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ABSTRACT

For the enhancement of speech degraded by noise, accurate esti-

mation of the noise power spectral density (PSD) is indispensable,

especially if only a single microphone signal is available. Fast and

accurate tracking of the noise PSD is particularly challenging in

highly non-stationary noise types, since the distinction between

speech and noise components becomes more difficult. Short-time

discrete Fourier transform (STFT) based noise PSD estimation

algorithms which employ estimates of the speech presence probabil-

ity (SPP) with fixed priors have been shown to yield good tracking

performance even in adverse noise conditions. In this paper, we

compare two methods to incorporate spectro-temporal correlations

to improve the tracking performance. The first method smoothes

the noisy observation over time and frequency before computing the

SPP, while the second is based on a Hidden Markov Model (HMM)

of the speech presence and absence states. We show that the pro-

posed modifications lead to improved noise PSD estimators which

are less sensitive to spectral outliers of the noise and track changes

in the noise PSD more quickly than the reference method. Further,

when employed in a common speech enhancement setup, the pro-

posed estimators achieve an increased noise reduction while keeping

speech distortions at a comparable level.

Index Terms— speech enhancement, noise reduction, noise

power estimation

1. INTRODUCTION

For the reduction of additive noise, most single-channel speech en-

hancement approaches first transform the noisy speech signal into

some spectro-temporal domain, most frequently the STFT domain.

Then a multiplicative gain is applied to every time-frequency point,

which allows for a frequency selective suppression of the noise while

maintaining the speech component. To achieve this, accurate esti-

mates of the spectral speech and noise PSD are indispensable. Over

the years, several approaches for the estimation of the noise PSD

have been proposed, of which the simplest limit the estimation to

speech pauses based on a voice activity detector (VAD). Such ap-

proaches are however not capable of tracking changes in the noise

PSD during speech activity. This limitation is to some degree over-

come by the approach of Martin [1], where the noise PSD in each

frequency band is inferred from spectral minima of the noisy obser-

vation in a search window of typically more than a second. Since
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even during speech activity the minima in frequency bands are as-

sumed to correspond to the noise component, the estimation of the

noise PSD is not limited to speech pauses anymore. Sudden rises in

the noise PSD however remain a problem and are tracked only with

a delay of the length of the search window, leading to suboptimal

noise suppression. Spectral minima are also utilized in [2], where the

noise PSD is estimated by recursively averaging the squared noisy

spectrum. The averaging parameter is adapted according to an SPP

estimate based on spectral minima. However, as compared to [1],

the improvement in the tracking performance is limited.

Evolving from [3], a low complexity alternative for minimum

mean square error (MMSE) based noise PSD estimation has been

proposed in [4]. For this approach, a frequency dependent estimate

of the SPP is required. The lower the probability of speech presence,

the more the respective time-frequency point contributes to the noise

PSD estimation. This approach has been shown to work reliably

also in highly non-stationary noise types. In [4], the SPP estimation

is performed based on fixed priors, as proposed in [5]. Although [5]

allows to estimate the SPP based on a smoothed observation to re-

duce the influence of random outliers in the noise, in [4] the SPP

is estimated independently for every time-frequency point to mini-

mize the computational complexity of the algorithm. In this paper,

we investigate if and how the incorporation of temporal and spectral

correlations in the SPP estimation are beneficial for noise PSD es-

timation. For this, we consider two different approaches. First, we

apply spectro-temporal smoothing to the noisy observation before

estimating the SPP based on it according to [5]. Second, we utilize

information of neighboring time-frequency points by means of a two

dimensional HMM as proposed in [6], where one dimension covers

the temporal correlations while the other covers correlations along

frequency bands. In contrast to the first approach, where correlations

between adjacent bins are utilized in terms of a pre-processing stage,

the 2D HMM utilizes correlations directly in the SPP estimation pro-

cedure. Furthermore, in [6] it has been shown that this approach

has the potential to outperform the spectro-temporal smoothing of

e.g. [5] in terms of speech detection accuracy. The price to pay is an

increased algorithmic delay and computational complexity.

Instead of the instantaneous SPP estimate in [4], here we employ

the SPP estimators [5] and [6] for the estimation of the noise PSD.

The noise PSD estimation performance is evaluated within a com-

plete speech enhancement setup. Further, the capability to track non-

stationary noises is assessed. We compare the results of the proposed

noise PSD estimators that incorporate spectro-temporal correlations

to the initial method [4] and to the minimum statistics approach [1].
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2. SPP BASED NOISE PSD ESTIMATION

In this section, we briefly review the SPP-based noise PSD estima-

tion proposed in [4]. We denote the complex spectral STFT coeffi-

cients of the noisy observation as Y k
ℓ = Sk

ℓ +Nk
ℓ , where Sk

ℓ and Nk
ℓ

represent the mutually independent speech and noise coefficients.

Further, k and ℓ are the frequency bin index and the segment index,

respectively, which will be dropped for notational convenience wher-

ever dispensable. Random variables are denoted by capital letters,

while for their realizations the corresponding lower case letters are

used. We assume S and N to follow zero-mean complex Gaussian

distributions with variances E
{
|S|2

}
= σ2

S and E
{
|N |2

}
= σ2

N ,

where the operator E {·} denotes statistical expectation. To distin-

guish estimated quantities from the true values we use a hat symbol,

e.g. σ̂2
N is an estimate of σ2

N .

To estimate the noise PSD, two states are distinguished, namely

speech presence H1, i.e. Y = S + N , and speech absence H0,

i.e. Y = N . Under speech presence uncertainty an estimator of the

noise periodogram can be formulated as [4]

|̂N |2 = P (H0 | y) |y|2 + P (H1 | y) σ̂2
N , (1)

where the posterior probability of speech presence and absence are

related via P (H0 | y) = 1 − P (H1 | y). In case P (H0 | y) = 1,

the current bin is assumed to contain only noise and E
{
|N |2

∣∣ y
}
=

|y|2 = |n|2. For P (H1 | y) = 1, however, we observe a mixture

of speech and noise and thus assume that a previous estimate of the

noise PSD is more reliable than the current observation, i.e. |̂N |2 =

σ̂2
N

. For all values in between, (1) yields a weighted mixture of |y|2

and σ̂2
N .

To estimate the a posteriori SPP P (H1 | y) we can employ

Bayes’ formula:

P (H1 | y) =
P (H1) p(y | H1)

P (H1) p(y | H1) + P (H0) p(y | H0)
, (2)

with the prior probabilities of speech presence P (H1) and absence

P (H0). Both priors are fixed and set to P (H1) = P (H0) = 0.5 in-

dependent of the observed signal, i.e. without knowledge of the sig-

nal, we assume that speech presence and absence are equally likely.

Assuming zero-mean complex Gaussian distributed spectral coeffi-

cients, the likelihoods p(y | H1) and p(y | H0) in (2) are given

by

p(y | Hi) =
1

σ̂2
N (1 + ξHi

)π
exp

(
−

|y|2

σ̂2
N (1 + ξHi

)

)
, i ∈ {0, 1} .

(3)

In speech absence, the a priori signal to noise ratio (SNR) is ξH0
=

0. In speech presence, however, ξH1
denotes the typical a priori SNR

if speech were present [5] and it is set to 10 log10(ξH1
) = 15 dB [4].

Inserting (3) into (2) and (2) into (1), the noise periodogram

|̂Nk
ℓ |

2 can be estimated, where on the right hand side the noise PSD

estimate of the last frame σ̂2
N (k, ℓ− 1) is employed. Finally, the cur-

rent noise PSD estimate σ̂2
N (k, ℓ) is obtained by recursively smooth-

ing |̂Nk
ℓ |

2 over time with β = 0.8,

σ̂2
N (k, ℓ) = βσ̂2

N (k, ℓ− 1) + (1− β) |̂Nk
ℓ |

2. (4)

3. INCORPORATING SPECTRO-TEMPORAL

CORRELATIONS

The likelihood (3) and consequently the SPP (2) in [4] are computed

independently for every time-frequency point, not considering tem-

poral and spectral relations within the observed signal. In this sec-

tion, we now outline two methods that overcome this limitation.

3.1. Spectro-temporal smoothing

The SPP estimator that is used for the noise PSD estimation in [4] is

based on a fixed a priori SNR and a fixed a priori SPP as proposed

in [5]. However, in [5] the estimator is formulated in a more flexible

way and using the a posteriori SNR γ = |y|2/σ̂2
N . In contrast to [5],

where the SPP estimator is considered in isolation, assuming that an

estimate of the noise PSD σ̂2
N

is available, here we first estimate the

SPP to subsequently estimate σ̂2
N . Thus, γ is not readily available,

and we instead use the noise PSD estimate of the previous segment

σ̂2
N
(k, ℓ− 1) as an initial estimate. As a generalization of (3), the

likelihood for the a posteriori SNR given Hi is modeled as a chi-

squared distribution [5]:

p(γ|Hi) =

(
r

2 (1 + ξHi
)

) r

2 γ
r

2
−1

Γ
(
r
2

)exp
(
−

rγ

2 (1 + ξHi
)

)
, (5)

with the degree of freedom r, which is 2 for the case that the a poste-

riori SNR γ is not smoothed. To cover spectral and temporal correla-

tions, it is possible to smooth γ along time and frequency. However,

the a posteriori SNR after smoothing follows a different distribu-

tion than before smoothing. The authors therefore derived methods

that relate the amount of smoothing to optimal values of ξHi
and

r, which both depend on the amount of smoothing. Here we use the

same causal setup that has been proposed in [5], i.e. no additional al-

gorithmic delay is introduced. The resulting likelihoods (5) are used

in (2) instead of p(y | Hi) (3) to obtain an SPP estimate, which is

then used for the estimation of the noise PSD via (1) and (4). Please

note that the employed smoothing setup can also be replaced by al-

ternatively techniques, like e.g. temporal cepstrum smoothing [7].

3.2. HMM based SPP estimation

Recently, evolving from previous work of the same authors in the

field of multichannel speech separation and noise reduction [8], in

[6] a novel SPP estimation scheme has been proposed based on a

two dimensional HMM that captures correlations along time and fre-

quency. In each time-frequency point (k, l), the model is either in

the speech presence state Zk
ℓ = H1 or in the speech absence state

Zk
ℓ = H0. Depending on the current state, the model emits an a

posteriori SNR that follows either p(γ|H1) or p(γ|H0) as defined

in (5) with r = 2.

With the help of the HMM, we search for the SPP in each time-

frequency point (k, l) given all observed a posteriori SNRs of a given

utterance, i.e. P
(
Zk

ℓ = H1 | γ1:K
1:L

)
, where γ1:K

1:L is a matrix con-

taining all γk
ℓ . Here, L and K denote the total number of segments

and frequency bins, respectively. By considering all observations

instead of only the current one, spectral as well as temporal correla-

tions are now incorporated into the SPP estimation process. On the

other hand, this formulation imposes that the complete signal must

be available at processing time.

Like in [4], for the HMM-based SPP estimation we choose

10 log10(ξH1
) = 15 dB and P (H1) = P (H0) = 0.5. For

the estimation of γ1:K
1:L , furthermore the transition probabilities
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Fig. 1: Spectrograms of clean and noisy speech degraded by white

Gaussian noise at 5 dB SNR in the top row. Then, from top to

bottom: the SPP estimates of [4], [5], and [6] (left), together with

the respective speech enhancement results (right).

along time aH
i,j = P

(
Zk

l+1 = Hj | Zk
ℓ = Hi

)
and along frequency

aV
i,j = P

(
Zk+1

l = Hj | Zk
ℓ = Hi

)
are needed, which denote the

probability that the model switches to state Hj given that it previ-

ously was in state Hi. Here we use the same transition probabilities

ai,j along time and frequency and set a1,1 = 0.95 = 1 − a1,0 and

a0,0 = 0.7 = 1 − a0,1, i.e. we assume that it is more likely for the

HMM to stay in the current state than to switch it. Consequently,

the resulting SPP estimates are expected to be smoother than the

instantaneous estimate used in [4]. While a large value of a0,0 re-

duces false detections of speech presence due to random outliers in

the noise, a large value of a1,1 leads to a preservation of the speech

component. However, the tendency to stay in the same state may

also lead to estimation errors at the boundaries between regions of

speech presence and speech absence. To avoid missing relevant

speech active bins we therefore chose a1,1 larger than a0,0, putting

more emphasize on the preservation of the speech component rather

than on the reduction of random outliers. Details on how the 2D

HMM is decoded can be found in [6].

As the HMM is based on the a posteriori SNR γ, an initial noise

PSD estimate is needed, which we obtain using [4]. The HMM-

based SPP estimate is then employed in (1) to reestimate the noise

PSD via (4). In principle, the new noise PSD estimate could then

in turn be used to refine the SPP estimate and this procedure could

be iterated for a number of times. Preliminary experiments however

showed that no further improvements are achieved that would justify

the increase in computational complexity.

4. EVALUATION

We now evaluate the influence of the alternative SPP estimates on

the noise PSD estimation performance.

In Figure 1, we present the different SPP estimates for an exam-

ple utterance which is degraded by white Gaussian noise at 5 dB
SNR. Compared to the instantaneous SPP estimate used in [4],

the HMM-based approach strongly reduces spectral outliers in noise

only regions. This is due to the choice of the HMM parameters,

especially of the transition probabilities, as discussed in Sec. 3.2.

The spectral structure of the speech, e.g. the harmonics, is main-

tained, however, some weak speech components that are detected in

the instantaneous estimate are missed, which leads to an undesired

leakage of the speech PSD into the noise PSD estimate. Eventually,

this results in a local overestimation of the noise PSD. The SPP

estimates of [5] depict even less random fluctuations in noise only

regions than the HMM-based approach. Since random outliers in

the a posteriori SNR are reduced by the spectro-temporal smooth-

ing, also the SPP estimate depending on it shows less outliers. At

the same time, speech active regions are blurred, which may further

lead to an increased protection of the speech.

This behavior is also reflected in the right column of Figure 1,

where we present the noisy signal after speech enhancement us-

ing the respective SPP estimate on the left to estimate the noise

PSD. The decision-directed approach with a smoothing parameter

of α = 0.98 [9] is employed for the estimation of the speech PSD

and the noisy spectrum is weighted with the Wiener filter to obtain

an estimate of the clean speech signal.

The incorporation of spectral and temporal correlations in the

SPP estimation leads to an effective suppression of random outliers

in the noise, i.e. musical tones, while the speech is well maintained.

Due to the smooth SPP estimates, outliers of the noise are more

likely to be included in the update of the noise PSD via (1) and (4)

and are thus suppressed by the Wiener filter. Both of the proposed

methods achieve a clear reduction of musical noise relative to [4],

with a slightly more prominent suppression for the approach based

on spectro-temporal smoothing.

We instrumentally evaluate the noise PSD estimators by apply-

ing the same enhancement scheme that has been used for the exam-

ple in Figure 1 to a set of 128 utterances of the TIMIT database [10],

which are degraded by babble noise [11] and modulated pink noise

with a modulation frequency of fmod = 0.5 Hz at various SNRs.

Similar to [12], we assess the performance in terms of the segmental

speech SNR (spSSNR), the segmental noise reduction (NR), and the

overall segmental SNR (SSNR) improvement:

NR =
10

|L|

∑

l∈L

log10

∑M

m=1
n2
t (lM +m)

∑M

m=1
ñ2
t (lM +m)

(6)

spSSNR =
10

|L|

∑

l∈L

log10

∑M

m=1
s2t (lM +m)

∑M

m=1
[st (lM +m)− s̃t (lM +m)]2

(7)

SSNR =
10

|L|

∑

l∈L

log10

∑M

m=1
s2t (lM +m)

∑M

m=1
[st (lM +m)− ŝt (lM +m)]2

,

(8)

where NR measures the amount of noise reduction and spSSNR is

a measure for speech distortions and is larger the less speech dis-

tortions are introduced. Finally SSNR gives a compromise between

speech distortions and noise reduction. Here, we define the time

domain speech st, noise nt, and the estimated clean speech signal
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Fig. 2: Segmental SNR (SSNR) improvement relative to the noisy

observation, speech SSNR (spSSNR), and segmental noise reduc-

tion (NR) (top to bottom) after speech enhancement using noise PSD

estimates obtained via Minimum Statistics [1], [4], and the two pro-

posed approaches incorporating signal correlations. The speech is

degraded by babble (left) and modulated pink noise with a modula-

tion frequency of fmod = 0.5 Hz (right) over a range of SNRs

ŝt. To obtain s̃t and ñt, the Wiener filter gain that has been used

to estimate ŝt is applied to the speech and the noise spectrum sep-

arately. The signals are chopped into non-overlapping segments of

M samples, where m is the time domain sample index within each

segment. For the computation of the measures only the segments

which contain relevant speech energy are included, which we denote

as L. The results are presented in Figure 2, where for the SSNR the

improvement relative to the noisy input is depicted.

It can be seen that the SPP based noise PSD estimation outper-

forms the minimum statistics approach [1] in terms of the overall

SSNR improvement for the presented non-stationary noise types.

The incorporation of spectro-temporal correlations for the SPP es-

timation leads to a further increase in NR while only very little ad-

ditional speech distortions are introduced, mainly at low SNRs, i.e.

only a minor decrease in spSSNR is observed. This is very much in

line with the results for the example utterance in Figure 1. Especially

in lower SNRs the new estimators yield a favorable trade-off be-

tween noise reduction and speech distortion, which is also reflected

in a small but consistent increase in the overall SSNR improvement

for both approaches.

An important property of any noise PSD estimation algorithm is

its capability to track non-stationary noises, which we illustrate in

Figure 3 for the original SPP-based noise PSD estimator [4], the two

proposed modifications, and the minimum statistics approach [1].

For this, the PSD of a white Gaussian noise signal which is mod-

ulated with 0.5Hz – as a well defined example of a non-stationary
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Fig. 3: Noise PSD tracking performance in white Gaussian noise

modulated at a frequency of fmod = 0.5 Hz

noise – is estimated with each of the four estimators. Then, the noise

PSD estimates are averaged over frequency. To obtain (3), we fur-

ther repeat the estimation for several realizations of the noise and

average the results. As reported in [4], minimum statistics is not ca-

pable of tracking the PSD of such a strongly non-stationary signal.

The estimation performance is strongly increased by all three SPP

based approaches. Relative to the original proposal [4], the new SPP

estimates lead to a faster and more accurate tracking of changes in

the noise PSD, with a small advantage for [5]. The improved track-

ing performance can be explained by the reduced number of outliers

in the SPP estimates, which have been observed in Figure 1. This

allows for a more rapid update of the noise PSD estimates via (1)

and (4).

Taking all the results into account, it can be stated that the incor-

poration of spectral and temporal correlations for SPP-based noise

PSD estimation leads to an increased noise reduction, an effective

suppression of musical noise, and an improved tracking of non-

stationary noises. The price to pay are only marginally increased

speech distortions at low SNRs and an increase in computational

complexity. The HMM-based approach, as implemented here, only

allows for batch processing, rendering it unsuitable for on-line ap-

plications. In contrast to that, the smooth SPP estimates of [5] are

obtained without an additional algorithmic delay, at the same time

achieving a similar performance as the HMM-based approach. Fur-

thermore, the increase in computational complexity over the original

method [4] is significantly lower. Nevertheless, the 2D HMM-based

SPP estimator [6] is an extremely versatile tool, which allows for

numerous setups, of which we have investigated only a few. Further

improvements in the SPP and noise PSD estimation performance

might be achieved by a different choice of the model parameters.

While here the values for ξH1
, P (H1), and the transition probabil-

ities have been set manually, these parameters – or a subset thereof

– could for example be optimized based on a large training set of

noise corrupted speech in an expectation maximization fashion.

5. CONCLUSIONS

In this contribution, we investigated how SPP-based noise PSD es-

timation can benefit from utilizing spectro-temporal signal correla-

tions in the SPP estimation stage.While the original proposal [4] is

based on an instantaneous SPP estimate, here we employed two al-

ternative estimators of which one uses a 2D HMM [6] and the other

operates on a smoothed observation [5] to utilize spectral and tem-

poral information. We experimentally showed that both approaches,

when employed in a common speech enhancement framework, lead

to an increased noise reduction, less musical noise, and an improved

tracking of non-stationary noises, at the expense of an only marginal

increase of speech distortions relative to the initial method [4].
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