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On the Statistics of Spectral Amplitudes After
Variance Reduction by Temporal Cepstrum

Smoothing and Cepstral Nulling
Timo Gerkmann and Rainer Martin, Senior Member, IEEE

Abstract—In this paper, we derive the signal power bias that
arises when spectral amplitudes are smoothed by reducing their
variance in the cepstral domain (often referred to as cepstral
smoothing) and develop a power bias compensation method. We
show that if -distributed spectral amplitudes are smoothed in
the cepstral domain, the resulting smoothed spectral amplitudes
are also approximately -distributed but with more degrees of
freedom and less signal power. The key finding for the proposed
power bias compensation method is that the degrees of freedom
of -distributed spectral amplitudes are directly related to their
average cepstral variance. Furthermore, this work gives new
insights into the statistics of the cepstral coefficients derived from

-distributed spectral amplitudes using tapered spectral analysis
windows. We derive explicit expressions for the variance and
covariance of correlated -distributed spectral amplitudes and
the resulting cepstral coefficients, parameterized by the degrees of
freedom. The results in this work allow for a cepstral smoothing
of spectral quantities without affecting their signal power. As
we assume the parameterized -distribution for the spectral
amplitudes, the results hold for Gaussian, super-Gaussian, and
sub-Gaussian distributed complex spectral coefficients. The pro-
posed bias compensation method is computationally inexpensive
and shown to work very well for white and colored signals, as well
as for rectangular and tapered spectral analysis windows.

Index Terms—Bias compensation, cepstral analysis, smoothing
methods, time-frequency analysis.

I. INTRODUCTION

I N many applications of statistical signal processing, a vari-
ance reduction of spectral quantities derived from time do-

main signals, such as the periodogram, is required [1], [2]. If a
spectral quantity is -distributed

(1)

with degrees of freedom, mean , and vari-
ance , it is well known that a moving average
smoothing of over time and/or frequency results in an approx-
imately -distributed random variable with the same mean and
an increase in the degrees of freedom that goes along with the
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decreased variance [3], [4]. The -distribution holds exactly
if the averaged values of are uncorrelated. A drawback of
smoothing in the frequency domain is that the temporal and/or
frequency resolution is reduced. In speech processing this may
not be desired as the temporal smoothing smears speech on-
sets and frequency smoothing reduces the resolution of speech
harmonics. It has been recently shown that reducing the vari-
ance of spectral quantities in the cepstral domain outperforms
a smoothing in the spectral domain because specific character-
istics of speech signals can be taken into account [5], [6]. In
the cepstral domain, speech is mainly represented by the lower
cepstral coefficients that represent the spectral envelope, and a
peak in the upper cepstral coefficients that represents the fun-
damental frequency and its harmonics [7]. Therefore, a vari-
ance reduction can be applied to the remaining cepstral coeffi-
cients without distorting the speech signal. In general, a cepstral
variance reduction (CVR) can be achieved by either selectively
smoothing cepstral coefficients over time [temporal cepstrum
smoothing (TCS)] [5], [6], or by setting those cepstral coeffi-
cients to zero that are below a certain variance threshold [cep-
stral nulling (CN)] [8], [9]. A comprehensive analysis of TCS is
given in [10].

However, the application of an unbiased smoothing process
in the cepstral domain leads to a bias in the spectral domain:
the CVR does not only change the variance of a -distributed
spectral random variable , but also its mean . If

is the periodogram of a complex-valued zero-mean
variable for instance, changing the mean of the periodogram

changes the signal power of . As this is usually an
undesired side effect of CVR, in this work we present a frame-
work to compensate for the bias in signal power. Further, we
show that the distribution of spectral amplitudes after CVR can
be well approximated by a -distribution. As opposed to the
bias correction in [10], the bias correction proposed here also
holds for spectrally correlated spectral coefficients, is computa-
tionally far less expensive, and is applicable to both TCS and
CN.

After the definition of the cepstrum in Section II, we dis-
cuss the statistical properties of the -periodogram and of cep-
stral coefficients in Section III for several spectral analysis win-
dows. In Section IV, we show how the degrees of freedom after
CVR can be determined and how the signal power bias can be
compensated. This procedure is summarized in Algorithm 1. In
Section V, we discuss the mean of the cepstral coefficients. In
Section VI, we apply the proposed bias compensation in a prac-
tical scenario. Section VII concludes this paper.

1053-587X/$26.00 © 2009 IEEE
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II. DEFINITION OF CEPSTRAL COEFFICIENTS

We consider the cepstral coefficients derived from the dis-
crete short-time Fourier transform of a discrete time do-
main signal , where is the discrete time index, is the
discrete frequency index, and is the segment index. After seg-
mentation the time domain signal is weighted with a window

and transformed into the discrete Fourier domain, as

(2)

where is the number of samples between segments, and is
the segment size. The inverse discrete Fourier transform of the
logarithm of the periodogram yields the cepstral coefficients

(3)

where is the cepstral index, also known as the quefrency
index [11]. As the -periodogram is real-valued, the cep-
strum is symmetric with respect to . Therefore, in
the following we will only discuss the lower symmetric part

. For improved readability, we drop the
segment index wherever possible.

III. STATISTICAL PROPERTIES OF THE -PERIODOGRAM AND

CEPSTRAL COEFFICIENTS

It is well known that for a Gaussian time domain signal
, the spectral coefficients are complex Gaussian

distributed and the spectral amplitudes are Rayleigh dis-
tributed, i.e., -distributed with two degrees of freedom for

, and with one
degree of freedom at . The -distribution is given
by

(4)

where are the degrees of freedom, , and
is the complete gamma function [12, (8.31)]. The distri-

bution of the periodogram is then found to be the
-distribution [13],

(5)

If the time domain signal is not Gaussian distributed, the
complex spectral coefficients are asymptotically Gaussian dis-
tributed for large [14]. However, for segment sizes used in
common speech processing frameworks, it can be shown that
the complex spectral coefficients of speech signals are super-
Gaussian distributed [15], [16]. In fact, choosing in (4)
may yield a better fit to the distribution of speech spectral am-
plitudes than a Rayleigh distribution [17], [18]. Re-
sults in this paper are derived for arbitrary values of , and thus
hold for complex Gaussian distributed spectral coefficients ,
i.e., , complex super-Gaussian distributed spectral coef-
ficients and complex sub-Gaussian distributed spectral
coefficients . In a practical scenario, should be chosen

so that (4) fits the empirical distribution of the spectral ampli-
tudes of the considered signal. However, we show in this work
that can also be estimated from the empirical variance of cep-
stral coefficients (cf. Algorithm 1, step 1).

To compute the variance of the cepstral coefficients we first
derive the variance of the -periodogram,

(6)

With (5) and [12, (4.352.1)], the expected value of the -pe-
riodogram can be derived as

(7)

where is the psi-function [12, (8.360)]. The first term on
the right-hand side of (6) can be derived using [12, (4.358.2)]

(8)

where is Riemann’s zeta-function [12, (9.521.1)]. With
(6), (7), and (8), the variance of the -periodogram results
in

(9)

This is a generalization of the results in [19], where the vari-
ance of the -periodogram was derived for the special case of
Gaussian-distributed random variables, i.e., .

As shown in Appendix A, the covariance of the cepstral co-
efficients can be obtained by taking a two dimensional discrete
Fourier transform of the covariance of the -periodogram as

(10)

where are frequency indices,
and are quefrency indices. For
large , we may neglect the fact that at
the variance is larger than
for where

. If the frequency bins are un-
correlated, i.e., for , the
covariance of the cepstral coefficients results in

(11)
with defined in (9). Note that a tapered spectral analysis
window in (2) results in a correlation of adjacent frequency
bins. Since in (11) uncorrelated frequency bins are assumed, this
result holds only for rectangular spectral analysis windows. Ta-
pered spectral analysis windows and correlated spectral coeffi-
cients are treated in the following.

A. Correlated Spectral Coefficients

While in [19] and (11) only rectangular spectral analysis
windows were considered, we now discuss the statistics
of the -periodogram and cepstral coefficients for tapered
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spectral analysis windows as used in many speech processing
algorithms.

While for uncorrelated spectral coefficients we have de-
grees of freedom for and 2 degrees of freedom
for , the correla-
tion introduced by a tapered spectral analysis window results in
a reduction of the degrees of freedom, and thus a higher variance
for the -periodogram bins adjacent to and .
As for large this hardly affects the cepstral coefficients, the
effect is insignificant here. A derivation of the -spectral vari-
ances is given in [20] for the special case and different
spectral analysis windows .

However, the correlation of adjacent frequency coefficients

(12)

greatly affects the variance of cepstral coefficients.
The resulting covariance of the logarithm of two periodogram

bins

is derived below. As shown in Appendix B, for large and a
given , the covariance of cepstral coefficients and for
correlated data results in (13), shown at the bottom of the page,
where denotes the number of nonzero covariance values .
It can be seen that cepstral coefficients are asymptotically uncor-
related for large , even if -periodogram bins are correlated.
The cepstral variance is given as the diagonal of the covariance
matrix, as (14), shown at the bottom of the page.

To derive the covariance of two -periodogram bins ,
we extend the -distribution (5) to the bivariate -distribu-
tion of two correlated periodogram bins and

with the correlation defined in (12). This distribu-
tion can be found, e.g., in [21, Theorem 2.1], as

(15)

Note that the infinite sum in (15) can also be expressed in terms
of the hypergeometric function [22]. With ,
(15), [12, (4.352.1)], and [12, (3.381.4)], we find

(16)

where

(17)

(18)

and as defined in (12). This is a generalization of the results
in [23, (6)] and [23, (20)] where the covariance is given for the
special cases and , respectively. With (16), the
covariance of -periodogram bins, and thus the covariance
of cepstral coefficients (13), can be determined.

From above derivations we see that the covariance of cep-
stral coefficients depends only on the degrees of freedom 2 of

-distributed spectral amplitudes and the correlation between
spectral coefficients . Specifically, the covariance of the cep-
stral coefficients is independent of the signal power, the spectral
shape, and the segment index . In Appendix C we show that
for a Hann window and , the normal-
ized correlation results in and . Hence, for a
Hann window and we have and .

The cepstral variance for and the rectangular window
or the Hann window

are compared
in Fig. 1, where we also show empirical data. It is obvious that
(14) provides an excellent fit for both the rectangular and Hann
window. As the additional cosine-terms in (13) and (14) have
zero mean with respect to , the quefrency average of the cep-
stral variance for arbitrary spectral correlation equals

(13)

(14)
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Fig. 1. Cepstral variance for a pink Gaussian time-domain signal analyzed with
a nonoverlapping rectangular analysis window � in (2) and a Hann window
with half-overlapping frames. The empirical variances are compared to the the-
oretical results in (14) with � � ��� � ��� � � � ��� for the rectangular
window and � � ������ � � ������ � � ��� � �	� � � � ��� for the
Hann window. The sampling rate is � � 16 kHz and � � ���.

the cepstral variance for a rectangular window and is thus inde-
pendent of the chosen analysis window :

(19)

with

(20)

The coefficients account for the symmetry of the cepstrum
and the different variances at the DC and Nyquist bin in (14). In
this way the cosine terms in (14) cancel out and the modified
average variance of the cepstral coefficients and the
degrees of freedom 2 are directly related.

IV. STATISTICAL PROPERTIES AFTER CEPSTRAL

VARIANCE REDUCTION

In this section, we approximate the distribution of spectral
amplitudes after CVR by the parametric -distribution. From
experimental results in Section VI it can be seen that this ap-
proximation is valid. From (19) we see that CVR increases the
parameter of the -distribution. Then, due to (7), changing

also changes the spectral power . Hence, a variance re-
duction in the cepstral domain results in a bias in the spectral
power that can now be accounted for. In the following, we de-
note parameters after CVR by a tilde. We will discuss CN and
TCS separately.

In CVR by CN, a set of cepstral coefficients is set to zero [8],
[9]. Then, the average variance after CVR can be determined as

(21)

where are the cepstral coefficients after CVR, the indicator
function sets certain cepstral coefficients to zero,
and is defined as in (20).

For TCS, the cepstral coefficients are recursively smoothed
over time with a quefrency dependent smoothing factor

(22)

For uncorrelated successive signal segments, the average cep-
stral variance can be determined by

(23)

which is also valid for Hann spectral analysis windows with
50% overlap. For higher signal segment correlation, the average
variance after CVR, , can be measured offline for a fixed
set of recursive smoothing constants . For a given of the
spectral amplitudes before CVR, the cepstral variance can be
determined via (14) and thus the average cepstral variance after
CVR, , via (21) or (23).

With a known average cepstral variance, the parameter can
be implicitly determined using

(24)

where are the degrees of freedom after CVR. In a practical
application, the relation between and can be stored in
a table.

The spectral power bias can then be determined
using (7), as

(25)

It can be seen from (25) that, CVR changes the signal power
for two reasons: first, the spectral shape is changed, and sec-
ondly, the degrees of freedom are changed. While a signal
power reduction due to the former is a desired property of
CVR, a signal power reduction due to the latter is not desired
and shall be compensated. The former is desired, because
changing the spectral shape is actually the aim of CVR, e.g.,
eliminating babble burst in speech enhancement [5], [6]. A
compensation of only the latter can be achieved by setting

in (25). We thus obtain the
frequency independent factor

(26)

that is applied to all spectral bins as

(27)

Therefore, we obtain cepstrally-smoothed spectral amplitudes
with reduced cepstral variance which are approximately

-distributed (4) with degrees of freedom and have the cor-
rect signal power. The algorithm for computing unbiased signal
power estimates after CVR is summarized in Algorithm 1. Note
that the bias correction depends only on and . For a fixed
set of smoothing parameters or the bias correction is
thus fixed and independent of the segment index .
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Algorithm 1: Bias compensation for temporal cepstrum
smoothing (TCS) and cepstral nulling (CN)

1: If unknown, determine the degrees of freedom
using an empirical estimation of from
representative data and (19):

with defined in (20).
2: Determine the correlation of neighboring

-periodogram bins via (16):

with defined in (17), (18), and (12).
3: Determine the cepstral variance before CVR via

(14).
4: for all signal segments do
5: if smoothing parameters or have changed

then
6: determine the average cepstral variance after

CVR,
• in the case of CN (21):

• in the case of TCS (23):

7: Determine the degrees of freedom after CVR
(24):

8: Compute signal power bias (26):

9: end if
10: Apply bias correction (27):

11: end for
In a practical application, the relation between and

can be stored in a table.

V. MEAN OF THE CEPSTRUM

In this section we derive the mean of the cepstral coefficients.
We generalize the results of [19] and [8] and [9], where

Fig. 2. CVR by TCS for a stationary pink Gaussian-distributed signal and
nonoverlapping rectangular spectral analysis windows � in (2). We use the
same smoothing constants as in [6]. We first present (a) the spectrogram of the
signal before CVR , then (b) the spectrogram after CVR and bias correction.
In (c), the signal segment energies before CVR, after CVR, and after CVR
and bias correction are given. (d) compares the derived distributions to the
histograms of the spectral amplitudes �� � for � � ��� before CVR, �� �
after CVR, and �� � after CVR and bias correction. Here � � ��� and the
sampling rate is � � 16 kHz.

is assumed. Due to the linearity of the inverse discrete Fourier
transform and (7), the mean value of the cepstral co-
efficients defined by (3) is given by

(28)
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Fig. 3. CVR by TCS as in Fig. 2 but with half-overlapping Hann windows
� in (2). In (a) the signal segment energies before CVR, after CVR, and after
CVR and bias correction are given. (b) compares the derived distributions to
the histograms of the corresponding spectral amplitudes.

Therefore, even for white signals, when is constant over
frequency, the mean of the cepstral coefficients is not zero for

but . When

the deviation results in

(29)

If is constant for all , as assumed in [8], [9], the devi-
ation results in

Because in the CVR method proposed in [8] and [9] certain cep-
stral coefficients are set to zero, better performance is achieved
when the cepstrum actually has zero mean for white signals.
Such an alternative definition of the cepstrum is given by

. However, since typically for ,
the influence of the mean bias given in (29) is of minor im-
portance. For a temporal cepstrum smoothing, as proposed in
[5] and [6], zero-mean cepstral coefficients are neither assumed
nor required.

Fig. 4. CVR by CN for the signal in Fig. 2(a) using nonoverlapping rectangular
spectral analysis windows � in (2). Cepstral coefficients � � ���� are set to
zero. We first present the spectrogram after CN and bias correction (a). In (b)
the signal segment energies before CVR, after CVR, and after CVR and bias
correction are given. (c) compares the derived distributions to the histograms of
the corresponding spectral amplitudes.

VI. EXPERIMENTAL RESULTS

In this section we show that Algorithm 1 successfully com-
pensates for the signal power bias introduced by CVR. After
providing results for a stationary colored signal, we also apply
the bias compensation in a practical scenario, namely the a
priori speech power estimation proposed in [6].

A. Stationary Colored Signal

Here we apply CVR to a stationary colored Gaussian dis-
tributed signal. In Figs. 2 and 3 we present the results for TCS
using a rectangular and a Hann spectral analysis window in (2),
respectively. In Figs. 4 and 5 we present the results for CN using
a rectangular and a Hann spectral analysis window in (2), re-
spectively. From the presented results, we see that CVR intro-
duces a signal power bias, and that this bias is successfully com-
pensated with Algorithm 1. Further, we compare the histograms
of spectral amplitudes before and after CVR with and without a
bias compensation to the derived probability density functions.
It may be seen that the algorithm for estimating the degrees of
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Fig. 5. CVR by CN as in Fig. 4 but with half-overlapping Hann windows �
in (2). In (a) the signal segment energies before CVR, after CVR, and after
CVR and bias correction are given. (b) compares the derived distributions to the
histograms of the corresponding spectral amplitudes.

freedom after CVR works well, as an excellent match for the
histograms and the derived probability density functions may
be observed.

B. A Priori Speech Power Estimation

Now, the bias compensation method is applied in a practical
scenario, namely the TCS based a priori clean speech power
estimation algorithm for speech enhancement proposed in [6].
There, a maximum-likelihood estimation of the a priori clean
speech power is temporally smoothed in the cepstral
domain to obtain the smoothed a priori speech power estimation

. The benefit of a smoothing in the cepstral domain is that
in the cepstral domain, speech is very compactly represented,
namely by few lower cepstral coefficients representing the
speech spectral envelope and a maximum in the upper cepstrum
representing the speech fundamental period. On the other hand,
estimation errors that lead to spectral outliers change the fine
structure of the spectrum, which is represented by the upper
cepstral coefficients. Thus, to reduce spectral outliers without
affecting the speech signal, only little smoothing is applied to the
speech related cepstral coefficients and strong smoothing to the
remaining cepstral coefficients. However, due to the CVR, the
smoothed a priori speech power estimation will be bi-
ased as compared to . In Fig. 6 it may be seen that this bias
can be successfully compensated with the proposed Algorithm 1,
yielding the smoothed unbiased speech power estimate .

For the simulation we used nonoverlapping rectangular spec-
tral analysis windows. We estimate the degrees of freedom before
CVR, 2 , by measuring the average cepstral variance

Fig. 6. Spectrogram of the a priori speech power estimation �� ���� before
CVR (a) and �� ���� after CVR and bias compensation (b). In (c) the signal
segment energies before CVR, after CVR, and after CVR and bias compensa-
tion are given. The speech signal is disturbed by nonstationary traffic noise at
a signal-to-noise ratio of 0 dB. The noise power estimation is done using the
minimum statistics approach [1]. Here � � ��� and the sampling rate is � �
16 kHz.

and using the relation . We thus obtain
. We use the same smoothing constants as in [6]. As in [6]

the smoothing constant in (22) varies from signal segment to
signal segment, a different bias is introduced in each segment .
Note that the computational simplicity of Algorithm 1 allows
for an individual computation of the signal power bias in each
signal segment (steps 6–8 of Algorithm 1).

VII. CONCLUSION

We analyzed the effect of a cepstral variance reduction on
the statistical properties of spectral amplitudes. We have shown
that after a cepstral variance reduction the distribution of spec-
tral amplitudes can be approximated by a -distribution with an
increased number of degrees of freedom and decreased signal
power. As a change in signal power is generally not desired,
we propose a signal power bias correction based on the statis-
tical properties of cepstral and spectral coefficients. The pro-
posed bias correction results in a simple scaling of the spectral
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amplitudes and is fixed for a fixed set of cepstral variance re-
duction parameters. However, as the determination of the bias
correction factor is computationally inexpensive, it can be com-
puted on a segment-by-segment basis if the smoothing parame-
ters change.

APPENDIX A
DERIVATION OF (10)

In this appendix, we show that the covariance of the cep-
stral coefficients can be obtained by taking a two dimensional
discrete Fourier transform of the covariance of the -peri-
odogram. With the definition of the cepstrum (3) we obtain (31)
shown at the bottom of the page.

(30)

APPENDIX B
CEPSTRAL COVARIANCE FOR CORRELATED

SPECTRAL COEFFICIENTS

In this Appendix, we derive an explicit expression for the
covariance of cepstral coefficients, when the -periodogram
bins are correlated. The derived results hold for large as
usually used in speech enhancement applications. For large

, the covariance matrix of the -periodogram can be ap-
proximated by a symmetric Toeplitz matrix defined by
the vector ,
where we neglect the fact that for the variance of
the -periodogram is larger than , as we have less degrees
of freedom than for . The covariance of the
cepstral coefficients is obtained by taking a two dimensional
discrete Fourier transform, as presented in Appendix A. As
in general the spectral covariance introduced by tapered
spectral analysis windows rapidly decreases with increasing ,
we assume that for and . Then,
the covariance of cepstral coefficients results in (31), shown
at the top of the next page. Note that (31) is the result for the
full symmetric cepstrum , while in (13)
the solution for the lower symmetric part is
given.

In Fig. 7 the covariance matrices of the -periodogram and
the cepstral coefficients are illustrated. There, the periodogram
bins are obtained from a computer generated white Gaussian
time domain signal. The spectral analysis (2) is obtained with a
Hann spectral analysis window and . As is rel-
atively small, a slight correlation may be observed in Fig. 7(b)
when and are even, or and are odd. These correla-
tions arise from the fact, that for the variance of
the -periodogram is larger than , which we neglected in
the derivation of (31). However, the resulting correlations drop
with [19]. For segment sizes , as usually used in speech
processing, these correlations are insignificant, i.e., the cepstral
coefficients are asymptotically uncorrelated for large .

APPENDIX C
SPECTRAL CORRELATION FOR A HANN WINDOW

In this Appendix we derive the correlations and for a
Hann window, with defined in (12).

OR

(31)
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Fig. 7. The covariance matrix of the ���-periodogram ��������� ��
����� �� (a) and the cepstral coefficients ����� � � � (b). The peri-
odogram bins are obtained from a computer generated white Gaussian time
domain signal ����, a Hann window with 50% overlap, and � � 	
.

The multiplication of the time domain signal with the window
function in (2) results in a convolution of the uncorrelated
spectral coefficients with the Fourier domain representation
of the window function , i.e., ,
where the asterisk denotes convolution and the discrete
Fourier transform. For a normalized discrete Hann window we
obtain the correlated frequency coefficients

(32)

Because is spectrally uncorrelated, with
and we have

(33)

For the covariances we obtain with (32)

(34)

(35)

Thus, with and (12) we have and
.

REFERENCES

[1] R. Martin, “Noise power spectral density estimation based on op-
timal smoothing and minimum statistics,” IEEE Trans. Speech Audio
Process., vol. 9, no. 5, pp. 504–512, 2001.

[2] T. Gerkmann, C. Breithaupt, and R. Martin, “Improved a posteriori
speech presence probability estimation based on a likelihood ratio with
fixed priors,” IEEE Trans. Audio, Speech, Lang. Process., vol. 16, no.
5, pp. 910–919, Jul. 2008.

[3] R. Martin and T. Lotter, “Optimal recursive smoothing of non-sta-
tionary periodograms,” in Proc. Int. Workshop Acoustic Echo Noise
Control (IWAENC), Sep. 2001, pp. 167–170.

[4] P. Vary and R. Martin, Digital Speech Transmission: Enhancement,
Coding And Error Concealment. New York: Wiley, 2006.

[5] C. Breithaupt, T. Gerkmann, and R. Martin, “Cepstral smoothing of
spectral filter gains for speech enhancement without musical noise,” in
IEEE Signal Process. Lett., Dec. 2007, vol. 14, no. 12, pp. 1036–1039.

[6] C. Breithaupt, T. Gerkmann, and R. Martin, “A novel a priori SNR
estimation approach based on selective cepstro-temporal smoothing,”
Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP),
pp. 4897–4900, Apr. 2008.

[7] A. M. Noll, “Cepstrum pitch estimation,” J. Acoust. Soc. Amer., vol.
41, pp. 293–309, Feb. 1967.

[8] P. Stoica and N. Sandgren, “Smoothed nonparametric spectral estima-
tion via cepstrum thresholding,” in IEEE Signal Process. Mag., Nov.
2006, vol. 23, no. 6, pp. 34–45.

[9] P. Stoica and N. Sandgren, “Total-variance reduction via thresholding:
Application to cepstral analysis,” IEEE Trans. Signal Process., vol. 55,
no. 1, pp. 66–72, Jan. 2007.

[10] D. Mauler, T. Gerkmann, and R. Martin, “An analysis of quefrency se-
lective temporal smoothing of the cepstrum in speech enhancement,”
in Proc. 11th Int. Workshop on Acoustic Echo and Noise Control
(IWAENC), Seattle, WA, Sep. 2008, pp. 14–17.

[11] B. P. Bogert, M. J. R. Healy, and J. W. Tukey, The Quefrency Alanysis
of Time Series for Echoes: Cepstrum, Pseudo-Autocovariance, Cross-
Cepstrum and Saphe Cracking. New York: Wiley, 1963, ch. 15, pp.
209–243.

[12] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals Series and Prod-
ucts, A. Jeffrey and D. Zwillinger, Eds., 6th ed. New York: Academic,
2000.

[13] A. Papoulis, Probability, Random Variables, and Stochastic Pro-
cesses. New York: McGraw-Hill, 1991.

[14] D. Brillinger, Time Series: Data Analysis and Theory. San Francisco,
CA: Holden-Day, 1981.

[15] R. Martin, “Speech enhancement using MMSE short time spectral es-
timation with gamma distributed speech priors,” Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Processing (ICASSP), vol. I, pp. 253–256,
May 2002.

[16] R. Martin, “Speech enhancement based on minimum mean-square
error estimation and supergaussian priors,” IEEE Trans. Speech Audio
Process., vol. 13, no. 5, pp. 845–856, Sep. 2005.

[17] I. Andrianakis and P. R. White, “MMSE speech spectral amplitude
estimators with chi and gamma speech priors,” Proc. IEEE Int.
Conf. Acoustics, Speech, Signal Processing (ICASSP), vol. III, pp.
1068–1071, 2006.

[18] C. Breithaupt, M. Krawczyk, and R. Martin, “Parameterized MMSE
spectral magnitude estimation for the enhancement of noisy speech,”
Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP),
pp. 4037–4040, Apr. 2008.

[19] Y. Ephraim and M. Rahim, “On second-order statistics and linear es-
timation of cepstral coefficients,” IEEE Trans. Speech Audio Process.,
vol. 7, no. 2, pp. 162–176, Mar. 1999.

[20] A. H. Gray Jr., “Log spectra of Gaussian signals,” J. Acoust. Soc. Amer.,
vol. 55, no. 5, pp. 1028–1033, May 1974.

[21] A. H. Joarder, “Moments of the product and ratio of two correlated
chi-square variables,” Springer Statistical Papers, vol. 50, no. 3, pp.
581–592, Jun. 2009.

[22] S. Nadarajah, “Comment on the paper by A. H. Joarder,” Springer Sta-
tistical Papers, vol. 50, no. 2, pp. 441–443, Mar. 2009.

[23] Y. Ephraim and W. J. J. Roberts, “On second-order statistics of log-
periodogram with correlated components,” IEEE Signal Process. Lett.,
vol. 12, no. 9, pp. 625–628, Sep. 2005.



4174 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 11, NOVEMBER 2009

Timo Gerkmann studied electrical engineering at
the Universität Bremen, Bremen, Germany, and the
Ruhr-Universität Bochum, Bochum, Germany. He
received the Dipl.-Ing. degree from the Ruhr-Uni-
versität Bochum in 2004. He is currently working
towards the Dr.-Ing. degree at the Institute of Com-
munication Acoustics, Ruhr-Universität Bochum.

From January 2005 to July 2005, he visited
Siemens Corporate Research, Princeton, NJ, where
he worked on artificial bandwidth extension. His
main research interests are digital speech and audio

processing, including single- and multichannel speech enhancement.

Rainer Martin (S’86–M’90–SM’01) received the
Dipl.-Ing. and Dr.-Ing. degrees from Rheinisch-
Westfälische Technische Hochschule (RWTH)
Aachen University, Aachen, Germany, in 1988 and
1996, respectively, and the M.S.E.E. degree from the
Georgia Institute of Technology, Atlanta, in 1989.

From 1996 to 2002, he was a Senior Research En-
gineer with the Institute of Communication Systems
and Data Processing, RWTH Aachen University.
From April 1998 to March 1999, he was on leave to
the AT&T Speech and Image Processing Services

Research Lab, Florham Park, NJ. From April 2002 until October 2003, he
was a Professor of Digital Signal Processing at the Technische Universität
Braunschweig, Braunschweig, Germany. Since October 2003, he has been
a Professor of Information Technology and Communication Acoustics at
Ruhr-Universität Bochum, Bochum, Germany, and since October 2007 Dean
of the Electrical Engineering and Information Technology department. His
research interests are signal processing for voice communication systems,
hearing instruments, and human–machine interfaces. He is coauthor with
P. Vary of Digital Speech Transmission—Enhancement, Coding and Error
Concealment (Wiley, 2006) and coeditor with U. Heute and C. Antweiler of
Advances in Digital Speech Transmission (Wiley, 2008).

Dr. Martin served as an Associate Editor for the IEEE TRANSACTIONS ON

AUDIO, SPEECH, AND LANGUAGE PROCESSING and is a member of the Audio and
Electroacoustics Technical Committee of the IEEE Signal Processing Society.


