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Abstract. In recent years, there has been a renaissance of research on
the role of the spectral phase in single-channel speech enhancement. One
of the recent proposals is to not only estimate the clean speech phase
but also use this phase estimate as an additional source of information
to facilitate the estimation of the clean speech magnitude. To assess
the potential benefit of such approaches, in this paper we systemati-
cally explore in which situations additional information about the clean
speech phase is most valuable. For this, we compare the performance of
phase-aware and phase-blind clean speech estimators in different noise
scenarios, i.e. at different signal to noise ratios (SNRs) and for noise
sources with different degrees of stationarity. Interestingly, the results
indicate that the greatest benefits can be achieved in situations where
conventional magnitude-only speech enhancement is most challenging,
namely in highly non-stationary noises at low SNRs.
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1 Introduction

The enhancement of speech that is corrupted by noise is a long-standing research
topic that has seen many new ideas and improvements over the last decades.
In this paper, we focus on single-channel speech enhancement, i.e. approaches
that are applied to a single microphone signal or to the output of a multichan-
nel preprocessing stage. Specifically, we consider minimum mean square error
(MMSE) optimal Bayesian estimators of the clean speech in the short-time dis-
crete Fourier transform (STFT) domain. Well-known examples of this class of
estimators are the Wiener filter and Ephraim and Malah’s short-time spectral
amplitude estimator (STSA) [2]. Over the years, numerous improvements have
been proposed, including the use of super-Gaussian speech priors [4,21] and/or
different optimization criteria [1,3,28]. See e.g. [13] for a concise overview. What
the vast majority of mainstream approaches have in common is that they are
magnitude-centric, meaning that the spectral phase is neither used as a source
of information nor is the noise corrupted spectral phase enhanced, which is fre-
quently justified by the statement that the enhancement of the spectral phase
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is unimportant [27]. However, contrary to the widespread believe at the time,
more recent studies, including [9,24], showed that the spectral phase is indeed
important for speech enhancement. These findings sparked a renewed interest in
the estimation of the clean speech spectral phase for speech enhancement, e.g.
[10,16,22].

With the availability of phase estimates, also the interest in how these phase
estimates can best be utilized has risen. A straight forward way is to simply
exchange the noisy phase with the phase estimate and combine it with a clean
speech magnitude estimate that has been obtained with an existing of-the-shelf
estimator. A more elaborate way to utilize the newly available phase estimate is
to use it as an additional source of information that facilitates the estimation of
the clean speech magnitudes [8,18] or even the complex-valued coefficients [6].
We denote such approaches as being phase-aware, while conventional magnitude-
centric approaches like the Wiener filter or the STSA are considered phase-blind.

Phase-aware approaches have been shown to be capable of generally outper-
forming their phase-blind counterparts in terms of instrumental measures, e.g. in
[8,18,23], and also by means of formal listening experiments [17]. To assess the
potential of phase-aware speech enhancement in more detail, in this paper we sys-
tematically investigate in which acoustic situations it provides the largest bene-
fits. For this, we directly compare the performance of two phase-aware estimators
based on [6,18] to that of their phase-blind counterparts, namely the STSA and
the Wiener filter, at different SNRs and for noise sources with different degrees
of stationarity. First, we consider pink noise and modulate it with an increasing
modulation frequency, which allows us to adjust the amount of non-stationarity
in a very controlled way. As a second, practically very relevant example, we use
babble noise, where the non-stationarity is adjusted by deliberately changing the
number of talkers. The results indicate that the greatest benefits can be achieved
in situations where conventional phase-blind speech enhancement is most chal-
lenging, i.e. in highly non-stationary noises at low SNRs.

2 Signal Model and Notation

In each time-frequency point of the STFT domain we have a additive superpo-
sition of mutually independent speech and noise,

Y = S + V = AejΦ
S

+DejΦ
V

= RejΦ
Y

, (1)

where Y , S, and V denote the complex coefficients of the observed noisy speech,
the desired clean speech, and the additive noise, respectively. The spectral phases
are denoted by ΦY , ΦS , and ΦV , while the spectral magnitudes are denoted by
R, A, and D. Here we make the common assumption that the noise coefficients
V follow a circular symmetric zero-mean complex Gaussian distribution with a
power spectral density (PSD) of σ2

V, where the circular symmetry implicates a
uniformly distributed noise phase ΦV . The PSD of speech is denoted as σ2

S . We
use the hat-symbol to distinguish estimates from their true counterparts, i.e. Ŝ
is an estimate of S.
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3 Conventional Phase-Blind Clean Speech Estimation

Commonly, MMSE estimators of the clean speech S, or more generally any
function f(S), are derived by finding the expected value of f(S) given the noisy
observation and the PSDs of speech and noise:

f̂(S) = E
(
f(S) | Y,σ2

S ,σ
2
V

)
=

∞∫

0

2π∫

0

f(S)p
(
A,ΦS | Y,σ2

S ,σ
2
V

)
dΦS dA (2)

=
∫ ∞
0

∫ 2π
0 f(S)p

(
y|A,ΦS ,σ2

V

)
p
(
A | σ2

S

)
p
(
ΦS

)
dΦSdA

∫ ∞
0

∫ 2π
0 p(y|A,ΦS ,σ2

V) p(A | σ2
S) p(ΦS) dΦSdA

, (3)

where the second line is obtained by applying Bayes’ rule. For complex Gaussian
noise, the likelihood is given as p

(
y|A,ΦS ,σ2

V

)
= N

(
S,σ2

V

)
, see e.g. [2]. For a

uniform phase prior, i.e. p
(
ΦS

)
= 1/(2π) for ΦS ∈ [−π,π), Eq. (3) has been

solved analytically for different magnitude priors p
(
A | σ2

S

)
and functions f(S).

Assuming a Rayleigh distribution for p
(
A | σ2

S

)
, for instance, the Wiener filter is

obtained as the MMSE optimal estimator of the complex clean speech coefficients
(f(S) = S) and Ephraim and Malah’s STSA as the MMSE optimal estimators
of the clean speech magnitudes (f(S) = A). Also more elaborate super-Gaussian
clean speech estimators have been derived via (3) by using, e.g., a χ distribution
[1] or a generalized gamma distribution [4] for p

(
A | σ2

S

)
with different functions

f(S). However, in all these approaches the phase prior p
(
ΦS

)
is modeled as a

uniform distribution, which implies that the complex clean speech coefficients are
circularly-complex distributed. Without any prior information about the clean
speech spectral phase, the uniform distribution is indeed a reasonable assumption
that is supported by long term histogram data [4].

4 Phase-Aware Clean Speech Estimation

In contrast to the conventional phase-blind approaches discussed above, phase-
aware estimators such as the ones in [6,8,18] assume that besides the speech and
noise PSDs also a prior estimate of the clean speech spectral phase is available.
Such a phase estimate can be obtained from the noisy signal for instance based
on a harmonic model such as in [16,22] or using an iterative approach similar to
Griffin and Lim [12] and its successors [19,25]. To derive MMSE optimal phase-
aware estimators, we propose to compute the expected value of f(S) conditioned
not only on Y , σ2

S , and σ2
V as for conventional estimators, but also on the prior

phase estimate Φ̂S [6,8,18]:

f̂(S) = E
(
f(S) | Y,σ2

S ,σ
2
V, Φ̂

S
)

(4)

=

∫ ∞
0

∫ 2π
0 f(S)p

(
y|A,ΦS ,σ2

V

)
p
(
A | σ2

S

)
p
(
ΦS |Φ̂S

)
dΦSdA

∫ ∞
0

∫ 2π
0 p(y|A,ΦS ,σ2

V) p(A | σ2
S) p

(
ΦS |Φ̂S

)
dΦSdA

, (5)
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where the second line is again obtained using Bayes’ rule and making only mild
assumptions. Comparing the phase-aware estimator in (5) and the phase-blind
estimator in (3), it can be seen that the only difference is the replacement of
p
(
ΦS

)
by p

(
ΦS |Φ̂S

)
. If the prior phase estimate Φ̂S is informative, the true

clean speech phase ΦS does not follow a uniform distribution anymore. Instead,
p
(
ΦS |Φ̂S

)
reflects uncertain information about the true clean speech phase.

Similar to [6,18] we employ a von Mises distribution with mean direction Φ̂S to
model this uncertainty in the prior phase estimate:

p
(
ΦS |Φ̂S

)
= exp

(
κ cos

(
ΦS − Φ̂S

))
/ (2πI0(κ)) , (6)

where κ is the concentration parameter and I0(·) is the modified Bessel function
of the first kind and zeroth-order. Examples for p

(
ΦS |Φ̂S

)
for Φ̂S = 0 and differ-

ent concentration parameters κ are presented in Fig. 1. The larger κ, the more
p
(
ΦS |Φ̂S

)
is concentrated around the prior phase estimate Φ̂S . Accordingly, Φ̂S

is modeled as an increasingly accurate estimate of the true clean speech phase
ΦS . For the extreme case of κ → ∞, the distribution reduces to a single peak at
Φ̂S , i.e. the prior phase estimate is assumed to be exactly the true clean speech
phase ΦS . On the contrary, the lower κ, the wider p

(
ΦS |Φ̂S

)
, which corresponds

to modeling less accurate prior estimates. For κ = 0, p
(
ΦS |Φ̂S

)
reduces to a

uniform distribution and the prior phase estimate Φ̂S does not provide any useful
information about the true phase ΦS , i.e. p

(
ΦS | Φ̂S

)
= p

(
ΦS

)
. In this special

case, the phase-aware estimator in (5) degenerates to a conventional phase-blind
estimator similar to (3).

von Mises PDF

ΦS [rad/π]

p
Φ
S
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S
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Fig. 1. Von Mises distribution for p
(
ΦS |Φ̂S

)
with a mean direction of Φ̂S = 0 and an

increasing concentration parameter κ.
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Very general super-Gaussian phase-aware estimators of the clean speech
spectral magnitudes f(S) = Aβ and the complex clean speech coefficients
f(S)=AβejΦ

S

have been derived in [6,18] by solving (5) using a flexible χ dis-
tribution for the magnitude prior p

(
A | σ2

S

)
. The magnitude estimator uses the

prior phase estimate Φ̂S only to facilitate the estimation of the clean speech mag-
nitude. Similar to the phase-blind estimators, the spectral phase is not modified
and the estimated magnitude is combined with the noisy phase ΦY to obtain the
final estimate. The complex estimator, however, not only enhances the spectral
magnitude but also jointly enhances the spectral phase.

For simplicity, in this paper we consider only two special cases of the general
phase-aware estimators in [6,18]. Specifically, we set β = 1, i.e. we estimate
f(S)=AejΦ

S

=S and f(S)=A, and choose the parameter of the χ distribution
such that it reduces to a Rayleigh distribution. Both, the simplified estimator of
the clean speech coefficients f(S)=S as well as the simplified estimator of the
clean speech magnitudes f(S) = A have well-known phase-blind counterparts:
If the prior phase estimate is assumed to provide no useful information, i.e.
κ = 0, it has been shown in [18] that the simplified estimator of S reduces
to the Wiener filter, while the simplified magnitude estimators reduces to the
STSA [2]. This direct relation between phase-aware and well-known phase-blind
estimators allow to investigate the effects of phase-aware speech enhancement in
isolation. We denote the simplified phase-aware magnitude estimator (f(S) = A)
as PAM and the simplified phase-aware complex estimator (f(S) = S) as PAC.

5 Evaluation

In this section, we evaluate in which acoustic scenarios phase-aware speech
enhancement is most beneficial. For this, the two simplified phase-aware clean
speech estimators are compared to their respective phase-blind counterparts.
Specifically, we compare Ephraim and Malah’s STSA [2] to the PAM and the
conventional Wiener filter to the PAC. The evaluation is performed on 128 gen-
der balanced utterances taken from the TIMIT database [5] at a sampling rate
of 16 kHz. In the first part, the clean speech utterances are deteriorated by sta-
tionary pink noise and pink noise modulated with an increasing modulation
frequency, i.e. 0.5Hz, 1Hz, and 2Hz. This allows us to investigate how the per-
formance of phase-aware speech enhancement depends on the non-stationarity of
the noise in a very controlled manner. Furthermore, to assess the influence of the
SNR on phase-aware speech enhancement, this experiment is conducted for two
SNRs, namely 0 dB and 10 dB. We present three measures: global SNR, raw
wideband ‘Perceptual Evaluation of Speech Quality’ (WB-PESQ) scores [15],
and raw ‘Short-Time Objective Intelligibility Measure’ (STOI) values [26].

As a less controlled but practically very relevant example, in the second
experiment we deteriorate the clean speech utterances with babble noise, where
the amount of non-stationarity is controlled by the number of speakers. The noise
is created by randomly superimposing TIMIT sentences that have not been used
as clean speech material, with the number of speakers ranging from 40, which
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represents the most stationary example, to a single competing talker as the most
non-stationary noise.

In both experiments, the STFT representation is obtained with a segment
length of 32ms and a segment shift of 8ms with a square-root Hann window
for spectral analysis and synthesis without zero padding. The speech PSD is
estimated using the decision-directed approach [2] with a smoothing parameter of
0.96. The noise PSD is estimated via [7]. The maximum attenuation in each time
frequency point is set to −15 dB, which is a common way to reduce artifacts in the
enhanced signal by introducing a residual noise floor. To assess the full potential
of phase-aware speech enhancement without the shortcomings of current phase
estimators, here the true clean speech phase ΦS is provided as the prior phase
estimate Φ̂S . The concentration parameter in (6) is accordingly set to κ → ∞.
Please note that for this specific choice of κ, the only difference between PAM
and PAC is that PAC combines the magnitude estimate with the noisy phase,
while PAC uses the prior phase Φ̂S . In practice, the clean speech phase is however
not available. Therefore, we finally also present results for the case that the prior
phase is blindly estimated via [16] to further confirm the outcome of the oracle
experiments.

5.1 Modulated Pink Noise

In Fig. 2, we present global SNR, WB-PESQ, and STOI for pink noise with
an increasing amount of non-stationarity. For a better accessibility, we do not
present absolute values but rather the improvement of the phase-aware estimator
over its conventional phase-blind counterpart. First, it can be seen that the ben-
efit of phase-aware speech enhancement is generally larger at low SNRs (top)
than at higher SNRs (bottom). Second, independent of the SNR, the benefit
of phase-aware speech enhancement increases with increasing non-stationarity.
Generally, in non-stationary noises at low SNRs, speech enhancement is most
challenging, specifically because the estimation of the speech PSD σ2

S and the
noise PSD σ2

V becomes increasingly difficult. For instance, most noise PSD esti-
mators, including minimum statistics [20] and the estimator based on speech
presence probability [7] that is employed here, rely on the assumption that noise
is more stationary than speech. Such approaches consequently become less accu-
rate for highly non-stationary noise. This is also reflected in an increasing log
distortion error [14]

LOG−Errseg = mean

∣∣∣∣∣10 log10
σ2

V

σ̂2
V

∣∣∣∣∣ , (7)

where the mean is taken over all time-frequency points. In the noise-only case,
LOG−Errseg gradually increases from 1.5 for stationary pink noise to 3.1 for
pink noise modulated with 2Hz. See e.g. [7,14] for a more detailed discussion on
this topic.

Since the conventional phase-blind estimators (3) rely solely on the PSD esti-
mates, PSD estimation errors propagate through to the final estimate, leading to
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noise leakage and/or speech distortions. These artifacts can substantially reduce
the speech enhancement performance. The fact that phase-aware speech enhance-
ment provides the most benefit specifically in these situations highlights its rele-
vance and potential. Furthermore, comparing the complex estimator PAC to the
magnitude estimator PAM it can be seen that the phase enhancement of PAC leads
to an additional improvement in all three measures and all acoustic situations.

The consistently small gains in STOI at 10 dB SNR on the bottom right
of Fig. 2 can be explained by the fact that the speech intelligibility, which is
predicted by STOI, is already close to 100% even for the noisy signal at high
SNRs. Thus there is only little room for improvement.
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Fig. 2. Improvement of the phase-aware estimators over their respective phase-blind
counterparts in SNR, WB-PESQ, and STOI for pink noise modulated with an increas-
ing modulation frequency, representing an increasing degree of non-stationarity. SNR:
0 dB (top) and 10 dB (bottom).

5.2 Babble Noise

In Fig. 3, we present the results for babble noise with a varying number of talkers.
The fewer talkers the noise is comprised of, the less stationary it is. Similar to the
first experiment in Fig. 2, the benefit of phase-aware speech enhancement is most
prominent in highly non-stationary noise at low SNRs. The largest improvements
are achieved for 5-talker babble noise, while a for a single interfering talker
the improvement in WB-PESQ and STOI is somewhat lower, especially for the
complex estimator PAC.

Finally, in Fig. 4, we present results that are achieved when the prior phase
Φ̂S is estimated blindly on the noisy signal Y via [16]. No oracle information is
used. Although the improvements are substantially smaller than for the oracle
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Fig. 3. Improvement of the phase-aware estimators over their respective phase-blind
counterparts in SNR, WB-PESQ, and STOI for babble noise with a decreasing number
of talkers, representing an increasing degree of non-stationarity. SNR: 0 dB (top) and
10 dB (bottom).
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Fig. 4. Improvement of the phase-aware estimators over their respective phase-blind
counterparts in SNR, WB-PESQ, and STOI for babble noise with a decreasing number
of talkers at 0 dB SNR. The prior phase is blindly estimated via [16].

experiment in Fig. 3, similar trends can be observed. While the improvement in
STOI is generally small, SNR and WB-PESQ improvements are again the largest
for the highly non-stationary 5-talker babble. The reduced performance for the
single competing talker is likely a consequence of the phase estimation process:
In [16], the spectral phase of voiced speech is estimated based on a harmonic
signal model, which in turn relies on a fundamental frequency estimate obtained
via [11]. For a single competing talker at 0 dB SNR, estimating the fundamental
frequency only of the desired speaker becomes extremely challenging. Thus the
prior phase estimate can strongly deviate from the true clean speech phase in
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this situation and might even resemble the phase of the competing talker at
times, which limits the overall speech enhancement performance.

While the impressive performance gains for the oracle experiments in Figs. 2
and 3 clearly highlight the potential of phase-aware speech enhancement, the cur-
rent gap between the oracle performance and the one in Fig. 4 makes research into
more robust and accurate phase estimation techniques a relevant and promising
topic for single-channel speech enhancement.

6 Conclusions

In this paper, we investigated in which situations additional information of the
clean speech phase is most valuable. The results show that the greatest ben-
efits can be achieved in situations where conventional magnitude-only speech
enhancement is most challenging, namely in highly non-stationary noises at low
SNRs. The current gap between the optimal performance of phase-aware speech
enhancement and the performance obtained using blindly estimated prior phases
highlight the importance of ongoing research into robust and accurate phase esti-
mation techniques.
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