the non-stationary multi-talker
noise. The shapes for the other three noise types ICRA1, fac-
tory and cockpit are very similar to each other, suggesting that
an optimal threshold might be generally applicable.

4. EXPERIMENTAL RESULTS

The speech segregation performance is shown in Fig. 2 as
a function of the mismatch between the training and test-
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Fig. 2. Segregation performance of individual T-F units as a function of the mismatch between training and testing conditions.

ing conditions. The pre-trained system GMM1 only performs
well in the matched condition. As soon as spectral distortions
or spectro-temporal smearing occur in the testing stage (e.g.
due to band-pass filtering or reverberation), the distribution of
the extracted AMS features does not match with the distribu-
tion learned during training, which prevents the model from
performing well under mismatched conditions. The normal-
ization stage, as described in Sec. 2.3, additionally included in
GMM2 can compensate for this mismatch, and consequently,
the performance under mismatched conditions is almost as
good as in the matched condition.

The performance of the SPP-based approach SPP1 is not
very sensitive to any of the mismatch conditions. For the
speech-modulated ICRA7 noise, the classification-based IBM
estimation is superior to the SPP-based approach, most no-
ticeably when the acoustic conditions between training and
testing match. However, this advantage reduces with increas-
ing mismatch between training and testing conditions. Con-
sidering ICRA1, factory and cockpit noise, there is a slight
advantage for the SPP-based approach when the correspond-
ing background noise has not been seen during training (mis-
match condition Noise). In addition, the observation that the
optimal SPP threshold Ψ is very similar for three different
noises (except for ICRA7) facilitates the application of the
SPP-based approach to a wide range of background noises.

In general, the exploration of context information, as per-
formed by GMM3 and SPP2, is beneficial for both the pre-
trained and the generic approaches. However, this is only
true if the extracted properties of the speech and noise sig-
nal match with the model expectation, which is not the case
for the ICRA7 noise, in particular in the mismatched noise
condition.

5. DISCUSSION AND CONCLUSIONS

We have considered the problem of estimating the IBM from
noisy speech mixtures. For this purpose, the supervised learn-

ing of AMS features (pre-trained) was compared to a frame-
based estimation of speech presence probability (generic). It
was shown that pre-trained approaches can be quite sensitive
with respect to a mismatch between training and testing con-
ditions, which may occur when the noisy speech is processed
by a telephone transmission channel or modified by room
reverberation. In contrast, the generic approach was robust
against these mismatches, and the achieved segregation per-
formance was similar to the pre-trained approach, despite the
fact that no a priori information was required. In addition,
the generic approach has the ability to generalize to unseen
acoustic conditions, including unseen background noises.
However, for highly non-stationary noises, like the speech-
modulated ICRA7 noise, the performance of the generic
approach is limited and outperformed by the pre-trained ap-
proach with respect to HIT - FA.

To improve the robustness of pre-trained approaches
to mismatches between training and testing conditions, a
median-based normalization technique was proposed. The
normalized AMS features greatly improved segregation per-
formance under both matched and mismatched conditions.
Whereas spectral coloration can be dealt with quite effec-
tively, the presence of unseen noises will alter the observed
AMS feature distribution, which reduces the performance
of pre-trained approaches. This performance degradation
was most noticeable for the speech-modulated ICRA7 noise,
which exhibited a very specific AMS feature distribution.

The consideration of contextual information about speech
activity was beneficial for both the generic and the pre-trained
approaches and substantially improved the accuracy of the
IBM estimation.

Finally, the feature space of classification-based ap-
proaches can be readily extended with additional features
that can further improve the distinction between speech and
noise activity. However, the effectiveness of any additional
feature should be evaluated under mismatched conditions.
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