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Abstract
In conventional speech enhancement, statistical models for
speech and noise are used to derive clean speech estimators.
The parameters of the models are estimated blindly from the
noisy observation using carefully designed algorithms. These
algorithms generalize well to unseen acoustic conditions, but
are unable to reduce highly non-stationary noise types. This
shortcoming motivated the usage of machine-learning-based
(ML-based) algorithms, in particular deep neural networks
(DNNs). But if only limited training data are available, the
noise reduction performance in unseen acoustic conditions
suffers. In this paper, motivated by conventional speech en-
hancement, we propose to use the a priori and a posteriori
signal-to-noise ratios (SNRs) for DNN-based speech enhance-
ment systems. Instrumental measures show that the proposed
features increase the robustness in unknown noise types even
if only limited training data are available.

1 Introduction
Speech plays a central role in the applications of many per-
sonal electronic devices, e.g., in hearing aids, mobile phones
and voice-controlled personal assistants. In noisy environ-
ments, the speech signal captured by the device’s microphones
may be corrupted by undesired background noise. Noise de-
grades the quality and potentially also the intelligibility of
speech. Further, noise deteriorates the performance of au-
tomatic speech recognition systems. To satisfy the demand
for high quality speech communication, enhancement algo-
rithms are utilized to reduce the detrimental effects of noise.
In this paper, single-channel speech enhancement algorithms
are considered. Such algorithms can be used to enhance noisy
speech signals captured by a single microphone and can also
be used to improve the output of spatial filtering approaches.

Single-channel speech enhancement has been a research
topic for several decades [1]–[5]. Many algorithms lever-
age the short-time Fourier transform (STFT) where the time-
frequency coefficients that are dominated by noise are atten-
uated. Conventional approaches assume the complex coef-
ficients of speech and noise to follow a known distribution
which is used to analytically derive statistically optimal esti-
mators [1], [6], [7]. Such estimators depend on the parameters
of the employed distributions which include the speech power
spectral density (PSD) and the noise PSD. The PSDs are es-
timated blindly from the noisy observation using specifically
designed algorithms [1], [8]–[10]. In this paper, we refer to
these conventional enhancement algorithms as non-machine-
learning-based (non-ML-based) enhancement schemes.

The shortcomings of non-ML-based algorithms, namely
the inability to suppress highly non-stationary noise types,
such as transients, and the speech distortions caused by these
algorithms, have motivated the usage of machine-learning-
based (ML-based) methods. Instead of estimating proper-
ties of speech and noise blindly from the noisy observations,
machine-learning (ML) algorithms leverage training exam-
ples to learn these properties prior to the processing. For
this, various ML algorithms have been employed, e.g., Gaus-

sian mixture models (GMMs) and hidden Markov models
(HMMs) [3], non-negative matrix factorization (NMF) [4] and
deep neural networks (DNNs) [5], [11]. Especially deep learn-
ing techniques show potential to improve speech enhancement
in highly non-stationary noises. However, the robustness in
unseen acoustic conditions is still discussed [12]–[14].

The generalization of DNN-based algorithms improves
generally with increasing number and diversity of the training
examples. However, for specific acoustic conditions, only
limited training data may be available or obtaining additional
training data may be expensive, e.g., in robotics. In this
paper, we propose a novel method to improve the general-
ization of DNN-based speech enhancement algorithms for
unseen acoustic conditions if only limited training data are
available. The proposed approach combines ML-based meth-
ods with non-ML-based noise and speech PSD estimators.
Despite the shortcomings of non-ML approaches in highly
non-stationary noise, non-ML-based algorithms have been
proven to be robust against many different acoustic environ-
ments. Further, these algorithms are invariant to changes of
the input level. Hence, we propose to use estimates of the
a priori signal-to-noise ratio (SNR), i.e., the ratio of speech
and noise PSD, and the a posteriori SNR, i.e., the ratio of
noisy input periodogram and noise PSD, as input features.
These features are motivated by conventional non-ML clean
speech estimators, which are often functions of these two
quantities. Further, the features have been previously used to
train data-driven gain functions [15], [16], but in contrast to
recent DNN-based approaches neighbouring frequency bands
have been assumed to be independent and no context has
been considered. In contrast to the previously proposed noise
aware training (NAT) [5], [17] and its dynamic variants [18],
[19], where the estimated noise PSD is appended to the input
features, the proposed features are normalized by the noise
PSD estimate. This is somewhat related to [20], where an
ideal ratio mask (IRM) [21] is predicted by a DNN, which
is used as an input for a following enhancement network. In
our work, we exploit the generalization of non-ML-based ap-
proaches such that training another DNN to predict the IRM
is avoided. A similar enhancement structure has been used
in [22], but the noise and the speech PSD have been estimated
using ML-based algorithms. We compare the proposed fea-
tures to NAT-based features using instrumental measures. In
case of limited training data, Perceptual Evaluation of Speech
Quality (PESQ) [23] indicates that the signal quality of the
enhanced signals is higher for the proposed features than for
NAT-based features in unseen noise conditions.

In Section 2, we recapitulate non-ML-based speech en-
hancement. Section 3 introduces the ML-based enhancement
scheme, recapitulates the previously used noise-aware fea-
tures and presents the proposed features. The evaluation and
the results are shown in Section 4.

2 Conventional Speech Enhancement
In this section, conventional non-ML-based speech enhance-
ment is considered and a brief overview of the used speech
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and noise PSD estimators is given.
The non-ML-based enhancement scheme used in this

paper leverages the STFT representation of the noisy input
signal for the enhancement. This representation is obtained
by splitting the input signal into overlapping segments, which
are transformed to the Fourier domain after a spectral analysis
window has been applied. This yields the complex spectra of
the noisy segments Yk,ℓ, where k is the frequency index and
ℓ is the segment index. The interaction between speech and
noise is modeled by an additive relationship, which reflects
the physical properties of sound. Correspondingly, Yk,ℓ can
be written as

Yk,ℓ=Sk,ℓ+Nk,ℓ, (1)

where Sk,ℓ and Nk,ℓ are the speech and noise spectra, respec-
tively.

For many non-ML-based speech enhancement algorithms,
the estimation of the clean speech coefficients can be ex-
pressed as a multiplication of the noisy input Yk,ℓ and a gain
function Gk,ℓ, i.e.,

Ŝk,ℓ=max(Gk,ℓ,Gmin)Yk,ℓ. (2)

Here, Gmin is a lower limit of the gain function which is of-
ten used to reduce artifacts and fluctuations in the enhanced
signal [24]. In this work, the Wiener filter is used. Its gain
function is given by

Gk,ℓ=
Λs
k,ℓ

Λs
k,ℓ+Λn

k,ℓ

=
ξk,ℓ

1+ξk,ℓ
, (3)

where Λs
k,ℓ and Λn

k,ℓ are the speech and the noise PSD, respec-
tively. Further, ξk,ℓ denotes the a priori SNR which is given
by the ratio ξk,ℓ=Λs

k,ℓ/Λn
k,ℓ. The time-domain representation

of the enhanced speech is obtained by transforming Ŝk,ℓ back
to the domain. The resulting segments of the estimated clean
speech signal are merged using an overlap-add procedure after
applying a synthesis window.

The noise PSD is estimated using the algorithm described
in [10], [25]. The method allows to track background noises
that change moderately fast, e.g., passing cars on a busy
street. Quickly changing background noises such as transient
sounds of cutlery or in factories cannot be tracked. The a
priori SNR ξk,ℓ is estimated using the cepstral smoothing
approach presented in [9], [26]. This approach causes less
undesired artifacts in the enhanced signal than the commonly
used decision-directed approach [1].

3 ML-Based Speech Enhancement
In this section, the DNN-based enhancement scheme used in
this paper is described. In the second part, previously pro-
posed input features are described that do not use a noise
PSD estimate for normalization. After that, the proposed
normalized input features are presented.

3.1 Algorithm
Similar to the non-ML enhancement algorithms, the ML-
based approach also utilizes the STFT for the enhancement.
Instead of using the Wiener filter, a feed-forward DNN is
used to map features extracted from the noisy input spectra to
an IRM. The IRM has been proposed in [21] and is defined as

IRM(k,ℓ)=
|Sk,ℓ|2

|Sk,ℓ|2+|Nk,ℓ|2
. (4)

The IRM has similarities to the Wiener filter, but uses the
speech periodogram |Sk,ℓ|2 and the noise periodogram |Nk,ℓ|2
instead of the respective PSDs.

During processing, the predicted ratio mask ÎRM(k,ℓ) ob-
tained from a trained DNN is used as a multiplicative factor to
estimate the clean speech coefficients. Correspondingly, the
estimated clean speech spectrum for the ML-based approach
is given by

Ŝk,ℓ=max(ÎRM(k,ℓ),Gmin)Yk,ℓ. (5)

Similar to (2), a lower limit is introduced again and time-
domain signal is obtained using an overlap-add procedure.

3.2 Non-Normalized Input Features
Various non-noise-aware features have been considered for
DNN-based speech enhancement, e.g., Gammatone filterbank
features, log-mel spectra, mel-frequency cepstral coefficients
or amplitude modulation spectra [27]. Such features are gen-
erally directly based on the noisy input spectrum Yk,ℓ. In
this paper, we include the logarithmized noisy spectra, i.e.,
y(log)
k,ℓ = log(|Yk,ℓ|2) as example of non-noise-aware input fea-

tures, which have also been used in [5]. Here, log(·) denotes
the natural logarithm.

To improve the robustness of DNN-based speech enhance-
ment, NAT-based features have been proposed. NAT has been
initially used in [17] to improve the robustness of automatic
speech recognition algorithms in unseen noise conditions.
For this, the noisy input features have been augmented by
a static estimate of the noise PSD. This estimate has been
obtained by averaging the noisy input periodogram over the
first segments. The idea has been adapted for speech en-
hancement in [18]–[20] where the static noise PSD has been
replaced by a dynamic estimate. In [18], [19], conventional
non-ML noise PSD estimators have been considered whereas
ML-based noise PSD estimation has been used in [18], [20].
Here, we focus on the former and employ the concatenation
of noisy log-spectra y(log)

k,ℓ and the logarithmized noise PSD
Λn,(log)
k,ℓ = log(Λn

k,ℓ) as the input feature vector. The noise
PSD is estimated using the speech presence probability based
noise PSD estimator presented in [10], [25].

3.3 Proposed Input Features
In case of limited training data, the robustness of DNN-based
enhancement schemes against unseen acoustic conditions can
be improved. For this, we propose to use normalized features.
Here, in contrast to NAT and its dynamic variants, the noise
PSD is not appended to the noisy input features but used
for normalization. More specifically, we propose to use the
logarithmized a priori SNR ξ(log)

k,ℓ = log(ξk,ℓ) and the loga-
rithmized a posteriori SNR γ(log)

k,ℓ = log(γk,ℓ), where γk,ℓ is
defined as

γk,ℓ= |Yk,ℓ|2/Λn
k,ℓ. (6)

The a priori SNR and a posteriori SNR can be used separately
or can be concatenated such that both SNRs are used as inputs.
The speech and the noise PSD are estimated using the non-ML
approaches used for the enhancement approach in Section 2.

The proposed normalized features are inspired by conven-
tional non-ML-based clean speech estimators, e.g., [1], [6],
[7] and have been previously used to estimate data-driven gain
functions [15], [16]. However, as contextual information can
be easily included during training, the DNN can potentially
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exploit correlations along time and frequency, which cannot
be easily included in conventional non-ML estimators. Such
dependencies have also not been included in [15], [16]. Thus,
if carefully trained, the DNN-based approach has the potential
to yield more powerful estimators as the correlations over time
and frequency are included. Further, similar to NAT-based
features, an estimate of the noise PSD is included to allow for
a robust enhancement in unseen acoustic conditions. But due
to the normalization, the proposed feature are scale-invariant,
i.e., they do not depend on the overall level of the input signal.

4 Evaluation
In this section, the non-ML algorithm from Section 2 and the
ML-based algorithm from Section 3 are evaluated. First, we
explain the experimental setup and describe the used audio ma-
terial, the parameters of the algorithms and the training of the
ML-based approaches. After this, we show results where the
quality of the speech signals is predicted by PESQ [23]. We
demonstrate that the proposed features are invariant to level
changes of the input features, whereas the non-normalized fea-
tures are not, and compare the performance of the algorithms.

4.1 Audio Material, Parameters and Training
In our experiments, the sampling rate of the signals is set to
16 kHz. For the STFT, a segment length of 32 ms and an
overlap of 50 % is used. The analysis and synthesis window is
given by a square-root Hann window. For all features, contex-
tual information is included. For this, the features extracted
from three previous frames are appended to the feature vector
of the current frame. We do not use features from future
frames to allow the DNN-based algorithms to yield the same
latency as the non-ML estimator. For the employed param-
eters of the STFT, this results in a feature dimensionality of
(3+1) ·257 = 1028, where 257 coefficients result from re-
moving the mirror spectrum. For concatenated features, i.e.,
the NAT-based features and the combination of a priori and
a posteriori SNR, this dimensionality doubles to 2056.

For the prediction of the IRM, a feed-forward DNN with
three hidden layers is used. Each hidden layer comprises 1024
rectifying linear units (ReLUs) [28]. The non-linearities in the
output layer are sigmoid non-linearities to match the limited
range of the IRM. The size of the output layer is given by the
STFT parameters which results in 257 units. The parameters
of the DNN are optimized by minimizing the squared error
between the predicted IRM and the true IRM as

J=∑
k
∑
ℓ

∣∣∣ÎRM(k,ℓ)−IRM(k,ℓ)
∣∣∣
2
. (7)

The weights and biases are initialized using the method pro-
posed in [29]. After that the weights and biases are optimized
by stochastic gradient descent where the learning rate is re-
duced from 0.4 to 0.1 using LR = max(0.4 · 0.95E−1,0.1).
Here, LR is the learning rate and E is the number of the
current epoch. All models are trained for 100 epochs using
a batch size of 128 samples. For each epoch the error is com-
puted on a validation set, which is constructed by selecting
15 % of the training data. In the experiments, the model with
the lowest error on the validation set is employed.

In this work, we use a set of nine different noise types.
It contains the factory 1 and the babble noise taken from the
NOISEX-92 database [30]. From the same database, an am-
plitude modulated version of the pink and white noise are
included. Further background noises have been obtained from

non-ML ML (y(log)
k,ℓ ) ML (y(log)

k,ℓ , Λn,(log)
k,ℓ )

ML (ξ(log)
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Figure 1: PESQ improvements of ML-based speech
enhancement algorithms using different input features in
comparison to non-ML-based enhancement schemes for
different peak levels of the speech input.

the freesound database. Here, the sounds of an overpassing
propeller plane (https://freesound.org/s/115387/), the interior of
a passenger jet during flight (https://freesound.org/s/188810/),
a vacuum cleaner (https://freesound.org/s/67421/) and a traffic
noise (https://freesound.org/s/75375/) are employed. Further, a
two-talker babble noise is used which is generated by mixing
two read out stories taken from https://www.vorleser.net. The
stories are read by a male and a female speaker, respectively,
and are mixed such that the SNR between the two signals
is 0 dB. For generating the noise file, the speech pauses
have been removed. The noise types are used to conduct
cross-validation experiments where all noise types except one
are included in the training set. The training data of each
cross-validation set are augmented by additionally including
a highly non-stationary noise type which is generated from
the noise snippets collected by [31]. The noise excerpts in
this database are generally short and are, hence, concatenated
multiple times in various orders to give a continuous noise sig-
nal. Long noise excerpts are split into roughly 2 second long
snippets during this generation. This noise type is referred to
as concatenated short noise excerpts (CSNE). The remaining
unseen noise type is used for testing in the evaluations.

For training of the ML-based enhancement schemes, 3992
sentences of the TIMIT training set [32] are used. It is en-
sured that the number of sentences spoken by male and fe-
male speakers is the same. These sentences are artificially
corrupted by the background noises above, where each sen-
tence is embedded once in the respective noise types used for
training. This results in about 20 hours of training material
for each cross-validation set. The position of each sentence
is chosen randomly and to allow the non-ML noise PSD es-
timator to adapt to the background noise, each sentence is
prepended by a two second noise only segment. This segment
is removed from the data finally used for training. A portion
of 10 % of training data contains only noise to allow the DNN
to learn how to remove such parts. To allow the ML-based
enhancement schemes to see the effects of different input
SNRs and changes in the overall level of the input signals,
such variations are included in the training data. The peak
level of each training sentence is varied between −26 dB and
−3 dB. Similarly, also the SNR of each sentence is varied
between −10 dB and 15 dB.

4.2 Results
For the instrumental evaluation, 64 sentences spoken by male
and 64 sentences spoken by female speakers from the TIMIT
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Figure 2: PESQ improvements of ML-based speech enhancement algorithms using different input features in comparison
to non-ML enhancement schemes.

testing set are used. Again, the sentences are embedded at
random positions in the background noise. Also for the test-
ing case, a two-second initialization period is used for the
non-ML noise PSD estimator to avoid initialization artifacts.
The initialization period is excluded from the evaluation of
the instrumental measures. The minimum gain Gmin is set to
−20 dB in all evaluations.

First, we show that the considered non-normalized fea-
tures are scale dependent. For this, we vary the peak level
of the speech signal and set it to −40 dB, −24 dB, −18 dB,
−12 dB and−6 dB. The SNR of the input signal is set to 5 dB.
For each noise type the DNN is trained on the remaining noise
types of the employed noise pool described in Section 4.1, i.e.,
all noise types are unseen. Figure 1 shows the PESQ results av-
eraged over all noise types of the employed noise pool except
CSNE. The results show that the performance of the DNN-
based enhancement schemes varies with the level of the input
signal when non-normalized features are used. Figure 1 shows
that the performance decreases with decreasing level. The
non-ML approach and the DNN-based enhancement schemes
based on the proposed normalized features do not exhibit this
behavior because of the scale-invariant normalized input fea-
tures. Further, this result gives a preview on the performance
of the different features. In general, the proposed features
yield the highest scores and outperform the non-normalized
features. As more accurate statistics and correlations along
time and frequency can be included, the DNN-based approach
outperforms the conventional non-ML enhancement.

Furthermore, we evaluated PESQ depending on the noise
type and the input SNR which is varied between −5 dB and
20 dB in 5 dB steps. In this experiment, the peak level of
clean speech sentence is varied between −26 dB and −3 dB.
Figure 2 shows the results for all noise types used in the cross-
validation except the CSNE. Again, the evaluated noise type
is always unseen. For a low amount of training data as used in
this experiment, the proposed normalized features generally
yield higher scores than the non-normalized features. An
exception is the two talker background where, however, all ap-
proaches yield relatively low scores compared to other noise
types. Further, NAT, i.e., the logarithmized periodogram y(log)

k,ℓ

combined with the noise PSD Λn,(log)
k,ℓ , yields similar or higher

scores than using only the logarithmized noisy spectra y(log)
k,ℓ .

Comparing NAT to the a priori SNR ξ(log)
k,ℓ or a posteriori

SNR γ(log)
k,ℓ for the overpassing plane or the jet noise shows

that the features have a similar performance. For most of the
remaining noise types, e.g., babble noise, the quality predicted
by PESQ is higher for the a posteriori and a priori SNR. If
only one of the SNRs is used as feature, the input layer is
only half as wide as for NAT. As a consequence, the compu-
tational complexity resulting network is lower such that these
features can be considered an attractive alternative to NAT.
The combination of both SNRs, i.e., the a posteriori SNR and
the a priori SNR, generally yields the highest scores.

An interesting example which shows the advantages of
the proposed features is the amplitude modulated white noise.
In this case, the remaining noise types in the training data do
not reflect the spectral envelope of white noise. Analyzing
the signals processed using this model shows that the noise
is hardly reduced which explains the lower PESQ scores. If
the normalized features are employed, the ML-based speech
enhancement do not suffer from this problem such that the un-
known noise can be removed. Consequently, the performance
remains high which demonstrates the benefit of the proposed
normalized features.

5 Conclusions
This paper addresses the generalization of DNN-based speech
enhancement schemes when only limited training data is avail-
able. For this case, we propose to combine ML-based and
conventional non-ML-based approaches. More specifically,
we propose to use the a priori and a posteriori SNR as input
features. The features are motivated by conventional non-ML-
based speech enhancement algorithms. In contrast to the previ-
ously proposed NAT, where the noise PSD is appended to the
feature vector, the estimated noise PSD is used as a normaliza-
tion term. Using a cross-validation experiment, we show that
the proposed features are scale-invariant. Further, the features
are less prone to variations of the background noise if only
limited training data are available. The SNR-based features
generally yield the highest scores from which we conclude
that the generalization of ML-based speech enhancement is
improved by the proposed features and that the advantages of
DNN-based enhancement schemes can be maintained.
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