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ABSTRACT

For the reduction of additive acoustic noise, various methods and
clean speech estimators are available, with specific strengths and
weaknesses. In order to combine the strengths of two such ap-
proaches, we derive a minimum mean squared error (MMSE)-
optimal estimator of the clean speech given two independent ini-
tial clean speech estimates. As an example we present a specific
combination that results in a weighted mixture of the Wiener fil-
ter and a simple, low-cost harmonic speech model. The proposed
estimator benefits from the additional information provided by the
harmonic model, leading to a better protection of harmonic compo-
nents of voiced speech as compared to the traditional Wiener filter.
Instrumental measures predict improvements in speech quality and
speech intelligibility for the proposed combination over each indi-
vidual estimator.

Index Terms— Speech enhancement, noise reduction, signal
reconstruction

1. INTRODUCTION

Over the years, numerous approaches for the reduction of undesired
acoustic noise have been proposed to increase the robustness of
communication devices like hearing aids or mobile phones. Besides
spatial methods that use multiple microphone signals, single chan-
nel noise reduction schemes that utilize spectro-temporal cues are
commonly employed either in isolation if only a single microphone
is available, or to further enhance the output of a spatial preprocess-
ing stage. A majority of these approaches is formulated in some
spectro-temporal domain, most commonly the short time discrete
Fourier transform (STFT) domain due to its low complexity and
intuitive interpretation. Among the most successful proposals are
those based on statistical assumptions of the speech and the noise,
like the Wiener filter or Ephraim and Malah’s short-time spectral
amplitude estimator [1]. Both approaches assume that the spec-
tral coefficients of the speech and the noise are circularly complex
Gaussian distributed, mutually independent, and also independent
from neighboring time-frequency points.

Improvements over the original approaches have for example
been achieved by using more elaborate models for the distribution
of the speech and by taking into account the compressive charac-
ter of the human ear in the optimization function, e.g. [2, 3, 4, 5].
Furthermore, dropping the assumption that neighboring spectral co-
efficients are uncorrelated has been shown to lead to alternative es-
timators, e.g. [6, 7], which benefit from incorporating more infor-
mation at the price of a more challenging parameter estimation. Be-
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sides such statistical approaches, also methods based on sinusoidal
or harmonic speech signal models have been proposed, like e.g. [8],
where the parameters of a sinusoidal model are iteratively estimated
from a noisy observation to recover the underlying speech signal.
These model-based estimators can provide some benefit over simple
approaches like the traditional Wiener filter due to the consideration
of more a priori knowledge about the observed signals. In particular
situations the simple approaches might however still provide more
reliable estimates. For example, while a sinusoidal model is well
suited to represent voiced speech, its applicability to transients or
stop consonants is limited, which may lead to suboptimal speech
enhancement results.

In this contribution we therefore propose a framework which
allows for a MMSE-optimal combination of two clean speech esti-
mates, of which one is formulated as a multiplication of the noisy
observation with a spectral gain function. For this, we derive a
MMSE-optimal estimator of the clean speech given two indepen-
dent initial clean speech estimates. As an example, we present the
combination of the traditional Wiener filter with an approach based
on a simple, low-cost harmonic model and show that this combi-
nation outperforms the two individual estimators. For this specific
example, the combined estimator shows some conceptual similari-
ties to [9, 10], where a harmonic signal model is considered as addi-
tional deterministic information to facilitate the estimation of clean
speech spectral coefficients. The proposed estimator yields a time
and frequency dependent weighting of the two individual estimators
based on their estimation error variances.

2. MMSE-OPTIMAL COMBINATION

We define the noisy observation in the STFT domain Yk,� in each
time-frequency point (k, �) as an additive superposition of clean
speech Sk,� and environmental noise Vk,�, i.e

Yk,� = Sk,� + Vk,�. (1)

In the remainder of this paper we drop the time and frequency in-
dices � and k for notational convenience where appropriate. We
assume that the spectral coefficients of both, speech and noise, fol-
low a zero-mean circular complex Gaussian distribution with vari-
ances σ2

S and σ2
V , respectively, and that S and V are mutually un-

correlated. In this case, the speech posterior is given by, e.g. [11,
Chap. 5.3.2] and [12, Chap. 3.4],

p (S | Y ) = N

(
σ2
S

σ2
S + σ2

V
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σ2
S σ

2
V
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S + σ2
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)
= N

(
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2
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)
, (2)

where N
(
SW, σ2

W

)
denotes a Gaussian distribution with mean SW

and variance σ2
W . The Wiener filter estimate SW can also be written
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in terms of the true speech signal S and an error term W , as

SW = GWY = S + (GW − 1)S +GWV︸ ︷︷ ︸
W

, (3)

with the Wiener filter gain GW =
σ2

S

σ2

S
+σ2

V

. Under the assumptions

that have been made, the Wiener filter estimate is optimal in the
MMSE sense. Nevertheless, other estimators, like the spectral am-
plitude estimators [1, 4], could also be used here to obtain a spectral
gain GW.

As discussed in the introduction, there are numerous proposals
for alternative clean speech estimators of which some incorporate
prior information about the underlying signal and/or the employed
spectral analysis. We denote this second clean speech estimate as

S̃ = S + E, (4)

where the estimation error E is assumed to follow a zero-mean cir-
cularly complex Gaussian distribution with variance σ2

E and to be
statistically independent of S. Depending on the actual estimator,
there will be spectro-temporal regions where S̃ is more accurate
than SW and vice versa. Our goal now is to combine the two es-
timates SW and S̃ in a MMSE-optimal fashion such that the com-
bined estimator, denoted as Ŝ, benefits from the individual strengths
of each estimate and eventually outperforms both of them. In this
paper, we obtain S̃ using a clean speech estimator that is based on
a harmonic model for voiced speech which is presented in Sec. 3.
The model-based estimate might well preserve the harmonics of a
voiced speech sound better than a Wiener filter, but at the same
time it might also introduce annoying artifacts in unvoiced speech
or noise-only regions, which are not present in SW. Combining
the two estimates in an optimal fashion potentially results in an in-
creased protection of harmonics relative to the Wiener filter while
artifacts of the model-based estimate are strongly reduced.

In order to obtain the combined estimator Ŝ, we derive the
speech posterior, given both estimates SW and S̃:

p
(
S | SW, S̃

)
=

p (SW | S) p
(
S̃ | S

)
p (S)

p
(
S̃ | SW

)
p (SW)

, (5)

with

p (SW) = p (GWY ) = N
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0, G2
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σ
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(6)
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(7)
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= p (S + E | GWY ) = N

(
SW, σ

2
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2
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)
, (9)

where in (5) and (9) we assume that E and W are independent.
Under this assumption, p (E | SW) = p (E) = N

(
0, σ2

E

)
. As

both, S given SW and E, are Gaussian also their sum is Gaussian
with means and variances adding up, leading to (9).

Plugging all of the distributions into (5), after some algebraic
computations, we finally obtain the posterior

p
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)
=
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(
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. (10)

The posterior is again Gaussian and its mean, i.e. the MMSE-
optimal estimate Ŝ of the clean speech S given both, SW and S̃,
is given as a weighted mixture of the two estimates

Ŝ = E
(
S | SW, S̃

)
= SWGmix + S̃ (1−Gmix) , (11)

with mixing factor

Gmix =
σ2
E

σ2
E + σ2

W

. (12)

Here, Gmix approaches one if the variance of the Wiener estimate
σ2
W is much lower than the variance of the alternative estimate
σ2
E , while Gmix approaches zero for σ2

E � σ2
W . Considering the

variances as measures of reliability of the estimates, the proposed
weighting thus favors the more reliable of the two initial estimates
SW and S̃ in the computation of the final estimate Ŝ (11). It is worth
noting that in (10) the error variance of the new estimator is lower
than or equal to the error variance of each individual estimator, e.g.

σ2
Wσ2

E

σ2
W + σ2

E

≤ σ
2
W , (13)

where equality is asymptotically reached for σ2
W � σ2

E . The same
relation analogously holds for σ2

E .
In the following section, we present how the second estimate S̃

and the corresponding error variance can be obtained by employ-
ing a simple, low-cost harmonic model for voiced speech. For this
specific example, the resulting estimator shows certain similarities
to [10], where a clean speech amplitude estimator is derived under
the assumption that speech is adequately modeled by a harmonic-
plus-noise model. This so called stochastic-deterministic estimator
results in a weighted mixture of the harmonic speech model and the
noisy observation. In contrast to [10] however, here Ŝ combines a
harmonic model with the Wiener filter estimate, potentially avoid-
ing artifacts encountered in [10] which have to be suppressed by
an additional speech presence probability estimation stage. Besides
the algorithmic differences between the two approaches, also the
parameter estimation, e.g. that of σ2

E , differs significantly.

3. HARMONIC MODEL

Voiced speech is frequently modeled as a sum of H harmonic com-
ponents at the fundamental frequency f0 and integer multiples of it,
the harmonic frequencies fh = (h + 1)f0, e.g. in [8, 13, 14]. The
�-th time domain segment after applying analysis window q (n) is
given by

s̃�(n) = q (n)

H−1∑
h=0

2Ah,� cos

(
2π

fh

fs
n+ ϕh,�

)
, (14)

with sampling rate fs and the initial phase ϕh,� of component h at
the beginning of segment �. We assume that f0 and the real-valued
harmonic amplitudes Ah,� are constant over the length N of one
segment �. Under this assumption, the STFT of a harmonic signal
is given as the cyclic convolution of a pulse train at the harmonic
frequencies with the frequency response of the analysis window Q
sampled at the center frequencies of the STFT bands, i.e. [14]

S̃k =

H−1∑
h=0

Ahe
jφhQk−κh

+Ahe
−jφhQk+κh

(15)

≈ A
k
he

jφk
hQk−κk

h
, (16)
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Figure 1: Illustration of the harmonic model based speech estima-
tion. In bands k′ (red) the clean speech is estimated using (18).
Starting from this estimate, the speech in surrounding bands (blue)
is obtained via (17), indicated by the blue arrowheads.

where we again drop segment index � and denote the spectral
phase of the h-th harmonic component as φh. Further, real-valued
κh = Nfh

fs
maps the harmonic frequency fh to our index notation.

For the approximation we assume that segment length N is large
enough to well separate neighboring harmonic components in the
spectral domain and that in each band k only the closest harmonic
component is dominant. For notational convenience, we introduce
the spectral amplitude Ak

h, phase φk
h, and index κk

h of the harmonic
component that is closest to band k.

For the approximation in (16), the complex coefficients in bands
that are dominated by the same harmonic are directly related by
means of the frequency response of the spectral analysis window
Q. Starting from bands k′ = round (κh) that directly contain a har-
monic component, we can infer the speech component in all other
bands associated to the same harmonic via

S̃k = S̃k′

Qk−κk
h

Qk′−κk
h

. (17)

The frequency responses Qk−κk
h

and Qk′−κk
h

can either be obtained
analytically for specific analysis windows or by interpolating the
discrete Fourier transform of q (n) via zero padding, see e.g. [14].
As for a harmonic signal S̃ the energy is concentrated around the
harmonic frequencies, we assume that in the presence of noise V
the local signal-to-noise ratio (SNR) is the highest in bins k′. Be-
tween the spectral harmonics, k �= k′, the local SNR is typically
much lower. Accordingly, with (17), we can estimate the speech
component in low SNR regions between the harmonics based on
the higher SNR bins that directly contain harmonics. For this, we
first estimate the speech component in bands k′ with the help of the
Wiener filter using a lower limit,

S̃k′ = G̃k′Yk′ = max (Gmin, GW,k′) Yk′ . (18)

Then, the signal in all other bands is inferred from this estimate
using (17). This concept is illustrated in Figure 1.

For Gmin = 0, in harmonic bands k′ the two estimates SW

and S̃ are identical and Ŝ = SW. In between harmonic bands,
i.e. k �= k′, the two estimates and also their error variances differ,
leading to a weighted mixture of SW and S̃ according to (11). As
S̃ per definition has only little energy between the harmonics, the
final estimator Ŝ is capable of reducing noise between harmonics
that has not been suppressed by SW. This could for example be the
case if a noise burst is not adequately tracked by the noise power
estimator.

To protect harmonic components at low SNRs, which would be
suppressed by the Wiener filter alone, we set Gmin > 0, limiting the
maximal suppression. Even though with the estimate S̃k′ as given
in (18) in harmonic bands k′ the estimation errors W and E are not
independent, we keep the independence assumption for simplicity
and still compute the final estimate Ŝk′ using (11). Applying the
lower limit only to (18) utilizes the additional information about the
fundamental frequency f0, in the sense that it determines and pro-
tects bins which are more likely to contain relevant speech energy.
In this paper we choose Gmin = 0.5 in (18), resulting in an in-
creased preservation of harmonic components for which σ2

S < σ2
V ,

i.e. in negative local SNRs.

3.1. Computation of estimation error variance σ2
E

For the performance of the final estimator Ŝ (11), accurate compu-
tation of the estimation error variance of the harmonic model σ2

E is
vital. Only if σ2

E is adequately estimated, the mixture in (11) yields
the optimal combination of SW and S̃. In practice, the harmonic
model based estimation of clean speech for a known fundamental
frequency is degraded by two conceptually different sources of er-
ror. On the one hand, the rather simple harmonic model is not ca-
pable of perfectly describing every voiced speech sound S, such as
sounds with mixed excitation, like ’v’ in ’victory’ or ’th’ in ’the’.
On the other hand, environmental noise V in bands k′ degrades the
estimation performance.

To take into account the former, we define the modeling error
variance σ2

M as the error variance when S̃ is applied to clean voiced
speech. To estimate σ2

M , we first estimate the inverse modeling SNR

ξ
−1
M (k) =

σ2
M,k

σ2
S,k

≈

∑
�∈L |Sk,� − S̃k,�|

2∑
�∈L |Sk,�|2

(19)

off-line by applying (17) to clean voiced speech taken from 500
gender balanced sentences of the TIMIT [15] training set. Here,
L denotes the set of all voiced speech segments. The so obtained
ξ−1
M increases towards higher frequencies, reflecting the increasing

inaccuracies of the harmonic model for high frequencies, including
fundamental frequency estimation errors which accumulate towards
higher harmonics. At runtime, we estimate the actual model error
variance via σ2

M = ξ−1
M σ2

S to consider the current speech power σ2
S .

Besides the modeling error, the estimate is also deteriorated by
additive noise V in bands k′. As in these bands a Wiener filter is
used to estimate the clean speech (18), the modeling error is zero
and the estimation error variance is σ2

E = σ2
W , where for simplicity

we neglect the impact of applying a lower limit Gmin on the Wiener
filter in (18). In STFT bands between spectral harmonics, i.e. k �=

k′, the estimate in the closest harmonic band S̃k′ is scaled with
the frequency response of the analysis window according to (17).
Hence, also the estimation error variance is scaled, and we finally
obtain

σ
2
E,k =

⎧⎨
⎩

σ2
W,k , for k = k′

σ2
E,k′

|Q
k−κk

h

|2

|Q
k′

−κk
h

|2
+ σ2

M,k , for k �= k′,
(20)

where between harmonics the modeling error variance σ2
M and the

scaled error variance on the harmonics add up. The scaling re-
duces σ2

E between harmonics compared to the variance on harmon-
ics, while σ2

M introduces some residual uncertainty in the estimate
S̃ due to model inaccuracies.
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Figure 2: Spectrograms of a clean speech sentence, the noisy obser-
vation degraded by babble noise at 5 dB SNR, the harmonic model
based estimate S̃, the Wiener filter estimate SW, the gain Gmix, and
the proposed estimate Ŝ. The proposed estimator protects weak
harmonic components in voiced speech while falling back to the
Wiener filter in unvoiced sounds (Gmix → 1).

4. EVALUATION

We evaluate the proposed estimator on 128 gender balanced sen-
tences taken from the test set of the TIMIT database [15] sampled
at 16 kHz. The signals are degraded by babble and traffic noise at
SNRs ranging from -5 dB to 15 dB. We use a segment length of
32 ms, a segment shift of 8 ms, and a square-root Hann window
for analysis and synthesis. The fundamental frequency is blindly
estimated on the noisy observation using PEFAC [16]. The noise
power is estimated using [17] while the speech power is estimated
by the decision-directed approach [1] with a smoothing parameter
of 0.98. To increase the perceptual quality, we impose a lower limit
of -20 dB relative to the noisy observation on all three estimators
before synthesizing the time domain signals via overlap-add. Fur-
ther, like e.g. in [8], we combine the amplitude of the harmonic
model based speech estimate |S̃| with the noisy spectral phase for
signal synthesis.

The advantage of the proposed estimator over the traditional
Wiener filter and the model based estimate is illustrated in Figure 2
for a clean speech excerpt degraded by babble noise at 5 dB SNR.
The proposed estimator protects low-SNR harmonic components of
voiced speech, e.g. at 0.6 sec, that are suppressed by the Wiener
filter, including the heavily disturbed fundamental component. In
unvoiced sounds, for which the harmonic model is not well suited,
e.g. the high frequency sound at 0.2-0.3 sec, the traditional Wiener
filter dominates the combined estimator (11), i.e. Gmix → 1. If
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Figure 3: STOI and PESQ improvement over the noisy observation
for traffic and babble noise at input SNRs from -5 dB to 15 dB. The
proposed method outperforms the traditional Wiener filter and the
model-based estimation in terms of both, PESQ and STOI.

segments without any harmonic structure are detected by PEFAC
[16], the Wiener filter is used by setting Gmix = 1. The general
increase of Gmix towards higher frequencies due to the structure
of the modeling error variance σ2

M takes into account the limited
applicability of S̃ at high frequencies. In this way, the proposed
approach combines the strengths of the individual estimators for an
improved clean speech estimate.

In Figure 3 we present the improvements in ’perceptual evalu-
ation of speech quality’ (PESQ) [18] and the short-time objective
intelligibility measure (STOI) [19] relative to the noisy observa-
tion. While STOI predicts the intelligibility of a degraded speech
signal, PESQ is used as an instrumental measure of speech qual-
ity. Alongside the proposed approach we also present the results
for the Wiener filter and the harmonic model. The proposed estima-
tor outperforms the Wiener filter as well as the harmonic model in
both, PESQ and STOI in all conditions considered in the evaluation.
The performance gain over the traditional Wiener filter increases for
decreasing input SNRs, with a relative improvement of around 0.1
PESQ points and 10 % in predicted intelligibility in both noise types
at 0 dB input SNR.

In traffic noise, the proposed estimator not only improves STOI
with respect to the Wiener filter, but also with respect to the noisy
input signal. This improvement is remarkable, as the enhancement
of speech intelligibility with single channel techniques is generally
a challenging task. Informal listening confirms the general trends,
how exactly the improvements in the instrumental measures are re-
flected in human perception is however still to be evaluated with
formal listening test.

5. CONCLUSION

In this contribution we presented a MMSE-optimal clean speech
estimator given two independent prior estimates, of which one is
formulated as a multiplication with a spectral gain. The proposed
estimator results in an intuitive weighting of the individual estimates
based on their error variances. For the combination of the Wiener
filter with a harmonic model we showed that the proposed method
protects weak harmonic components of voiced speech and outper-
forms the individual estimators in PESQ and STOI over a broad
range of SNRs.
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