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Estimation Based on a Likelihood Ratio
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Abstract—In this contribution we present an improved estima-
tor for the speech presence probability at each time-frequency
point in the short-time Fourier-transform domain. In contrast to
existing approaches this estimator does not rely on an adaptively
estimated and thus signal dependent a priori signal-to-noise ratio
estimate. It therefore decouples the estimation of the speech
presence probability from the estimation of the clean speech
spectral coefficients in a speech enhancement task. Using both a
fixed a priori signal-to-noise ratio and a fixed prior probability
of speech presence, the proposed a posteriori speech presence
probability estimator achieves probabilities close to zero for
speech absence and probabilities close to one for speech presence.
While state-of-the-art speech presence probability estimators use
adaptive prior probabilities and signal-to-noise ratio estimates we
argue that these quantities should reflect true a priori information
that shall not depend on the observed signal. We present a
detection theoretic framework for determining the fixed a priori
signal-to-noise ratio. The proposed estimator is conceptually
simple and yields a better trade-off between speech distortion
and noise leakage than state-of-the-art estimators.

Index Terms—Generalized likelihood ratio, softgain, speech
analysis, speech enhancement, speech presence probability (SPP).

I. INTRODUCTION

FOR many short-time Fourier transform (STFT) basedspeech processing systems an estimator for the speech-

presence-probability (SPP) in each time-frequency point is

of great interest. For instance in speech enhancement clean-

speech estimators are often derived under the assumption that

speech is actually present. Since this is neither true in speech

pauses nor between the spectral bins of the harmonics of

a voiced sound, the SPP should be taken into account [1],

[2], [3], [4]. For clean-speech estimators, it is crucial that

the SPP estimator does reliably recognize speech presence to

avoid spectral distortion of low energy speech components.

Most existing SPP estimators are designed in a way that they

satisfy this demand, and yield high SPP estimates whenever

speech is present. However, SPP estimators like [1], [2],

[3], have the drawback that they usually do not yield small

values for the SPP at time-frequency points where speech

is absent, e.g. between the harmonics of voiced speech or

even in speech pauses. The estimator in [4] overcomes this
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problem by making the a priori SPP signal dependent. As a

consequence, the resulting a posteriori SPP is dominated by

this a priori SPP. In this contribution we show why these

problems arise and present a novel way of implementing

the a posteriori SPP estimator that yields a better trade-off

between speech-distortion and noise leakage than state-of-the-

art SPP estimators. Furthermore, SPP estimators that rely on

an observation of the noisy periodogram suffer from random

fluctuations, since the periodogram, as an estimate of the

power spectrum, has a high variance [5]. Therefore, we derive

an SPP estimator from smoothed observations to reduce these

random fluctuations.

This paper is structured as follows: in the next section we

provide a deep insight into the mechanisms of a posteriori

SPP estimation, and conclude that in an SPP estimator the

well known decision-directed approach may not be appropriate

for estimating the a priori signal-to-noise ratio (SNR). We

also provide the theoretical basis for incorporating a smoothed

observation into an SPP estimator. In Section III-A we show

that a smoothed observation reduces the false-alarm rate and

the missed-hit rate when the SPP estimator is interpreted as a

detector. In Section III-B we propose to use an optimally de-

rived fixed value for the a priori SNR that reflects the SNR that

is expected when speech is present. In Section IV we combine

SPPs gained by globally and locally smoothed observations,

and summarize the overall algorithm and the determination

of the parameters. In Section V we discuss the application of

SPP to a speech enhancement task. In Section VI we show

that the proposed method yields a better trade-off between

speech distortion and noise leakage as compared to existing

approaches.

II. GENERALIZED SPEECH PRESENCE PROBABILITY

ESTIMATOR

In this section, we derive the SPP estimator in a generalized

form, providing the theoretical background for incorporating

smoothed observations. We show why the basic SPP estimators

do not yield small SPP estimates at time-frequency points

where speech is absent and discuss existing improvements.

We assume an additive mixture of speech, S(k, l), and
noise, N(k, l), in the STFT domain. Here, k is the frequency
index and l is the frame index. The observed signal is given
by Y (k, l) = S(k, l) + N(k, l) under the hypothesis, H1,

that speech is present. Under the hypothesis, H0, that speech

is absent it is given by Y (k, l) = N(k, l). We will omit
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the indices (k, l) for notational convenience, whenever it is
possible. For the short-time Fourier analysis we use Hann

windows with 75% overlap and a window-length of 32ms.

The signals are sampled at fs = 16 kHz. We assume that
the noise power, σ2

N = E
{
|N |2

}
, is known. In practice, the

noise variance, σ2
N , can be gained using the minimum statistics

[6] or the improved minima controlled recursive averaging [7]

noise power estimation approach. Introducing the a posteriori

signal-to-noise ratio (SNR), γ = |Y |2

σ2
N

, the probability of

speech presence given the observation γ, may be written as
[5]:

P = P (H1|γ) =
Λ

1 + Λ
. (1)

The generalized likelihood ratio (GLR), Λ, is defined as the
weighted ratio of the likelihood of speech presence and the

likelihood of speech absence:

Λ =
q p(γ|H1)

(1 − q) p(γ|H0)
, (2)

where q = P (H1) is the a priori probability of speech
presence and in principle does not depend on the observation.

This term can be used to bias the GLR in favor of either speech

presence (q > 0.5) or of speech absence (q < 0.5). All SPP
estimators mentioned in Section I are implicitly or explicitly

based on the GLR.

As P is a function of the random variable γ, P is also
a random variable. When P is incorporated into a speech
enhancement framework, random fluctuations in P may result
in spectral peaks in the enhanced signal that may be perceived

as musical noise [3]. In order to reduce random fluctuations

in P , we calculate the smoothed observation over a time-
frequency region in the neighborhood of the time-frequency

point under consideration:

γ(k, l) =
1

N

∑

κ ∈ K

λ ∈ L

γ(κ, λ) . (3)

Here, K is the set of adjacent frequency bins, L is the set of

successive time frames, and N = |K| · |L| is the number of
spectral bins which are averaged. For speech absence γ(κ, λ)
is assumed to be short-time stationary in the time-frequency

range K×L. Assuming a Gaussian distribution for the STFT

coefficients, the resulting values γ are approximately chi-
squared distributed [8]:

p
(
γ

∣∣ H0

)
=

(
r

2

) r
2 γ

r
2
−1

Γ( r
2 )

exp

(
−

γ r

2

)
. (4)

Their degree of freedom r = 2Ncdof is increased as com-
pared to the unsmoothed case where only one spectral bin

is considered, i.e. r = 2. The correction factor cdof for the
degrees of freedom results from the fact that the different

values γ(κ, λ) in (3) are not independent, e.g. due to the
overlapping analysis frames and the Hann window. It has to

be determined empirically as detailed in Appendix A.

If speech is present in single bins within the K × L

spectrogram region, the mean γ is likely to be larger than
E{γ|H0} = 1. In order to model speech presence in K×L bins

we assume the speech energy to be distributed homogeneously

over the K × L spectrogram region. This homogeneously

spread speech signal energy in K × L is thus reflected in the

a priori SNR

ξ(k, l) =
1

N

∑

κ ∈ K

λ ∈ L

ξ(κ, λ) , (5)

with ξ(κ, λ) = E{|S(κ,λ)|2}
σ2

N
(κ,λ)

. Note that in case N = 1, ξ =

ξ and γ = γ. These assumptions allow us to compute the
likelihood of γ given speech presence, as

p
(
γ

∣∣ H1

)
=

(
r

2 (1 + ξ)

) r
2 γ

r
2
−1

Γ( r
2 )

exp

(
−

γ r

2 (1 + ξ)

)
.

(6)

The GLR thus gives

Λ(γ) =
q

1 − q
·

(
1

1 + ξ

) r
2

exp

(
ξ

1 + ξ

r

2
γ

)
, (7)

which is then used in (1) to compute the a posteriori SPP

P (H1|γ) = P .
The GLR (2) is the ratio of the likelihoods (6) and (4)

weighted by their priors. In order to illustrate the effect of P ,
Figure 1 shows the numerator and denominator of the GLR

(2) and the resulting SPPs for an a priori SNR of ξ = 8 dB
and ξ = −40 dB as a function of the a posteriori SNR.
For this investigation no smoothing of the observations is

performed, i.e. N = 1 in (3). Note that while all computations
are done in the linear domain, for the illustrations the a

posteriori SNR is converted from linear scale to decibels,

as γ[dB] = 10 log10(γ). The intersection of the weighted
likelihoods q p(γ|H1) and (1 − q) p(γ|H0) occurs at

γintersect =
1 + ξ

ξ
log

(
1 − q

q
[1 + ξ]

)
(8)

and demarks the point where the GLR is Λ = 1 and where
the resulting a posteriori SPP is P = 0.5 (cf. Figure 1(a)).
Besides the observation, γ, and its degrees of freedom, r, the

estimate of P depends on the a priori SPP, q = P (H1), and the
a priori SNR ξ (equations (1) and (7)). Since its introduction
in [2], an estimate, ξ̂, of the a priori SNR is usually obtained
using the decision-directed approach [2], [3], [4], [9], as:

ξ̂(k, l) = α
|Ŝ(k, l − 1) |2

σ2
N (k, l − 1)

+ (1 − α)(γ(k, l) − 1) . (9)

The smoothing factor α is an important tuning factor, respon-
sible for the trade-off between speech distortion and random

fluctuations [10]. The estimate ξ̂ is usually bound to be larger
than a minimum value ξmin. Note that as the decision-directed
approach depends on an estimate of the clean speech, Ŝ, the
estimation of the SPP and the estimation of clean speech are

coupled if the decision-directed approach is used for SPP

estimation. While the decision-directed approach is a very

powerful approach to estimate the a priori SNR for filter

gains, there is an intrinsic disadvantage in using the decision-

directed approach for the SPP estimator: at time-frequency

points where speech is absent, the a priori SNR as gained
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with the decision-directed approach is very small and thus the

two likelihoods (4) and (6) that are compared in the GLR

(2) are approximately the same (cf. Figure 1(b)). In this case

the a posteriori SPP estimate, P̂ , does not make use of any
information in the observation, but depends only on the a

priori SPP P (H1) = q.

(a) Case ξ = 8 dB. For γ > γintersect = 3.6 dB the weighted
ratio (2) of the likelihoods (6) and (4) is larger than one and
the SPP, P , is larger than 0.5.

(b) Case ξ = −40 dB. The likelihoods (4) and (6) are
effectively identical and the a posteriori SPP, P , equals
the prior q = 0.5 for all γ.

Fig. 1. Numerator and denominator of the GLR (2) and the resulting a
posteriori SPP, P for different a priori SNRs, ξ. No smoothing is applied
to the observation γ, i.e. N = 1 in (3) and r = 2 in (7). For large ξ
(a), the model works well in detecting speech presence or absence. The prior
q = P (H1) provides for an overall bias. When ξ is small (b), the a posteriori
SPP yields the prior q (here: q = 0.5), independent of the observation.

To overcome this problem Malah, Cox, and Accardi [3]

suggested to perform two iterations on the SPP estimator:

starting with a fixed q = 0.5, the resulting SPP estimate of
the first iteration of (1) is used as a frequency dependent

a priori SPP estimate, q̂(k, l), in the second iteration. In
Figure 2 we compare the a posteriori SPP, P , obtained with
the conventional method to the iterative method proposed in

[3]. The second iteration of (1) causes a steeper transition of

P from its minimum to its maximum, as may be seen by
comparing figures 2(a) and 2(b). Note that in case that ξ̂ is
very small (e.g. ξ = −40 dB in Figure 2(b)), the resulting
SPP still equals the prior q, and the second iteration has no
effect. This situation is somewhat improved, if we limit ξ̂ to be
larger than ξmin = −10 dB as proposed in [3]. The lower limit
on ξ̂ enables the SPP estimate to differ from q even in speech
pauses, because the two likelihoods (6) and (4) cannot become

identical. The second iteration emphasizes this difference, but

the resulting SPP estimate is still far from zero for low SNR

(a) The conventional GLR approach (1), (2) considering a single
spectral bin (r = 2) with q = 0.5.

(b) The GLR approach considering a single spectral bin (r = 2)
with two iterations and an initial q = 0.5 [3].

Fig. 2. Speech presence probability, P , P (H1|γ) for different configurations.
No smoothing is applied to the observation γ, i.e. N = 1 in (3) and r = 2
in (7). The iterative approach [3] results in a steeper transition as compared
to the conventional approach.

conditions, when ξ̂ = ξmin = −10 dB (cf. Figure 2(b)).
Cohen and Berdugo [4] developed the idea of adapting

the a priori SPP, q̂(k, l), further. Their approach exploits the
correlation of speech presence in neighboring frequency bins

of consecutive frames. This is done by taking local and global

averages on the a priori SNR, ξ̂, as gained via the decision-
directed approach. The averages are then mapped on values

between 0 and 1 and reinterpreted as a priori SPPs. Since the

resulting a priori SPP estimate, q̂, is mostly either very close
to one, or very close to zero, it dominates the a posteriori SPP,

P . The likelihood-ratio in (2) has then only a minor effect.

III. PROPOSED IMPROVEMENT

In the previous section we have given the theoretical basis

for the a posteriori SPP estimator based on a smoothed obser-

vation. In this section we show that smoothing the observation

via (3) has two major benefits when compared to the case

where only a single bin is considered. First, the estimator

yields less random fluctuations because the variance of the

observation is reduced. Second, the transition curves for the

SPP estimator are steeper, yielding smaller values for the SPP

at time-frequency points where speech is absent and larger

values where speech is present. Further, we propose using an

optimally derived fixed a priori SNR, ξfix, and a fixed a priori
SPP, q, for the estimaton of the a posteriori SPP, P .

A. Smoothed observation

Without loss of generality, we discuss the smoothing defined

in (3) in the context of a causal system. Instead of considering

only one spectral bin of the observation γ(k, l) for the GLR, as
done in [1], [2], [3], [4], we consider the spectrally neighboring

bins K = {k −∆k, ..., k, ..., k + ∆k}, and preceeding frames
L = {l − ∆l, ..., l} giving N = (∆l + 1) · (2∆k + 1) in (3).
Figure 3 illustrates those N bins used for smoothing. With (6)
and [11, (3.381.4)] it can be shown that the random variable γ
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Fig. 3. Illustration of the computation of the smoothed observation γ(k, l)
via (3) in the time-frequency domain. The current bin (k, l) is marked black.
The gray area illustrates the neighboring bins used for the smoothing, giving
N = [∆l + 1] · [2∆k + 1] bins.

Fig. 4. The speech presence probability, P , for the GLR approach (1), (7)
with the proposed smoothing (3) considering 15 spectral bins (r = 10.2) with
q = 0.5. Smoothing the observation results in an even steeper transition of
P than the iterative approach in [3] (cf. Figure 2(b)).

has the same mean value E{γ} = 1 + ξ as γ, but its variance
is reduced by the factor 2/r.
In Figure 4 the resulting speech presence probability is

plotted versus the observation γ for ∆k = 1, ∆l = 4, N = 15,
cdof = 0.34, and r = 2Ncdof = 10.2. cdof is determined as
detailed in Appendix A. Similar to using multiple iterations

(Figure 2(b)), the separation between speech and noise bins

is more pronounced with the proposed method (Figure 4) as

compared to the basic approach in Figure 2(a). The advantage

of a steeper transition is that low values of γ yield a low SPP,
when ξ is larger than a lower bound.
For further theoretical analyses we employ the false-alarm

rate and the missed-hit rate, as used in classical detection

and estimation theory, e.g. [12, Ch. 2]. Interpreting the SPP

estimator as a detector, we define the false-alarm rate as the

probability that a noise-only bin yields an SPP higher than

0.5. Accordingly, the missed-hit rate is the probability that a
bin that contains speech yields an SPP lower than 0.5. We
show that the smoothed observation γ reduces both the false-
alarm rate and the missed-hit rate. Using [11, (3.381.3)], the

false-alarm rate can be written as

PF,r =

∫ ∞

γintersect

p(γ|H0)dγ =
Γ( r

2 , r
2γintersect)

Γ( r
2 )

, (10)

where γintersect is determined according to (8). For r = 2 this

results in PF,r = exp(−γintersect) = (1−q
q

[1 + ξ])
− 1+ξ

ξ . For

ξ = 8 dB and q = 0.5 the false-alarm rate reduces from PF,r =
10% if one bin is considered (r = 2) to PF,r = 1% forN = 15
bins (r = 2 · N cdof = 10.2, cdof = 0.34). The missed-hit rate
can be written as:

PM,r =

∫ γintersect

0

p(γ|H1)dγ = 1 −
Γ( r

2 , r
2

γintersect
1+ξ

)

Γ( r
2 )

. (11)

For r = 2 this results in PM,r = 1 − exp(−
γintersect

1+ξ
) = 1 −

(a) cF = cM (b) cF = 4 cM

Fig. 5. The risk R(ξ, eξfix) according to (12) as a function of the unknown
a priori SNR ξ and the assumed eξfix. A risk of zero corresponds to perfect
detection. The larger the risk, the larger the probability of incorrectly assigning
a bin to be speech or having missed a true speech bin. An integration of

R(ξ, eξfix) along the horizontal line in the linear domain achieves the minimum
overall risk. Here a smoothing with ∆k = 1 and ∆l = 4 is assumed. The a
priori SPP is q = 0.5.

( 1−q
q

[1+ ξ])
− 1

ξ . For ξ = 8 dB and q = 0.5 the missed-hit rate
reduces from PM,r = 27% considering a single bin (r = 2)
to PM,r = 2% for N = 15 bins (r = 10.2).

B. Fixed a priori SNR and a priori SPP

In Section III-A we have shown that smoothing the observa-

tion leads to a steeper transition of P , enabling values closer
to zero for the SPP at time-frequency points where speech

is absent and values closer to one where speech is present.

In time-frequency points where speech is absent the decision-

directed approach (9) yields an estimate for the a priori SNR,

ξ̂, that is very small. For small values of the a priori SNR
the SPP based on smoothed observations does still not make

much use of the observation, because the likelihoods (4) and

(6) are effectively identical. In this paper however, we argue

that for SPP estimation the a priori SNR should reflect the

SNR that a typical speech sound would have if speech were

present in the considered bin. We therefore propose to use a

fixed prior q and a constant ξfix instead of the decision-directed
a priori SNR estimate ξ̂. This ξfix should be carefully chosen.
If it is too high, the missed-hit rate increases, i.e. weak speech

components are not recognized. If it is too low, the false-alarm

rate increases, i.e. random fluctuations occur in P .
The optimal choice for ξfix is found by minimizing the

average cost for a detection, which is denoted as the risk R.

With an assumed ξ̃fix, γintersect =
1+eξfix

eξfix
log

(
1−q

q
[1 + ξ̃fix]

)
,

(10), and (11), the risk combines the false-alarm rate, PF,r,

and the missed-hit rate, PM,r, as

R(ξ, ξ̃fix) = cF [1 − q]PF,r(ξ̃fix) + cM q PM,r(ξ̃fix, ξ) , (12)

where cF , cM are the respective costs. The probabilities for

correct detection are not considered in (12), since their cost

is assumed to be zero. Note that the missed-hit rate depends

on the assumed a priori SNR, ξ̃fix, and the unknown a priori
SNR, ξ. The false-alarm rate, however, is independent of the
signal power and depends only on the assumed ξ̃fix. In Figure
5, the risk is illustrated for different costs cF and cM .

We find an optimal ξfix by minimizing the risk for all
ξ between -10 dB and 15 dB. The corresponding integral is
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solved numerically in the linear domain, i.e. from ξ = 0.1 to
32:

ξfix = arg min
eξfix

∫ 32

0.1

R(ξ, ξ̃fix)dξ . (13)

When the resulting SPP estimate is applied to a speech

enhancement framework, the costs for false-alarms, cF , and

missed-hits, cM , control the trade-off between noise-leakage

and speech distortion. These costs as well as the range of the

integral in (13) can be adjusted, such that the performance of

the SPP estimator is optimal for the application of interest. A

choice of cM = cF = 1 and zero cost for perfect detection
minimizes the total probability of error [12]. When N = 15
bins with cdof = 0.34 are considered the optimization (13)
yields ξfix = 8 dB. Note that using a value of ξfix = 8 dB in
the GLR does not mean that the a posteriori SNR has to be

higher than γ ≈ 8 dB to “detect” speech presence (P > 0.5),
but only higher than γintersect = 3.6 dB (cf. figures 1(a), 2, and
4).

As in [1] we assume that the probabilities of speech

presence and speech absence in each bin are a priori equal,

and thus set q = 0.5.

IV. IMPLEMENTATION

In the previous section we have shown that smoothing

the observation reduces the false-alarm rate and the missed-

hit rate when the SPP is interpreted as a detector. The

smoothing proposed in Section III-A is done by averaging

over N neighboring bins. The number of bins, N , depends
on the spectral neighbors, ∆k, and temporal neighbors, ∆l, as
N = [∆l+1]·[2∆k+1] (cf. Figure 3). The parameters ∆l and
∆k should be chosen large enough to ensure a low false-alarm
rate, but small enough to preserve the fine structure of speech.

In [4] and [13] the combination of two initial SPPs P̂local and
P̂global has been successfully applied. These initial SPPs are

based on different averaging windows. P̂global is based on a
relatively large averaging window. Thus its variance is greatly

reduced, but the fine structure of the speech signal is lost (see

example in Figure 8(a)). On the other hand P̂local is based
on a much smaller averaging window. It has a high variance

but is able to resolve the fine structure of the speech signal

(see example in Figure 8(b)). The two initial SPPs are then

combined such that the final SPP estimator yields values close

to one only if the global and the local SPP have values close

to one. This is achieved via a multiplicative combination [4],

[13], as:

P̂ = P̂local · P̂global . (14)

In Figure 12(e) it can be seen that the combined SPP, P̂ =
P̂local ·P̂global, based on the local and global averages presented
in Figure 8, has a low variance but resolves the fine structure

of speech.

For our purposes, the following averaging parameters were

found to yield a good trade-off between tempo-spectral resolu-

tion, missed-hit rate, and false-alarm rate of the proposed SPP

estimator. For the temporal smoothing, we propose to average

over T̄ = 64ms of speech. With

∆l = (T̄ − Tseg)/Tshift , (15)

Fig. 6. Illustration of overlapping time segments. With an analysis window
of 32ms and a frame-shift of 8ms the overall time averaging window of 64ms
results in ∆l + 1 = 5.

Fig. 7. Illustration of frequency averaging. With a distance between frequency
bands of 31.25Hz and a 3 dB mainlobe bandwidth of 43Hz the overall
frequency averaging window of 105.5Hz results in 2∆k + 1 = 3.

the analysis frame-length of Tseg = 32ms and a frame-shift of
Tshift = (1 − 0.75)Tseg = 8ms (75% overlap), this results in
∆l = 4 (cf. Figure 6). For the smoothing along frequency we
have

∆kχ =
1

2
(F̄χ − ∆f3 dB)/∆f , (16)

with a frequency bin distance of ∆f = 1/Tseg = 31.25Hz,
and a 3 dB mainlobe bandwidth of the Hann window of

approximately ∆f3 dB ≈ 43Hz. Here χ stands for either the
local or the global average. For the local average we want to

apply only little smoothing to preserve the fine structure of

speech. We propose to average over a frequency window of

F̄local = 105.5Hz which results in ∆klocal = 1 (cf. Figure 7).
For the global average we want to have a relatively large

frequency window to reduce fluctuations in the observation.

We choose a frequency window of 543Hz that results in

∆kglobal = 8.

Using these values for the averaging in the time-frequency

plane and assuming costs of cF = cM = 1 for the computation
of the optimal ξfix, we get the parameters given in Table I. The
subscript χ stands for either the local or the global average.
The parameters are determined as summarized in Figure 9.

Note that the resulting parameters rχ and ξfix,χ are insensitive
to different choices of window overlaps, if the number of

time frames ∆l is chosen accordingly, as the difference in
correlation is considered in cdof (cf. Table I). The algorithm
for estimating the SPP is summarized in Figure 10.

(a) bPglobal (b) bPlocal

Fig. 8. The local and global SPPs of the proposed method for the noisy

speech in Figure 12(b). The resulting SPP, bP = bPlocal ·
bPglobal, can be seen

in Figure 12(e).
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TABLE I
THE PARAMETER SETTINGS FOR THE PROPOSED SPP ESTIMATOR WITH
T̄ = 64MS, F̄LOCAL = 105.5HZ AND F̄GLOBAL = 543HZ. χ STANDS FOR
EITHER THE LOCAL OR THE GLOBAL AVERAGE. THE PARAMETERS ARE
DETERMINED FOR A HANN WINDOW WITH 75% OVERLAP AND 50%

OVERLAP, RESPECTIVELY.

Fig. 9. Determination of the parameters in Table I. χ stands for either the
local or the global average.

Fig. 10. Proposed SPP estimation algorithm. χ stands for either the local or
the global average.

V. APPLICATION TO A SPEECH ENHANCEMENT TASK

A Minimum Mean Square Error (MMSE) estimate Ŝ =
E{S|Y } of the clean speech spectral coefficients, S, can be
obtained in each time-frequency point via the multiplicative

gain functions GH1
and GH0

for the cases of speech presence

and speech absence, respectively:

Ŝ = P · E{S|Y,H1} + (1 − P)E{S|Y,H0}

= [P · GH1
+ (1 − P) · GH0

] · Y (17)

= G̃ · Y .

For speech absence the clean speech estimator E{S|Y,H0} is
zero [1], [3], and the resulting gain function is given by

G̃ = P · GH1
. (18)

We use the log spectral amplitude (LSA) estimator as proposed

in [14]. The LSA estimator is especially popular because of

its robustness against estimation errors in σ̂2
N which results

in less musical noise [4]. If speech presence uncertainty is

incorporated into the LSA, this results in [15]

|̂S|LSA = eP·E{log(|S|)|Y,H1}+(1−P)·E{log(|S|)|Y,H0}

= GP
H1

· G1−P
H0

· |Y | (19)

= G̃ · |Y | .

Again, in speech absence the MMSE optimal estimator yields

a gain function GH0
that is zero. However, then G1−P

H0
is only

one for P ≡ 1 and zero otherwise. Therefore, in practice GH0

has to be set to a lower limit, e.g. 20 log10 GH0
= −25 dB

as proposed in [4]. The estimator in (19) results in larger

improvements in the segmental SNR than the multiplicative

estimator (17) but also in more speech distortions [5]. This

dilemma justifies using the multiplicative modification (17)

also for the LSA estimator as proposed in [3].

Often, a lower bound, Gmin, is used on the overall gain
function resulting in the clean speech estimate

Ŝ = max{G̃,Gmin} · Y . (20)

A higher value of Gmin helps masking musical noise [3] and
limiting speech distortion at the price of a reduced noise

reduction. The optimization of speech enhancement filters

therefore aims at finding estimators P̂ and GH1
that exhibit as

few statistical outliers as possible while introducing minimal

speech distortion, so that lower choices for Gmin are possible.

VI. EVALUATION

In this section, we apply the SPP P̂ to a speech enhancement
filter. Here, P̂ is applied as a multiplicative soft-gain as in (18).
First, we assess the tendency of a filter to produce musical

noise when the estimators under investigation are used. Then,

we compare the estimated SPP as obtained by the proposed

estimator with the results obtained by the SPP estimators

according to [3] and [4]. We measure the speech distortion

and the noise leakage introduced by different SPP estimators,

as well as the segmental SNR improvement for different noise

types.

The filter used in this experiment is the LSA estimator [14],

as this filter is known to produce little musical noise in station-

ary noise with a high value of α. The a priori SNR ξ, that is a
parameter of the LSA-estimator, is estimated by the decision-

directed estimation approach (9). For all our experiments we

set 10 log10 ξmin = −25 dB and 20 log10 Gmin = −25 dB.
We first assess the amount of statistical outliers that may be

perceived as musical noise in signals processed by the different

approaches. In [16] listening test showed that reducing the

amount of spectral outliers yields a higher signal quality. To

assess the amount of spectral outliers, we filter a noise-only

signal consisting of stationary white Gaussian noise, i.e. Y =
N . The outlier statistics reflects spectral bins with very low
speech energy like in the higher frequencies during voiced

speech. As the noise is stationary and white, the spectral bins

greater than the DC frequency bin and smaller than the Nyquist

frequency bin have the same statistics in all frames and are

combined for a statistical analysis of the processed noise.

In Figure 11 log-histograms of the normalized filter output

|Ŝ|/σN are given. Note that in the experiment of Figure 11,

Ŝ stands for processed noise, as gained by (18) and (20).
Fluctuations in the processed noise appear as an increased rate

of spectral outliers, i.e. values much greater than the mean.

Informal listening experiments show a strong correlation be-

tween the heaviness of the tails in the log-histogram and the

perceived amount of musical noise. In Figure 11, different
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(a) LSA, no soft-gain

(b) LSA with soft-gain [3]

(c) LSA with soft-gain [4]

(d) LSA with the proposed soft-gain

Fig. 11. Log-histogram of the normalized filtered spectrum |bS|/σN for
Gaussian noise. For comparison, the Rayleigh distribution of the magnitude
of Gaussian noise is also given. The soft-gain [3] does not prevent musical
noise. As in the case of no soft-gain, the lower the smoothing constant
α of the decision-directed approach (9), the more spectral outliers can be
observed. Large outliers are perceived as musical noise. The soft-gain [4]
and the proposed soft-gain method result in hardly any spectral outliers for
stationary Gaussian noise.

values of α are considered for (9). For lower values of α
the amount of spectral outliers in processed noise increases

[10]. This can be observed as heavy tailed histograms, which

indicates an increased amount of musical noise.

The auditory relevance of the outliers in the histograms is

also related to the shape of the histogram around its mean

value. E.g., the mean values are different in Figures 11(a)

and 11(b). For the LSA without soft-gain, as shown in Figure

11(a), musical noise is better masked by the higher mean value

of |Ŝ|/σN . Note that this higher mean value is equivalent

to a lower overall noise suppression. In the histogram 11(b)

the mean value is smaller than in Figure 11(a). In relation

to the lowered mean value, the tails are more pronounced.

Therefore, in combination with the multiplicative soft-gain [3],

the amount of spectral outliers is increased while a higher

noise suppression is achieved.

For [4] and the proposed approach we find that audible

outliers only occur once or twice per second for stationary

Gaussian noise. Otherwise, the processed signal sounds like

an attenuated version of the input signal. Accordingly, the

histograms are almost identical to the Rayleigh distribution

of the scaled input signal, Ŝ(k, l) = GminY (k, l).
Note that a principal difference between the approach [3]

and the two other methods is obvious in Figure 11. As the

soft-gain method [3] never fully suppresses the filter output

in noise-only regions (cf. Section II), the histogram in Figure

11(b) still exhibits the characteristic shape of Gaussian noise

filtered by the LSA-estimator. As the other two methods

clearly indicate speech absence, the resulting filter gain is

constantly Gmin, rendering the residual noise more Gaussian.
For the following experiments, we set the smoothing factor

in (9) to α = 0.96, which is a good trade-off between speech
distortion that comes with higher values of α [3], and musical
noise.

In the next step of the evaluation, the soft-gain factors, P̂ ,
are analyzed for a signal that contains speech. Figures 12(c) to

12(e) depict the soft-gain factors for the evaluated estimators.

The corresponding spectrograms of the clean and the noisy

input signal are given in Figures 12(a) and 12(b), respectively.

In Figure 12(c) it becomes clear that the conventional SPP

estimator does not result in a SPP of zero in noise-only spectral

regions. The method [4] and the proposed method clearly

distinguish between speech and noise. Nevertheless, spectral

speech structures of low energy are recovered more often by

the proposed method (cf. Figures 12(d) and 12(e)).

In Section III-A we have shown that smoothing the obser-

vation reduces the false-alarm rate (10). In Figure 12(e) the

lower false-alarm rate results in much less estimates P̂ > 0.5
in noise-only spectral regions, as compared to Figure 12(c).

In Figure 12(c), false-alarms cause dark speckles in the gray

spectral regions where no speech is present.

Inspired by [17] we evaluate the SPP estimators, P̂ , in
terms of speech distortion (SD) and noise leakage (NL), which

can be seen as measures for missed-hit rate and false-alarm

rate, respectively. As in [18] we create an ideal binary speech

presence mask, Pid(k, l), from the clean speech signal S(k, l)
that contains ones at all STFT-bins, (k, l), where the energy
is no less than 50 dB below the maximum bin energy in the

particular speech signal. We then compute two error-signals,

ESD(k, l) and ENL(k, l) as:

ESD(k, l) = max
{
Pid(k, l) − P̂(k, l) , 0

}
S(k, l) (21)

ENL(k, l) = max
{
P̂(k, l) − Pid(k, l) , 0

}
N(k, l)(22)

ESD contains those speech bins that are marked as speech by
the ideal mask, Pid, but are attenuated by the SPP estimator
P̂ . ENL contains those noise bins that are marked as noise by
the ideal mask, Pid, but are not fully suppressed by the SPP
estimator P̂ . These error signals are then related to the ideal
speech signal, Sid, and the corresponding ideal noise signal,
Nid, which are gained as:

Sid(k, l) = Pid(k, l) S(k, l) (23)

Nid(k, l) = (1 − Pid(k, l))N(k, l) . (24)

After taking the inverse Fourier transform and reconstructing

the time signal by overlapping and adding the signal segments
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(a) clean spectrogram (b) noisy spectrogram (c) soft-gain bP [3]

(d) soft-gain bP [4] (e) proposed soft-gain bP (f) filtered signal with proposed soft-gain

Fig. 12. Soft-gain for a speech signal in pink noise at 5 dB segmental SNR. Graph (a): clean spectrogram of the prompt “Draw every outer line first, then
fill in the interior”. Graph (b): spectrogram of the signal with pink noise at SNRseg {y(t)} = 5 dB. Graph (c): the soft-gain with two iterations according
to [3]. Spectral regions without speech presence are not clearly recognized as such. Graph (d): Soft-gain according to Cohen and Berdugo [4]; speech and
non-speech are distinguished properly, but spectrally narrow regions of speech are not detected. Graph (e): Proposed method; more low energy speech is
preserved. Speech absence in between pitch harmonics is also indicated more clearly. Graph (f): Spectrogram of signal filtered with proposed soft-gain. Note
that we pre-emphasized the signals in the spectrograms (a),(b),(f) for a better visualization of high-frequency components.

we get the time domain signals eSD(t), eNL(t), sid(t) and
nid(t). The final measures for speech distortion and noise
leakage are then gained as:

SD =

∑
t e2
SD(t)∑

t s2
id(t)

(25)

NL =

∑
t e2
NL(t)∑

t n2
id(t)

. (26)

The measure for speech distortion, SD, thus indicates the

percentage of the speech energy that the corresponding SPP

estimator neglects while the measure for noise leakage, NL,

indicates how much energy from the noise-only bins is not

attenuated (in percent). Thus SD equals 100% if all speech

coefficients indicated by the ideal mask, Pid, are attenuated
by P̂ and SD = 0% if P̂(k, l) = 1 wherever Pid(k, l) = 1.
The NL equals 0% if P̂(k, l) = 0 for all noise-only bins.
Furthermore we compute the segmental SNR improvement,

when the SPP estimators are employed in a speech enhance-

ment framework via (18) and (20). With ŝ(t) the enhanced
signal in the time domain, obtained from Ŝ(k, l), the segmental
SNR, SNRseg {ŝ(t)}, compares the clean speech signal, s(t),
and its estimate, ŝ(t), on a segmental basis:

SNRseg {ŝ(t)}

=
10

|Lsp|

∑

l̃∈Lsp

log10

L̃−1∑
t=0

s2(l̃L̃ + t)

L̃−1∑
t=0

(s(l̃L̃ + t) − ŝ(l̃L̃ + t))2

,(27)

where Lsp is the set of frame indices l̃ that belong to non-
overlapping speech active frames of an utterance s(t). The

length of each frame is set to L̃/fs = 10ms. Note that
SNRseg {ŝ(t)} considers both noise suppression and speech
distortion. Also note that in general, for input SNRs below

0 dB, the segmental output SNR is not necessarily reasonable,

since for input SNRs below 0 dB the segmental SNR would

indicate an improvement even if P̂ is zero for all time-
frequency points. Therefore it has to be read together with

SD.

Table II gives the results for stationary (white, pink, car) and

nonstationary (babble, traffic, subway) noise types. Table II

states the SD, the NL, and the improvement of the segmental

SNR, ∆SNRseg = SNRseg {ŝ(t)} − SNRseg {y(t)}, with y(t)
the unprocessed noisy time signal. The results are given as

the average of 10 phonetically balanced sentences from the

TIMIT database [19] (5 male, 5 female), for input SNRs

between -10 dB and 15 dB. It can be clearly seen that the

noise leakage, NL, for method [3] is the highest. This is

due to the fact that speech absence is not clearly indicated,

but results in SPP estimates close to 0.5 (cf. Figure 12(c)).

The proposed method and the method [4] clearly reduce the

noise leakage as compared to [3]. The price is a higher speech

distortion, SD. However, the proposed method yields a better

trade off than [4], as the proposed method yields lower values

for the SD as well as the NL. This means that more speech

components are preserved and more noise is attenuated. This

holds for stationary and nonstationary noise and all considered

input SNRs. In terms of the SNR improvement, ∆SNRseg, the
proposed method indicates only slightly better performance

as compared to both competing estimators [3] and [4]. For

stationary car noise at 0 dB input SNR these improvements

are 1.9 dB and 1.3 dB as compared to [3] and [4], respectively.
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According to (13) the proposed method has been optimized for

input SNRs between -10 dB to 15 dB. Nevertheless, we report

that the principal performance stays the same below and above

these values. For extremely low input SNRs below -20 dB and

the above optimization the proposed method and method [4]

indicate mostly speech absence while [3] yields a posteriori

SPP estimates close to the a priori SPP. As the parameters

used in the proposed method are determined in an optimal

way, they can be easily adjusted if the estimator is meant

to perform in different application scenarios for instance by

changing the SNR range of the integral in (13) or by changing

the costs for false-alarms and missed-hits in (12).

VII. CONCLUSION

We have given the theoretical basis for an a posteri-

ori speech-presence-probability (SPP) estimator based on the

smoothed a posteriori signal-to-noise ratio (SNR). Smoothing

the a posteriori SNR has the major benefit of reducing the

variance of the SPP estimate. By interpreting the estimator as

a detector, we have shown that this increases the estimation

performance in terms of a lower false-alarm rate and a

lower missed-hit rate. The perceptual benefits are less musical

noise and less speech distortion when the SPP estimator is

incorporated into a speech enhancement framework.

The a posteriori SPP estimator is based on the ratio of the

likelihoods of speech presence and speech absence, weighted

by their prior probabilities. In state-of-the-art a posteriori

SPP estimators the likelihood-ratio is usually based on an

adaptively estimated a priori SNR estimate that takes very

small values at time-frequency points where speech is absent

(e.g. between the harmonics of voiced speech). We have

shown that then the resulting a posteriori SPP estimators

yield only the prior probabilities. Existing approaches attempt

to mend this undesired behavior by using signal dependent

speech presence priors, i.e. by adaptively tracking the prior

probabilities.

In this paper we present an approach to overcome the neces-

sity for adaptively tracking the a priori SPP and the a priori

SNR. We argue that for speech presence probability estimation

the a priori SNR should reflect the SNR that is expected

when speech is present. We therefore use an optimal fixed a

priori SNR that minimizes the total probability of error. Our

modifications provide low a posteriori SPP estimates at time-

frequency points where speech is absent, without the necessity

for adaptively tracking the a priori SPP. Since we do not use

an adaptively estimated a priori SNR the proposed procedure

enables a decoupling of the estimation of the speech-presence-

probability and the estimation of the clean-speech coefficients.

Furthermore, it is shown that the proposed method results in

a better trade-off between speech distortion and noise leakage

than state-of-the-art SPP estimators.

APPENDIX

A. Determination of cdof

With (4) and [11, (3.381.4)], in case of speech absence the

spectro-temporal smoothing (3) yields a variance of γ(k, l)

given by

var {γ} =
2

r
, (28)

with r the degrees of freedom of γ. In case of uncorrelated
spectral bins γ(κ, λ) in (3), each bin contributes 2 degrees
of freedom to the sum. However, as the frame-wise spectral

analysis uses overlapping frames of limited length, neighbor-

ing spectral bins are correlated. This reduces the degree of

freedom per bin which we express by the correction factor

cdof ≤ 1 giving
r = 2cdofN . (29)

Substituting (29) in (28) and solving for cdof we get

cdof =
1

Nvar {γ}
. (30)

Thus, the correction factor cdof can be empirically determined
with (30) by measuring var {γ} for stationary noise that
is segmented with a given frame-overlap and a given type

of analysis window and then transformed into the spectral

domain.
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