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ABSTRACT

Most Bayesian clean speech estimators, like the Wiener filter or
Ephraim and Malah’s amplitude estimators, are derived under the
assumption that the true power spectral density (PSD) of speech is
known. In practice, however, only estimates are available. When the
PSD estimation errors are neglected, they propagate through to the
final speech estimate, resulting in undesired artifacts such as musi-
cal noise and speech distortions. To increase the robustness to PSD
estimation errors, recently a linear estimator has been proposed that
explicitly takes into account the uncertainty of the available speech
PSD estimate. In this paper, we show that in the derivation of this
estimator a limiting statistical assumption is made, and that avoid-
ing this assumption leads to a novel, potentially more powerful non-
linear estimator under PSD uncertainty. In combination with a so-
phisticated speech PSD estimator, the proposed approach achieves
a higher predicted speech quality than the linear alternative and its
conventional counterpart, the Wiener filter.

Index Terms— speech enhancement, uncertainty, power spec-
tral density

1. INTRODUCTION

To reduce the detrimental effect of acoustic noise on the perfor-
mance of, e.g., hearing aids and mobile phones, sophisticated speech
enhancement algorithms are employed. In this paper, the focus is
specifically on single-channel Bayesian clean speech estimators that
work in the short-time discrete Fourier transform (STFT) domain.
Such algorithms are either used directly on a single microphone sig-
nal or as a post processing step after a multi-microphone preprocess-
ing stage. Well known examples are the Wiener filter and Ephraim
and Malah’s amplitude estimators [1, 2]. Over the years, numerous
advanced estimators have been derived, e.g. by assuming different
distributions for the spectral speech coefficients [3, 4] and/or dif-
ferent optimization criteria [5, 6, 7]. See e.g. [8] for an overview.
The vast majority of these estimators are derived under the assump-
tion that the PSD of speech is deterministic and known. However,
the true PSD is typically not known and can only be estimated, e.g.
via maximum likelihood (ML) estimation, the decision-directed ap-
proach [1], or temporal cepstrum smoothing (TCS) [9]. Even in the
noise free case, determining the true speech PSDs is in principle not
possible as speech is a highly non-stationary and thus non-ergodic
process [10]. This has for instance been considered in [11] to de-
rive a speech PSD estimator based on a generalized autoregressive
conditional heteroscedasticity (GARCH) model. In clean speech es-
timators, however, PSD estimates are commonly interpreted as the
true PSD. This effectively neglects the uncertainty of the PSD esti-
mates, resulting in suboptimal noise suppression, speech distortions,
and musical noise. Please note that in general, the same consider-
ations also apply to the noise PSD. However, for conciseness, here

we concentrate on the uncertainty about the speech PSD.
Recently, in [12] a clean speech estimator has been proposed

that explicitly models the uncertainty about the speech PSD. On
the one hand, the model establishes a theoretically motivated rela-
tion between the true PSD and its ML estimate, which also holds
for smoothed ML estimates. On the other hand, the model also pro-
vides a convenient and theoretically rigorous way to incorporate in-
formation about the true clean speech PSD, which for instance can
be obtained off-line from a representative clean speech database.

In this paper, a novel minimum mean square error (MMSE) op-
timal clean speech estimator under PSD uncertainty is derived. We
model the true speech PSD as an unobservable random variable of
which only an imperfect estimate is available, using the same PSD
uncertainty model as in [12]. The major difference between the es-
timator in [12] and the proposed one results from a restrictive as-
sumption made in [12], i.e. that the speech PSD estimate provides
all information about the true PSD that is contained in the noisy ob-
servation. We argue that this assumption is not true in general and
therefore present a way to avoid it. As a result and in contrast to
[12], the proposed clean speech estimator is a nonlinear function of
the noisy input and thus potentially more powerful. Furthermore,
in [12] instantaneous PSD estimates are smoothed directly in the
spectral domain via a moving average filter to reduce random out-
liers that cause musical noise. However, this simple smoothing is
known to also smear the PSD estimate at speech on- and offsets [1].
More elaborate approaches like TCS [9, 13] have been shown to ef-
fectively reduce musical noise without smearing the speech, which
improves the overall speech enhancement performance. Therefore,
here we apply TCS instead and show how it can be integrated into
the statistical model of [12].

After briefly introducing the signal model in Section 2, the pro-
posed estimator is derived in Section 3 and the uncertainty model is
outlined in Section 4. We then compare the proposed estimator to the
one in [12] and its conventional, uncertainty unaware counterpart by
means of their input-output characteristics (IOCs) in Section 5, fol-
lowed by an instrumental evaluation in Section 6.

2. SIGNAL MODEL AND NOTATION

The complex-valued STFT coefficients of the noisy signal at seg-
ment ` and frequency bin k are denoted as

Yk,` = Sk,` + Vk,`, (1)

with mutually independent spectral coefficients of speech Sk,` and
additive noise Vk,`. Since each time-frequency point (`, k) is pro-
cessed separately, the indices are dropped for notational convenience
in the sequel. Given their true PSDs σ2

S and σ2
V , both, S and V are

modeled as zero-mean complex-valued Gaussian distributed random
variables. To distinguish estimates from their true counterparts we
use the hat symbol, e.g. σ̂2

S is an estimate of σ2
S .
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3. SPEECH ESTIMATION UNDER PSD UNCERTAINTY

Conventional MMSE optimal estimators of the clean speech coeffi-
cients S are derived via

Ŝ = E
(
S | Y, σ2

S , σ
2
V

)
=

∫
S

Sp
(
S | Y, σ2

S , σ
2
V

)
dS, (2)

i.e. the true PSDs of speech and noise are assumed to be known.
If only an estimate σ̂2

S of the true speech PSD σ2
S is available, anal-

ogously to (2), the MMSE optimal clean speech estimator is given
by

Ŝ = E
(
S | Y, σ̂2

S , σ
2
V

)
=

∫
S

S p
(
S | Y, σ̂2

S , σ
2
V

)
dS. (3)

To keep the notation concise, in the remainder of this paper we do
not state the dependency on σ2

V explicitly, but implicitly assume that
each probability density function (PDF) is conditioned on σ2

V , e.g.
we use p

(
S | Y, σ̂2

S

)
to denote p

(
S | Y, σ̂2

S , σ
2
V

)
. Using Bayes’ rule

we can reformulate the speech posterior of (3) as:

p
(
S | Y, σ̂2

S

)
=

∞∫
0

p
(
S, Y, σ̂2

S , σ
2
S

)
dσ2

S

p
(
Y, σ̂2

S

) , (4)

where for the numerator the joint distribution p
(
S, Y, σ̂2

S

)
is ex-

pressed in terms of the marginal probability of p
(
S, Y, σ̂2

S , σ
2
S

)
to

facilitate the upcoming derivations.

3.1. Existing linear estimator [12]

An interesting MMSE optimal clean speech estimator under speech
PSD uncertainty has recently been proposed in [12]. The estimator
can be derived by applying Bayes’ rule to (4) such that we have

p
(
S | Y, σ̂2

S

)
=

∞∫
0

p
(
S | Y, σ̂2

S , σ
2
S

)
p
(
σ2
S | Y, σ̂2

S

)
dσ2

S

≈
∞∫
0

p
(
S | Y, σ2

S

)
p
(
σ2
S | σ̂2

S

)
dσ2

S , (5)

where the denominator of (4) is canceled out. The first simpli-
fication, p

(
S | Y, σ2

S

)
≈ p

(
S | Y, σ̂2

S , σ
2
S

)
, implies that when Y

and the true PSDs are known, the estimate σ̂2
S does not provide

any additional information regarding S. The second simplification,
p
(
σ2
S | σ̂2

S

)
≈ p

(
σ2
S | Y, σ̂2

S

)
, is more restrictive. In [12] it is ar-

gued that the estimate σ̂2
S , which is computed from Y , contains all

information about the true σ2
S inherent in Y . Here we argue that this

assumption does not hold in general and show how it can be avoided
in the next section. A model for p

(
σ2
S | σ̂2

S

)
is outlined in Section 4.

To obtain the clean speech estimator in [12], the simplified
speech posterior (5) is plugged into (3) and the integral over S is
solved, leading to

Ŝ
[12]

= Y

∞∫
0

σ2
S

σ2
S + σ2

V

p
(
σ2
S | σ̂2

S

)
dσ2

S = Y G
[12]

. (6)

The spectral gainG
[12]

under PSD uncertainty is a weighted mixture
of Wiener filter gains and independent of the noisy input Y , making
the estimator linear in Y . Now we show that without the simplifica-
tion of [12], even under the same statistical assumptions for speech
and noise, the estimator under PSD uncertainty becomes a nonlinear
function of the noisy input Y .

3.2. Proposed nonlinear estimator

To derive the proposed nonlinear estimator under PSD uncertainty,
the speech posterior in (4) is again reformulated via Bayes’ rule, but
in a different manner:

p
(
S | Y, σ̂2

S

)
=

∞∫
0

p
(
Y | S, σ2

S , σ̂
2
S

)
p
(
S | σ2

S , σ̂
2
S

)
p
(
σ2
S | σ̂2

S

)
dσ2

S∫
S

∞∫
0

p
(
Y | S, σ2

S , σ̂
2
S

)
p
(
S | σ2

S , σ̂
2
S

)
p
(
σ2
S | σ̂2

S

)
dσ2

S dS

≈

∞∫
0

p(Y | S) p
(
S | σ2

S

)
p
(
σ2
S | σ̂2

S

)
dσ2

S

∞∫
0

∫
S

p(Y | S) p(S | σ2
S ) dSp

(
σ2
S | σ̂2

S

)
dσ2

S

. (7)

For mutually independent speech and noise, the likelihood
p(Y | S) ≈ p

(
Y | S, σ2

S , σ̂
2
S

)
is assumed to be the PDF of the

noise V shifted by S, see e.g. [1]. Consequently, it neither depends
on the true nor the estimated speech PSD. It is further assumed
that when the true speech PSD σ2

S is given, its estimate σ̂2
S does not

provide any additional information regarding S, which results in
p
(
S | σ2

S

)
≈ p

(
S | σ2

S , σ̂
2
S

)
. Note that the denominator p

(
Y, σ̂2

S

)
in (4) is expressed as the marginal distribution of p

(
Y, σ̂2

S , S, σ
2
S

)
in (7). As a consequence, numerator and denominator are the same,
except for the integral over S, such that we conveniently need the
same models in the numerator as in the denominator.

To implement the proposed estimator, we insert (7) into (3) and
change the order of the integrals in the numerator as we already did
in the denominator of (7). The inner integrals over S then only de-
pend on the true PSD σ2

S and can be solved, see e.g. [14, IV.C] for
details. This leads to the final estimator

Ŝ =

∞∫
0

σ2
S

(σ2
S +σ2

V)
2 eν p

(
σ2
S | σ̂2

S

)
dσ2

S

∞∫
0

1
σ2
S +σ2

V
eν p

(
σ2
S | σ̂2

S

)
dσ2

S

Y, (8)

which is the counterpart to the Wiener filter under speech PSD un-
certainty. Here we introduce ν =

σ2
S

σ2
S +σ2

V

|Y |2

σ2
V

for a concise notation.
Thus, in contrast to the estimator in (6), the proposed estimator (8)
is a nonlinear function of the noisy input Y. Similar to [12], the re-
maining integrals over σ2

S are solved numerically.

4. A MODEL OF SPEECH PSD UNCERTAINTY p
(
σ2
S | σ̂2

S

)
A statistically rigorous model for the uncertainty of the speech PSD
has recently been proposed in [12]. The model is based on assump-
tions about the employed speech PSD estimator and potential a priori
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information about the true speech PSD. To derive this model for the
PSD uncertainty p

(
σ2
S | σ̂2

S

)
, Bayes’ rule is applied [12]:

p
(
σ2
S | σ̂2

S

)
=
p
(
σ̂2
S | σ2

S

)
p
(
σ2
S

)
p
(
σ̂2
S

) ∝ p
(
σ̂2
S | σ2

S

)
p
(
σ2
S

)
, (9)

where we dropped p
(
σ̂2
S

)
as it cancels out when p

(
σ2
S | σ̂2

S

)
is

plugged into (8). In (9), the uncertainty model p
(
σ2
S | σ̂2

S

)
is split

into two parts. First, the hyper prior p
(
σ̂2
S | σ2

S

)
that depends on the

specific speech PSD estimator that is used to obtain σ̂2
S . Second, the

hyperhyper prior p
(
σ2
S

)
that allows to insert information about the

true speech PSD. With the formulation in (9), both, the true and the
estimated speech PSD are modeled as random variables.

Similar to [12], we use a χ2 distribution to model the hyper prior
p
(
σ̂2
S | σ2

S

)
. In [12], the final PSD estimate is obtained by averag-

ing instantaneous PSD estimates, i.e. σ̂2
S = max

(
|Y |2 − σ2

V , 0
)

[1],
overQ neighboring frames directly in the spectrum to reduce outliers
that would cause musical noise. The smoothed estimate is modeled
to be χ2 distributed with shape parameter Q [12]. However, already
Ephraim and Malah [1] found that the simple moving average filter,
while effectively reducing undesired outliers for sufficiently long fil-
ters, also smears sudden PSD changes, e.g. at speech onsets and
offsets. Here we propose to use a more elaborate approach, namely
TCS [9, 13]. With this quefrency selective smoothing, undesired out-
liers in the final PSD estimate are strongly reduced while avoiding
a smearing of the speech. The resulting PSD estimate is again χ2

distributed, with shape parameter Q obtained according to [13, Sec.
IV]. Please note that thanks to the χ2 distribution in [12], the hyper
prior p

(
σ̂2
S | σ2

S

)
becomes wider towards low SNRs, nicely incor-

porating the effect that speech PSD estimation becomes increasingly
challenging and error-prone at low SNRs.

The hyperhyper prior p
(
σ2
S

)
in (9) allows to bring in a priori in-

formation about the true PSDs of the desired speech sound. To find a
model for the hyperhyper prior, first a normal distribution with mean
µσ2S

and standard deviation φσ2S is fitted to a histogram of 10 log |S|2.
Here, the histogram is computed over a subset of the TIMIT training
set using the same STFT setup as in the evaluation. The fitted dis-
tribution serves as a model for p

(
σ2
S,dB

)
, where σ2

S,dB is the speech
PSD in dB, i.e. σ2

S,dB = 10 log σ2
S . Transforming this into the lin-

ear domain then yields a log-normal distribution for the hyperhyper
prior p

(
σ2
S

)
. In contrast to [12], here we exclude speech absence

regions by considering only time-frequency points for which |S|2 is
at most 60 dB below the maximum |S|2. For this setup, the mean
and the standard deviation in the dB domain are µσ2S ≈ −29 dB and
φσ2S
≈ 11 dB. In this context, the standard deviation φσ2S is consid-

ered a measure of uncertainty in the expected value µσ2S : the larger
φσ2S

, the more likely it is that the unknown true PSD σ2
S,dB differs

substantially from its available expected value µσ2S .

5. INPUT-OUTPUT CHARACTERISTIC

In Figure 1, we compare the proposed nonlinear estimator to the al-
ternative linear approach [12] in terms of their IOCs [15] and show
how the information in the hyperhyper prior p

(
σ2
S

)
from the previous

section can benefit the clean speech estimation. The IOC of an esti-
mator presents the magnitude of the speech estimate Ŝ as a function

s
0
4

Y/σV

Input-Output Curve

0 1 2 3 4 5

Input-Output Curve

Y/σV

Ŝ
/
σ V

0 1 2 3 4 5
0

1

2

3

4
Wiener

Wiener (oracle)

linear (6) [12]

nonlinear (8)

σ̂2
S,dB=µσ2S

σ̂2
S,dB=µσ2S

−10 dB

Fig. 1. IOCs for σ2
V,dB = µσ2S

= −29 dB, φσ2S = 11dB, Q = 10.

Only the speech PSD estimate σ̂2
S,dB differs between the plots.

of the respective noisy input magnitude |Y |. Both, the input and the
estimate, are normalized by σV to make the analysis less dependent
on an absolute scaling. The lower the curve, the more suppression is
applied by the respective estimator. As references, we also provide
the IOCs of two versions of the Wiener filter: First, the conventional
Wiener filter that uses only the PSD estimate σ̂2

S , which we denote as
”Wiener”. Second, the Wiener filter using the mean µσ2S of p

(
σ2
S,dB

)
instead of σ̂2

S , which we denote as ”Wiener (oracle)”. The two refer-
ences can be interpreted as two extreme cases of the linear estimator
[12]. While ”Wiener” assumes that the estimate σ̂2

S is exact, ”Wiener
(oracle)” assumes that µσ2S is exact, both completely dismissing the
uncertainty in the respective quantity. Note that we chose the Wiener
filter as a reference so that all approaches are estimators of the com-
plex clean speech coefficients S and besides the PSD uncertainty
model rely on the exact same statistical assumptions.

The two plots in Figure 1 differ only in how far the speech PSD
estimate σ̂2

S,dB deviates from the mean µσ2S of the hyperhyper prior

p
(
σ2
S,dB

)
in the dB-domain. At the left, the PSD estimate σ̂2

S,dB is
exactly µσ2S , meaning that the estimate is likely to be close to the
true speech PSD. Accordingly, the lines for ”Wiener” and ”Wiener
(oracle)” overlap in Figure 1 (left). Furthermore, also the estima-
tor [12] follows the Wiener filter. The difference between ”linear
(6) [12]” and ”Wiener” is due to the remaining uncertainty in σ̂2

S,dB

and µσ2S . While the Wiener filter and [12] are linear estimators, the
proposed approach is nonlinear and applies less suppression to large
inputs. Note that this is a typical behavior that is also observed for
estimators that are based on super-Gaussian speech priors like [4, 6].

At the right of Figure 1, the PSD estimate is 10 dB below µσ2S
,

meaning that the true speech PSD is likely to be higher than the
estimate σ̂2

S . Thus, it is more likely that the input contains rele-
vant speech energy and it would be beneficial to apply less sup-
pression. In this situation the full potential of considering the PSD
uncertainty is on display. Since the noise PSD is the same as be-
fore but the speech PSD estimate is lower, the conventional Wiener
filter applies more suppression than in the first plot. In contrast,
”Wiener (oracle)”, which only relies on µσ2S applies far less suppres-
sion. The two uncertainty-aware estimators trade-off the PSD esti-
mate and the information about p

(
σ2
S

)
according to the uncertainty

model in (9). This theoretically justified compromise is controlled
by the uncertainty of σ̂2

S and µσ2S , which is modeled by the hyper

prior p
(
σ̂2
S | σ2

S

)
and the hyperhyper prior p

(
σ2
S

)
, respectively. The
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Fig. 2. Improvement in PESQ and SSNR over the noisy signal when
the speech PSD is estimated via temporal spectrum smoothing.

linear estimator [12] accordingly provides a compromise between
”Wiener” and ”Wiener (oracle)”. The proposed estimator, due to its
nonlinearity provides a completely new IOC and applies less attenu-
ation than [12] and even ”Wiener (oracle)” for large arguments.

6. EVALUATION

The estimators are evaluated on 128 gender-balanced sentences from
the test set of the TIMIT [16] database, degraded by white noise,
white noise modulated with a frequency of 0.5 Hz, street noise, and
speech shaped noise at various SNRs. The STFT is computed with
a segment length of 32 ms, an overlap of 50 %, and a square-root
Hann window for analysis and synthesis. The maximum attenuation
in each time-frequency point is set to -15 dB to avoid undesired arti-
facts and speech distortions. The noise PSD σ2

V is estimated via [17].
We evaluate segmental SNR (SSNR) and ’Perceptual Evaluation of
Speech Quality’ (PESQ), which has been shown to correlate with
the overall quality of spectrally enhanced speech [18]. For a bet-
ter visualization we present the improvement over the unprocessed
noisy signal instead of absolute values and average the results over
all noise types.

The algorithms are evaluated for two speech PSD estimators of
different quality. In the first part, similar to [12], the instantaneous
PSD estimates are simply averaged over Q = 10 neighboring seg-
ments directly in the spectrum, corresponding to a time window of
176 ms. As a more sophisticated estimator, we then employ TCS
[9, 13], which has been shown to provide estimates that allow for
high quality speech estimation.

6.1. Speech PSD estimation via moving average in the spectrum

Figure 2 shows that both, the linear and the proposed nonlinear
speech estimator under PSD uncertainty outperform the Wiener fil-
ter reference in terms of PESQ and SSNR. The largest improvements
are achieved at low SNRs, with improvements of about 0.1 PESQ
and 1 dB in SSNR. Based on informal listening, in combination with
this simple PSD estimator the Wiener filter shows strong and an-
noying musical noise. When using the speech estimators under PSD
uncertainty, however, musical noise is substantially reduced. As
stated in Section 4 and the end of Section 5, speech PSD estimates
are deemed less reliable in low SNRs by the uncertainty model
and thus the influence of the hyperhyper prior p

(
σ2
S

)
, increases.

Accordingly, at low SNRs where musical noise is most prominent,
the uncertainty-aware estimators rely more on the hyperhyper prior
rather than the fluctuating error-prone PSD estimates, effectively

input SNR [dB]

∆PESQ [MOS]

-5 0 5 10 15

.3

.4

.5

.6

input SNR [dB]

∆SSNR [dB]

-5 0 5 10 15

3

4

5

Wiener
linear (6) [12]
prop. nonlinear (8)

Fig. 3. Improvement in PESQ and SSNR over the noisy signal when
the speech PSD is estimated via temporal cepstrum smoothing.

reducing musical noise. The two uncertainty-aware approaches
yield virtually the same PESQ and SSNR improvements. Infor-
mal listening however reveals that the proposed nonlinear estimator
better preserves speech while slightly more musical noise remains.
This trade-off is characteristic for nonlinear, e.g. super-Gaussian,
estimators, see e.g. [4].

6.2. TCS-based speech PSD estimation

Compared to the PSD estimator from the previous section, TCS
greatly reduces random fluctuations in the PSD estimates while
avoiding temporal smearing of speech. As a result, the Wiener filter
achieves a higher signal quality with less musical noise, which is
also indicated by larger PESQ and SSNR improvements in Figure 3.

The linear estimator [12] is the most aggressive of the three ap-
proaches, for TCS as well as for the simple PSD estimator in the
previous section. The main benefit of [12] over the Wiener filter in
the last section came from its improved suppression of musical noise,
which outweighed the accompanying speech distortions. Since with
TCS musical noise is less of a problem, the improvement dimin-
ishes and [12] does not improve over the Wiener filter anymore. In
contrast, the proposed nonlinear estimator yields a higher predicted
speech quality than the Wiener filter even for sophisticated TCS-
based PSD estimates. First, it benefits from the same PSD uncer-
tainty model as [12]. Second, due to its nonlinear behavior, with
IOCs resembling those of super-Gaussian estimators in Figure 1, it
protects speech components better than the linear estimator. The im-
provement relative to the Wiener filter is nevertheless smaller than
for the simple PSD estimator in Figure 2. With a more reliable
PSD estimator, the detrimental effect of neglecting its uncertainty
and thus the benefit of uncertainty-aware speech estimators reduces.

7. CONCLUSIONS

In practice, the true PSD of speech is unknown and only estimates
are available. To increase the robustness of speech enhancement
frameworks to PSD estimation errors, recently a clean speech esti-
mator has been proposed that explicitly takes into account the speech
PSD uncertainty [12]. Here we avoid the restrictive assumption of
[12] that the noisy input Y does not yield additional information on
σ2
S when its ML estimate σ̂2

S is given. The derivation then yields
a fundamentally different estimator which is a nonlinear function
of the noisy input. In contrast to the linear estimator in [12], the
proposed nonlinear approach improves the predicted speech quality
even when a sophisticated PSD estimator is employed.
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