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Abstract
Using multiple microphones for speech enhancement allows
for exploiting spatial information for improved performance. In
most cases, the spatial filter is selected to be a linear function of
the input as, for example, the minimum variance distortionless
response (MVDR) beamformer. For non-Gaussian distributed
noise, however, the minimum mean square error (MMSE)
optimal spatial filter may be nonlinear.

Potentially, such nonlinear functional relationships could
be learned by deep neural networks. However, the performance
would depend on many parameters and the architecture of the
neural network. Therefore, in this paper, we more generally
analyze the potential benefit of nonlinear spatial filters as a
function of the multivariate kurtosis of the noise distribution.

The results imply that using a nonlinear spatial filter is only
worth the effort if the noise data follows a distribution with a multi-
variate kurtosis that is considerably higher than for a Gaussian. In
this case, we report a performance difference of up to 2.6 dB seg-
mental signal-to-noise ratio (SNR) improvement for artificial sta-
tionary noise. We observe an advantage of 1.2 dB for the nonlinear
spatial filter over the linear one even for real-world noise data from
the CHiME-3 dataset given oracle data for parameter estimation.
Index Terms: Multichannel, speech enhancement, nonlinear
filtering, acoustic beamforming, neural networks

1. Introduction
Many speech signals recorded in everyday environments, for
example in a restaurant or next to a busy street, are corrupted by
additional background noise. Therefore, speech enhancement
algorithms that improve the perceived quality or intelligibility
of a recorded speech signal by reducing noise or other disturbing
effects such as reverberation are of great importance in a wide
range of communication applications.

Noise reduction methods such as the Wiener filter [1, Sec.
11.3.1] and nonlinear optimal estimators of the clean speech
Fourier coefficient [1, Sec. 11.4] or its magnitude [2] effectively
reduce noise in single-channel microphone recordings. However,
multichannel approaches often outperform single-channel meth-
ods as they incorporate not only tempo-spectral properties of the
signals but can also include spatial information in the processing.

In most cases, the spatial filtering is based on a linear process-
ing model, called beamforming, that weights the DFT coefficient
of the different microphone channels with complex-valued
coefficients before summation to suppress signal components
from others than the target direction [3, Sec. 3.1]. The MVDR
beamformer is a prominent example of a linear spatial filter that
exploits the time delay of signal arrival determined by the spatial
arrangement and further takes the correlation of the noise signals
between the microphones into account.

It seems natural to include well-developed single-channel
methods into multichannel speech enhancement by applying a
single-channel algorithm, called a postfilter, to the output of a

spatial filter. For Gaussian distributed noise, it has been shown
that the sequential coupling of the spatially linear MVDR filter
and a postfilter yields optimal results with respect to the MMSE,
maximum a posteriori (MAP) and maximum likelihood (ML)
criterion [4, 5]. In contrast, Hendriks et al. show that the optimal
spatial filter is nonlinear and cannot be separated from spectral
processing if the noise is not Gaussian distributed [6]. However,
it remains open how large the potential benefit of using nonlinear
spatial filters really is. This question gained importance in the
context of the rise of neural networks in recent years: while
it is demanding to derive optimal nonlinear spatial filters in a
statistical framework, neural networks can learn to approximate
nonlinear functions directly from data [7].

Neural networks have successfully been incorporated into
single-channel speech enhancement [8, 9, 10, 11] often in the
context of automatic speech recognition (ASR) [12] and they
have also been very successful in estimating the parameters
of linear spatial beamformers [13]. Sainath et al. propose a
multichannel neural network approach to ASR that includes a
spatial filtering layer [14, 15, 16]. Interestingly, the structure
of their proposed time-convolutional layer imposes a linearity
constraint on the spatial filter even though fixing a linear spatial
filter might not lead to an optimal solution.

The goal of our research is to answer the question if investing
in the development of neural networks that learn optimal
nonlinear spatial filters is worth the effort. As a first step towards
answering this question, in this paper, we analyze the potential
benefit of nonlinear spatial filtering as compared to a standard
linear spatial filter like the MVDR under ideal conditions.

In order to gain a better understanding of the role and
potential of nonlinear spatial filters, we proceed as follows:
Section 3 reviews the most relevant theoretical results on the
optimality of linear versus nonlinear spatial filters. In section
4, we analyze the potential performance gain of an optimal
nonlinear spatial filter in contrast to a linear spatial filter for noise
with a known super-Gaussian distribution. Section 5 assesses the
improvement potential of nonlinear spatial filters for real noise
recordings from the CHiME-3 dataset [17].

2. Notation and Assumptions
We assume that a microphone array composed ofDmicrophones
records the target speech signal along with interfering noise.
The time domain signals are windowed and transformed into the
frequency domain using the discrete Fourier transform (DFT),
which leads to the noisy DFT coefficients Y`(k, i) with
microphone-channel index `∈{1,...,D}, frequency-bin index k
and time-frame index i. We assume an additive noise signal model
so that the noisy DFT coefficient Y`(k,i) can be represented as
a sum of the clean speech DFT coefficient S`(k,i) and noise DFT
coefficientN`(k,i) received at the `th microphone, i.e.,

Y`(k,i)=S`(k,i)+N`(k,i). (1)
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The DFT coefficients of the speech and noise signals are modeled
as random variables. We denote random variables by uppercase
letters, while lowercase letters are used for their respective realiza-
tions. The speech and noise coefficients are assumed to be uncor-
related and all DFT coefficients to be zero-mean and independent
with respect to time and frequency. As a consequence, we can drop
the indices (k,i) from the notation. Let Y=[Y1,...,YD]∈CD be
the vector containing the noisy DFT coefficients for allD chan-
nels and let S∈CD and N∈CD denote the vectors of speech and
noise DFT coefficients, respectively. We work in a single source
scenario, which means that there is only one target speaker, and
model the signal propagation from the speaker to the microphones
as a plane wave. Thus, the vector of clean speech DFT coefficients
S can be obtained by multiplying the reference clean speech DFT
coefficientS with a frequency-dependent vector d∈CD , i.e., S=
dS. We denote the noise correlation matrix by Φn=E[NNH ],
while σ2

s =E[|S|2] denotes the spectral power of S.

3. Linearity of the Optimal Spatial Filter
In this section, we review optimal multichannel estimators of
the clean speech DFT coefficient to address the question under
which conditions an optimal solution decomposes into a linear
spatial filter and a spectral postfilter. First, we consider the
case of multivariate complex Gaussian distributed noise DFT
coefficients with zero mean and covariance matrix Φn. Since we
assume that the noise is additive, the distribution of Y given the
reference speech DFT coefficient s is Gaussian distributed with
mean ds and covariance matrix Φn, i.e., Y∼NC(ds,Φn). The
corresponding conditional probability density function (PDF)
is given by [18, Thm. 15.1]

p(y|s)=
1

πD|Φn|
exp
{
−(y−ds)HΦ−1

n (y−ds)
}
. (2)

Balan and Rosca [4] use the concept of sufficient statistics
to show that the MMSE estimator of the clean speech DFT
coefficient S

TMMSE(y)=arg min
ŝ∈C

E
[
|S−ŝ|2 |y

]
(3)

separates into the well-known MVDR beamformer and a spectral
postfilter under a Gaussian noise assumption. The MVDR beam-
former TMVDR is a sufficient statistic in the classical sense for the
true clean speech DFT coefficient s if the conditional distribution
of the noisy observation Y given TMVDR(y) does not depend on
s [19, Def. IV.C.1], i.e. TMVDR(Y) contains all the information
in Y that is useful for estimating s. Furthermore, TMVDR is said
to be a sufficient statistic of S in the Bayesian sense if

p(s|y)=p(s|TMVDR(y)) (4)

holds for all observations y regardless of the prior distribution
of S [20, Def. 2.4]. If the MVDR beamformer is a sufficient
statistic, then no information about S is lost during spatial
filtering even though the dimension of the output is reduced
to one dimension. As a result, spatial processing and spectral
processing can be performed separately in sequence. Since a
statistic that is sufficient in the classical sense is also sufficient
in the Bayesian sense [20, Thm. 2.14.2], we can infer that (4)
holds by showing that the MVDR beamformer is a sufficient
statistic in the classical sense. Resorting to the Fisher-Neyman
factorization theorem [19, Prop. IV.C.1][21, Cor. 2.6.1], we
deduce this property of the MVDR beamformer from the finding

that the conditional PDF p(y|s) can be factorized as

p(y|s)=
1

πD|Φn|
exp{−yHΦ−1

n y}︸ ︷︷ ︸
h(y)

×exp
{

dHΦ−1
n d

(
2Re{s∗TMVDR(y)}−|s|2

)}
︸ ︷︷ ︸

g(s,TMVDR(y))

=h(y)g(s,TMVDR(y)) (5)
with

TMVDR(y)=
dHΦ−1

n y

dHΦ−1
n d

. (6)

Using the fact that the MMSE estimator complies with the mean
of the posterior [19, IV.B.1], we infer from (4) that

TMMSE(y)=E[S|y] (7)
=E[S|TMVDR(y)] (8)

holds. The quantity E [S|TMVDR(y)] can be seen as a single-
channel filter working on the output of the MVDR beamformer.
Because the relationship (4) holds for any prior distribution
of S, a decomposition of the MMSE estimator into an MVDR
beamformer and single-channel postfilter results independent
of any further assumptions about the prior distribution of the
reference speech DFT coefficient. The decomposition of the
MMSE estimator is also described by Hendriks et al. [6] but
derived without the concept of sufficient statistics.

From (4) we conclude that the MAP estimator also separates
into a linear spatial filter and a single-channel postfilter.
Furthermore, the MVDR beamformer can be identified as the ML
estimator of the clean speech DFT coefficient S [5, Sec. 6.2.1.2].

However, the work of Hendriks et al. [6] reveals that
the Gaussian noise assumption is fundamental to both the
decomposability of the optimal estimator into a spatial and a
spectral processing step and the linearity of the spatial filter. They
derive an MMSE estimator for noise that follows a multivariate
Gaussian mixture distribution. The M Gaussian mixture
components are modeled as zero-mean with covariance matrices
Φm,m= 1,...,M , and combined by positive weighting factors
cm that fulfill the constraint

∑M
m=1 cm = 1. The resulting

conditional PDF of Y is given by [22, Sec. 9.2]

p(y|s)=

M∑
m=1

cm
πD|Φm|

exp
{
−(y−ds)HΦ−1

m (y−ds)
}
. (9)

Hendriks et al. assume the clean speech amplitude A to be
distributed according to the PDF

p(a)=

2

(
ν

σ2
s

)ν
Γ(ν)

a2ν−1exp

{
− ν

σ2
s

a2
}

with ν>0, a≤0 (10)

and the phase Ψ ∈ [0, 2π) to be uniformly distributed and
independent of the speech amplitude. Then the MMSE estimator
is given by

T̃MMSE(y)=ν

M∑
m=1

cmQm
|Φm| e

[−yHΦ−1
m y] σ

2
sT

(m)
MVDR(y)M(ν+1,2,Pm)

ν(dHΦ−1
m d)−1+σ2

s

M∑
m=1

cmQm
|Φm| e

[−yHΦ−1
m y]M(ν,1,Pm)

(11)
with
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T
(m)
MVDR(y)=

dHΦ−1
m y

dHΦ−1
m d

, Qm=(ν+dHΦ−1
m dσ2

s)−ν ,

and Pm=
σ2
sd

HΦ−1
m d

∣∣∣T (m)
MVDR(y)

∣∣∣2
ν(dHΦ−1

m d)−1+σ2
s

with M(·, ·, ·) being the confluent hypergeometric function
[23, Sec. 9.21]. Interestingly, the result shows that the MMSE
estimator for the considered non-Gaussian model cannot be sep-
arated into an MVDR beamformer and a single-channel postfilter.
Furthermore, the optimal spatial filter is not even linear [6].

4. Potential of Nonlinear Spatial Filters
In this section, we investigate the improvement potential of using
the optimal spatially nonlinear MMSE estimator for Gaussian
mixture distributed noise as opposed to a setup that combines a
linear spatial filter and a spectral postfilter. To our knowledge, the
MMSE estimator for non-Gaussian noise derived by Hendriks
et al. has not been evaluated before.

We use a segment length of 32 ms and a square-root Hann
window with 50% overlap for spectral analysis and synthesis.
The clean speech signals have been taken from the WSJ0 dataset
[24] and are balanced between male and female speakers (30
utterances each).

The noise DFT coefficients are generated by sampling a
zero-mean Gaussian mixture distribution. The covariance matrix
Φn of the distribution is chosen to represent one of three scenarios
[25]: spatially white noise, diffuse noise, and a directional noise
source positioned at a 45 degree angle to the target source. In
the latter cases, we add a small portion of spatially white noise
(αwn =0.05) to ensure that the noise correlation matrix is invert-
ible. We obtain noise distributions that depart from normality
by means of heavier tails by combining mixture components with
scaled versions of the same covariance matrix. Thus, we set the
mth mixture component’s covariance matrix Φm to be

Φm=
bm−1

r
Φn with r=

M∑
m=1

cmb
m−1 (12)

and scaling factor b ∈ R+. The constant r takes care of
normalization so that the covariance matrix Φn of the mixture
distribution remains unchanged.

The kurtosis is a statistical measure that accounts for the
shape of a distribution, specifically its heavy-tailedness [26, 27].
We extend Mardia’s multivariate kurtosis definition [28] to
complex-valued random vectors X ∈ CD with mean µ and
covariance matrix Cx to obtain

κC(X)=E
[
(2(X−µ)HC−1

x (X−µ))2
]
. (13)

Using [29, Sec. 8.2.4], we find the multivariate complex kurtosis
of the random vector N following a scaled Gaussian mixture
distribution to be

κC(N)=2D(2+2D)

M∑
m=1

cm
b2(m−1)

r2︸ ︷︷ ︸
q

. (14)

The factor 2D(2 + 2D) corresponds to the kurtosis of the
D-dimensional complex Gaussian distribution. Thus, the
kurtosis of the scaled Gaussian mixture distribution equals the
kurtosis of a Gaussian distribution multiplied by a factor that
we name q. We see that the multivariate kurtosis depends on

the dimensionality of the distribution and that the scaling factor
b and the number components allow us to adjust the degree of
heavy-tailedness of the noise distribution.

We use the MVDR beamformer as a linear spatial filter
for the comparison setup because it is optimal with respect to
the maximum likelihood criterion if the noise follows a scaled
Gaussian mixture distribution as given in (12). This property
can be deduced from the fact that the MVDR beamformer is the
ML estimator for each Gaussian mixture component and that
the MVDR beamformer is invariant against scaling of the noise
correlation matrix. We then combine the MVDR beamformer
with an MMSE optimal single-channel postfilter.

Since the input vector given the reference speech DFT
coefficient s follows a multivariate complex Gaussian mixture
distribution, i.e., Y∼

∑M
m=1cmNC(ds,Φm), the output of the

MVDR beamformer is distributed according to a one-dimensional
complex Gaussian mixture distribution. More precisely, it is

p(TMVDR(y)|s)=
∑
m=1

cmNC

(
s,

dHΦ−1
n ΦmΦ−1

n d

(dHΦ−1
n d)2︸ ︷︷ ︸

σ2
m

)

)
. (15)

We adhere to the assumptions regarding speech phase and
amplitude that Hendriks et al. introduced in [6] to compute the
spatially nonlinear MMSE estimator and derive the postfilter
using [23, Eq. 3.339, Eq. 6.643.2, Eq. 9.220.2] and [30, Eq.
10.32.3] in an analog way. We find the estimator TMVDR-MMSE that
combines the MVDR beamformer with the MMSE postfilter to be

TMVDR-MMSE(y)=

ν

M∑
m=1

cmQm
σ2
m

e

[
−
|TMVDR(y)|2

σ2m

]
σ2
sTMVDR(y)M(ν+1,2,Pm)

νσ2
m+σ2

s

M∑
m=1

cmQm
σ2
m

e

[
−
|TMVDR(y)|2

σ2m

]
M(ν,1,Pm)

(16)

with

Φn=

M∑
m=1

cmΦm, σ2
m=

dHΦ−1
n ΦmΦ−1

n d

(dHΦ−1
n d)2

,

Qm=(
1

σ2
m

+
ν

σ2
s

)−ν and Pm=
σ2
sσ
−2
m |TMVDR(y)|2

νσ2
m+σ2

s

.

Both the spatially nonlinear MMSE estimator and the MMSE
postfilter require an estimate of the spectral power of the speech
signal σ2

s . We estimate the parameter for a given time frame by
time-averaging over five successive segments of the clean speech
data. The speech parameter ν in (10) is set to 0.25 for the nonlinear
MMSE estimator and to 0.5 for the postfilter of the TMVDR-MMSE

estimator because this gives the best results for scaled Gaussian
mixture noise distributions with higher kurtosis values.

We model the microphone array as a linear array with five
microphones at a distance of 5 cm and generate the vector of
speech DFT coefficients S for a source that is located in endfire
position. The noise and speech DFT coefficients are combined
to give an SNR of 0 dB.

The left column of Figure 1 shows the segmental SNR
improvement of the MVDR beamformer TMVDR, the spatially
nonlinear MMSE estimator T̃MMSE derived by Hendriks et al. [6],
and the MVDR beamformer combined with an MMSE postfilter
TMVDR-MMSE with respect to the kurtosis factor q defined in
(14). We compute the segmental SNR using a segment length
of 10 ms as described in [31]. To measure the improvement of
the segmental SNR, we compare the mean segmental SNR of
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Figure 1: Segmental SNR and POLQA improvement for noise
distributions with increasing kurtosis in three noise scenarios
(spatially white, diffuse and directional).

the noisy microphone recordings to the segmental SNR of the
enhanced speech signal. The gap between the top curves (circle
and triangle) quantifies the advantage of the nonlinear spatial
filter over the linear spatial filter. The difference amounts to
values in the order of 2.6 dB for noise that obeys a significantly
more heavy-tailed distribution than a Gaussian.

The right column of Figure 1 depicts the perceptual objective
listening quality analysis (POLQA) score [32] improvement
achieved by the three processing methods. POLQA is the
successor of the perceptual evaluation of speech quality (PESQ)
measure [33] and returns the expected mean opinion score (MOS)
[34] that ranges from one (bad) to five (excellent). As for the
segmental SNR improvement, there is a measurable performance
difference (∼ 0.5 POLQA score improvement) between the
spatially linear and nonlinear estimator. We conclude that the
use of a nonlinear spatial filter could be worthwhile if real noise
follows a distribution that is considerably more heavy-tailed than
a Gaussian distribution.

5. Evaluation on Real-World Noise Data
Using the same estimators as in the previous section, we aim
to assess if performance improvements obtained by a nonlinear
spatial filter also hold for real-world noise recordings, as provided
by the CHiME-3 dataset [17]. We use the five recordings that
correspond to the front-facing microphones placed in a frame
around a tablet computer that has been used to record noise in
four different locations: a bus, a cafeteria, a pedestrian area, and
a busy street. We place the target source in the same plane as the
tablet, perpendicular to the upper edge, and combine the speech
noise signals to obtain an SNR of 0 dB.
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Figure 2: Segmental SNR and POLQA improvement for CHiME-3
noise recordings from four locations (bus, cafeteria, pedestrian
area, street) with respect to the number of mixture components
used to fit the noise distribution.

The estimators T̃MMSE and TMVDR-MMSE require the parame-
ters of a zero-mean Gaussian mixture distribution to be estimated
from data. We obtain time-variant estimates of the component
covariance matrices with the expectation maximization (EM)
algorithm [22] applied to signal segments of length 750 ms that
overlap by 50% and set the speech parameter ν= 0.25 for both
estimators as this gave the best results for the CHiME-3 data.

The left side of Figure 2 depicts the segmental SNR
improvement results with respect to the number of components
M in the mixture distributions that have been fitted to the data.
We find that the use of a postfilter significantly increases the
segmental SNR improvement (the difference of 5 dB between the
results of TMVDR and TMVDR-MMSE), but the postfilter following
the linear spatial filter in TMVDR-MMSE delivers a very similar
performance regardless of the number of components of the
distribution model. In contrast, we observe that the T̃MMSE

estimator with a nonlinear spatial filter achieves better results
when we model the distribution through a Gaussian mixture with
more components. The performance difference between T̃MMSE

and TMVDR-MMSE that we attribute to the usage of a nonlinear
spatial filter amounts to 1.2 dB averaged over all locations. We
make similar observations for the individual locations.

The right plot of Figure 2 shows the improvement with
respect to the POLQA measure. The results obtained with
the perceptively motivated POLQA measure exhibit the same
structure as the results obtained with the segmental SNR and,
thus, we find that using a nonlinear spatial filter instead of a linear
spatial filter increases the speech quality predicted by POLQA
for real-world noise data.

6. Conclusions
In this paper, we showed that using the MMSE optimal nonlinear
spatial filter instead of a classical concatenation of a linear spatial
filter and a postfilter may yield a performance gain of up to 2.6 dB
segmental SNR improvement if the noise follows a distribution
with considerably higher multivariate kurtosis than a Gaussian
distribution. Also for the real-world noise recordings from the
CHiME-3 dataset still moderate improvements of 1.2 dB are
achieved when the parameters are estimated on oracle speech
and noise data. Future work will analyze the achievable benefit
when the filter parameters are estimated blindly from noisy data.
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