
MULTI-CHANNEL PSD ESTIMATORS FOR SPEECH DEREVERBERATION
– A THEORETICAL AND EXPERIMENTAL COMPARISON
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ABSTRACT

In this paper we perform an extensive theoretical and experimental
comparison of two recently proposed multi-channel speech derever-
beration algorithms. Both of them are based on the multi-channel
Wiener filter but they use different estimators of the speech and re-
verberation power spectral densities (PSDs). We first derive closed-
form expressions for the mean square error (MSE) of both PSD esti-
mators and then show that one estimator – previously used for speech
dereverberation by the authors – always yields a better MSE. Only in
the case of a two microphone array or for special spatial distributions
of the interference both estimators yield the same MSE. The theoret-
ically derived MSE values are in good agreement with numerical
simulation results and with instrumental speech quality measures in
a realistic speech dereverberation task for binaural hearing aids.

Index Terms— PSD estimation, maximum likelihood estima-
tion, multi-channel Wiener filter, speech dereverberation, isotropic.

1. INTRODUCTION

Background noise and reverberation may have a detrimental effect
on speech quality and intelligibility [1]. Consequently, speech de-
noising and dereverberation algorithms are of interest in many appli-
cations, e.g. hearing aids, mobile phones, etc. Many of these devices
contain multiple microphones, which enables the use of spatial filter-
ing algorithms such as the Multi-channel Wiener Filter (MWF) [2,3].
Under a set of commonly made assumptions the MWF is an opti-
mal estimator of the speech signal in the Minimum Mean Square
Error (MMSE) sense [2]. However, in order to obtain its theoreti-
cal performance the MWF requires knowledge of the (cross-) Power
Spectral Density (PSD) matrices of the target (speech) and interfer-
ence (noise, reverberation) signal components. These are usually
unknown and have to be estimated from the noisy and reverberant
microphone signals. In practice, the performance of the resulting
MWF depends on the accuracy of the used PSD estimation scheme.

In this paper we compare two multi-channel speech dereverber-
ation algorithms recently proposed in [4] and [5]. Both algorithms
are based on the MWF and use the assumption that the reverber-
ant sound field is cylindrically isotropic. The PSD estimators used
in [4] and [5] are both derived using the Maximum (ML) method-
ology but use different statistical assumptions, and therefore yield
different formulas and results.

The research leading to these results has received funding from the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement No ITN-GA-2012-316969. More information about the project
can be found on the website: /www.dreams-itn.eu/.

In order to perform a theoretical comparison of the two PSD
estimation schemes we first derive analytical expressions for their
Mean Square Error (MSE). This allows us to show that the PSD
estimators used in [4] achieve lower or equal MSE compared to the
PSD estimators in [5]. We also derive the conditions under which the
two PSD estimation schemes yield the same MSE. We verify these
theoretical results using numerical simulations.

Finally, we evaluate the speech dereverberation performance of
the MWFs from [4] and [5] in a simulation of binaural hearing aids
in realistic reverberant conditions. The results of the experiment
show that the algorithm from [4] outperforms [5] in terms of objec-
tive performance measures such as Frequency-Weighted Segmental
SNR (FWSegSNR) [6] and Perceptual Evaluation of Speech Quality
(PESQ) [7].

2. SIGNAL MODEL AND ASSUMPTIONS

The signal model and assumptions that are used in the speech dere-
verberation algorithms proposed in [4] and [5] share many charac-
teristics. Both algorithms operate on Short Time Fourier Transform
(STFT) coefficients ym(k, n) which are computed from the time do-
main signals ym(t) of M microphones:

ym(k, n) =
T�1X

t=0

ym(t+ nD)w(t)e�2⇡ik t

T , m = 1, . . . ,M,

where n is the time frame index and k is the frequency bin in-
dex. The STFT order is denoted by T , the filterbank decimation
factor by D, and w(t) is the analysis window function. The algo-
rithms from [4] and [5] process the individual frequency bins inde-
pendently of each other. This enables us to omit the index k with-
out loss of generality. For notational convenience the STFT coeffi-
cients corresponding to all microphones are stacked in a vector as:
y(n) = [ y1(n) . . . yM (n) ]T .

The algorithms from [4] and [5] employ an additive model of
the reverberant speech signal:

y(n) = s(n) + v(n)

only in [5]
z }| {
+x(n), (1)

where s(n) denotes the direct-path speech component and v(n) de-
notes the reverberation component of the microphone signal. The
algorithm from [5] allows for an additional noise term x(n), whose
cross-PSD matrix must be known. In this study, for mathemati-
cal convenience, we assume that this additional noise component is
equal to zero. This corresponds to an assumption that x(n) is negli-
gible compared to the reverberation component, which may be valid
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in some situations. It is assumed that the vectors s(n) and v(n) are
statistically independent across time frames and frequency bins.

The algorithms from [4] and [5] aim to estimate the direct-path
speech signal component s(n) at a certain reference position, e.g.
one of the microphones. Because the speech is assumed to be gener-
ated by a point source, the vector s(n) may be written as the product
of s(n) and a vector of Relative Transfer Functions (RTFs) d [8]:

y(n) = s(n)d+ v(n).

The elements of d correspond to the transfer functions of the direct-
path speech from the chosen reference position to all microphones.
In [4] and [5] the RTF vector d is assumed to be known.

In both algorithms the focus is on reducing the late part of the
reverberation, which is assumed to be uncorrelated with the direct-
path speech. Hence, the cross-PSD matrix of y(n) can be modeled
as the sum of the speech and the reverberation cross-PSD matrices:

�y(n) = E
⇥
y(n)yH

(n)
⇤
= �s(n) +�v(n).

where E[ ] denotes the expectation operator. Because of the assump-
tion that the speech is generated by a point source, �s(n) is modeled
as a rank-one matrix and can be written in terms of the scalar PSD
�s(n) of the direct-path speech at the reference position and the RTF
vector d: �s(n)dd

H . Similarly, matrix �v(n) may be written as
a product of the scalar PSD �v(n) of the reverberation at the ref-
erence position, and the cross-PSD matrix �v of the reverberation
normalized by �v(n):

�y(n) = �s(n)dd
H

+ �v(n)�v, (2)

Due to the assumption of cylindrical isotropy of the reverberant
sound field made in both [4] and [5], the matrix �v is assumed to
be constant, full-rank, and known. For free-field microphone arrays,
�v can even be calculated analytically using information on micro-
phone array geometry (as in [5]). Alternatively, e.g. for hearing aid
applications, �v may be estimated from measurements using the
actual microphone array in a (possibly simulated) isotropic sound
field (as in [4]). While the vector d and the matrix �v are assumed
to be known and constant, the PSDs �s(n) and �v(n) are unknown
and time-varying because of the non-stationarity of s(n) and v(n).

3. MULTI-CHANNEL WIENER FILTER

The algorithms from [4] and [5] are both based on the Multi-channel
Wiener Filter (MWF) [2, 3]. It is well-known that the MWF is an
MMSE-optimal estimator of the target speech s(n) if the input signal
components s(n) and v(n) are normally distributed, or alternatively,
if the search is limited to linear estimators. Because of the rank-one
assumption on �s(n), the MWF may be factorized into an MVDR
beamformer wmvdr and a single-channel Wiener filter gsc(n) [2]:

ŝ(n) = w

H
mwf(n)y(n),

wmwf(n) =


�s

o

(n)
�s

o

(n) + �v
o

(n)

�

| {z }
gsc(n)

�

�1
v d

d

H
�

�1
v d| {z }

wmvdr

, (3)

where �s
o

(n) and �v
o

(n) are the PSDs of the direct-path speech
and reverberation at the output of the MVDR beamformer, i.e.:
�s

o

(n) = �s(n), and �v
o

(n) = w

H
mvdr�v(n)�vwmvdr. For the

signal model described in Sec. 2 the vector wmvdr is constant and is
readily calculated from d and �v.

4. POWER SPECTRAL DENSITY ESTIMATION

The main difference between the algorithms from [4] and [5] is the
method used to estimate the unknown PSDs of the direct-path speech
�s(n) and of the reverberation �v(n). In this section, we briefly
review these two PSD estimation schemes.

4.1. Algorithm [4] by Kuklasiński et al.

The PSD estimators used in [4] are based on the assumption that the
STFT coefficients of the signal components are circularly-symmetric
complex Gaussian distributed, i.e.:

s(n) ⇠ CN
�
0,�s(n)

�
, v(n) ⇠ CN

�
0,�v(n)

�
.

The above distributions can be used to construct a likelihood func-
tion, compute its partial derivatives, and ultimately, derive a pair of
joint Maximum Likelihood Estimators (MLEs) of �s(n) and �v(n).
Several formulations of these estimators are available in the litera-
ture [9, 10], but in [4] the one from [9] has been used:

ˆ�v,[4](n) =
1

M � 1

tr

h�
I� dw

H
mvdr

�
ˆ

�y(n) �
�1
v

i
, (4a)

ˆ�s,[4](n) = w

H
mvdr

h
ˆ

�y(n)� ˆ�v,[4](n) �v

i
wmvdr, (4b)

where tr[ ] denotes the matrix trace, ˆ�y(n) denotes the estimate of
the cross-PSD matrix of the input signal:

ˆ

�y(n) =
1

L

L�1X

l=0

y(n� l)yH
(n� l), (5)

and where the PSDs �s(n) and �v(n) are assumed to be constant
across the L averaged STFT frames.

4.2. Algorithm [5] by Braun and Habets

Similarly to [4], in [5] the reverberation PSD estimator is derived
using the ML methodology. However, the likelihood function used
in the derivation is based on a different statistical assumption than
in [4], resulting in a different estimator.

Specifically, the reverberation PSD estimator used in [5] is de-
rived by first defining a blocking matrix B2CM⇥(M�1) which rep-
resents a set of M � 1 target-canceling beamformers. In [5] it is
computed according to the method used in [10]:

⇥
B b

⇤
= A, A = I� d(d

H
d)

�1
d

H .

Next, an error matrix �err(n) is defined as:

�err(n) =
ˆ

˜

�y(n)� �v(n)˜�v, (6)

with ˜

�v = B

H
�vB and

ˆ

˜

�y(n) = B

H
ˆ

�y(n)B. (7)

The matrix ˆ

˜

�y(n) is the estimate of the cross-PSD matrix of
the blocked input signal ỹ(n) = B

H
y(n). Because B

H
s(n) = 0,

ˆ

˜

�y(n) is equivalently the estimate of the cross-PSD matrix of the
blocked reverberation signal component BH

v(n) (cf. (1)). Hence,
the matrix �err(n) in (6) can be interpreted as the error between the
blocked reverberation cross-PSD matrix �v(n)˜�v (cf. (2)) and its
estimate ˆ

˜

�y(n). In [5] the elements of �err(n) are modeled as inde-
pendent circularly-symmetric complex Gaussian random variables
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of equal variance. This assumption is used to construct a likelihood
function from which an MLE of �v(n) is calculated as [5]:

ˆ�v,[5](n) = tr

h
˜

�v
ˆ

˜

�y(n)
i
tr

h
˜

�

2
v

i�1
. (8a)

The corresponding estimator of �s(n) is derived without the use of
the ML methodology, but coincidentally has the same form as the
MLE used in [4] (4b):

ˆ�s,[5](n) = w

H
mvdr

h
ˆ

�y(n)� ˆ�v,[5](n) �v

i
wmvdr. (8b)

5. ANALYTICAL EVALUATION

In this section we analytically derive the MSE of the reverberation
PSD estimator from [5] and compare it to the MSE of the reverber-
ation PSD estimator from [4]. Differences between the direct-path
speech PSD estimators from [4] and [5] are exclusively due to the
different reverberation PSD estimators used in (4b) and (8b). There-
fore, relations between the MSEs of the direct-path speech PSD es-
timators are completely determined by and are analogous to the re-
lations between the MSEs of the reverberation PSD estimators.

We start by noting that the PSD estimators from [4] and [5] are
unbiased (without proof):

E
⇥
ˆ�p,r(n)

⇤
= �p(n), p 2 {s, v}, r 2 {[4], [5]}. (9)

Hence, the MSEs of these estimators are identical to their variances.
The variance of the direct-path speech PSD estimator from [4]

can be shown to be equal to the corresponding asymptotic Cramér-
Rao Lower Bound (CRLB) which is equal to [11]:

var

�
ˆ�s,[4](n)

�
= CRLB

�
ˆ�s(n)

�

= �2
s(n)

1

L

✓
1 + ⇠(n)
⇠(n)

◆2

+

1

M�1

1

⇠2(n)

�
, (10)

where ⇠(n) = �s
o

(n)/�v
o

(n) is the SNR at the output of the
MVDR beamformer. From [11] it also follows that the variance of
the reverberation PSD estimator from [4] is equal to the respective
CRLB, and that this CRLB is equal to:

var

�
ˆ�v,[4](n)

�
= CRLB

�
ˆ�v(n)

�
= �2

v(n)
1

L
1

M � 1

. (11)

We derive the variance of the reverberation PSD estimator from
[5] by using (8a), (7) and (5) and moving the deterministic factors
outside the variance operator:

var

�
ˆ�v,[5](n)

�
= tr

h
˜

�

2
v

i�2
1

L
var

⇣
tr

h
ỹ

H
(n)˜�vỹ(n)

i⌘
,

The trace operator inside the variance operator may now be omitted
because its argument has been reduced to a quadratic form (a scalar).
The variance of such quadratic forms in circularly-symmetric com-
plex Gaussian random vectors is given by [12, p. 513, eq. (15.30)]:

var

�
a

H
Za

�
= tr

�
�aZ�aZ

�
, where a ⇠ CN

�
0,�a

�
. (12)

Using (12) and the fact that ỹ(n) ⇠ CN
�
0,�v(n)˜�v

�
, we obtain:

var

�
ˆ�v,[5](n)

�
= �2

v(n)
1

L
tr

h
˜

�

4
v

i
tr

h
˜

�

2
v

i�2
. (13)

Before comparing (11) and (13), we transform (13) into a more
convenient form. Let ˜

�v = V⇤V

H denote the eigenvalue de-
composition of the positive-definite Hermitian matrix ˜

�v, where

⇤ is a diagonal matrix containing the M � 1 positive eigenvalues
�1, . . . ,�M�1 of ˜

�v. Using the facts that tr(˜�v) =
PM�1

m=1 �m,
˜

�

p
v = V⇤

p
V

H , and defining �m = �2
m, (13) may be written as:

var

�
ˆ�v,[5](n)

�
= �2

v(n)
1

L

PM�1
m=1 �2

m�PM�1
m=1 �m

�2 . (14)

If we denote the average of the squared eigenvalues �m by �̄, and
the sample variance of these squared eigenvalues around �̄ by �̃2,

�̄ =

1

M � 1

M�1X

m=1

�m, �̃2
=

✓
1

M � 1

M�1X

m=1

�2
m

◆
� �̄2,

then we can rewrite (13) as:

var

�
ˆ�v,[5](n)

�
= �2

v(n)
1

L
1

M � 1

✓
1 +

�̃2

�̄2

◆
. (15)

Comparing (15) and (11) we can now deduce, that the MSE of
ˆ�v,[5](n) can be either greater or equal to the MSE of ˆ�v,[4](n) (and
the CRLB), but can never be lower. The MSEs of these two esti-
mators are equal only when the eigenvalues of ˜�v are all equal (i.e.
when �̃2

= 0). Since ˜

�v is Hermitian, it follows that for this special
case to occur, ˜�v must be a scaled identity matrix [13]. In all other
cases, the reverberation PSD estimator from [4] outperforms the one
from [5]. An important observation is that for M = 2 the matrix ˜

�v

reduces to a scalar, such that �̃2 is always equal to zero. It follows
that for M = 2 the reverberation PSD estimators from [4] and [5]
achieve the same MSE under all possible conditions.

We can also compute the upper bound of the variance of the re-
verberation PSD estimator from [5]. The ratio �̃2/�̄2 in (15) is max-
imal when all but one eigenvalue tend to zero (all energy is concen-
trated in a single eigenvalue). This may occur when the interference
is dominated by one directional component. For such interferences
the variance (and MSE) of ˆ�v,[5](n) equals:

max

�̃v

var

�
ˆ�v,[5](n)

�
= �2

v(n)
1

L
(16)

i.e. is M � 1 times larger than that of ˆ�v,[4](n).

6. EXPERIMENTAL EVALUATION

We first confirm our theoretical results using a series of numeri-
cal simulations (Sec. 6.1). Additionally, we evaluate the MWF al-
gorithms from [4] and [5] in a speech dereverberation experiment
(Sec. 6.2). In both experiments the microphone array is composed of
a pair of Oticon Epoq behind-the-ear hearing aids [14], each contain-
ing two microphones (i.e. M = 4). We have measured the RTF vec-
tors d and the matrices �v in an anechoic chamber with the hearing-
aids placed on a Head And Torso acoustic Simulator (HATS). The
reference position for calculating d and �v was chosen as one of
the microphones (m = 1), such that the corresponding elements of
d and �v were equal to one. We used the RTF vector measured for
the source position directly in front of the HATS.

6.1. Experiment 1: MSE of PSD estimation

In order to verify the theoretical results of Sec. 5, we have conducted
a number of iterations of a numerical simulation. In each iteration
a test signal y(n) was generated using N = 25000 pseudo-random
STFT vectors drawn from a circularly-symmetric multivariate com-
plex Gaussian distribution. The covariance matrix of this distribution
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Fig. 1. Normalized MSE of the reverberation and direct-path
speech PSD estimators from [4] and [5], as a function of the input
SNR, measured numerically and compared to the theoretical values.
(M = 4, f = 1 kHz, L = 10)

was modeled according to (2), using the measured RTF vector d and
matrix �v for the STFT frequency bin corresponding to 1 kHz. In
each iteration �s(n) and �v(n) were set to correspond to different
input SNRs between �15 and 20 dB at the reference microphone.

Next, the PSD estimators from [4] and [5] were used to estimate
�s(n) and �v(n) of the test signals. The averaging length in (5)
was set to L = 10 frames. Because the true values of the PSDs
were known, it was possible to compute the MSE achieved by each
of the estimators under each of the simulated SNRs. To facilitate
the comparison of the obtained results, we normalized the measured
MSEs by the square of the parameter of interest:

nMSE(

ˆ�p,r) =
MSE(

ˆ�p,r)

�2
p

=

1

N�L+1

NX

n=L

(

ˆ�p,r(n)� �p)
2

�2
p

,

with p and r defined as in (9).
The results of this experiment are presented in Fig. 1. For com-

parison, the analytically derived nMSEs formulated in (10), (11),
and (13) are also included in the plot. The results of the numerical
simulation closely agree with the theoretical formulas. The MSE
achieved by the direct-path speech PSD estimator from [5] is close
to, but greater than the MSE achieved by the estimator from [4].
It can also be observed that in the particular example of the sim-
ulated binaural hearing aid configuration of the microphone array,
the advantage of using (4a) over (8a) for estimating the reverbera-
tion PSD is approximately 5 dB MSE for all input SNRs. Moreover,
the nMSE achieved by the reverberation PSD estimator from [5] is
close to the upper bound derived in (16), which for L = 10 equals
�10 dB nMSE. This indicates, that the reverberation PSD estimator
from [5] is not optimally suited for the simulated acoustic scenario.

6.2. Experiment 2: speech dereverberation performance

In order to evaluate the influence of the different PSD estimators
on the MWF performance, we conducted a second simulation ex-
periment analogous to the one presented in [4]. In this experiment
the test signals were synthesized by convolving TIMIT speech sen-
tences [15] with six different multi-channel impulse responses. Five
of them were measured in real rooms using a similar microphone
array as for measuring d and �v. The sixth multi-channel impulse
response (denoted “Isotropic”) was synthesized to simulate an ideal

Input MVDR MWF [5] MWF [4]

Bath. Cellar Stairs Office Audit. Isotropic
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Fig. 2. (a) FWSegSNR and (b) PESQ scores of the algorithms
from [4] and [5] (denoted “MWF”). The scores computed from the
unprocessed signal y1(n) (“Input”), and the output of the MVDR
beamformer wH

mvdry(n) (“MVDR”) are also included.

cylindrically isotropic reverberant sound field. In the present study,
the same room impulse responses and the same values of the non-
critical simulation parameters have been used as in [4], where their
detailed description may be found.

The algorithms from [4] and [5] were used to dereverberate
the test signals and their performance was evaluated using the
Frequency-Weighted Segmental SNR (FWSegSNR) [6] and Percep-
tual Evaluation of Speech Quality (PESQ) [7] objective measures.
The results of this evaluation are presented in Fig. 2. In can be
observed, that the lower MSE of the PSD estimators used in the
algorithm from [4] results in a better speech dereverberation per-
formance as measured using FWSegSNR and PESQ. Although the
difference is small in the “Isotropic” condition, the advantage of
using [4] over [5] increases in all realistic reverberation conditions
simulated in this experiment. This suggests, that the speech derever-
beration algorithm proposed in [4] may be more robust to deviations
from the assumed cylindrical isotropy of the reverberation, which
necessarily occur in real rooms.

7. CONCLUSION

In this paper we have compared two similar speech dereverbera-
tion algorithms proposed in [4] and [5]. Theoretical analysis of the
direct-path speech and reverberation PSD estimators used in both
algorithms revealed that for microphone numbers greater than two,
the estimators used in [4] perform better than the ones used in [5] in
almost all conditions. These theoretical results were confirmed in a
numerical simulation.

The speech dereverberation performance of the algorithms from
[4] and [5] in a four microphone binaural hearing aid configuration
was measured in realistic reverberation conditions. It is found that
the dereverberation algorithm from [4] outperforms [5] in terms of
the FWSegSNR and PESQ objective performance measures.
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