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ABSTRACT

The robustness of speech recognizers towards noise can be increased
by normalizing the statistical moments of the Mel-frequency cepstral
coefficients (MFCCs), e. g. by using cepstral mean normalization
(CMN) or cepstral mean and variance normalization (CMVN). The
necessary statistics are estimated over a long time window and of-
ten, a complete utterance is chosen. Consequently, changes in the
background noise can only be tracked to a limited extent which poses
a restriction to the performance gain that can be achieved by these
techniques. In contrast, algorithms recently developed for single-
channel speech enhancement allow to track the background noise
quickly. In this paper, we aim at combining speech enhancement
techniques and feature normalization methods. For this, we propose
to transform an estimate of the noise power spectral density to the
MFCC domain, where we subtract it from the noisy MFCCs. This is
followed by a conventional CMVN. For background noises that are
too instationary for CMVN but can be tracked by the noise estimator,
we show that this processing leads to an improvement in comparison
to the sole application of CMVN. The observed performance gain
emerges especially in low signal-to-noise-ratios.

Index Terms— automatic speech recognition, cepstral analysis,
feature normalization, noise robustness, speech enhancement

1. INTRODUCTION

The term automatic speech recognition (ASR) describes the process
of transcribing speech utterances represented as acoustic wave forms
to written words. Nowadays, ASR is used in many applications, e. g.
for interacting with mobile devices or home-entertainment systems
[1]. Over the last years, many methods and techniques have been
described in the literature to make ASR more robust against acoustic
influences such as noise and reverberation [2]. One approach for
improving the performance of ASR systems is to enhance the fea-
ture values extracted from the noisy input signal before the data is
statistically modeled, e. g. using hidden Markov models (HMMs)
and Gaussian mixture models (GMMs). Such an enhancement can
be achieved by normalizing the statistical moments of the feature
values. Thus, cepstral mean normalization (CMN) [3] or cepstral
mean and variance normalization (CMVN) [4] have been used in
many applications as these techniques have proven to give better
recognition results in various environments. As shown in [3, 5], the
beneficial effect of CMN can be explained by its capabilities to reduce
differences between the test and the training data caused by channel
distortions and colorizations. Furthermore, in [5], it is discussed that
CMN is also able to reduce differences in the feature representation
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between speakers and can also partly reduce the detrimental influence
of the background noise. For CMVN, however, there is no associa-
tion with a reduction of a specific distortion [5]. However, it can be
associated with restoring the temporal diversity of the features which
may be reduced due to additive noise which can also be interpreted
as a reduction of the feature variance [6]. The general idea of feature
normalization has also been taken further, e. g. in [7], where the distri-
bution of the noisy input features is fitted to a target distribution. This
procedure normalizes all moments of the input data simultaneously
and is also known as histogram equalization.

Even though CMVN offers a simple way to increase the noise
robustness of speech recognizers, it is not able to track fast changes
in the time-variant noise components as the statistics for the normal-
ization are typically estimated over a longer time-period. In many
cases, a whole utterance is chosen. Due to these shortcomings, the
performance gain achieved by CMVN is limited. Recent research on
single-channel speech enhancement, however, has brought up tech-
nologies that allow to track the background noise quickly, e. g. [8].
Therefore, combining these techniques with CMVN may increase the
robustness of the recognition towards noise. Unfortunately, enhanc-
ing the input signal using state-of-the-art noise reduction algorithms
in combination with CMVN, often does not result in an additional
performance gain compared to the sole application of CMVN.

Consequently, we investigated other options for including speech
enhancement technologies for improving the noise robustness of
ASR in combination with CMVN. We propose a novel method which
subtracts the Mel-frequency cepstral coefficients (MFCCs) [9] of the
background noise from the MFCC vector of the noisy input signal.
Subsequently, the processed features are normalized using CMVN.
Subtracting the noise component is equivalent to a whitening of the
background noise in the Mel spectral domain. We will show that the
proposed enhancement technique leads to higher recognition rates
compared to the sole application of CMVN if the background noise
is too instationary to be compensated by the normalization but can
be tracked by a noise estimator. In these cases, the error rate can be
reduced – especially in low signal-to-noise-ratio (SNR) conditions.
In our experiments we use a state-of-the-art noise estimator for which
we employ the algorithm described in [8].

The paper is structured as follows. First, we give a detailed
description of the proposed method in Section 2, which is followed
by a brief analysis in Section 3. The setup for the experimental
evaluation of the proposed method is presented in Section 4 and the
results are shown in Section 5.

2. PROPOSED METHOD

In this section, we propose to normalize cepstral features based on an
estimate of the noise power spectral density (PSD) obtained using a
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state-of-the-art noise tracker. We assume that the speech signal s[n]
is corrupted by an interfering noise d[n] and that only the noisy input
signal x[n] is available. The time domain signal x[n] is split into
overlapping blocks which are transformed to the frequency domain
using a discrete Fourier transform (DFT) after applying a Hamming
window. From this, we compute the periodogram of the input signal
|X[k, `]|2 where k denotes the frequency index and ` the block index.
This quantity is used to obtain an estimate of the background noise
PSD �̂

2
d[k, `] by employing the speech presence probability (SPP)

based estimator described in [8]. With the coefficients of the mth
triangular filter Rm[k], the spectral quantities are transformed to
MFCCs [9] using
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where q = 0, . . . , Q� 1. Here, N and M denote the number of DFT
coefficients and Mel filters, respectively, while Q is the number of
MFCCs.

Finally, we obtain a processed version of the feature values by
subtracting the noise estimate in the cepstral domain via

X̃ [q, `] = X [q, `]� D̂[q, `], (3)

where D̂[q, `] is the background noise estimate �̂

2
d[k, `] transformed

to the MFCC domain using (1) and (2). As the subtraction in the
logarithmic domain equals a division the linear domain, this operation
leads to a whitening of the background noise in the Mel filterbank
representation. Before the enhanced features are fed to the speech
recognizer they are normalized by a CMVN which is given by [4]
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where L is the number of blocks in a single utterance.

3. ANALYSIS AND COMPARISON

Before the experimental results are presented, a short analysis of
the proposed preprocessing and its behavior is given. Here, we will
point out the differences and possible advantages and disadvantages
in comparison to the sole application of CMVN.

For explaining the differences between the two preprocessing
strategies, namely CMVN and the method proposed in Section 2,
we will make use of an example where a speech utterance has been
corrupted by a modulated white noise. The modulation of the back-
ground noise is created by applying a time-variant filter function
which periodically changes its frequency response from a high-pass
to a low-pass characteristic and vice versa. Thus, the modulation of
the background noise is frequency dependent which can be observed
in the spectrogram of the corrupted speech utterance which is shown
in the lower panel of Figure 1. The SNR is set to �5 dB.
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Fig. 1: Upper panel: Time course of the second MFCC of an utter-
ance corrupted by frequency-dependent modulated white noise at an
SNRs of -5 dB after applying CMVN and the proposed preprocessing
strategy. Additionally shown: estimate of the noise power spectral
density transformed to the MFCC domain. Lower panel: Spectrogram
of the noisy speech signal (t: time, X [q, `]: qth MFCC at frame `).

As the second MFCC characterizes the spectral tilt, meaning the
balance between high and low frequencies, the value of this coefficient
will vary depending on the modulation imprinted on the background
noise. The upper panel of Figure 1 shows the corresponding time
course which results after applying CMVN and the proposed method
to the noisy speech feature. Additionally, the ensemble average of the
background noise is displayed. It is obtained by averaging the squared
magnitude spectra of multiple realizations of the same modulated
noise followed by the transformation to the MFCC domain. In other
words, this curve represents an estimate of the noise power spectral
density transformed to the MFCC domain. For a better comparison,
this average is normalized using the means and variances which have
been computed for the feature values of the noisy speech MFCCs.

Figure 1 shows that the feature values obtained using CMVN still
follow the modulation of the noise. From this, it can be concluded
that CMVN has no effect on the time-dependent variations. For the
proposed method, however, it is possible to see that the modulation
of the feature values is reduced which results in a time-course which
is considerably different compared to the feature values obtained by
applying CMVN.

The proposed method reduces the impact of the noise modula-
tions in the MFCC domain, and effectively results in a whitening of
the noise. However, this whitening will also affect the input speech,
which may have a negative impact on the recognition accuracy of
the ASR system. However, our experiments, where we used the SPP-
based noise estimator to obtain D̂[q, `], show that this processing
does not lead to a severe degradation of the recognition accuracy. If
trained on multi condition data, it may be possible for the recognition
system to learn the disturbances which reduces the influence of them
on the recognition rate. However, no large deteriorations are observed
if the recognizer is trained on clean speech data. This indicates that
the ASR performance is presumably not impaired by the proposed
preprocessing.
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4. EXPERIMENTAL SETUP

In this section, we describe the experimental setup for evaluating
the proposed feature enhancement method and how it is compared
to other feature normalization techniques such as CMVN. Addition-
ally, we will compare these two methods to a state-of-the-art noise
reduction scheme which is combined with CMVN. An important
difference to our proposed approach is that here the noise compen-
sation is obtained in the short-time DFT domain. In contrast, in our
proposed method the noise compensation is achieved directly in the
MFCC domain. CMVN as described in (4) – (6) without further
preprocessing serves as baseline in our comparison.

The sole application of CMVN is compared to CMVN combined
with the proposed feature enhancement, as described in Section 2.
For estimating the background noise, we employ the SPP based noise
estimator which has been presented in [8]. This algorithm updates its
noise estimate using a SPP soft-decision mask. In our experiments,
we decided to deactivate the lock-up protection which tries to avoid
stagnation of the algorithm if the SPP is close to 100 % for a longer
time period. In situations where no or only little noise is present, this
protection can cause the speech power to leak into the noise estimate
which affects the recognition results.

Lastly, a state-of-the-art single-channel speech enhancement
scheme is included as preprocessing. Here, the features are extracted
from an estimate of the clean speech signal ŝ[n]. After that, the
feature values are normalized by a CMVN. The employed noise re-
duction algorithm uses the Wiener filter to suppress the background
noise. It is given by

G[k, `] = max
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2
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An estimate of the background noise �̂

2
d[k, `] is obtained by the SPP

based estimator proposed in [8]. The speech PSD �̂

2
s [k, `] is estimated

using temporal cepstrum smoothing which has been described in [10].
This method has been chosen as it has proven to perform better in
ASR applications than other state-of-the-art techniques, e. g. the
decision-directed approach [11]. Further, a spectral floor Gmin is
introduced in order to reduce the musical-noise further. This type of
artifact has been found to be detrimental for the ASR performance,
e. g. in [11]. The parameter Gmin is set to �10 dB.

Within our experiments, MFCCs, as described in (2), serve as
features. We extract the MFCCs using a 23 band Mel filter bank
which is limited to the frequency range between 64 Hz and 4 kHz.
After applying the discrete cosine transform, we use the lowest 13
coefficients as features where we include the 0th cepstral coefficient.
Further, the commonly used first and second order delta derivatives
are extracted and appended to the feature vector which results in a
39-dimensional representation of the input signal. For all processing
strategies a block length of 32 ms and an overlap of 50 % is chosen.
Before a block is transformed to the Fourier domain, it is weighted
by a Hamming window. The computation of the empirical means and
variances required for the CMVN is utterance based.

For the evaluation, an HTK [12] based speech recognizer and the
Aurora2 database [13] is used. For recognizing the speech utterances,
a conventional ASR system based on GMMs and HMMs is utilized.
The parameters which have been used for the reference recognizer
of the Aurora2 experiment [13] are also employed in this evaluation.
Consequently, the HMMs consist of 16 states per word and only
left-to-right transitions without skips are allowed. The GMMs consist
of three mixtures and the covariance matrices are restricted to be
diagonal. The ASR system is trained on the clean and the multi-
condition training set which are given in the Aurora2 corpus [13].

The results are presented as average over the three test sets of the
audio database. Further, the feature processing strategies are also
evaluated on noise types which are not part of the Aurora2 database.
These noise types change their spectral shape over time which can
be tracked by the SPP based estimator but cannot be followed by a
conventional CMVN. These additional background noises include
seashore noise1 and traffic noise2. For the traffic noise, the first two
seconds have been removed in our experiments. In all evaluations, the
additional noise types are excluded from the multi condition training
set.

As comparison criterion, we employ the recognition accuracy
which is given by [12]

A =
W � ED � ES � EI

W

, (8)

where W is the total number of words and ED , ES and EI denote
the number of deletion errors, substitution errors and insertion errors,
respectively.

5. RESULTS

In this section, the results of the experiments described in the previous
section are presented.
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Fig. 2: Recognition accuracy measured for various feature prepro-
cessing strategies in seashore noise in dependence on the SNR (A:
recognition accuracy, SNR: signal-to-noise ratio).

Figure 2 contains the results for the seashore noise. The graphs
show that the proposed method increases the speech recognizer’s
accuracy in comparison to CMVN. This becomes clearly visible in
low SNR conditions. At an SNR of �5 dB, the accuracy can be
boosted by roughly 10 % in absolute value for multi and clean con-
dition training. While the state-of-the-art noise reduction improves
the performance when no feature normalization is applied [11], these
results show that no improvements are achieved in comparison to
CMVN. Here, the obtained accuracy is even slightly lower compared
to CMVN especially if the system is trained on clean speech data.

Also for the traffic noise, for which the results are shown in
Figure 3, higher recognition accuracies are visible. Again, the largest
improvements are obtained in low SNR conditions. At �5 dB, the
accuracy is 10 % larger in absolute value compared to CMVN if
multi condition training is used. For clean condition training, the
performance gain is about 5 % in absolute value.

1taken from http://www.freesound.org/people/kijjaz/

sounds/172601

2taken from http://www.freesound.org/people/timsc/

sounds/242922
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Fig. 3: Recognition accuracy measured for various feature prepro-
cessing strategies in traffic noise in dependence on the SNR (A:
recognition accuracy, SNR: signal-to-noise ratio).
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Fig. 4: Recognition accuracy measured for various feature prepro-
cessing strategies as mean over all test sets of the Aurora2 database
in dependence on the SNR (A: recognition accuracy, SNR: signal-to-
noise ratio).

In this last paragraph, the results are presented for the three test
sets included in the Aurora2 database. The recognition rates are
shown in Figure 4. Here, the mean over all noise types of the corpus
is shown. In contrast to the other noise types, no improvements are
obtained using the proposed method. The accuracy is nearly on the
same level as for CMVN. This result can probably be explained by
the strongly instationary noise characteristics, e. g. of babble noise,
which cannot be tracked precisely by the noise estimator.

6. CONCLUSIONS

In this paper, we introduced a novel method for feature enhance-
ment which incorporates techniques used in speech enhancement for
improving the performance of ASR. In contrast to methods which
enhance the input signal using single-channel noise reduction before
the features are extracted, the proposed method is able to increase
the recognition rate in combination with CMVN. For this, the MFCC
representation of the background noise is subtracted from the noisy
MFCCs which effectively reduces the impact of noise modulations
onto the MFCC features. If the changes of the background noise are
too quick to be captured by CMVN while it is possible to follow these
using a state-of-the-art noise estimator, considerable improvements in
terms of recognition accuracy are obtained. These emerge especially
in low SNR conditions as demonstrated in the experiments conducted
for seashore and traffic noise.
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