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Abstract
To improve the quality of single-channel speech enhancement
algorithms, various approaches include additional prior knowl-
edge about speech, e.g., in the form of pre-trained speech models.
In this paper, we consider a vector Taylor series based approach
with a low-rank speech model. While employing a low-rank
speech model keeps the complexity feasible, only speech spectral
envelopes are represented and noise reduction between spectral
harmonics is not possible. To counteract this issue, we propose a
combination of generic, single-channel enhancement methods and
the pre-trained vector Taylor series approach. Compared to a com-
peting harmonic post-filter approach, the proposed combination is
derived within a statistical framework and yields a better quality
for the enhanced signal. This is verified using instrumental quality
measures.

1 Introduction
Additive background noise is known to reduce speech quality and
speech reception in speech communication applications. Hence,
speech enhancement algorithms have been a topic of active re-
search for many years. If only a single noisy observation is avail-
able, a common approach is to enhance the signal in the short-time
Fourier transform (STFT) domain. Due to their quality and effi-
ciency, generic statistical optimal estimators of the clean speech
Fourier coefficients are often employed, e.g., [1–3]. These estima-
tors usually depend on the speech power spectral density (PSD)
and the noise PSD which have to be estimated from the noisy input
signal. Also for this, many different methods and approaches are
described in the literature, e.g., [4–7] for estimating the noise PSD
and [1, 8] to determine the speech PSD. In this paper, we refer to
this type of enhancement algorithms as “generic”. This term is
motivated by the fact that these methods can potentially be applied
to target signals other than speech.

The generic approaches have in common that explicit speech
knowledge, e.g., in the form of pre-trained vocal-tract shapes or
fundamental frequency estimates, is not exploited. As, in gen-
eral, the increase of prior knowledge about the target signal can
potentially improve the noise reduction, enhancement methods
have been considered, which employ pre-trained speech knowl-
edge. Here, the term “pre-trained“ is used to distinguish this type
of algorithm from the previously considered generic approaches.
In [9], a codebook based method has been presented, whereas the
methods in [10, 11] are based on hidden Markov models. Nonneg-
ative matrix factorization as in [12, 13] forms another approach to
include pre-trained speech information. Similar to the feature en-
hancement methods presented in [14–17], the methods in [18, 19]
employ a pre-trained prior model to represent the log-spectral
coefficients of speech which is given by a mixture of Gaussians.
Based on a vector Taylor series (VTS) approximation, a mini-
mum mean-squared error (MMSE) optimal estimator of the clean
speech log-spectral coefficients can be derived. To obtain a high-
resolution estimate of the clean speech, i.e., an estimate which
includes the vocal tract shape as well as the pitch, a large amount
of mixtures is employed in [18]. This, however, increases the
demands with respect to memory and computational complexity.
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In [19], a reduced amount of mixtures is employed resulting in
a low-rank speech model which may only represent the speech
spectral envelopes, but typically not the spectral fine structure. As
a consequence, noise between the speech spectral harmonics is
not reduced. This problem is encountered in [19] by applying a
post-filter based on a harmonic model in voiced speech.

Our paper is related to the work in [19]. Here, we propose a
novel method to reduce residual noise if a low-rank speech model
is employed. For this, we combine a pre-trained method similar
to [19] and generic filter-based speech enhancement methods such
as the log-spectral amplitude (LSA) estimator [2]. Compared to
the approach in [19] where a speech presence probability mask,
which is based on a harmonic model, is used as a post-filter, the
combination used here is embedded in a statistical framework.
It is based on the underlying likelihood models which quantify
how well the respective model describes the noisy observation.
Experiments indicate that the combination improves the sound
quality in comparison to the sole application of the competing
generic and pre-trained enhancement method.

2 Signal Model
First, we start by introducing the signal model which is used
throughout this paper. The algorithms considered in this paper
operate in the STFT domain. For this, the signal is split into
overlapping blocks. After the application of an analysis window
function, each block is transformed to the Fourier domain using
the discrete Fourier transform (DFT). The complex coefficients of
the noisy input signal Yk,� are given by the superposition of the
speech component Xk,� and the noise component Nk,� as

Yk,� =Xk,�+Nk,�. (1)
Here, k is the frequency index and � denotes the frame index.

We assume that the complex coefficients of the DFT follow
a zero-mean circular-symmetric Gaussian distribution which is
commonly used in single-channel speech enhancement literature.
The symbols Λy

k,�, Λx
k,�, and Λn

k,� denote the variance of the noisy,
clean and noise coefficients, respectively. Further, we assume that
the speech and noise components are uncorrelated.

Often, log-spectral or cepstral representations are used to
train models for speech. In this work, similar as in [19], clean
speech is modeled in the log-spectral domain. The transformation
from the spectral domain to the log-spectrum is given by yk,� =

log
(|Yk,�|2) . Similarly, the log-spectra of the speech component

xk,� and the noise component nk,� are determined.
The proposed enhancement procedure gives an estimate of the

clean speech log-spectrum x̂k,�. This is used to derive a spectral
gain function Gk,� = exp([x̂k,�− yk,�]/2), which is applied to
noisy input spectrum to obtain an estimate of the complex clean
speech coefficients as X̂k,� = Gk,�Yk,�. This is equivalent to
combining the estimated clean speech magnitude with the noisy
phase. The enhanced signal is obtained using the overlap-add
method after applying a synthesis window.

3 Statistics of the Log-Spectrum
In the proposed algorithm, we employ estimates of the speech
PSD and the noise PSD which are propagated from the spectral
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domain to the log-spectral domain. This allows the application of
state-of-the-art noise PSD and speech PSD estimators, e.g., [6, 8].
The propagation is based on the derivations given in [20, 21]. With
the Gaussian assumption for the spectral coefficients, the means in
the log-spectral domain of the noisy speech μy

k,� = E{yk,�} are
related to the variances in the spectral domain Λy

k,�. Here, E{·}
denotes the expectation operator. The result is given by [20]

μy
k,� =

{
log(Λy

k,�)−γ− log(2), for k = 0,K/2
log(Λy

k,�)−γ, otherwise.
(2)

Here, γ ≈ 0.5772 . . . is the Euler-Mascheroni constant and K is
the number of frequency bins, which is assumed to be a multiple
of 2. Thus, K/2 corresponds to the Nyquist frequency. Similarly,
also the means of the clean speech μx

k,� and the background noise
μn
k,� can be determined.

In [20] it has been shown that for complex Gaussian dis-
tributed STFT coefficients, the variance of the log-spectral coeffi-
cients λyk,� = E{(yk,�−μy

k,�)
2} is constant and results in

λyk,� =

{
π2/2, if k = 0,K/2,
π2/6, otherwise.

(3)

The same result also holds for the variances of the speech and
noise log-spectral coefficients which are denoted by λxk,� and λnk,�,
respectively.

Finally, the log-spectral cross-covariance λxyk,� = E{(xk,�−
μx
k,�)(yk,� − μy

k,�)} is considered. It depends on the squared
correlation coefficient ρ2

k,� between the spectral coefficients of
noisy speech Yk,� and clean speech Xk,�, i.e.,

ρ2
k,� =

|E{Xk,�Y
∗
k,�}|2

E{|Xk,�|2}E{|Yk,�|2}
. (4)

In [20, 21], it was shown that this quantity is related to the Wiener
filter in the spectral domain

ρ2
k,� =

Λx
k,�

Λx
k,�+Λn

k,�

. (5)

With this, the log-spectral cross-covariance λxyk,� can be determined
using [20]

λxyk,� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞

∑
n=1

n!
(0.5)n

(ρ2
k,�)

n

n2 , k = 0,K/2

∞

∑
n=1

(ρ2
k,�)

n

n2 , otherwise.

(6)

The special function (a)n is given by 1 ·a · (a+1) · (a+2) · · ·(a+
n−1), which is used for a= 0.5 in (6).

4 Pre-Trained Speech Enhancement
In this section, the pre-trained part of the proposed speech enhance-
ment method is presented. It is based on the work in [14, 15, 19].
It is assumed that the joint distribution of the log-spectral speech
coefficients can be described by a mixture of Gaussian distribu-
tions as

p(x�) =
M

∑
m=1

p(m)

(
K/2

∏
k=0

N
(
xk,�|μx|m

k ,λ
x|m
k

))
. (7)

Here, x� =
[
x0,�,x1,�, . . . ,xK/2,�

]T
is a vector which comprises

the frequency components of the speech log-spectrum at frame �.
Each mixture component, which are indexed by m, is a Gaussian
denoted by N (·). Its parameters are the mean μ

x|m
k and variance

λ
x|m
k . The log-spectral coefficients are assumed to be independent

across frequency allowing each mixture component to be repre-
sented by a multiplication over all frequency bins. The probability
p(m) is the prior of the mth mixture component and M denotes
the number of mixtures. During training, which is performed
prior to the application of this algorithm, the parameters μx|m

k and

λ
x|m
k and the prior probabilities p(m) are determined. For this,

the expectation maximization algorithm [22] is employed.
The linear relationship between speech components and noise

components in (1) is in general non-linear in the log-spectral
domain. Hence, similar to [14, 15, 19], the relationship in the
log-spectral domain (1) is approximated using a first-order VTS.
Commonly, the phase information is omitted as originally pro-
posed in [14], so |Yk,�|2 can be written as

|Yk,�|2 ≈ |Xk,�|2 + |Nk,�|2. (8)

This approximation omits the cross-term which additionally de-
pends on the phase difference between speech and noise. While
clearly a simplification, it is often used in VTS based enhance-
ment approaches. Under the reasonable assumption that speech
and noise are uncorrelated, the cross-term cancels out on average,
i.e., at least E{|Yk,�|2}=E{|Xk,�|2}+E{|Nk,�|2}, e.g., [16, 23].
Similar approximations are also used in other pre-trained ap-
proaches, e.g., nonnegative matrix factorization [12, 13]. A study
on how these approximations affect the quality of enhancement
algorithms is given in [24]. While attempts for incorporating the
cross-term exist [17, 25, 26], they typically increase the compu-
tational complexity. Thus, for simplicity, we stick to the simple
model in (8) in this work. In the log-spectral domain, the relation-
ship in (8) can be rewritten as

yk,� = g(xk,�,nk,�) = log
{

exp
(
xk,�

)
+ exp

(
nk,�

)}
. (9)

The non-linear mixing function g
(
xk,�,nk,�

)
is approximated

using a first-order VTS with respect to the speech and noise com-
ponents xk,� and nk,�, as

yk,� ≈ gp0
x (xk,�−x0)+gp0

n (nk,�−n0)+gp0 , (10)

Here, x0 and n0 form the linearization point p0 as p0 = [x0,n0]
and gp0 = g(x0,n0). The symbols gp0

x and gp0
n denote derivatives

with respect to xk,� and nk,� evaluated at p0. The linearization

point is usually given by x0 = μ
x|m
k and n0 = μn

k,� and therefore
depends on the mixture m. As in [19], the approximation in (10)
is used to determine the parameters of the likelihood of xk,� given
the mth mixture p(yk,�|xk,�,m) which is assumed to follow a
Gaussian distribution. Correspondingly, the mean and the variance
of p(yk,�|xk,�,m) are obtained by determining the expected val-

ues μy|x,m
k,� = E{yk,�} and λ

y|x,m
k,� = E{(yk,�−μ

y|x,m
k,� )

2} using
the simplified yk,� in (10). As the speech component xk,� is given,
the only remaining random variable is the noise nk,�. Thus, the
mean and the variance are given by

μ
y|x,m
k,� = gp0

x (xk,�−x0)+gp0
n (μn

k,�−n0)+gp0 , (11)

λ
y|x,m
k,� = (gp0

n )2λnk,�. (12)

With the model used for p(yk,�|xk,�,m), also the likelihood of the
mth mixture p(yk,�|m) and the posterior of xk,� given the mth
mixture p(xk,�|yk,�,m) can be determined. Also these probability
density functions follow Gaussian distributions due to the Gaus-
sian assumption for p(yk,�|xk,�,m) and for the speech mixtures
in (7). The mean and variance of p(yk,�|m) are given by

μ
y|m
k,� = gp0

x (μ
x|m
k −x0)+gp0

n (μn
k,�−n0)+gp0 , (13)

λ
y|m
k,� = (gp0

x )2λ
x|m
k +(gp0

n )2λnk,�, (14)

while the mean of the posterior p(xk,�|yk,�,m) is given by

μ
x|y,m
k,� = μ

x|m
k +

λ
x|m
k gp0

x

λ
y|m
k,�

(
yk,�−μ

y|m
k,�

)
. (15)
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With this, the MMSE estimator of the log-spectral clean speech
coefficients is determined. The estimator is given by the mean of
p(x�|y�), which can be computed for each frequency bin k as

μ
x|y
k,� =

M

∑
m=1

p(m|y�)μ
x|y,m,zPrTr
k,� . (16)

By setting x̂k,� = μ
x|y
k,� , the gain function Gk,� can be determined,

which is then used to to enhance the noisy spectrum Yk,�. The
probability p(m|y�) can be obtained using Bayes’ rule as

p(m|y�) =
p(y�|m)p(m)

∑M
m′=1 p(y�|m′)p(m′)

, (17)

where p(y�|m) is given by the product over all frequency bins of
p(yk,�|m). Furthermore, for computing the posterior, an estimate
of the log-spectral noise mean μn

k,� and the log-spectral noise
variance λnk,� is required. For obtaining these values, a spectral
noise tracking algorithm, e.g., [4, 6, 7], is employed to determine
the spectral noise variance Λn

k,�. In contrast to the static speech
model, this estimate is time-variant. Using the method in Section 3,
the log-spectral quantities can be obtained.

5 Generic Speech Enhancement
This section gives a brief overview over the generic enhance-
ment methods that we combine with the pre-trained enhancement
method described in Section 4. Here, we consider a linear log-
spectral estimator related to the linear cepstrum estimator in [20]
and the LSA [2]. These generic methods also require an esti-
mate of the speech and noise statistics. Instead of using the static
speech model, the spectral speech variance Λx

k,� is obtained from
the noisy spectrum Yk,� and tracked over time, e.g., using [1, 8],
i.e., also here, a time-variant estimate is employed. The noise
variance is obtained in a similar way as for the pre-trained method.
Additionally, in this section, the underlying likelihood models are
given as they form the basis of the combination.

5.1 Linear Log-Spectral Filter

The linear log-spectral filter is closely related to the linear cep-
strum estimator presented in [20]. In [20], it is shown that the
linearly constrained MMSE estimator of the clean speech cepstral
coefficients has an equivalent representation in the log-spectral
domain. It is given by

μ
x|y,zLin
k,� = μx

k,�+
λxyk,�

λyk,�

(
yk,�−μy

k,�

)
. (18)

This filter is also the MMSE optimal estimator of the log-spectral
speech coefficients if the log-spectral coefficients of speech xk,�
and noisy speech yk,� are assumed to follow a Gaussian distribu-
tion. Hence, we set the likelihood model to

p(yk,�|zLin) = N (yk,�|μy
k,�,λ

y
k,�). (19)

Further, the symbol zLin is a state indicator for the model assumed
in this section and is used for the combination in Section 6. The
required means and variances are obtained by propagating the
spectral speech and noise variance estimates to the log-spectral
domain as described in Section 3.

5.2 Log-Spectral Amplitude Estimator

The second enhancement method that can be used in combination
with the considered pre-trained enhancement approach is the LSA
estimator [2]. This method is the MMSE optimal estimator of
log(|Xk,�|) = 1/2xk,�. The result of the MMSE estimator in [2]
can be rewritten as

μ
x|y,zLSA
k,� = 2log

[
Λx
k,�

Λx
k,�+Λn

k,�

]
+yk,�+

∫ ∞

ν

e−t

t
dt, (20)

where

ν =
Λx
k,�

Λn
k,�+Λx

k,�

exp(yk,�)
Λn
k,�

. (21)

For this approach, no propagation of the statistics from the spec-
tral domain is required. The likelihood for this estimator can be
determined as

p(yk,�|zLSA) =
1

Λy
k,�

exp

(
−eyk,�

Λy
k,�

+yk,�

)
. (22)

Similar to Section 5.1, zLSA is the indicator for the likelihood
model employed here.

6 Proposed Combination
In this section, we describe the proposed method for combining the
pre-trained approach from Section 4 and the generic enhancement
methods given in Section 5.

For the combination, we exploit the fact that each enhance-
ment method exhibits a different underlying likelihood model.
Therefore, we define the likelihood of the state zk,� given the mth
mixture p(yk,�|zk,�,m) as

p(yk,�|zk,�,m) =

⎧⎨
⎩
p(yk,�|zPrTr,m), zk,� = zPrTr,

p(yk,�|zLin), zk,� = zLin,

p(yk,�|zLSA), zk,� = zLSA.

(23)

The different enhancement approaches are distinguished by the
discrete state variable zk,� which can take the values zPrTr, zLSA,
and zLin for the pre-trained approach, the LSA, and the linear
log-spectral estimator, respectively. The state zk,� is allowed
to be different for each frequency k and frame �. The likeli-
hoods p(yk,�|zLin) and p(yk,�|zLSA) are given in (19) and (22).
These two likelihoods are independent of the mixture m, such that
for all mixtures m the equalities p(yk,�|zLin) = p(yk,�|zLin,m)
and p(yk,�|zLSA) = p(yk,�|zLSA,m) hold. For the pre-trained ap-
proach, p(yk,�|zPrTr,m) is equivalent to the likelihood of the mth
mixture p(yk,�|m) in Section 4. In other words,

p(yk,�|zPrTr,m) = N (yk,�|μy|m
k,� ,λ

y|m
k,� ) (24)

with parameters given in (13) and (14). With Bayes’ rule, it can
be determined which of these states can be considered the most
appropriate one for the noisy observation

p(zk,�|yk,�,m) =
p(yk,�|zk,�,m)p(zk,�)

∑
z′k,�

p(yk,�|z′k,�,m)p(z′k,�)
. (25)

The state prior probability p(zk,�) can be used to control the mix-
ing of the combined algorithms such that a specific method may
be preferred over the others. The posterior probability in (25) can
be included in the calculation of the MMSE estimate of the clean
speech log-periodogram. This leads to a weighted combination of
all combined enhancement methods as

μ
x|y,m
k,� = ∑

zk,�

p(zk,�|yk,�,m)μ
x|y,m,z
k,� . (26)

For the pre-trained enhancement method, the mean μ
x|y,m,zPrTr
k,� is

given by μ
x|y,m
k,� in (15). For the generic enhancement methods,

the means are μx|y,m,zLin
k,� = μ

x|y,zLin
k,� and μ

x|y,m,zLSA
k,� = μ

x|y,zLSA
k,�

which are given in (18) and (20), respectively. As the generic
enhancement methods are independent of the mixture m, the
values have to be computed only once and can be reused for each
m in (26). To obtain a final estimate of the clean speech, the
obtained μ

x|y,m
k,� are marginalized over the mixtures m similar

to (16). While here we focus on the combination of pre-trained
and generic enhancement approaches, it is interesting to note that
this method allows for different combinations of algorithms, e.g.,
it is possible to combine the pre-trained enhancement method with
either the linear estimator or the LSA estimator or both generic
enhancement algorithms.
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7 Evaluation
In this section, we evaluate the proposed combination and compare
it to the LSA [2] and a pre-trained approach with a harmonic post-
filter similar to [19, Section 3] by means of Perceptual Evaluation
of Speech Quality (PESQ) [27] improvement scores.

For the evaluation, we use 128 sentences taken from the
test set of the TIMIT database [28] where we ensure that the
amount of sentences spoken by male and female speakers is bal-
anced. The speech signals are artificially corrupted by different
background noises with signal-to-noise ratios (SNRs) ranging
from -5 dB to 20 dB. Here, we employ babble noise, pink noise,
which are taken from the NOISEX-92 database [29], and a non-
stationary traffic noise. Additionally, we also include an ampli-
tude modulated version of pink noise. The modulator is given
by f(n) = 1+0.5sin(2πnfmod/fs) where fmod = 0.5 Hz is the
modulation frequency, while n is the sample index and fs the
sampling frequency. In our evaluation, the sampling rate of all
signals is fs = 16 kHz.

The corrupted signals are processed in 32 ms blocks with an
overlap of 50 %. For spectral analysis and synthesis, a square-root
Hann window is used. The speech model used in the pre-trained
approach consists of 128 mixtures. These are trained off-line
on 784 gender balanced uncorrupted sentences from the TIMIT
training corpus using the expectation maximization algorithm [22].
The speech presence probability based harmonic post-filter is im-
plemented according to the description in [19, Section 3]. In [19],
the post-filter is only applied to voiced frames. Therefore, we
determine the voiced probability for each frame using [30]. If the
probability exceeds 50 %, the harmonic post filter is applied. The
noise PSD is obtained using the estimator described in [6]. The
speech PSD is determined using temporal cepstrum smoothing
as described in [8]. For the pre-trained method in Section 4 and
the linear log-spectrum estimator in Section 5.1, these estimates
are propagated to the log-spectral domain using Section 3. For all
enhancement methods, we ensure that the noisy input spectrum is
attenuated by a maximum of 12 dB. Further, the VTS approxima-
tion may give values larger than the noisy observation such that
the input signal may be boosted. We prevent this by setting an up-
per limit to the amplitude of the estimated clean speech spectrum
which is given by the amplitude of the noisy observation. This
limit is applied for all algorithms in the comparison.

The results are shown in Figure 1. Here, “LSA” denotes
the generic speech enhancement algorithm which uses the gain
function from [2] without any pre-trained models. The symbol
“PrTr” indicates the pre-trained speech enhancement as in Sec-
tion 4. The combinations are denoted by PrTr+additional method,
where the additional methods are given by the linearly constrained
log-spectral filter (Lin), the LSA (LSA), and the harmonic model
based speech presence probability mask (H) [19]. Combinations
with more than two algorithms are not analyzed in this paper. For
the combinations with a generic enhancement method, the prior
p(zk,�) = 0.5 is used in (25), i.e., there is no preference of one
algorithm over another.

The results show that the sole application of the pre-trained
enhancement, i.e., the algorithm PrTr, is comparable to the LSA in
pink noise and traffic noise while lower PESQ scores are obtained
for the modulated pink noise and babble noise. Especially bab-
ble noise appears to be a challenging situation for the employed
pre-trained speech enhancement method. Here, the performance
is usually lower compared to the generic LSA. Only in combi-
nation with the linear log-spectral filter, the performance of the
pre-trained approach is comparable to the LSA in terms of PESQ
scores in babble noise. The results for the remaining noise types,
however, show an improvement of the proposed combination in
contrast to the sole application of either the LSA or the pre-trained
approach. Furthermore, the proposed combination also outper-
forms the competing method PrTr+H that employs a harmonic
post-filter [19].

In our experiments, the pre-trained approaches showed a ten-
dency to preserve weak speech components more than generic
estimators. This more conservative behaviour, however, has the
effect that outliers in the noise sometimes remain unsuppressed.
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Figure 1: PESQ improvements for evaluated enhancement meth-
ods and noise types over different SNRs. LSA: [2], PrTr: pre-
trained method, no combination, PrTr+Lin: pre-trained method
with linear log-spectral filter, PrTr+LSA: pre-trained method with
LSA, PrTr+H: pre-trained method with harmonic filter.

As a result, these enhancement methods generate more audible
processing artifacts and noise activations during speech activity.
These issues are, on the one hand, related to the speech models
which mainly represent the envelope of speech, but, on the other
hand, are also linked to the noise PSD estimator which is not able
to follow very fast changes in the background noise, e.g., speech
bursts in babble. The combination with the generic approaches re-
duces these artifacts. Informal listening showed that this reduction
of artifacts is largest for the PrTr+Lin approach.

8 Conclusions
In this paper, we introduced a combination of a pre-trained speech
enhancement method and generic single-channel speech enhance-
ment algorithms. This proposed combination is employed to re-
duce the processing artifacts of a pre-trained VTS based enhance-
ment method when only a low amount of mixtures is available.
In contrast to the post-filter used in [19], the proposed combina-
tion rests upon a statistical framework. In non-stationary noise
types such as babble noise, the pre-trained approach obtains rather
low PESQ scores and the performance is only comparable to the
generic LSA in combination with the linear filter. For the other
noise types considered in the evaluation, however, the combina-
tion with the generic estimators yields a higher quality compared
to state-of-the-art single-channel speech enhancement methods.
Furthermore, the proposed combination achieves higher PESQ
scores than the competing harmonic post-filter.
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