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ABSTRACT

A common processing pipeline for multichannel speech enhancement
is to combine a linear spatial filter with a single-channel postfilter.
In fact, it can be shown that such a combination is optimal in the
minimum mean square error (MMSE) sense if the noise follows
a multivariate Gaussian distribution. However, for non-Gaussian
noise, this serial concatenation is generally suboptimal and may
thus also lead to suboptimal results. For instance, in our previous
work, we showed that a joint spatial-spectral nonlinear estimator
achieves a performance gain of 2.6 dB segmental signal-to-noise
ratio (SNR) improvement for heavy-tailed large-kurtosis multivariate
noise compared to the traditional combination of a linear spatial
beamformer and a postfilter.

In this paper, we show that a joint spatial-spectral nonlinear filter
is not only advantageous for noise distributions that are significantly
more heavy-tailed than a Gaussian but also for distributions that
model inhomogeneous noise fields while having rather low kurtosis.
In experiments with artificially created noise we measure a gain of
1 dB for inhomogenous noise with low kurtosis and up to 2 dB for
inhomogeneous noise fields with moderate kurtosis.

Index Terms— Multichannel, speech enhancement, nonlinear
filtering, acoustic beamforming

1. INTRODUCTION

Speech enhancement algorithms are used to recover a target speech
signal from microphone recordings that are corrupted by background
noise. These techniques are fundamental to many communication
applications such as telephony, hearing aids, and the emerging field
of human-machine interaction with an automatic speech recognition
(ASR) system.

If several recordings of the target signal from multiple micro-
phones are available, multichannel speech enhancement methods
can be used. The advantage of these methods over single-channel
approaches, e.g., [1, 2, 3], is that not only tempo-spectral but also
spatial information can be included in the processing [4]. In many
cases, the spatial filtering is carried out using a so-called beamformer
that emphasizes a signal from a certain direction and suppresses the
signal components originating from other directions. Beamforming is
a linear operation: the discrete Fourier transform (DFT) coefficients
of all channels are multiplied by complex weights and summed [5].

Commonly, a single-channel method is applied to the output of
such a linear spatial filter to further exploit spectral characteristics for
suppressing the remaining noise. It is often referred to as a postfilter.
However, this common processing pipeline, despite its prevalence,
is in general suboptimal if the noise does not follow a multivariate
complex Gaussian distribution.

Balan and Rosca [6] have shown that the clean speech MMSE es-
timator for multivariate complex Gaussian noise can be separated into
an minimum variance distortionless response (MVDR) beamformer
and a single-channel postfilter. In contrast, the work of Hendriks
et al. [7] revealed that the MMSE solution for noise that follows a
multivariate complex Gaussian mixture distribution inseparably joins
the spatial and spectral processing and is even nonlinear in the spatial
filter. From these results, it becomes clear that the noise distribution
plays an important role in determining whether joint spatial-spectral
nonlinear processing could lead to an improved performance. In the
sequel, we may refer to an estimator that joins the spatial and spectral
processing into a single nonlinear operation a nonlinear spatial filter.

It is important to note that characterizing the noise scenarios in
which a nonlinear filtering is advantageous gains particular relevance
in the context of the neural network revolution. Evermore often,
neural networks are trained to solve single-channel and multichannel
speech enhancement tasks, e.g., [8, 9, 10, 11]. While neural networks
could potentially be used to elegantly approximate nonlinear joint
spatial-spectral filters, most neural network approaches for multichan-
nel speech enhancement restrict the spatial filter to be linear [10, 12]
or use neural networks just for estimating the beamformer parameters
[13]. In contrast, using neural networks for modeling a nonlinear
spatial filter is far less common, e.g., [11]. This is also because the po-
tential benefit of using nonlinear spatial filters is not fully understood.
Tackling this problem experimentally by trying out different network
architectures does not seem to be a satisfying approach to fundamen-
tally understand the potential gain of nonlinear spatial filtering. For
instance, network architectures that are more complex than necessary
are generally undesirable as they require more data and training time.
Therefore, it is important to understand for which noise scenarios
learning a nonlinear spatial filter is worthwhile and for which not.
For this, we compare the performance obtained by statistical MMSE-
optimal estimators to be able to gain more general insights without
depending e.g. on specific neural network architectures.

Already in our recent previous work [14], we evaluated the ben-
efit of the optimal MMSE solution of Hendriks et al. with joint
spatial-spectral nonlinear filtering by comparing it to the best match-
ing estimator composed of an MVDR beamformer and an MMSE
single-channel postfilter. However, in this analysis we obtained Gaus-
sian mixtures by combining Gaussian components with the same
spatial structure but different scaling. We observed for noise distri-
butions with a high kurtosis, which measures the heavy-tailedness
of a distribution [15, 16], a gain of 2.6 dB segmental SNR and 0.5
POLQA score improvement. Furthermore, in [14] we observed a gain
of 1.2 dB segmental SNR improvement for noisy mixtures with real-
world noise recordings taken from the CHiME-3 data set [17] when
fitting a zero-mean multivariate complex Gaussian mixture with four
components to the data. Since the nonlinear spatial filter delivers bet-
ter results than separated processing with a linear spatial filter and a
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postfilter, one may conclude that the fitted distribution is not Gaussian
and may speculate that the distribution has a notably larger kurtosis
than a Gaussian distribution. However, examining the kurtosis of the
distributions fitted to the CHiME-3 data revealed that the kurtosis is
surprisingly low (Section 3). Thus, it seems that the advantage of
a joint nonlinear spatial-spectral filter does not only depend on the
kurtosis of the noise distribution but also on other properties. The
goal of this paper is to analyze how much the spatial structure of
the noise model impacts performance when using a joint nonlinear
spatial-spectral filter instead of the traditional serial concatenation of
a linear beamformer and a postfilter.

Section 2 introduces the modeling assumptions and statistical
estimators that our analysis is based on. In Section 3, we show that
solely the kurtosis of the noise distribution is not sufficient to charac-
terize when the use of a nonlinear spatial filter could be worthwhile
and in Section 4 we evaluate to what extent spatial properties of the
noise distribution influence the gain achieved with a nonlinear spatial
filter.

2. THEORETICAL BACKGROUND

2.1. Signal model

We assume that the target speech signal is disturbed by additive
noise and recorded by a microphone array with D microphones.
The recorded time-domain signal for every microphone-channel ` ∈
{1, ..., D} is transformed to the frequency-domain using a windowed
DFT yielding DFT coefficients Y`(k, i) ∈ C with frequency-bin
index k and time-frame index i. As we assume the noise to be
additive, we obtain the noisy DFT coefficient Y`(k, i) ∈ C as the
sum of the clean speech and the noise DFT coefficients S`(k, i) ∈ C
and S`(k, i), i.e.,

Y`(k, i) = S`(k, i) +N`(k, i). (1)

We model the DFT coefficents as random variables and assume
that they are independent with respect to the frequency-bin index and
time-frame index. As a result, we can consider every time-frequency
bin separately and omit the frequency-bin and time-frame indices
from the notation. Uppercase letters will denote random variables
and lowercase letters will be used for their realizations. Further, we
assume speech and noise to be uncorrelated and zero-mean.

The noise DFT coefficients of all channels are combined into
a vector N = [N1, ..., ND]T ∈ CD with correlation matrix Φn =
E[NNH ]. The vector of clean speech DFT coefficients is given
by S = dS ∈ CD with the so-called steering vector d ∈ CD
modeling the propagation path from the single target speaker to the
microphones. Then, the vector Y = S + N ∈ CD contains the noisy
DFT coefficients for every channel. The spectral power of the clean
speech signal S is denoted by σ2

s = E[|S|2].

2.2. Estimators

In our previous work [14], we gathered theoretical results to point out
that the MMSE solution can be separated into an MVDR beamformer
defined as

TMVDR(y) =
dHΦ−1

n y

dHΦ−1
n d

(2)

and a single-channel postfilter if the noise follows a multivariate
complex Gaussian distribution. However, this also implies that for
the separability into a linear spatial filter concatenated with a spectral
postfilter the distribution of the noise plays a decisive role. This

becomes clear from the result of Hendriks et al. [7] who show that the
MMSE-optimal estimator of the clean speech DFT coefficient S for
noise that is distributed according to a multivariate complex Gaussian
mixture distribution is in general a nonlinear and non-separable joint
spatial-spectral filter.

This Gaussian mixture distribution combinesM zero-mean Gaus-
sian components with covariance matrices Φm ∈ CD×D, m =
1, ...,M, and the correspondig noise probability density function
(PDF) is given by

p(n) =

M∑
m=1

cm
1

πD|Φn|
exp

{
−nHΦ−1

n n
}

(3)

with component weights cm that sum to one. The estimator TMMSE

for multivariate complex Gaussian mixture distributed noise has been
derived by Hendriks et al. [7] under the additional assumption that
the clean speech signal amplitude follows a generalized-Gamma
distribution with a shape parameter ν ∈ R+ and that the phase
Ψ ∈ [0, 2π) is uniformly distributed and independent of the speech
amplitude. Then, the MMSE solution is given by

TMMSE(y) = ν

M∑
m=1

cmQm
|Φm| e

[−yHΦ−1
m y] σ

2
s T

(m)
MVDR(y)M(ν+1,2,Pm)

ν(dHΦ−1
m d)−1+σ2

s

M∑
m=1

cmQm
|Φm| e

[−yHΦ−1
m y]M(ν, 1, Pm)

(4)

with

T
(m)
MVDR(y) =

dHΦ−1
m y

dHΦ−1
m d

, Qm = (ν + dHΦ−1
m dσ2

s )−ν ,

and Pm =
σ2

s dHΦ−1
m d

∣∣∣T (m)
MVDR(y)

∣∣∣2
ν(dHΦ−1

m d)−1 + σ2
s

andM(·, ·, ·) being the confluent hypergeometric function [18, Sec.
9.21].

This MMSE estimator cannot be separated into a spatial filter
and a spectral postfilter since the observation y is the input of the
linear function T (m)

MVDR, which in turn depends on the summation index,
and also occurs in the quadratic term exp

{
−yHΦ−1

m y
}

. The latter
highlights the spatial nonlinearity of the solution.

In [14], we have experimentally quantified the benefit of the
nonlinear joint spatial-spectral MMSE-optimal solution TMMSE over a
separated solution TMVDR-MMSE that combines an MVDR beamformer
with an MMSE-optimal postfilter. We derived the MMSE postfilter
under the same assumptions used to compute TMMSE to allow for a
meaningful comparison. This results in the composite estimator

TMVDR-MMSE(y) =

ν

M∑
m=1

cmQm
σ2
m

e

[
−
|TMVDR(y)|2

σ2m

]
σ2

s TMVDR(y)M(ν+1,2,Pm)

νσ2
m+σ2

s

M∑
m=1

cmQm
σ2
m

e

[
−
|TMVDR(y)|2

σ2m

]
M(ν, 1, Pm)

(5)

with

Φn =

M∑
m=1

cmΦm, σ2
m =

dHΦ−1
n ΦmΦ−1

n d

(dHΦ−1
n d)2

,

Qm = (
1

σ2
m

+
ν

σ2
s

)−ν and Pm =
σ2

s σ
−2
m |TMVDR(y)|2

νσ2
m + σ2

s
.
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The separability into the MVDR beamformer and a single-channel
postfilter can be seen from the fact that the observation is contained
in this equation only as input to the MVDR beamformer.

Our previous experiments with known noise distributions indi-
cate a dependence of the performance gain achieved by the spatially
nonlinear TMMSE on the kurtosis and, thus, on the heavy-tailedness
of the noise distribution. For the real-world noise recordings from
the CHiME-3 dataset [17] we observed a moderate improvement by
using a non-linear spatial filter but did not yet investigate the kurtosis
value of the fitted distribtions.

3. MULTIVARIATE KURTOSIS OF CHIME-3 NOISE DATA

The CHiME-3 dataset provides multichannel recordings obtained
in different environments: on a moving bus, in a cafeteria, next to
a busy street and in a pedestrian area [17]. For our analysis, we
use recordings from five front-facing microphones that have been
embedded in a frame around a tablet computer. To approximate the
unknown and potentially time-variant distribution of the recorded
noise data with a zero-mean multivariate complex Gaussian mixture
distribution, we apply the expectation maximization (EM) algorithm
to windows of length 750 ms that overlap by 50%.

We use the definition of the multivariate kurtosis by Mardia
[19], which we extend for the complex-valued case based on the
equivalence of a D-dimensional complex Gaussian distribution with
a 2D-dimensional real Gaussian distribution [20, Thm. 15.1]. Then,
the kurtosis of a complex-valued random vector X ∈ CD with mean
µ and covariance matrix Cx is given by

κC(X) = E
[
(2(X− µ)HC−1

x (X− µ))2
]
. (6)

The kurtosis of a D-dimensional complex Gaussian distributed ran-
dom vector X ∈ C depends solely on the dimension D through

κC(X) = 2D(2D + 2). (7)

We now normalize all kurtosis values by the kurtosis of the Gaussian
distribution with the corresponding dimensionality and name the
result the kurtosis factor q. Thus, a kurtosis factor of one indicates a
Gaussian distribution, while a larger kurtosis indicates a heavy-tailed
distribution.

Figure 1 shows the histograms for the estimated kurtosis factors
of the distributions that have been fitted to the CHiME-3 data using
the EM algorithm. For this, a different number of mixture components
M is used. The kurtosis as given in (6) is estimated by averaging
over 1000 samples drawn from the distribution that we obtained with
the EM algorithm. Using a single mixture component means to fit a
Gaussian distribution and, as a result, we observe a peak at a kurtosis
factor of 1 for the blue histogram. Estimating higher order statistics is
generally difficult and this is reflected in the width of the peak, which
shows that the estimate obeys some variance even when estimated
from 1000 samples. If we add more components, i.e., M ∈ {2, 3, 4},
the peak of the histogram shifts to the right and we tend to observe
larger kurtosis factors. The graphic was clipped at a kurtosis factor
of 2 to improve the readability but all results are summarized in
Table 1 which shows the mean and median values that confirm the
observation.

In [14] we have observed that the gain obtained from TMMSE in
comparison TMVDR-MMSE reaches a value of 1.2 dB segmental SNR
improvement as the number of components used to fit the noise
distribution is increased to four. Here, we find that the kurtosis
factor increases with the number of components and, thus, the noise
distributions tend to shift towards more heavy-tailed distributions.
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Fig. 1. Histogram of the estimated kurtosis factor for mixture distri-
butions with M components fitted to the CHiME-3 noise data.

M Mean Median

1 1.00 1.00
2 1.26 1.13
3 1.36 1.20
4 1.42 1.26

Table 1. Mean and median kurtosis factor per number of components
M averaged for all CHiME-3 locations (BUS, CAF, STR, PED).

However, the increase of the mean kurtosis factor up to value of
1.42 for four components is surprisingly small in comparison with
the kurtosis factors that we experimented with in [14]. As a result,
we conclude that the kurtosis is not the only property of the noise
distribution that determines the advantage that we can expect from
using the joint spatially and spectrally nonlinear estimator TMMSE

compared to a linear spatial filter followed by a postfilter such as
TMVDR-MMSE.

4. NONLINEAR FILTERING FOR INHOMOGENEOUS
NOISE SCENARIOS

Next, we investigate the influence of spatial properties of the noise
distribution on the performance of the nonlinear joint spatial-spectral
TMMSE compared to the concatenation of linear spatial filtering and
postfiltering in TMVDR-MMSE. For this, we set up a Gaussian mixture
distribution whose Gaussian components are constructed to reassem-
ble the spatial properties of noise point sources placed in different
directions and we obtain the noise signal from sampling this multi-
variate complex Gaussian mixture distribution. Note that this implies
that noise sources associated with this overall mixture distribution are
non-Gaussian or not active for the same time-frequency bins, which
is a common assumption in source separation [21].

The creation of the noise distribution is illustrated in Figure 2a.
The center of the image shows a microphone array with two mi-
crophones m1 and m2 positioned at a distance of 5 cm. The first
directional noise source n1 stays in a fixed position 30 degrees from
the target source as depicted in Figure 2a. The second noise source
n2 is placed in 20 different directions, which are indicated by the
colored boxes on the circle.

For the noise sources n1 and n2, we can compute the steering
vectors dn1 and dn2 , which model the relative time delays of signal
arrival at the microphones, based on the noise source incidence angle
and the microphone array geometry. From this we construct the
correlation matrices modeling the directional noise sources and some
additional spatially white noise as [22]

Φni = (1− αwn)dnid
H
ni + αwnI with i = {1, 2}. (8)
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Fig. 2. (a) Illustration of the creation of a multivariate Gaussian mixture distribution modelling an inhomogeneous noise field. (b) Performance
gain of TMMSE over TMVDR-MMSE for Gaussian mixture noise modeling two directional sound sources whose placement is illustrated in Figure
2a. (c) Frequency-averaged kurtosis factor of the Gaussian mixture noise modeling two directional sound sources.

The parameter αwn describes the amount of spatially white noise,
which we set to αwn = 0.05, and I denotes the identity matrix. In
our first test case we use two equally weighted zero-mean Gaussian
components with correlation matrices as given in (8) to construct
the overall Gaussian mixture noise distribution. In a second setting,
we use three Gaussian components to model one noise source ni
and obtain their correlation matrices Φnij , j = {1, 2, 3}, by scaling
the matrix Φni under the constraint

∑J
j=1 Φnij = Φni with J = 3.

Based on a varying scale factor b ∈ R+ we compute the component
correlation matrices as

Φnij =
bj−1

r
Φni with r =

J∑
j=1

1

J
bj−1. (9)

The overall Gaussian mixture distribution is then scaled such that the
noisy observation has an SNR of 0 dB.

For spectral analysis and synthesis we use square-root Hann
windows of length 32 ms and a 50% overlap. The speech power σ2

s
is estimated from the clean speech signal by time-averaging over five
successive time-frequency bins. We set the speech shape parameter
to ν = 0.25 for both estimators and evaluate each configuration on
48 speech signals that have been taken from the WJS0 dataset [23]
and balanced between male and female speakers.

Figure 2b shows the performance gain of the spatially and spec-
trally nonlinear estimator TMMSE over the classic setup TMVDR-MMSE

based on the segmental SNR improvement. We evaluate the seg-
mental SNR of the signals using segments of length 10 ms in which
speech is present as proposed, e.g., in [24]. The mean segmental SNR
of the two noisy signals is compared to the segmental SNR of the
enhanced signal to obtain a measure of the improvement. The perfor-
mance results are displayed with respect to phase distance of the two
noise sources’ incidence angles, whereby one of the noise sources
moves around the microphone array counterclockwise. The marker
colors have been chosen such that they indicate the moving noise
source’s direction in accordance with the representation in Figure 2a.

The lowest line in Figure 2b with square markers represents the
results for a Gaussian mixture distributed noise with two Gaussian
components. If the two noise sources are placed in the same direction
(zero phase distance, dark blue marker), the Gaussian mixture dis-
tribution reduces to a Gaussian distribution and, in accordance with
the theory, we cannot observe a benefit from using the joint spatial-
spectral nonlinear TMMSE estimator. However, we observe a clear

influence of the spatial properties of the noise field and performance
gains up to 1 dB.

Our previous conjecture that the kurtosis is not the only property
of the noise distribution that affects the performance gain achieved
with nonlinear spatial filter is confirmed by Figure 2c. It depicts
the normalized kurtosis estimate from 1500 samples which has been
averaged over the frequencies on the y-axis and, again, uses the
phase distance between the noise sources on the x-axis. We observe
rather flat courses and for instance a small kurtosis factor of about 1.2
for the lowest line representing two mixture components (M = 2).
In particular, the performance difference of 0.5 dB segmental SNR
improvement between the first maximum, located at a phase distance
of roughly π

4
, and second maximum at a phase distance between 5π

4

and 3π
2

of the lowest curve in Figure 2b do not go along with an
increased kurtosis.

The same observation can also be made if three scaled compo-
nents are used to model each noise source (M = 6). A larger scaling
factor leads to a higher kurtosis as can be seen in Figure 2c and as
we would expect. For example, we observe a kurtosis factor of 3.2
for the scaling factor b = 12, but still the performance difference of
0.7 dB segmental SNR improvement for the two spatial scenarios
leading to the first and second maximum cannot be predicted from
the kurtosis alone.

5. CONCLUSIONS

For multivariate non-Gaussian noise, the traditional concatenation
of linear beamforming and spectral postfiltering is not generally op-
timal. Instead, the MMSE-optimal estimator generally results in a
non-separable nonlinear joint spatial-spectral filter. In this paper, we
provide further insights into which properties of the multichannel
noise impact the potential performance gain when replacing the tradi-
tional concatenation of linear beamforming and spectral postfiltering
by a joint nonlinear spatial-spectral filter. We show that besides its
heavy-tailedness also the spatial structure of the noise distribution
plays an important role. In our exemplary setup, we obtain perfor-
mance gains of up to 2 dB segmental SNR improvement for spatially
inhomogeneous noise fields with moderate kurtosis.
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