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Speech Acquisition in Noisy Environments SP

How can Machine Learning help to make information more easily
accessible by humans and machines
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Overview SP

1. Single Channel Source Separation

2. Phase Estimation Enables High Quality at Low Latency

3. Non-linear Multi-channel Filtering

4. Diffusion-based Generative Models for Speech Enhancement
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SP

Single Channel Source Separation



Cocktail-Party Problem SP

Speech
Separation

•Video captioning
•Meeting transcription
•Hearing aids
•...

Conditions:
■ Undefined number of speakers
■ Unknown speakers
■ Single microphone
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Real-Time Demo in Our Lab SP

▶ [1] [2]

[1] D. Ditter and T. Gerkmann, “A Multi-Phase Gammatone Filterbank for Speech Separation Via Tasnet,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020, pp. 36–40.

[2] D. Ditter and T. Gerkmann, “Influence of Speaker-Specific Parameters on Speech Separation Systems,” en, in ISCA Interspeech, Graz,
Austria, Sep. 2019, pp. 4584–4588. [Online]. Available: http://www.isca-speech.org/archive/Interspeech_2019/abstracts/2459.html
(visited on 09/16/2019).
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Source Separation SP

Conclusions

■ Machine Learning enables separating sources recorded with only one
microphone

■ As traditional approaches, these algorithms can be made real-time
capable

■ The algorithmic latency depends on the chosen frame sizes
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Phase Estimation Enables High Quality at Low Latency

Tal Peer, M.Sc.



STFT-based Speech Processing SP
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Frame Length in STFT Speech Processing SP

■ STFT-based speech processing traditionally uses frames of around
32ms

✔ Short enough to capture non-stationarity of speech
✔ Long enough to admit a reasonable spectral resolution

■ Is this optimal?
✖ Frame length imposes a lower bound on algorithmic latency
✖ The justification for 32ms is mainly based magnitude and ignores

phase

As traditional enhancement methods are magnitude centric, 32ms
appears a well motivated choice
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Phase, Magnitude and Frame Length (1) SP

■ But what if we were able to also
estimate phase?

■ Kazama et al.[3] : listening
experiment on intelligibility under
variation of frame length

The information contained in
magnitude and phase varies with
frame length

Intelligibility Prediction of Speech Reconstructed From Its Magnitude or Phase
Tal Peer, Timo Gerkmann

{tal.peer, timo.gerkmann}@uni-hamburg.de

Signal Processing (SP), Universität Hamburg, Germany
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I. Introduction

4 Using short STFT frames can be beneficial in terms of algorithmic
latency.

4 Short frames recently used in state of the art speech processing
(ConvTasnet, DPRNN).

� Listening experiments by Kazama et al. [1]:
6 Magnitude spectrum contains virtually no information.
4 Phase spectrum contains enough information for a reasonably

intelligible reconstruction.
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Intelligibility of magnitude and phase speech reconstruction (experimental results from [1], shown

here for reference).

Objective
� Find a suitable intelligibility metric reflecting these results.

Facilitate research into speech processing with short STFT frames.

II. Reconstruction Scheme

Clean Speech Noise

STFT STFT

| · | arg(·) | · |arg(·)

iSTFTiSTFT

PSS
(Recon. from phase)

MSS
(Recon. from magnitude)

� Audio examples: https://uhh.de/inf-sp-llphase

III. Evaluation

� We compare two instrumental intelligibility measures: STOI [2] and ESTOI [3].
� Evaluation done on 200 gender-balanced sentences randomly selected from TIMIT.

STOI
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4 Reasonable results for medium frame lengths.
6 Does not reflect severe loss of intelligibility for short-frame and long-frame magnitude

reconstruction.
6 Does not capture overall trend of phase reconstruction.

ESTOI
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4 Good overall fit to experimental results.
4 In particular: the short-frame region reflects intelligibility trend for both phase and magni-

tude reconstructions.

IV. Discussion: Short-Frame Reconstruction
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Waveforms and log-magnitude spectrograms of a speech excerpt and its MSS and PSS

reconstructions, using frame length of 0.5ms.

The analysed intelligibility measures are similar but have a significant
difference, which is relevant here:
� STOI is based on temporal correlations, averaged over frequency.

The magnitude reconstruction destroys spectral structure, but re-
tains temporal structure which deceives the STOI algorithm.

� ESTOI uses spectral correlations averaged over time, thus captur-
ing the preserved spectral structure in the phase reconstruction and
lack thereof in the magnitude reconstruction.

V. Conclusion

� This work expands upon previous experimental results on the
importance of phase in short-frame speech processing.

� We have shown that these results are reproducible using the ESTOI
metric.

� We hope our results will facilitate further research in the field of
phase-aware speech processing, especially for low-latency applica-
tions.

References

[1] M. Kazama, S. Gotoh, M. Tohyama, and T. Houtgast, “On the significance of phase in the short term Fourier
spectrum for speech intelligibility”, The Journal of the Acoustical Society of America, vol. 127, no. 3, pp. 1432–1439, 2010.

[2] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algorithm for intelligibility prediction of time–frequency
weighted noisy speech”, IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 7, pp. 2125–2136, 2011.

[3] J. Jensen and C. H. Taal, “An algorithm for predicting the intelligibility of speech masked by modulated noise
maskers”, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 24, no. 11, pp. 2009–2022, 2016.

[3] M. Kazama, S. Gotoh, M. Tohyama, and T. Houtgast, “On the significance of phase in the short term Fourier spectrum for speech
intelligibility,” The Journal of the Acoustical Society of America, vol. 127, no. 3, pp. 1432–1439, 2010.
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Phase, Magnitude and Frame Length (2) SP
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Phase, Magnitude and Frame Length (2) SP
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Medium frames: magnitude suffices for good reconstruction

Short and long frames: magnitude loses relevance, 
good reconstruction is possible from phase alone     
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Frame Length in Deep Speech Enhancement SP

Phase information gets important for short frames

✖ Model-based phase estimation methods exist only for long frames[4,5]

Research Questions
■ Can we use modern machine learning approaches to estimate phase

when using short frames?
■ Which frame length for phase-aware STFT-based networks?

[4] M. Krawczyk and T. Gerkmann, “STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech
Enhancement,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 22, no. 12, pp. 1931–1940, Dec. 2014.

[5] T. Peer, K.-J. Ziegert, and T. Gerkmann, “Plosive Enhancement Using Phase Linearization and Smoothing,” in Speech
Communication; 14th ITG Conference, Kiel (online), Sep. 2021, pp. 1–5.
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Evaluation SP

We use a DNN with explicit magnitude and phase estimation[6,7] to
■ Quantify the contribution of phase and magnitude estimation for

different frame lengths
■ Quantify overall performance of joint network for different frame length

PHASE SUB-NET

MAG. SUB-NET

STFT | · | Linear ConvBlock
C = 1536

×15 in series

Linear σ iSTFT
x |Ŝ| Ŝ ŝ

∠ Linear ConvBlock
C = 1024

×6 in series

Linear L2

Normalize

ej(·)X

φ̂S

Figure 2: Overview of the proposed network architecture, based on the audio-visual model from [12], albeit only using the noisy speech
signal as input. The basic convolutional block is shown in detail in Fig. 3. Note that the input to the phase sub-network consists of the
estimated magnitude along with the cosine and sine of the noisy phase, which are shown here as a single input for simplicity.

ReLU BatchNorm

1D DS Conv
(C channels)

size=5
stride=1
pad=2

Figure 3: The basic residual convolutional block, consisting
of a ReLU pre-activation, batch normalization layer and a 1D
depthwise-separable convolution layer.

and sine outputs are consistent with each other (i.e. that they
represent a unit vector on the complex plane).

3.3. Training procedure

In contrast to the multi-stage curriculum learning approach pro-
posed in [12], we simply train the network on the entire training
set consisting of pairs of noisy and clean speech samples at dif-
ferent signal-to-noise (SNR) ratios (see Section 4.1 for more
details). Instead of the frequency-domain loss function proposed
in [12], we employ a time-domain loss, namely the negative
scale invariant signal to distortion ratio (SI-SDR) [33]. The SI-
SDR loss has been shown to produce superior results when both
magnitude and phase spectrograms are estimated [26].

4. Experiments
The main experiment we conduct is a comparison of the model’s
performance as a function of the STFT frame length M , in
terms of perceptual and objective measures. Since the model we
consider includes explicit estimation of phase and magnitude,
we are able to also analyze and quantify the relative contribution
of magnitude and phase estimation, again as a function of frame
length. This analysis is conducted in a manner comparable with
the perceptual experiments in [4], [28], [29], although here we
use estimates of the clean magnitude and phase, rather than
the clean or noisy signals. For each frame length, we produce
three estimates of the clean speech signal: The actual output of
the network as well as two synthetic signals composed of the
estimated magnitude and noisy phase or vice-versa:

ŝ = iSTFT{|Ŝ|ejφ̂S} , (4)

ŝmag = iSTFT{|Ŝ|ejφX} , (5)

ŝph = iSTFT{|X|ejφ̂S} . (6)

To allow for a fair comparison we must keep the number of
DNN parameters constant. In the case of the network architecture
we consider, the number of parameters depends on the number

Table 1: Evaluation results on the DNS test set. For each recon-
structed signal (as in Eqs. (4) to (6)) we show the improvement
in POLQA and ESTOI for a variety of frame lengths (w.r.t. to the
noisy input signal). The best result and close seconds in each
column are shown in bold face.

∆POLQA ∆ESTOI

Mt ŝ ŝmag ŝph ŝ ŝmag ŝph

1 ms 0.480 0.274 0.056 0.007 -0.005 -0.010
2 ms 0.565 0.318 0.180 0.039 0.011 0.027
4 ms 0.668 0.405 0.297 0.058 0.023 0.045
8 ms 0.581 0.435 0.239 0.062 0.034 0.047
16 ms 0.508 0.504 0.011 0.064 0.058 0.017
32 ms 0.407 0.403 0.003 0.061 0.061 0.001

of frequency bins K. Hence, we zero-pad the frames prior
to applying the DFT, resulting in a constant number of bins
K = 257, which corresponds to the longest frames we consider
(Mt = 32 ms) at fs = 16 kHz. In all experiments we use a
square-root Hann window with an overlap ratio R = 1

2
. The

same window is used for the forward and inverse STFT.

4.1. Data and training details

For training we use clean and noisy excerpts from the 2020
Deep Noise Suppression (DNS) dataset [34] with SNR ∈
{−5, 0, . . . , 10}dB. Each excerpt is 2 s long and the data set
contains in total 100 h of speech, from which 80 % are used
for training and the remaining 20 % for validation. We train
all models using the Adam optimizer, a batch size of 32 and a
learning rate of 10−4. Training is stopped if the validation loss
has not decreased for 10 epochs.

Evaluation is performed on two test sets: The DNS syn-
thetic non-reverberant test set, which contains 150 excerpts
of 10 s each with SNR ∈ {0, 1, . . . , 20}dB, as well as a cus-
tom test set composed of clean speech from the WSJ corpus
[35] and noise from the CHiME3 dataset [36], mixed with
SNR ∈ {−10,−5, . . . , 20}dB. This test set contains 672 ex-
cerpts in total. All training and evaluation data is sampled at
fs = 16 kHz.

5. Results and discussion
Evaluation results on the DNS test set are shown in Table 1.
While intelligibility (in terms of ESTOI) is not affected much by
the choice of frame length, we see a significant effect on speech
quality (POLQA) which benefits from decreasing frame length
until it reaches a maximum at Mt = 4 ms, after which it starts
to decline, while still reaching relatively high values for very

[6] T. Afouras, J. S. Chung, and A. Zisserman, “The Conversation: Deep Audio-Visual Speech Enhancement,” in Interspeech 2018, ISCA,
Sep. 2, 2018, pp. 3244–3248.

[7] T. Peer and T. Gerkmann, “Phase-aware deep speech enhancement: It’s all about the frame length,” arXiv preprint arXiv:2203.16222,
2022.
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Results SP
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✔ Trend observed on oracle data carries over to DNN-based magnitude
and phase estimation

✔ Machine Learning can be used to estimate phase also with short frames
✔ Phase-aware processing is particularly beneficial with short frames
✔ Short frames of 4ms enable short latency and high quality
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Non-linear Multi-channel Filtering

Kristina Tesch, M.Sc.



Multi-channel Speech Enhancement SP

Linear spatial
filter (LSF) Post-filter (PF)

Joint spatial and
tempo-spectral non-linear

filter (JNF)

■ Analytic solutions
■ Computationally lightweight
■ MMSE optimal for Gaussian

noise[8]

■ Drops linearity assumption
■ Integrates spatial and

tempo-spectral processing
More powerful processing model
Parameter estimation challenging

[8] K. Tesch and T. Gerkmann, “Nonlinear spatial filtering in multichannel speech enhancement,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 29, pp. 1795–1805, 2021.
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Proof of Concept with Oracle Data SP

Inhomogeneous noise field created by five directional Gaussian noise sources
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Joint non-linear spatial-spectral filter is a
more powerful processing model

∆ POLQA: 2.64 ± 0.08
∆ SI-SDR: 9.92 ± 0.30
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From Theory to Practice: DNN-based JNF[9] SP

■ We saw: Joint nonlinear spatial spectral filtering (JNF) is more
powerful than traditional beamformer + postfilter

■ Above examples provided a proof of concept, but estimating the
required higher-order statistics is very difficult in practice

Research Questions
■ Do our theoretical findings carry over when learning a JNF using

DNNs?
■ Such DNN-based JNFs are fundamentally different to DNN-guided

beamformers!
■ How important are the interdependencies between different sources of

information?
■ What are the implications that arise for the design of network

architectures?

[9] K. Tesch and T. Gerkmann, Insights into deep non-linear filters for improved multi-channel speech enhancement, submitted to IEEE
Trans. Audio, Speech, and Language Proc., 2022. [Online]. Available: https://arxiv.org/abs/2206.13310.
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From Theory to Practice: DNN-based JNF[9] SP

■ We saw: Joint nonlinear spatial spectral filtering (JNF) is more
powerful than traditional beamformer + postfilter

■ Above examples provided a proof of concept, but estimating the
required higher-order statistics is very difficult in practice

Research Questions
■ Do our theoretical findings carry over when learning a JNF using

DNNs?
■ Such DNN-based JNFs are fundamentally different to DNN-guided

beamformers!
■ How important are the interdependencies between different sources of

information?
■ What are the implications that arise for the design of network

architectures?

[9] K. Tesch and T. Gerkmann, Insights into deep non-linear filters for improved multi-channel speech enhancement, submitted to IEEE
Trans. Audio, Speech, and Language Proc., 2022. [Online]. Available: https://arxiv.org/abs/2206.13310.
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Approach - Network Architecture SP
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Network structure that allows to easily control the integration of
different sources of information

■ Combine spatial with spectral (F-JNF) or temporal (T-JNF)
information or both (FT-JNF)
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Approach - Dataset SP

Speaker extraction focusing on spatial filtering capabilities

Task:
■ Speaker extraction scenario
■ 2-5 microphones in a circular array
■ 1 target speaker
■ 5 interfering speakers

target source

φ

Dataset generation:
■ Clean speech from WSJ0 (75

male and 74 female speakers)
■ 6000 training examples (25

hours of training data)
■ Simulation using the

source-image model
■ SNR between -9 and 2 dB
■ Room dimensions between

(2.5 × 3 × 2.2) and
(5 × 9 × 3.5) meters

■ T60: 0.2 − 0.5 seconds

21 T. Gerkmann: Machine Learning for Speech Signal Processing on Hearing Devices



Interdependency Between Information Sources SP

∆ POLQA ESTOI

F-JNF 1.15 0.70
T-JNF[10] 0.74 0.63
FT-JNF (ours) 1.43 0.76

Addional spectral information is
more valuable than temporal
information
Spectral information increases
the spatial selectivity
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[10] X. Li and R. Horaud, “Multichannel speech enhancement based on time-frequency masking using subband long short-term memory,”,
2019, pp. 298–302.
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Non-Linear Versus Linear Spatial Filter SP

Blind estimation using DNNs

1.5

2

2.5

3

PO
LQ

A

2 3 4 5

0.4

0.6

0.8

Number of microphones

ES
T

O
I

LSF (MVDR) LSF + PF FT-JNF

0

2

4

6

8
Clean

Fr
eq

ue
nc

y
[k

H
z]

−30 −20 −10 0 10

Noisy

0

2

4

6

8
LSF (MVDR)

Time [s]
Fr

eq
ue

nc
y

[k
H

z] LSF + PF

Time [s]

0 0.5 1 1.5

FT-JNF

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

A joint non-linear filter outperforms an oracle linear
spatial filter plus post-filter
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Comparison with State-of-the-art Methods SP

■ Complex masked-based:
FT-JNF, T-JNF, CRNN

■ Beamformer-inspired:
FaSNet+TAC, EaBNet, COSPA

■ FT-JNF and T-JNF have the
same lowest number of
parameters

Proposed FT-JNF outperforms
all other methods

0.5
0.6
0.7
0.8

ES
T

O
I

0.5

1

1.5

∆
PO

LQ
A

FT-JNF
T-JNF [10]

CRNN [11]

FaSNet+TAC [12]

EaBNet [13]

COSPA [14]

20
40
60

CQ
S

Noisy:

[11] S. Chakrabarty and E. A. P. Habets, “Time–frequency masking based online multi-channel speech enhancement with convolutional
recurrent neural networks,”, vol. 13, no. 4, pp. 787–799, 2019.

[12] Y. Luo, Z. Chen, N. Mesgarani, and T. Yoshioka, “End-to-end microphone permutation and number invariant multi-channel speech
separation,”, Barcelona, Spain, 2020, pp. 6394–6398.

[13] A. Li, W. Liu, C. Zheng, and X. Li, “Embedding and beamforming: All-neural causal beamformer for multichannel speech
enhancement,”, Singapore, 2022, pp. 6487–6491.

[14] M. M. Halimeh and W. Kellermann, “Complex-valued spatial autoencoders for multichannel speech enhancement,”, Singapore, 2022,
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DNNs for Joint Spatial-spectral Filtering SP

Conclusions

Deep non-linear filters overcome the linear processing model and exploit
dependencies between spatial and tempo-spectral information

Spectral information increases the spatial selectivity of the filter
The proposed scheme that exploits spatial, spectral and temporal
information outperforms state-of-the-art network architectures
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Diffusion-based Generative Models for Speech
Enhancement
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Speech Enhancement with Deep Learning SP

■ Speech enhancement algorithms are nowadays dominated by the use of
deep neural networks (DNNs)

✔ Exploit temporal-spectral structure to distinguish speech from noise

Discriminative model vs. generative model
■ Statistical models can be classified as generative or discriminative
■ Discriminative models dominate the task of speech enhancement
■ Recently, there is a trend towards generative approaches
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Why Generative Modeling? SP

Discriminative models
■ Learn to directly map noisy speech to the corresponding clean speech
■ Trained with a variety of clean/noisy speech pairs
✖ No guarantee of robustness in unseen situations
✖ Unpleasant speech distortions may outweigh the benefits of noise

reduction

Generative models
■ Learn a prior distribution over clean speech data
■ Infer clean speech from noisy signals that are assumed to lie outside the

learned distribution
✔ Generalize well to unseen acoustic situations
✔ Aim to produce natural sounding speech
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Deep Generative Models SP

Popular deep generative models
■ Variational autoencoders (VAEs)
■ Generative adversarial networks (GANs)
■ Auto-regressive models
■ Diffusion-based generative models

x
Encoder
qφ(zjx) z

Decoder
pθ(xjz) x0

x0 x1 x2 xT: : :

VAE

Diffusion
Models
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VAE-based Speech Enhancement SP

Our contributions:
■ Incorporate temporal dependencies into the VAE[15]

■ Improve the robustness with a noise-aware encoder[16]

■ Guide the VAE with a supervised classifier trained on voice acticity or
ideal binary mask prediction[17]

■ Disentanglement learning of the latent variables applied to audio-visual
voice activity detection[18]

Limitations:
✖ VAE needs additional noise estimator to form a Wiener filter
✖ Limited by the bottleneck of the latent representation

[15] J. Richter, G. Carbajal, and T. Gerkmann, “Speech enhancement with stochastic temporal convolutional networks,” Proc. Interspeech
2020, pp. 4516–4520, 2020.

[16] H. Fang, G. Carbajal, S. Wermter, and T. Gerkmann, “Variational autoencoder for speech enhancement with a noise-aware encoder,”
IEEE Int. Conf. on Acoustics, Speech and Signal Proc. (ICASSP), pp. 676–680, 2021.

[17] G. Carbajal, J. Richter, and T. Gerkmann, “Guided variational autoencoder for speech enhancement with a supervised classifier,” IEEE
Int. Conf. on Acoustics, Speech and Signal Proc. (ICASSP), pp. 681–685, 2021.

[18] G. Carbajal, J. Richter, and T. Gerkmann, “Disentanglement learning for variational autoencoders applied to audio-visual speech
enhancement,” IEEE Workshop on Applications of Signal Proc. to Audio and Acoustics (WASPAA), pp. 126–130, 2021.
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Introduction to Diffusion Models SP

Generative diffusion models[19,20] consist of two processes:
■ Forward diffusion process that gradually adds noise to the input
■ Reverse process that learns to generate data by denoising

Forward diffusion process

Reverse process

data noise

[19] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium
thermodynamics,” in International Conference on Machine Learning, 2015, pp. 2256–2265.

[20] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Inf. Proc. Systems (NeurIPS), vol. 33,
pp. 6840–6851, 2020.
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Stochastic Diffusion Process SP

■ Model the corruption of clean speech as a diffusion process {xt}T
t=0

[21]

■ Define the diffusion process as a solution to a stochastic differential
equation (SDE)[22]

x0 xT

dxt = γ(y − xt)dt+ g(t)dw

dxt = [−γ(y − xt) + g(t)2 rxt log pt(xt)
| {z }

≈ sθ(x;y;t)

]dt+ g(t)dw̄

Clean Corrupted

bx0 ~xT

noisy speechspeech

■ The learned score model sθ(xt , y, t) predicts the added Gaussian noise

[21] S. Welker, J. Richter, and T. Gerkmann, “Speech enhancement with score-based generative models in the complex stft domain,” Proc.
Interspeech 2022, 2022.

[22] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic
differential equations,” Int. Conf. on Learning Representations (ICLR), 2021.
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Reverse Sampling SP

■ Initialize reverse process with x̃T ∼ NC(xT ; y, σ(T )2I)
■ Solve reverse SDE with general-purpose SDE solvers (e.g.

Euler-Maruyama)
■ Necessary reverse steps N ≈ 30 ⇒ 30 model calls

Clean Corrupted
noisy speechspeech

Reverse process

bx0 ~xT

dxt = [−γ(y − xt) + g(t)2sθ(xt;y; t)]dt+ g(t)dw̄

33 T. Gerkmann: Machine Learning for Speech Signal Processing on Hearing Devices



Experimental Setup SP

Datasets:
■ WSJ0-CHiME3

■ Clean speech utterances from Wall Street Journal (WSJ0)[23]

■ Noise signals from CHiME3[24]

■ SNR uniformly sampled between 0 and 20 dB
■ Voicebank-Demand[25]

■ Standardized dataset often used as a benchmark

Matched and mismatched conditions:

condition train/valid test
matched WSJ0-CHiME3 WSJ0-CHiME3

mismatched Voicebank-Demand WSJ0-CHiME3

[23] J. S. Garofolo, D. Graff, D. Paul, and D. Pallett, CSR-I (WSJ0) Complete, May 2007.
[24] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third ‘chime’speech separation and recognition challenge: Dataset, task and

baselines,” IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 504–511, 2015.
[25] C. V. Botinhao, X. Wang, S. Takaki, and J. Yamagishi, “Investigating rnn-based speech enhancement methods for noise-robust

text-to-speech,” 9th ISCA Speech Synthesis Workshop, pp. 159–165, 2016.
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Results SP

Matched condition: Training and test on same datasets

Method Type POLQA ESTOI SI-SDR [dB]

Mixture - 2.63 ± 0.67 0.78 ± 0.14 10.0 ± 5.7

RVAE G 2.97 ± 0.63 0.85 ± 0.11 15.8 ± 5.0
CDiffuSE G 2.77 ± 0.52 0.80 ± 0.09 7.3 ± 1.9

SGMSE+ (ours) G 3.71 ± 0.50 0.92 ± 0.05 17.2 ± 4.6

Conv-TasNet D 3.65 ± 0.54 0.93 ± 0.05 19.9 ± 4.3
MetricGAN+ D 3.52 ± 0.61 0.88 ± 0.08 10.5 ± 4.5

Mismatched condition: Training and test on different datasets

RVAE G 2.84 ± 0.61 0.82 ± 0.11 13.9 ± 4.8
CDiffuSE G 2.20 ± 0.50 0.71 ± 0.10 3.8 ± 2.5

SGMSE+ (ours) G 3.43 ± 0.61 0.90 ± 0.07 16.2 ± 4.1

Conv-TasNet D 3.13 ± 0.60 0.88 ± 0.08 15.2 ± 3.9
MetricGAN+ D 2.47 ± 0.67 0.76 ± 0.12 6.8 ± 3.1
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Matched vs. mismatched condition SP

■ Performance for the matched condition is on par or even slightly better
than discriminative baselines

✔ Proposed approach is more robust in unseen situations

Noisy SGMSE+ Conv-TasNet MetricGAN+
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Listening experiment SP

■ 10 participants rate 12 random examples from the test set

SGMSE+
(matched)

SGMSE+
(mismatched)

Conv-TasNet
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MetricGAN+
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Audio Examples SP

Matched Mismatched

Clean
Noisy
RVAE

SGMSE+
Conv-TasNet

Clean
Noisy
RVAE

SGMSE+
Conv-TasNet

38 T. Gerkmann: Machine Learning for Speech Signal Processing on Hearing Devices


null

7.704


null

7.704


null

7.704


null

7.59483


null

7.704


null

7.704


null

7.704


null

7.704


null

10.584


null

10.584


null

10.584


null

10.584


null

10.584


null

10.584


null

10.584


null

10.584



Dereverberation - Audio Examples SP

Clean

Reverberant

SGMSE+

Clean

Reverberant

SGMSE+

■ Interestingly, the same architecture can also be used very well to
dereverberate signals!

39 T. Gerkmann: Machine Learning for Speech Signal Processing on Hearing Devices


null

7.212


null

7.416


null

7.416


null

13.392


null

13.392


null

13.392



Score-based generative models SP

Conclusions

Our proposed approach:
■ Performs on par with state-of-the art discriminative methods
■ Can be applied both to denoising and dereverberation
■ Generalizes better under unmatched training conditions

1. S. Welker, J. Richter, and T. Gerkmann, “Speech Enhancement with Score-Based
Generative Models in the Complex STFT Domain,” in Interspeech, Sept. 2022.

2. J. Richter, S. Welker, J.-M. Lemercier, B. Lay and T. Gerkmann, “Speech
Enhancement and Dereverberation with Diffusion-based Generative Models,”
submitted to TASLP, 2022.
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SP

Conclusions



Conclusions SP

■ Deep Neural Networks (DNNs) are very powerful tools for single
channel enhancement and source separation

■ DNNs allow to estimate spectral phases to allow for high quality speech
at low algorithmic latencies

■ For multichannel speech enhancement, DNNs can be used to learn joint
nonlinear spatial-spectral filters that may outperform the traditional
beamformer + postfilter framework

■ Diffusion-based generative models are an exciting upcoming field that
may increase the robustness in unseen environments
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