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Abstract

In this paper, we consider single-channel speech enhancement
in the short time Fourier transform (STFT) domain. We sug-
gest to improve an STFT phase estimate by estimating the ini-
tial phases. The method is based on the harmonic model and
a model for the phase evolution over time. The initial phases
are estimated by setting up a least squares problem between the
noisy phase and the model for phase evolution. Simulations
on synthetic and speech signals show a decreased error on the
phase when an estimate of the initial phase is included com-
pared to using the noisy phase as an initialisation. The error on
the phase is decreased at input SNRs from -10 to 10 dB. Recon-
structing the signal using the clean amplitude, the mean squared
error is decreased and the PESQ score is increased.
Index Terms: speech enhancement, single-channel, STFT do-
main, phase estimation, signal reconstruction

1. Introduction

Single-channel speech enhancement is important in many sys-
tems such as mobile phones and hearing aids where it is desir-
able to estimate a speech signal from a mixture of the signal
buried in noise. Some enhancement methods work directly in
the time domain [1, 2] whereas other methods work by trans-
forming the signal into another domain. This could for example
be the subspace methods where, e.g., the eigenvalue decom-
position of a signal matrix is computed [3]. Another domain,
that we will focus on in this paper because it is computational
effective [4], is the short time Fourier transform (STFT) do-
main. Here, some well-known methods are spectral subtraction
[5] and the Short-Time Spectral Amplitude Estimator [6]. Com-
mon for these methods, and most other methods in this domain,
is that they enhance the STFT amplitude, whereas the phase is
left unaltered. This is motivated by [7, 8] who conclude that
modifying the noisy STFT phase only gives a minor gain com-
pared to modifying the noisy STFT amplitude. However, later
work by [9] shows that the importance of the phase depends on
the settings and that it can be beneficial to estimate the STFT
phase. Recently, in [10, 11], improved STFT amplitude esti-
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mates are obtained by using STFT phase estimates in the pro-
cess.

Different approaches have been taken to modify the noisy
STFT phase. In [12, 13], the change of STFT phase is based on
the fact that not all STFT representations are consistent. Given
a spectrum of a speech signal, an inverse STFT followed by an
STFT leads back to the same spectrum, but if changes are made
to the amplitude or phase of the spectrum, this is not necessarily
the case for the altered spectrum, and it is, therefore, not con-
sistent [14]. The quality of the resulting signal can be improved
by minimising this inconsistency. In [12, 13] this is done by
modifying the STFT phase to make a better match to the STFT
amplitude estimate. The error on the phase is, therefore, not
guaranteed to decrease because the phase is only modified to
match the enhanced STFT amplitude. In [15], the STFT phase
change in voiced speech periods is estimated based on the har-
monic model and knowledge about the fundamental frequency.
The phase in unvoiced periods is left unaltered, but since the
major constituent of speech is voiced, changing the phase in
these periods can still make a difference in terms of speech en-
hancement. Since only the phase change is estimated in [15], an
initial phase estimate is needed as an anchor. In [15], the noisy
phase is used as the initial STFT phase at the harmonic frequen-
cies which gives a constant offset at each harmonic between the
clean speech phase and the estimated phase and changes the re-
lation between harmonics. This results in a significant error on
the enhanced STFT phase, and the waveform of the resulting
signal will be changed. In terms of perception, this is not a ma-
jor problem if only a single harmonic is present, but in the case
of more harmonics, as is the case in speech signals, it can have
an influence on how the sound is perceived [16, 17].

To minimise the error on the phase, we propose a method to
estimate the initial STFT phases in voiced speech periods. The
method is based on the harmonic model and the model for phase
evolution over time presented in [15]. The initial phases are
estimated by setting up a least squares (LS) problem between
the noisy phase and the signal model.

The paper is organised as follows: in Section 2 the har-
monic signal model and the STFT are shortly introduced, in
Section 3 the method from [15] is introduced, in Section 4 the
proposed method is explained, results are presented in Section
5, and Section 6 concludes the work.
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2. Signal Model

We here use the harmonic signal model which is a good ap-
proximation to voiced speech. With this model the signal is
composed of a set of harmonics with sinusoids having frequen-
cies given by multiples of a fundamental frequency. For discrete
time indices, m = 0, ...,M � 1, the signal can be represented
as:

s(m) =

HX

h=1

2Ah cos(!0hm+ 'h), (1)

where H is the number of harmonics, Ah the amplitude of the
h’th harmonic, !0 = 2⇡f0/fs the normalised fundamental an-
gular frequency, with f0 being the fundamental frequency and
fs the sampling frequency, and 'h is the initial phase of the
h’th harmonic. The desired signal is estimated from a mixture,
x(m), of the desired signal, s(m), and additive noise, v(m),

x(m) = s(m) + v(m). (2)

The processing is done in the short-time Fourier transform
(STFT) domain. The transformation to this domain is done by
splitting the noisy signal into segments of length N , overlap-
ping by N �L samples, applying a window function w(n) and
computing the Discrete Fourier Transform (DFT), i.e.,

X(k, l) =

N�1X

n=0

x(lL+ n)w(n)e�j!kn (3)

= |X(k, l)|ej�X (k,l), (4)
= S(k, l) + V (k, l), (5)

= |S(k, l)|ej�S(k,l)
+ |V (k, l)|ej�V (k,l), (6)

with k being the frequency index, l the segment index and
!k = 2⇡k/N the normalised angular frequency of frequency
band k. It can be seen in (4) that the signal in the STFT do-
main can be split into an amplitude part |X(k, l)| and a phase
part ej�X (k,l). In many existing approaches only the amplitude
is modified whereas the phase is not estimated, and the noisy
phase is used directly, i.e., \S(k, l) = \|S(k, l)|ej�X (k,l), where
c{·} denotes an estimated quantity. In this paper we will focus
on estimating the clean phase �S(k, l) from the noisy phase
�X(k, l).

3. Phase Reconstruction

In [15], the change in instantaneous phase in frequency bins
containing the harmonic frequencies is estimated as a piecewise
linear function when the harmonic frequency !k,l

h = h!k,l
0 is

known, i.e.,

��S(k, l) = �S(k, l)� �S(k, l � 1)

= !k,l
h L. (7)

The last equality holds under the assumption that the fundamen-
tal frequency in segments l � 1 and l are the same. Reformula-
tion of (7) gives the instantaneous phase in segment l from the
phase in segment l � 1

b�S(k, l) = b�S(k, l � 1) + !k,l
h L. (8)

To get the instantaneous phase in segment l, it is therefore nec-
essary to have information about the instantaneous phase in seg-
ment l � 1. In the very beginning of a piece of voiced speech,
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Figure 1: Reconstruction of the STFT phase based on KG[15]
where the noisy phase is used as initialisation leading to a
constant offset between the clean phase and the reconstructed
phase.

the algorithm has to be initialised with a phase for the first seg-
ment, i.e., information about the initial phases, 'h, is needed.
In [15], the noisy phase is used as an initialisation. This is il-
lustrated in Fig. 1 where the baseband transformed phase (see
[15]) in a frequency band containing a single harmonic of a fre-
quency modulated signal is shown. It is seen that even though
the phase evolution over time is correctly estimated with the
method in [15] (KG[15]), using the noisy phase as an initialisa-
tion will give a constant offset between the clean phase and the
estimated phase due to a wrong initial phase, �h. If only a sin-
gle sinusoid is present, the initial phase is not that important in
terms of perception, but if several harmonics are present, the re-
lationship between the initial phases of the different harmonics
has an influence on the shape of the waveform of the resulting
signal and can also have an influence on how the sound is per-
ceived [16, 17]. Therefore, we estimate the initial phases in the
next section.

4. Estimation of Initial Phases

The estimation of the initial phases is set up as a least squares
(LS) problem between the instantaneous phases estimated using
(8) with an initialisation of 'h = 0 and the noisy phase for each
harmonic separately

b'h = argmin

'h

l0+P�1X

l=l0

(�X(k, l)� b�S(k, l)� 'h)
2, (9)

where P is the number of segments used for the estimation. The
solution is found by differentiating the expression and equating
with zero, i.e.,

b'h =

1

P

l0+P�1X

l=l0

�X(k, l)� b�S(k, l). (10)

Due to the properties of the phase seen in (4), every b2⇡, b 2 Z,
multiple of the phase gives rise to the same phase contribution
to the resulting signal. This has to be taken into account in
the estimation of the initial phase and, therefore, every phase
difference in (10) is mapped to the interval [�⇡,⇡], and the
final estimate of the initial phase of harmonic h is given by:

b'h =

1

P

l0+P�1X

l=l0

\(ej�X (k,l)�j b�S(k,l)
), (11)
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where \(·) denotes the angle of the argument. To keep the
right relation between frequency bins, all bins dominated by
the given harmonic (see [15]) are also shifted according to the
given estimate.

The method is implemented in two different ways. One
where an entire piece of voiced speech is used for the estima-
tion of the initial phase (denoted LS1 in the results section) and
one where the initial phase of a given harmonic is reestimated
each time the harmonic jumps to a new frequency bin (denoted
LS2 in the results section). The first method has the advantage
of more data used in the estimation and, therefore, if the model
is perfectly correct, it should give a better estimate. However,
it is vulnerable to errors in the model, e.g., a slightly wrong
fundamental frequency estimation would lead to a model that
over time deviates more and more from the clean signal and,
thereby, gives larger errors in the estimation of the initial phase
with more time segments used. The second method should do a
better job in the case of a erroneous fundamental frequency es-
timate. However, in the transformation to the STFT domain the
signal is overlapped which means that the noise in neighbour-
ing time frames is not uncorrelated and, therefore, an estimation
based on only a few frames would give an unreliable estimate.

The estimate of the initial phases introduces a latency in the
system according to P . LS1 introduces a delay of one voiced
speech period. The latency introduced by LS2 will depend on
when the harmonics jump from one frequency bin to another
and will, therefore, be smaller or equal to the latency introduced
by LS1.

5. Results

The least squares estimates of the initial phases are first tested
by means of a synthetic signal. After testing the concept on
synthetic data, we turn to real speech signals. The synthetic
signal used is a frequency modulated harmonic signal, i.e.,

s(m) =

HX

h=1

Ah cos(!0hm+

!�

!m
h cos(!mm) + 'h).

Here, !� = 2⇡f�/fs is the maximum deviation of the first
harmonic away from !0 in one direction and !m = 2⇡fm/fs
is the normalised angular modulation frequency. The signal is
chosen because of its harmonic structure which is the basis of
the proposed method and, further, it is a more interesting case
than a pure harmonic signal since the fundamental frequency
is modulated and, therefore, the harmonics will jump between
different frequency bins when it is transformed to the STFT do-
main. Due to the multiplication by h in the modulation, the
maximum deviation away from the harmonic frequency is in-
creasing for higher harmonics, and they will, therefore, also
have a higher tendency to jump between frequency bins. This
will also be the case for speech signals. In the simulations
H = 10, fs = 8000, M = 20000, and f0, f�, fm and
'h are chosen randomly in intervals as f0 2 [100, 200] Hz,
f� 2 [0, 10] Hz, fm 2 [0, 10] Hz and 'h 2 [�⇡,⇡]. The fre-
quency modulated signal is degraded by white Gaussian noise
at signal-to-noise ratios (SNRs) from -10 dB to 10 dB in steps
of 2.5 dB. The signal is transformed to the STFT domain in seg-
ments of 256 samples (corresponding to 32 ms) with an overlap
of 87.5% and the window applied is a square root Hann window.
In the evolution of the phase in the frequency domain, the true
fundamental frequency is assumed to be known. The results are
averaged over 1000 Monte Carlo simulations (MCS) [18]. The
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Figure 2: Phase error, ", as a function of the input SNR averaged
over all frequency bins and time for a synthetic signal. Averaged
over 1000 MCS.
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Figure 3: Mean squared error of reconstructed signal as a func-
tion of the input SNR for a synthetic signal. Combination of
phase and clean amplitude. Average over 1000 MCS.

methods are evaluated both in the frequency and in the time do-
main. In the frequency domain, the phase ambiguities are again
taken into account by using the circular phase error [6]:

"(k, l) = 1� cos(�S
k,l � b�S

k,l), (12)

which is in the range [0,2]. In the time domain they are eval-
uated by means of the mean squared error (MSE) between
the clean signal, s(m), and the reconstructed signal, bs(m),
MSE = (s(m) � bs(m))

2. The two methods are compared to
the method in [15] where the noisy phase is used as an initial-
isation, here denoted by KG[15], and the noisy phase denoted
by Noisy. In Fig. 2, the phase error averaged over all frequency
bins and time is shown. It is seen that at all input SNRs consid-
ered here there is an advantage in estimating the instantaneous
phase compared to using the noisy phase. Also, a smaller error
can be obtained by estimating the initial phase. Both LS esti-
mates give smaller errors than KG[15] up to approximately 0 dB
input SNR, above 0 dB, LS2 gives a smaller error than KG[15]
whereas LS1 gives the same error as KG[15]. The signal is
thereafter reconstructed using an inverse STFT. Before doing
that, the STFT phase term has to be multiplied with the STFT
amplitude. For calculation of the mean squared error, we have
used the clean speech amplitude, and the result is shown in Fig.
3. Now, KG[15] gives the highest error at all input SNRs, LS2
gives the lowest error whereas LS1 and the noisy phase give
errors in between. The lower error of LS2 compared to LS1
shows that it is reasonable to take the jumps between frequency
bins into account in the estimation process.

The methods are also evaluated using five male and five
female speech signals from the TIMIT database degraded by
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Figure 4: Phase error, ", as a function of the input SNR averaged
over all frequency bins and voiced speech periods for 5 male
and 5 female speakers from the TIMIT database. Average over
50 MCS for each speaker.
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Figure 5: Mean squared error of reconstructed voiced speech
parts as a function of the input SNR for 5 male and 5 female
speakers from the TIMIT database. Combination of phase and
clean amplitude. Average over 50 MCS for each speaker.

white Gaussian noise. The signals are downsampled to 8 kHz
and the fundamental frequency is estimated from the clean
speech signal using a nonlinear least squares estimator [19]. In
the estimation, a search interval around (±10 Hz) the pitch ob-
tained from the corresponding laryngograph signal [17] is used.
The voiced periods are also chosen using the laryngograph track
as the periods where the fundamental frequency is larger than
zero. It is found that best results are obtained if only the lowest
harmonics are modified so here the initial phases for the three
first harmonics are estimated and changed. As in [15], the noisy
phase is used directly in periods of unvoiced speech. The phase
error is shown in Fig. 4, this time averaged over 50 MCS for
each speaker, voiced speech periods and all frequency bins. The
error on the phase using LS1 or LS2 is considerably decreased
compared to KG[15], and LS2 again performs slightly better
than LS1. Here, however, the error on the noisy phase is very
similar to the error of LS1 and LS2, being slightly higher be-
low 5 dB input SNR and slightly lower above 5 dB input SNR.
Looking at the mean squared error of the reconstructed voiced
speech parts in Fig. 5, it is seen that the error is again decreased
when estimating the initial phase with LS1 or LS2 compared to
using the noisy initial phase in KG[15], and again it is also more
beneficial to use LS2 than LS1. Here, on the other hand, using
the noisy phase at all times gives a slightly lower error on the
reconstructed signal than LS2. The Perceptual Evaluation of
Speech Quality (PESQ) score [20] of the reconstructed speech
signals is also found. We have used two different choices of
amplitudes in the reconstruction. These are the clean amplitude

�10 �5 0 5 10

3.2

3.4

3.6

3.8

input SNR [dB]

PE
SQ

sc
or

e

LS1 LS2 KG[15] Noisy

(a) Clean amplitude
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Figure 6: PESQ score of reconstructed signal as a function of
the input SNR for 5 male and 5 female speakers from the TIMIT
database. Combination of phase and (a) clean amplitude and (b)
noisy amplitude. Average over 50 MCS for each speaker.

and the noisy amplitude. Using the clean amplitude, LS1 and
LS2 performs best over the most of the range of input SNRs
as seen in Fig. 6a whereas Fig. 6b shows that using the noisy
amplitude, KG[15] gives the best PESQ score over the entire
range. It would be more intuitive if a smaller error on the phase
always would lead to a better reconstructed signal. The reason
for this might be due to the inconsistency discussed in [14] and
suggest that more work should be put into making consistent
STFT representations based on both an amplitude and a phase
estimate. However, better phase estimates on its own can still
be used in, e.g., [10, 11] to give better reconstructed signals.

6. Conclusion

In this paper, we considered speech enhancement in the STFT
domain. Most prior work has been done on enhancing the noisy
STFT amplitude, but the focus of this paper was the STFT
phase. We suggest a least squares method to estimate the ini-
tial STFT phases in voiced speech periods. The initial phases
are found by minimising the squared error between the noisy
phase and the model-based phase estimates suggested in [15].
Simulations show that the error on the phase can be decreased
considerably when estimating the initial phase as compared to
using the noisy phase as the initial phase as proposed in [15].
The error on the phase is also reduced compared to the noisy
phase in the ideal case with a synthetic signal and also slightly
up to an input SNR of 5 dB when speech signals are considered.
Reconstruction in combination with the clean amplitude gives
an increase in PESQ score relative to KG[15] and an increase
relative to the noisy phase up to an input SNR of 5 dB.
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