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Speech Acquisition in Noisy Environments

= How can Machine Learning help to make information more easily
accessible by humans and machines
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Overview P

Signal Processing

1. Single Channel Source Separation

2. Phase Estimation Enables High Quality at Low Latency

3. Non-linear Multi-channel Filtering

4. Diffusion-based Generative Models for Speech Enhancement
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Single Channel Source Separation



Cocktail-Party Problem SPy._.

Signal Processing

i Conditions:
m Undefined number of speakers
Speec_h m Unknown speakers
Separation m Single microphone

*Meeting transcription
i eHearing aids :
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Real-Time Demo in Our Lab SPL ).

Signal Processing

Real-Time
Speech Separation

Signal Processing Group
Uni Hamburg

A =
O we

[1] D. Ditter and T. Gerkmann, “A Multi-Phase Gammatone Filterbank for Speech Separation Via Tasnet," in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020, pp. 36-40.

[2] D. Ditter and T. Gerkmann, “Influence of Speaker-Specific Parameters on Speech Separation Systems,” en, in ISCA Interspeech, Graz,
Austria, Sep. 2019, pp. 4584-4588. [Online]. Available: http://waw.isca-speech.org/archive/Interspeech_2019/abstracts/2459.html
(visited on 09/16,/2019).
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UH .
Source Separation St
Conclusions

®m Machine Learning enables separating sources recorded with only one
microphone

m As traditional approaches, these algorithms can be made real-time
capable

m The algorithmic latency depends on the chosen frame sizes
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Phase Estimation Enables High Quality at Low Latency

Tal Peer, M.Sc.



STFT-based Speech Processing SPL i

Signal Processing
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Frame Length in STFT Speech Processing P

Signal Processing

m STFT-based speech processing traditionally uses frames of around
32ms

v/ Short enough to capture non-stationarity of speech
v/ Long enough to admit a reasonable spectral resolution

= s this optimal?
® Frame length imposes a lower bound on algorithmic latency
® The justification for 32ms is mainly based magnitude and ignores
phase

= As traditional enhancement methods are magnitude centric, 32ms
appears a well motivated choice
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Phase, Magnitude and Frame Length (1) 2P

Signal Processing

®m But what if we were able to also
estimate phase?

Clean Speech

m Kazama et al.Bl: listening
experiment on intelligibility under
variation of frame length

= The information contained in s
magnitude and phase varies with _ (Recon. from phase)

frame length

[3] M. Kazama, S. Gotoh, M. Tohyama, and T. Houtgast, “On the significance of phase in the short term Fourier spectrum for speech
intelligibility,” The Journal of the Acoustical Society of America, vol. 127, no. 3, pp. 1432-1439, 2010.
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Phase, Magnitude and Frame Length (2) 2P
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Phase, Magnitude and Frame Length (2) 2P

Signal Processing

Medium frames: magnitude suffices for good reconstruction
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Short and Iong frames: magnitude loses relevance,
good reconstruction is possible from phase alone

Speech Intelligibility in %
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Frame Length in Deep Speech Enhancement

= Phase information gets important for short frames

% Model-based phase estimation methods exist only for long frames!*®]

Research Questions

m Can we use modern machine learning approaches to estimate phase
when using short frames?

®m Which frame length for phase-aware STFT-based networks?

[4] M. Krawczyk and T. Gerkmann, “STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech
Enhancement,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 22, no. 12, pp. 1931-1940, Dec. 2014.

[5] T. Peer, K.-J. Ziegert, and T. Gerkmann, “Plosive Enhancement Using Phase Linearization and Smoothing,” in Speech
Communication; 14th ITG Conference, Kiel (online), Sep. 2021, pp. 1-5.
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We use a DNN with explicit magnitude and phase estimation[®7] to

m Quantify the contribution of phase and magnitude estimation for
different frame lengths

m Quantify overall performance of joint network for different frame length

Linear Clmileri Linear
C = 1536

x 15 in series

Normalize

%6 in series
PHASE SUB-NET

[6] T. Afouras, J. S. Chung, and A. Zisserman, “The Conversation: Deep Audio-Visual Speech Enhancement,” in Interspeech 2018, ISCA
Sep. 2, 2018, pp. 3244-3248.

[7] T. Peer and T. Gerkmann, “Ph deep speech enh - It's all about the frame length,” arXiv preprint arXiv:2203.16222,
2022.
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Results 2P
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v/ Trend observed on oracle data carries over to DNN-based magnitude
and phase estimation

¢/ Machine Learning can be used to estimate phase also with short frames
v/ Phase-aware processing is particularly beneficial with short frames
v/ Short frames of 4ms enable short latency and high quality
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Non-linear Multi-channel Filtering

Kristina Tesch, M.Sc.



Multi-channel Speech Enhancement P

Signal Processing

Joint spatial and

Li il tempo-spectral non-linear ) )>
Inear spatia filt INF
filter (LSF) Post-filter (PF) ) )> ilter (JNF)

® Analytic solutions m Drops linearity assumption

= Computationally lightweight ® |ntegrates spatial and

m MMSE optimal for Gaussian tempo-spectral processing
noisel8l = More powerful processing model

= Parameter estimation challenging

[8] K. Tesch and T. Gerkmann, “Nonlinear spatial filtering in multichannel speech enhancement,” IEEE/ACM Transactions on Audio
Speech, and Language Processing, vol. 29, pp. 1795-1805, 2021.
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Proof of Concept with Oracle Data St

Signal Processing

Inhomogeneous noise field created by five directional Gaussian noise sources
8

Frequency [kHz]
[vile) =

Frequency [kHz]
IS

Time [s] Time [s] Time [s]

= Joint non-linear spatial-spectral filter is a A POLQA: 2.64 +£0.08
more powerful processing model A SI-SDR: 9.92 & 0.30
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From Theory to Practice: DNN-based JNF! Py .

Signal Processing

m We saw: Joint nonlinear spatial spectral filtering (JNF) is more
powerful than traditional beamformer + postfilter

m Above examples provided a proof of concept, but estimating the
required higher-order statistics is very difficult in practice

[9] K. Tesch and T. Gerkmann, Insights into deep non-linear filters for improved multi-channel speech enhancement, submitted to IEEE
Trans. Audio, Speech, and Language Proc., 2022. [Online]. Available: https://arxiv.org/abs/2206.13310.
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From Theory to Practice: DNN-based JNF! Py

Signal Processing

m We saw: Joint nonlinear spatial spectral filtering (JNF) is more
powerful than traditional beamformer + postfilter

m Above examples provided a proof of concept, but estimating the
required higher-order statistics is very difficult in practice

Research Questions

® Do our theoretical findings carry over when learning a JNF using
DNNs?

® Such DNN-based JNFs are fundamentally different to DNN-guided
beamformers!

®m How important are the interdependencies between different sources of
information?

m What are the implications that arise for the design of network
architectures?

[9] K. Tesch and T. Gerkmann, Insights into deep non-linear filters for improved multi-channel speech enhancement, submitted to IEEE
Trans. Audio, Speech, and Language Proc., 2022. [Online]. Available: https://arxiv.org/ab
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Approach - Network Architecture e

Signal Processing

Input data arrangement Output mask (cIRM)

o o m— = x c €

z ] g g z | g |
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= T c |3 =TT 5 TN

- T MO
A
Sequence dim.

Network
architecture

Feature dim.
[Re, Im]
A
LST™M
LSTM
FF
tanh
[Re, Im]

Sequence dim.

= Network structure that allows to easily control the integration of
different sources of information

m Combine spatial with spectral (F-JNF) or temporal (T-JNF)
information or both (FT-JNF)
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Approach - Dataset

SP

Signal Processing

Speaker extraction focusing on spatial filtering capabilities

Task:

m Speaker extraction scenario
® 2-5 microphones in a circular array
m 1 target speaker

m 5 interfering speakers

21

Dataset generation:

Clean speech from WSJ0 (75
male and 74 female speakers)

6000 training examples (25
hours of training data)
Simulation using the
source-image model

SNR between -9 and 2 dB
Room dimensions between

(2.5 x 3 x 2.2) and
(5 x 9 x 3.5) meters

T60: 0.2 — 0.5 seconds
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UH .
Interdependency Between Information Sources

5
I
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[10] X. Li and R. Horaud, “Multichannel speech enhancement based on time-frequency masking using subband long short-term memory,”
2019, pp. 298-302.
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Non-Linear Versus Linear Spatial Filter e
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Blind estimation using DNNs

POLQA

Frequency [kHz]

Frequency [kHz]

ESTOI

7

5 Time [s]
0.4 JI

2 3 4 5

Number of microphones

Frequency [kHz]

-@- LSF (MVDR) —B— LSF+PF —o— FT-INF

= A joint non-linear filter outperforms an oracle linear
spatial filter plus post-filter
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Comparison with State-of-the-art Methods P

Signal Processing

N0|sy o

0.8
m Complex masked-based: O 0.7 A o
FT-JNF, T-JNF, CRNN (o 06 O
0.5
m Beamformer-inspired: < 15 -
FaSNet+TAC, EaBNet, COSPA i~ .
a |
m FT-JNF and T-JNF have the o 0.5
same lowest number of <0
parameters o 60
S 40
20 -
= Proposed FT-JNF outperforms A %
all other methods V/yp /Vp/,04’/V/z,/s4’ vy :/s[/(?/ Xty

(‘/Jéy
[11] S. Chakrabarty and E. A. P. Habets, “Time—frequency masking based online multi-channel speech enhancement with convolutional
recurrent neural networks,”, vol. 13, no. 4, pp. 787-799, 2019.

[12] Y. Luo, Z. Chen, N. Mesgarani, and T. Yoshioka, “End-to-end microphone permutation and number invariant multi-channel speech
separation,”, Barcelona, Spain, 2020, pp. 6394-6398.

[13] A. Li, W. Liu, C. Zheng, and X. Li, “Embedding and beamforming: All-neural causal beamformer for multichannel speech
enhancement,”, Singapore, 2022, pp. 6487-6491.

[14] M. M. Halimeh and W. Kellermann, “Compl lued spatial lers for multichannel speech enhancement,”, Singapore, 2022,
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DNNs for Joint Spatial-spectral Filtering P

Signal Processing

Conclusions

Deep non-linear filters overcome the linear processing model and exploit
dependencies between spatial and tempo-spectral information

= Spectral information increases the spatial selectivity of the filter

= The proposed scheme that exploits spatial, spectral and temporal
information outperforms state-of-the-art network architectures
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Julius Richter, M.Sc. and Simon Welker, M.Sc.
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Speech Enhancement with Deep Learning

m Speech enhancement algorithms are nowadays dominated by the use of
deep neural networks (DNNs)

v/ Exploit temporal-spectral structure to distinguish speech from noise

Discriminative model vs. generative model

m Statistical models can be classified as generative or discriminative
® Discriminative models dominate the task of speech enhancement
m Recently, there is a trend towards generative approaches

27 T. Gerkmann: Machine Learning for Speech Signal Processing on Hearing Devices



Why Generative Modeling? SPL_J.

Signal Processing

Discriminative models

m |earn to directly map noisy speech to the corresponding clean speech
® Trained with a variety of clean/noisy speech pairs
% No guarantee of robustness in unseen situations

® Unpleasant speech distortions may outweigh the benefits of noise
reduction

28 T. Gerkmann: Machine Learning for Speech Signal Processing on Hearing Devices



Why Generative Modeling? SPL .

Signal Processing

Discriminative models

® |earn to directly map noisy speech to the corresponding clean speech
® Trained with a variety of clean/noisy speech pairs
® No guarantee of robustness in unseen situations

® Unpleasant speech distortions may outweigh the benefits of noise
reduction

Generative models

® |earn a prior distribution over clean speech data

® |nfer clean speech from noisy signals that are assumed to lie outside the
learned distribution

v/ Generalize well to unseen acoustic situations

¢ Aim to produce natural sounding speech
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Deep Generative Models SPL .

Signal Processing

Popular deep generative models

® Variational autoencoders (VAEs)

Generative adversarial networks (GANs)

| |
m Auto-regressive models
| |

Diffusion-based generative models

VAE

Diffusion
Models

29

Encoder Decoder ,
X

a4 (2[x) Po(x|2)
- L IXT
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VAE-based Speech Enhancement %

Our contributions:
® Incorporate temporal dependencies into the VAE[9]
® Improve the robustness with a noise-aware encoder(16l

m Guide the VAE with a supervised classifier trained on voice acticity or
ideal binary mask prediction'’]

m Disentanglement learning of the latent variables applied to audio-visual
voice activity detection[®l

Limitations:
% VAE needs additional noise estimator to form a Wiener filter

# Limited by the bottleneck of the latent representation

[15] J. Richter, G. Carbajal, and T. Gerkmann, “Speech enhancement with stochastic temporal convolutional networks,” Proc. Interspeech
2020, pp. 4516-4520, 2020.

[16] H. Fang, G. Carbajal, S. Wermter, and T. Gerkmann, “Variational autoencoder for speech enhancement with a noise-aware encoder,”
IEEE Int. Conf. on Acoustics, Speech and Signal Proc. (ICASSP), pp. 676-680, 2021.

[17] G. Carbajal, J. Richter, and T. Gerkmann, “Guided variational autoencoder for speech enhancement with a supervised classifier,” /EEE
Int. Conf. on Acoustics, Speech and Signal Proc. (ICASSP), pp. 681-685, 2021.

[18] G. Carbajal, J. Richter, and T. Gerkmann, “Disentanglement learning for variational autoencoders applied to audio-visual speech
enhancement,"” IEEE Workshop on Applications of Signal Proc. to Audio and Acoustics (WASPAA), pp. 126-130, 2021.
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Introduction to Diffusion Models

SP

Signal Processing

31

Generative diffusion models['%2% consist of two processes:
m Forward diffusion process that gradually adds noise to the input

m Reverse process that learns to generate data by denoising

Forward diffusion process

»

data noise

A

Reverse process

[19] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium
thermodynamics,” in International Conference on Machine Learning, 2015, pp. 2256-2265.

[20] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Inf. Proc. Systems (NeurlPS), vol. 33

pp. 68406851, 2020.
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Stochastic Diffusion Process Py ).

Signal Processing

®m Model the corruption of clean speech as a diffusion process {xt}tT:O[zll

m Define the diffusion process as a solution to a stochastic differential
equation (SDE)[??

dx; = y(y — x¢)dt + g(t)dw

Corrupted
noisy speech

dx; = [—v(y — x¢) + g(t)? Vi, log pe(x,)]dt 4 g(t)dw
N—_— ——

~sg(x,y,t)

® The learned score model sy(x:,y, t) predicts the added Gaussian noise

[21] S. Welker, J. Richter, and T. Gerkmann, “Speech enhancement with score-based generative models in the complex stft domain,” Froc.
Interspeech 2022, 2022.

[22] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic
differential equations,” /nt. Conf. on Learning Representations (ICLR), 2021.
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Reverse Sampling

® Initialize reverse process with X7 ~ N¢(x7;y,0(T)?1)

m Solve reverse SDE with general-purpose SDE solvers (e.g.
Euler-Maruyama)

m Necessary reverse steps N =~ 30 = 30 model calls

Reverse process

Corrupted
noisy speech

dx; = [—v(y — x¢) 4 g(t)*se(x¢,y, t)|dt + g(t)dw
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Experimental Setup

Datasets:
= WSJO0-CHIME3
= Clean speech utterances from Wall Street Journal (WSJ0)?3!
= Noise signals from CHiME3[?4
= SNR uniformly sampled between 0 and 20 dB
= Voicebank-Demand!?’]
m Standardized dataset often used as a benchmark

Matched and mismatched conditions:

condition train/valid test

matched WSJ0-CHIME3 WSJO-CHIME3
mismatched Voicebank-Demand WSJO0-CHIME3

[23] J. S. Garofolo, D. Graff, D. Paul, and D. Pallett, CSR-I (WSJ0) Complete, May 2007.

[24] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third ‘chime'speech separation and recognition challenge: Dataset, task and
baselines,” IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 504-511, 2015.

[25] C. V. Botinhao, X. Wang, S. Takaki, and J. Yamagishi, “Investigating ran-based speech enhancement methods for noise-robust
text-to-speech,” Oth ISCA Speech Synthesis Workshop, pp. 159-165, 2016.
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Matched condition: Training and test on same datasets

Method Type | POLQA ESTOI  SI-SDR [dB]
Mixture - | 263+£067 0.78+0.14 10.0%5.7

RVAE 297+0.63 085+0.11 158+5.0
CDiffuSE 2774052 080+0.09  7.3+19

3.71+£0.50 0.92+0.05 172+ 4.6

3.65£0.54 0.93£0.05 19.9£43
3.52+£0.61 0.88£0.08 10.5 +£4.5

SGMSE+ (ours)

Conv-TasNet
MetricGAN-+

oA v NaNANA
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Matched condition: Training and test on same datasets

Method Type | POLQA ESTOI  SI-SDR [dB]
Mixture - | 263+£067 0.78+0.14 10.0%5.7
RVAE G |297+063 085+£011 158+5.0
CDiffuSE G | 277+£052 080+0.09  7.3+19
SGMSE+ (ours) G | 3.71£050 092£005 17.2+46
Conv-TasNet D |365+£054 093+£005 19.9+43
MetricGAN-+ D |352+061 088£008 105+45

Mismatched condition:

Training and test on different datasets

RVAE G 2.84+0.61 0.82£0.11 13.9£438
CDiffuSE G 2.20+£0.50 0.71£0.10 3.8+£2.5
SGMSE+ (ours) G 3.43+061 090+0.07 162141
Conv-TasNet D 3.13+£0.60 0.88£0.08 15.2+3.9
MetricGAN+ D 2.47+£0.67 0.76 £0.12 6.8+ 3.1

35
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Matched vs. mismatched condition 2P

m Performance for the matched condition is on par or even slightly better
than discriminative baselines

v/ Proposed approach is more robust in unseen situations
I matched
[ mismatched

113

Nc;isy SGM'SE+ Conv-"TasNet Metric'GAN+

w =
f f

POLQA

N
L

—_
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Listening experiment

SP

Signal Processing

37

m 10 participants rate 12 random examples from the test set

Score

100

80

60

40

20

1

1

=

SGMSE+
(matched)

SGMSE+
(mismatched)

Conv-TasNet ~ Conv-TasNet  MetricGAN+  MetricGAN+
(matched)  (mismatched)  (matched)  (mismatched)
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Audio Examples

Signal Processiny

| Matched | Mismatched

Clean
Noisy
RVAE
SGMSE+
Conv-TasNet

Q00

Clean
Noisy
RVAE
SGMSE+
Conv-TasNet

0000000000

Q00

38
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Dereverberation - Audio Examples

SP

Signal Processing

Clean

Reverberant

SGMSE+

Clean

Reverberant

SGMSE+

O 00 0 O

o

® |nterestingly, the same architecture can also be used very well to

dereverberate signals!
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UH .
Score-based generative models 2P
Conclusions

Our proposed approach:
m Performs on par with state-of-the art discriminative methods

m Can be applied both to denoising and dereverberation

m Generalizes better under unmatched training conditions

1. S. Welker, J. Richter, and T. Gerkmann, “Speech Enhancement with Score-Based
Generative Models in the Complex STFT Domain,” in Interspeech, Sept. 2022.

2. J. Richter, S. Welker, J.-M. Lemercier, B. Lay and T. Gerkmann, “Speech
Enhancement and Dereverberation with Diffusion-based Generative Models,”

submitted to TASLP, 2022.
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Conclusions P

Signal Processing

m Deep Neural Networks (DNNs) are very powerful tools for single
channel enhancement and source separation

®m DNNs allow to estimate spectral phases to allow for high quality speech
at low algorithmic latencies

m For multichannel speech enhancement, DNNs can be used to learn joint
nonlinear spatial-spectral filters that may outperform the traditional
beamformer + postfilter framework

m Diffusion-based generative models are an exciting upcoming field that
may increase the robustness in unseen environments
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