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Cepstral Smoothing of Spectral Filter Gains for
Speech Enhancement Without Musical Noise

Colin Breithaupt, Timo Gerkmann, and Rainer Martin, Senior Member, IEEE

Abstract—Many speech enhancement algorithms that modify
short-term spectral magnitudes of the noisy signal by means
of adaptive spectral gain functions are plagued by annoying
spectral outliers. In this letter, we propose cepstral smoothing
as a solution to this problem. We show that cepstral smoothing
can effectively prevent spectral peaks of short duration that
may be perceived as musical noise. At the same time, cepstral
smoothing preserves speech onsets, plosives, and quasi-stationary
narrowband structures like voiced speech. The proposed recursive
temporal smoothing is applied to higher cepstral coefficients only,
excluding those representing the pitch information. As the higher
cepstral coefficients describe the finer spectral structure of the
Fourier spectrum, smoothing them along time prevents single
coefficients of the filter function from changing excessively and
independently of their neighboring bins, thus suppressing musical
noise. The proposed cepstral smoothing technique is very effective
in nonstationary noise.

Index Terms—Cepstral analysis, cepstral smoothing, musical
noise, nonstationary noise, smoothing methods, speech enhance-
ment.

I. INTRODUCTION

ILTERS for the enhancement of noisy speech signals
F are often realized as a multiplicative gain in the dis-
crete Fourier transform (DFT) domain. With a high spectral
resolution, processing in the DFT domain allows for noise
suppression in between pitch harmonics giving a relatively high
auditive quality. A problem that comes along with this approach
is the relatively large variance of spectral coefficients. In the
adaptation of filter gains, spectral outliers may emerge that
lead to an annoying auditive phenomenon called musical noise
[1]. Musical noise and other artifacts are especially difficult to
avoid under nonstationary noise conditions.

One way of preventing these artifacts is the soft-gain spectral
weighting introduced in [2]. As this method relies on the esti-
mates of the noise power spectral density and the signal-to-noise
ratio (SNR), it is sensitive to estimation errors of these two pa-
rameters. As estimation errors are unavoidable in the statistical
processing of noisy signals, different strategies have been pre-
sented that take these errors into account. In [3], a filter is de-
scribed that has several parameters for adapting the spectral gain
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function to the noise condition. Another strategy is to search and
remove spectral peaks in the filtered signal that lead to musical
noise [4]. In [5], a recursive averaging is applied to the spectral
gain function that smooths out fluctuations. As such a temporal
smoothing would also severely affect speech components, the
smoothing constant of this algorithm has to be carefully adapted.

In this contribution, we propose the smoothing of the filter
gain function in the cepstral domain to suppress the tendency of
adaptive spectral filters to produce musical noise. We show that
this method also works well in nonstationary noises, to which
the conventional approaches are particularly sensitive. The new
method results in an effective smoothing of fine spectral varia-
tions that may be perceived as musical noise. At the same time,
the spectral characteristics of speech are not affected.

This letter is structured as follows: In the following section,
we introduce the conventional adaptation of filter gains and
show how the amount of musical noise depends on the degree of
temporal smoothing that is applied to the estimate of the SNR.
Section III introduces the cepstral smoothing of the spectral
gain function. The evaluation of the new method is detailed in
Section IV.

II. ANALYSIS OF THE OVERALL FILTER FUNCTION

The observed noisy signal y(t), where ¢ € Z is the dis-
crete time index, is assumed to be a clean speech signal s(%)
perturbed by statistically independent additive noise n(t), i.e.,
y(t) = s(t) + n(t). The observed signal y(t) is segmented into
frames of length M, with frame overlap M/2, and weighted
by a periodic Hann window wpann(7), 7 = 0... M — 1. The
weighted frames are transformed into the DFT domain resulting
in the observed spectrum

Y (k1) = DFT {whann(f)y(z% + T>}
= S(k, 1)+ N(k,1I)

where [ € 7 denotes the frame index, and k = 0... M —1 is the
frequency bin index. Throughout this letter, the sampling rate of
the signal is fs = 8 kHz, and the DFT length is M = 256.
The clean speech spectral coefficients given the observation
Y (k,1) are estimated as S(k, 1) = G(k,1) Y (k,[). The spectral
filter gain function G(k,!) can be the Wiener filter
G(k,l) = M €))
14 &(k, 1)
where é’ denotes an estimate of the a priori SNR. It is generally
obtained using the “decision-directed” approach [1] as follows:
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Fig. 1. Log-histogram of the filtered spectrum |S’(k7 1)| for Gaussian noise. For
comparison, the Rayleigh pdf of the magnitude of Gaussian noise is also given.
The lower the smoothing constant «, the more spectral outliers can be observed.
The outliers of relatively large amplitude are perceived as musical noise.
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Fig. 2. Log-histogram of the filtered spectrum |S(k,7)| for babble
noise. For comparison, the histogram of scaled unfiltered babble noise
(S(k,1) = Gmin N(k,1)) is also given. Due to high fluctuations in the noise,
the number of outliers can hardly be controlled by the choice of a.

This estimate depends on an estimate P,(k,l) of the
noise power spectral density [6] and on an estimate
4(k,1) = |Y (k,1)|?/Pn(k, 1) of the a posteriori SNR. Typical
values for the smoothing factor « are in the range 0.92 to 0.98
[2]. A flooring of £(k, I) with respect to a minimum value &y,
alleviates musical noise to some extent [2]. This is equivalent
to defining a lower limit Gpin = Emin/ (1 + &min) for (1). We
set Emin = 0.2 as in [2].

A drawback that comes with parameter estimators like (2) is
musical noise. As reported in [2], a lower value of the smoothing
constant « leads to an increased amount of these artifacts. In
Fig. 1, we show the log-histogram of |S(k, )| in the case of fil-
tered white Gaussian noise. No speech is present. The log-his-
togram considers all spectral values of all frames [, excluding
the dc and Nyquist frequency bin. For comparison, the Rayleigh
probability density function (pdf) of the scaled magnitude of
Gaussian noise (|S(k,1)| = Gumin|N(k,1)|) is also given. In the
graph, the filtered spectrum is normalized by \/P,. The filter
uses (1) and (2) witha = 0.92...0.98 and £,,,;,, = 0.2, and also
the soft-gain of [2]. To avoid distortions of the speech signal, a
lower value of « is desirable [2]. However, with lower values
of «a, the histogram has heavier tails caused by more outliers,
as we see in Figs. 1 and 2. Correspondingly, the amount of mu-
sical noise perceivable in the filtered signal increases. Thus, the
statistical analysis as seen in the histograms gives an indication
of the musical noise. In this letter, in addition to listening tests,
we therefore use log-histograms to assess the amount of musical
noise.

The success of avoiding musical noise with the right choice
of « is also limited by the statistical properties of the noise.
In Fig. 2, it becomes evident that the log-histogram of filtered
babble noise (many people speaking in the background) hardly
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changes with different choices of «. Short voiced babble-noise
bursts in a frame [ do not contribute to the noise power esti-
mate immediately and are thus likely to increase the short-term
apriori SNR estimate § (k,1). As aconsequence of a larger value
of £(k, 1), the gain function (1) attenuates these fluctuations less,
making them even more pronounced in the filtered spectrum.

In the following section, we therefore aim at the suppression
of fluctuating peaks in the gain function G(k, ) since they pro-
duce spectral outliers in the processed signal. We exploit the fact
that these peaks are spectrally narrow and have a duration much
shorter than the salient spectral features of speech.

III. CEPSTRAL SMOOTHING

We propose a temporal smoothing of the cepstrum of the gain
function G(k,l) in order to avoid a peaked shape of G(k,!)
due to outliers in noise. The motivation for a cepstral repre-
sentation of G(k,!) is that speech characteristics and the un-
natural noise artifacts are represented by a separate subset of
coefficients in this domain. The cepstral bins describe different
degrees of detail in the spectral structure. The coarse spectral
envelope of speech is described by the first few cepstral coeffi-
cients. The pitch is represented by only one or by two consec-
utive higher coefficients. Spectral peaks in G(k,[) caused by
outliers will be represented by some of the remaining higher
cepstral coefficients, because they belong to the fine structure
of G(k,1). Smoothing these higher cepstral coefficients will re-
duce their temporal dynamics. As the narrow spectral peaks of
single outliers appear only for a duration of a single frame, they
are strongly affected by such a cepstral smoothing.

Speech onsets and the spectral envelope of fricatives and plo-
sives must not be distorted by the smoothing procedure. There-
fore, the smoothing is not applied to low cepstral coefficients.
This preserves the principal structure of the gain function in the
case of speech presence. Additionally, less smoothing is used
for the pitch-related coefficients. Due to the reduced smoothing
of these cepstral coefficients and the relatively long duration of
voiced speech sounds, the fine structure of speech—Ilike pitch
harmonics—is not affected severely.

A cepstral representation of G(k, ) from (1) is calculated for
each frame [ as

GeePst(k/, 1) = IDFT{log(G(k, 1))} 3)

where IDFT{-} is the inverse DFT of length M resulting in cep-
stral bins &’. For reasons of symmetry, we only need to consider
the first D = M /2 + 1 bins for the following description. Note
that the IDFT can be replaced by the discrete cosine transform
(DCT), as is common practice in feature-extraction frontends
for speech recognition.

A smoothed version G (k/, 1) is calculated as

smooth
“epst / “epst /
GEP (K1) = BOET (K~ 1)

+(1 =BG E D). (@)

The smoothing is applied to cepstral bins k&' € {k ... D —

low

11K’ The set of cepstral indices K’ consists of the cepstral
index &/ of the pitch and its two cepstral neighbors, i.e.,

pitch
K" = {kbiten — 1 Epicens + 1}. The pitch index k., ., is

J
- pitch . pitch ) ?
determined as the index of the maximum value of G°P5* (£, ])
in the range that corresponds to a pitch frequency between 70

and 500 Hz. For f, = 8 kHz, the search interval thus is k' =
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Fig. 3. Log-histogram of the filtered spectrum |§ (K, 1)| for Gaussian noise as
in Fig. 1 but with cepstral smoothing applied. Cepstral smoothing reduces the
number of outliers considerably. The residual noise sounds like Gaussian noise.

16...114. k., is only determined when speech presence is
signaled by a voice activity detection (VAD) [7]. Otherwise, K’
is the empty set. For the cepstral coefficients k' € K’, we use a
lower smoothing constant Gptcn in (4). For & € {0... k], —
1}, no smoothing is applied at all; therefore, Gzﬁf’jﬁ)th(k’ ) =
Geepst (k' ). All of the above smoothing operations have to be
applied accordingly to the remaining symmetric half of the cep-
stum, ¥ =D ... M — 1.

Note that the log-function in (3) is not essential for the se-
lective smoothing just described. Nevertheless, we found that
this nonlinear transform of G(k, 1) considerably reduces noise
shaping caused by (4) in stationary Gaussian noise.

The final smoothed spectral gain function is obtained by a

transform inverse to (3) as follows:
Gumootn (k. 1) = exp (DFT {GG0 (K, D)})  (5)

where Gymootn (K, 1) is additionally constrained to values below
or equal to one. The resulting filter gain can then be applied
instead of (1).

Although a VAD is used for finding ki, we found that
false alarms do not have a large effect. For background noises or
unvoiced sounds, the maximum cepstral bin in the pitch range
does not contribute as significantly to the filter result as in the
case of voiced speech.

IV. EVALUATION

We now compare the above algorithm with a conventional
approach that does not use cepstral smoothing. The evaluation
of the algorithms is done in three steps. First, we analyze the
statistics of Gaussian noise and babble noise after processing.
Then, a comparison of spectrograms demonstrates how cepstral
smoothing reduces noise fluctuations and at the same time pre-
serves the speech characteristics. Finally, the results of listening
tests are presented.

Figs. 3 and 4 depict the log-histograms corresponding to
Figs. 1 and 2 but with cepstral smoothing (4) applied. From
the figures, it becomes clear that the number of outliers is
dramatically reduced. Even for « = 0.92, no musical noise is
perceivable in Gaussian noise. The filtered babble noise also
sounds more natural than in the case of the unmodified filter.
The amplification of voiced bursts is alleviated so that tonal
residuals occur to a much lesser degree.

For the analysis of the spectra and the listening test, we used
the following configuration of the filters. The conventional ref-
erence algorithm uses av = 0.97 as the smoothing factor in (2).
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Fig. 4. Log-histogram of the filtered spectrum |S(k, )| for babble noise as
in Fig. 2 but with cepstral smoothing applied. The residual noise sounds more
natural, as spectral outliers are less pronounced.

This gave a good trade-off between the suppression of noise
fluctuations in stationary noise and the audible distortions of
speech. Additionally, we applied the multiplicative soft-gain [2]
that considers speech presence uncertainty. We denote the con-
ventional filter as “soft-gain.” As recommended in [2], we also
replace the filter gain G(k,!) by the constant G, whenever
the VAD signals speech absence.

For the proposed approach, we set a« = 0.94 in (2). The
smoothing factor for the cepstral smoothing is set to § = 0.8.
With k], = 4, a sufficient protection of the speech envelope
is achieved. For &’ € ', we choose Bpiten = 0.4. The filter
with cepstral smoothing neither uses the soft-gain [2] nor the
VAD-based substitution G(k,!) — Gin during speech pauses,
because it has no audible effect.

Fig. 5 shows the spectrograms of a noisy speech sample
filtered with the conventional approach and the cepstrally
smoothed filter, respectively. The noisy signal is perturbed by
babble noise, which has been recorded inside a cafeteria. It
consists of nonstationary speech bursts and a relatively sta-
tionary floor due to reverberation. While the conventional filter
is not able to suppress voiced bursts in babble, it suppresses
the stationary portion. This enhances the spectral contrast
in the residual noise. The filtered babble contains unnatural
tonal residuals. The cepstrally smoothed filter suppresses the
stationary portions of the babble noise to the same degree.
Additionally, it hinders tonal contents from being emphasized.

The cepstrally smoothed filter also better preserves important
structures of speech. In the spectrograms, it can be seen that
spectrally broad sounds are less distorted, e.g., the marked plo-
sive /k/. As pitch harmonics are less smoothed, low energy pitch
harmonics are also better preserved.

The choice of parameters « = 0.94 and § = 0.8 for our ap-
proach results in a slight noise shaping at the end of words for
white and pink Gaussian noise, which makes the speech sound
slightly reverberant. This does not occur for § = 0.7. How-
ever, many participants of the listening test indicated increased
listening comfort when the reverberation effect was present, as
low energy syllables at the end of words are less attenuated.

In listening tests, we compared the performance of the con-
ventional method to the new cepstral smoothing approach in
four nonstationary noisy environments (babble, subway, street,
and white noise bursts) and two stationary noisy environments
(pink and white). For each noise type, ten different speech sam-
ples from [8] were presented, five spoken by male, five by fe-
male speakers. In order to allow the subjects to get an impression
of the residual noise by itself, the speech samples were preceded
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Fig. 5. Comparison of spectrograms. The sentence is “Whoever cooperates in finding Nan’s cameo will be rewarded.” On the left, the clean (top) and the unfiltered
signal (bottom) are shown. The noise is babble noise at an SNR of 0 dB. On the right, the filtered signals are given. The conventional filter (top) causes more noise
fluctuations than the filter with cepstral smoothing (bottom). At the same time, cepstral smoothing preserves the structure of speech better.

TABLE I
RESULTS OF THE LISTENING TEST FOR BABBLE AND PINK NOISE. THE
NUMBERS STATE THE PERCENTAGE OF VOTES IN FAVOR OF ONE OF THE
FILTERS. THE CHOICE “EQUALLY SUITED” WAS ALSO POSSIBLE

[ Noise Category | Ceps. Sm.  Soft-gain [2]  Equally Suited ]
Babble  Backgr. 68% 5% 27%
Speech 54% 8% 38%
Overall 75% 7% 18%
Pink Backgr. 18% 18% 64%
Speech 52% 23% 25%
Overall 50% 22% 28%

and followed by speech pauses of 3 s overall duration. The av-
erage duration of the resulting samples was about 7 s. The noise
was scaled and added such that the noisy samples had an average
segmental SNR of 0 dB in frames where speech is present. Each
of the noisy samples was filtered by the conventional and pro-
posed approach, respectively, resulting in ten pairs of enhanced
samples per noise type. The participants were asked to select the
file in each pair they preferred in terms of speech quality, natu-
ralness of the background, and overall quality, respectively. The
comparison was done blindly and in randomized order. The par-
ticipants were divided into two groups: experts and nonexperts.
While the seven expert listeners clearly favored the proposed
cepstral smoothing approach, we would like to present detailed
results only for the 12 nonexpert listeners for babble and pink
noise in Table I. It may be seen that in nonstationary environ-
ments, the participants favored the cepstral approach. This is
because the background noise sounds less tonal and thus more
natural with the proposed approach. This is achieved without af-
fecting the speech quality. On the contrary: for stationary noise
sources, where both algorithms perform equally well in terms of
background quality (no musical noise), a preference for our ap-
proach in terms of speech and overall quality may be seen. Note
that the parameter settings for all noisy environments were the
same. Audio examples are available at [9].

V. CONCLUSION

Cepstral smoothing is a useful amendment to speech
enhancement filters operating in real noise environments.
Annoying noise fluctuations are prevented even in the case of
babble noise. As opposed to conventional methods, cepstral
smoothing allows for a selective smoothing of different spectral
structures represented by the respective cepstral coefficients.
This makes the protection of the characteristics of speech
possible while musical noise is suppressed.
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