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Unbiased MMSE-Based Noise Power Estimation
With Low Complexity and Low Tracking Delay

Timo Gerkmann, Member, IEEE, and Richard C. Hendriks

Abstract—Recently, it has been proposed to estimate the noise
power spectral density by means of minimum mean-square error
(MMSE) optimal estimation. We show that the resulting estimator
can be interpreted as a voice activity detector (VAD)-based noise
power estimator, where the noise power is updated only when
speech absence is signaled, compensated with a required bias
compensation. We show that the bias compensation is unnecessary
when we replace the VAD by a soft speech presence probability
(SPP) with fixed priors. Choosing fixed priors also has the benefit
of decoupling the noise power estimator from subsequent steps in
a speech enhancement framework, such as the estimation of the
speech power and the estimation of the clean speech. We show
that the proposed speech presence probability (SPP) approach
maintains the quick noise tracking performance of the bias com-
pensated minimum mean-square error (MMSE)-based approach
while exhibiting less overestimation of the spectral noise power
and an even lower computational complexity.

Index Terms—Noise power estimation, speech enhancement.

I. INTRODUCTION

A S DIGITAL speech communication devices, such as
hearing aids or mobile telephones, have become more

and more portable, usage of these applications in noisy envi-
ronments occurs on a more frequent basis. Depending on the
environment, the noise signal that corrupts the target speech
signal can be quite nonstationary. These nonstationary noise
corruptions can originate for example from a train that passes
by at a train station or from passing cars and other people
when communicating while walking along the street. The aim
of speech enhancement algorithms is to reduce the additive
noise without decreasing speech intelligibility. Most speech
enhancement algorithms try to accomplish this by applying a
gain function in a spectral domain, where the gain function
is generally dependent on the noisy spectral coefficient, the
spectral noise power and the spectral speech power. In [1],
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a gain function was proposed based on maximum-likelihood
estimation, assuming a deterministic (unknown) model for
the speech spectral coefficients and a complex Gaussian dis-
tribution for the noise spectral coefficients. While the speech
model in [1] was assumed to be deterministic, it was proposed
in [2] to model both the speech and noise spectral coefficients
by complex Gaussian distributions and to estimate the speech
spectral magnitude coefficients by minimizing the mean-square
error (MSE) between the clean and estimated speech spectral
magnitude. This was succeeded by the work presented in [3],
where it was proposed to minimize the mean-square error
MSE between the logarithms of the clean and estimated speech
spectral magnitude, motivated by the idea that a mean-squared
error between logarithms of magnitude spectra is perceptually
more meaningful. Based on the observation that the observed
distribution of speech spectral coefficients tends to be more
super-Gaussian than Gaussian, see, e.g., [4] and [5], further
improvements of the estimators presented in [2], [3] were
obtained in [4]–[7], where it was proposed to derive Bayesian
estimators under super-Gaussian distributions. However, all
these methods have in common that they are a function of both
the spectral noise power and the spectral speech power. The
spectral noise and speech power are generally unknown and are
to be estimated from the noisy data. Estimation of the spectral
speech power can be done by employing the decision-directed
approach [2], see [8]–[10] for detailed analyses, non-causal
recursive a priori SNR estimators [11], or cepstral smoothing
techniques [12].

In this paper, we focus on estimation of the spectral noise
power. As the noise power may change rapidly over time, its
estimate has to be updated as often as possible. Using an over-
estimate or an underestimate of the true, but unknown, spectral
noise power will lead to an over-suppression or under-suppres-
sion of the noisy signal and might lead to a reduced intelligibility
or an unnecessary amount of residual noise when employed in a
speech enhancement framework. One way to estimate the spec-
tral noise power is to exploit time instances where speech is ab-
sent. This requires detection of speech presence by means of a
voice activity detector (VAD), see, e.g., [13], [14]. However, in
nonstationary noise scenarios this detection is particularly diffi-
cult, as a sudden rise in the noise power may be misinterpreted as
a speech onset. In addition, if the noise spectral power changes
during speech presence, this change can only be detected with
a delay.

To improve estimation of the spectral noise power, several ap-
proaches have been proposed during the last decade. Among the
most established estimators are those based on minimum statis-
tics (MS) [15]–[17]. In [15], the power spectrum of the noisy
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signal is estimated on a frame-by-frame basis and observed over
a time-span of about 1–3 seconds. In general, MS based spectral
noise power estimators are based on the assumption that within
the observed time-span, speech is absent during at least a small
fraction of the total time-span. The spectral noise power is then
obtained from the minimum of the estimated power spectrum of
the noisy signal. However, if the noise power rises within the ob-
served time-span, it will be underestimated or tracked with a cer-
tain delay. The worst case amount of delay generally depends on
the length of the used time-span. The shorter the time-span, the
shorter the maximum delay. However, decreasing the time-span
increases the chance that speech is not absent within this ob-
served time-span. The consequence of this is that the spectral
noise power may be overestimated, as the estimator might track
instances of the noisy spectral power instead of the noise spec-
tral power. Thus, in [15, Sec. VI] mechanisms are proposed that
allow for a tracking of rising noise powers also within the ob-
served time-span. However, rising noise powers as caused, e.g.,
by passing trains, are often still tracked with a rather large delay
of around one second. The local underestimation of the noise
power is likely to result in annoying artifacts, like residual noise
and musical noise, when the noise power estimate is applied in
a speech enhancement framework.

The methods of Sohn and Sung [18], Cohen [16], and Ran-
gachari and Loizou [17] are based on a recursive averaging of
the noisy spectral power using the speech presence probability
(SPP) which is obtained from the ratio of the likelihood func-
tions of speech presence and speech absence. As opposed to
the likelihood of speech absence, the likelihood of speech pres-
ence is parameterized by the a priori SNR. In case the a priori
SNR is zero, the two likelihood functions overlap such that a
distinction between speech presence and absence based on the
likelihood ratio is not possible. In [18] and [16], the a priori
signal-to-noise ratio (SNR) is estimated adaptively on a short
time scale. As a consequence, in speech absence the adapted
a priori SNR estimate is close to zero, and the two likelihood
functions overlap such that, independent of the observation, the
likelihood ratio is one. The resulting a posteriori SPP yields
only the a priori SPP which, per definition, is also independent
of the observation. Thus, without further modifications, a de-
tection of speech absence in each time–frequency point is not
possible. This problem is partly overcome in [18] by consid-
ering the joint likelihood function of an entire speech segment.
Thus, the SPP estimate of [18] is frequency independent, such
that the ability to track the noise power between speech spec-
tral harmonics is lost. In [16], low values for the a posteriori
SPP are enabled by an additional adaptation of the a priori SPPs
with respect to the observation. However, as the methods in [16]
and [17] are based on MS principles, they also show a delayed
tracking of rising spectral noise powers similarly to [15].

The more recent contributions on the topic of spectral noise
power estimation generally focus on tracking of the spectral
noise power with a shorter delay, in order to improve noise
reduction in environments with nonstationary noise. Some
examples are the discrete Fourier transform (DFT)-subspace
approach [19], or minimum mean-square error (MMSE)-based
approaches [20], [21]. Although DFT-subspace-based ap-
proaches lead to quite some improvement for non-stationary

noise sources compared to, e.g., MS-based spectral noise power
estimators [22], computationally they are rather demanding.
The MMSE-based algorithm [21] on the other hand is compu-
tationally much less demanding and at the same time robust to
increasing noise levels as shown in a comparison presented in
[22]. In the MMSE-based estimator [21], first a limited max-
imum-likelihood (ML) estimate of the a priori SNR is used to
obtain an MMSE estimate of the noise periodogram. However,
under the given a priori SNR estimate the resulting MMSE
estimate exhibits a bias which can be computed analytically.
However, in order to compensate for the bias, a second estimate
of the a priori SNR is required, for which the decision-directed
approach [2] is used.

In this work, we analyze the noise power estimator of [21],
and show that under the given ML a priori SNR estimator the
MMSE-based spectral noise power estimator can be interpreted
as a VAD-based estimator. To improve the MMSE-based
spectral noise power estimator we modify the original algo-
rithm such that it evolves into a soft SPP instead of a hard
SPP (i.e., VAD) based estimator, which automatically makes
the estimator unbiased. The proposed estimator exhibits a
computational complexity that is even lower than that of the
MMSE-based approach [21] while maintaining its fast noise
tracking performance without requiring a bias compensation.

As opposed to the SPP-based noise power estimators of [16]
and [18], we use a fixed nonadaptive a priori SNR as a param-
eter of the likelihood of speech presence. This fixed a priori
SNR represents the SNR that is typical in speech presence and
prevents the likelihood functions from overlapping in speech ab-
sence. Thus, using the fixed a priori SNR enables the time–fre-
quency dependent a posteriori SPP to yield values close to zero
in speech absence without adapting the a priori SPP. Further,
as opposed to [16], [17] the tracking delay remains small, as we
do not use minimum statistics (MS) principles.

This work is organized as follows. After explaining the used
notation and assumptions in Section II, we review the MMSE-
based noise power estimator of [21], analyze its bias correc-
tion behavior and show that the estimator can be interpreted
as a VAD-based noise power estimator in Section III. Then, in
Section IV, we propose to replace the VAD implicitly used in
[21] by a soft SPP with fixed priors. In Section V, we show that
the proposed estimator results in similar or better results in non-
stationary noise than competing algorithms, while exhibiting a
lower computational complexity. While the basic idea of this
work has been published in [23], in this paper we present a more
detailed analysis, derivation and evaluation.

II. SIGNAL MODEL

In this work, we consider a frame-by-frame processing of
time-domain signals, where the windowed time-domain frames
are transformed to the spectral domain by applying a DFT. Let
the complex spectral speech and noise coefficients be given by

and , with the frequency-bin index and the time-
frame index. We assume the speech and the noise signals to be
additive in the short-time Fourier domain. The complex spec-
tral noisy observation is thus given by .
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For notational convenience, the time-frame index and the fre-
quency index will be left out, unless necessary for clarifi-
cation. Random variables are denoted by capital letters, real-
izations by its corresponding lower case letters, and estimated
quantities are denoted by a hat symbol, e.g., is an estimate of
. We assume that the speech and noise signals have zero mean

and are independent so that ,
with being the statistical expectation operator. The spec-
tral speech and noise power are defined by and

, respectively. We then define the a posteriori
SNR by and the a priori SNR by .

III. REVIEW OF MMSE-BASED NOISE POWER ESTIMATION

In order to guide the reader and help to appreciate later con-
tributions in this paper, we first present in this section a review
on the MMSE-based noise power estimator presented in [21].
To derive the MMSE-based noise power estimator it is assumed
that the noise and speech spectral coefficients have a complex
Gaussian distribution, i.e,

(1)

(2)

With these assumptions we obtain

(3)

For mathematical convenience we will use a polar notation for
the complex spectral noise and noisy speech coefficients, that is,

and . Using this notation we can trans-
form the distribution of the spectral noise coefficients
into polar coordinates, that is,

(4)

Further, it follows from (2) in combination with the additivity
and independence assumption of speech and noise that the dis-
tribution is given by

(5)
The noise power estimators presented in [20] and [21] are

based on an MMSE estimate of the noise periodogram, which
can be obtained by computing the conditional expectation

. Using Bayes’ rule, this can be written as

(6)
Substituting (5) and (4) into (6) and using [24, Eqs. 8.431.5 and
6.643.2], we obtain

(7)

where we have written as a function of the estimates
and of the a priori SNR and spectral noise power, respec-

tively, to explicitly show that these quantities have to be esti-
mated in practice. In noise power estimation, it is a common as-
sumption that the noise signal is more stationary than the speech
signal [15]. Assuming a certain degree of correlation between
the noise power present in neighboring signal segments, it is
reasonable to use the spectral noise power estimate of the pre-
vious frame in (7), i.e., as done in [21]. As
speech spectral coefficients usually exhibit a larger degree of
fluctuations between successive segments, estimation of the a
priori SNR is difficult. In [21], it is proposed to employ a lim-
ited maximum-likelihood (ML) estimate for in (7), as briefly
recapitulated in Section III-A, followed by a bias compensation,
which will be discussed in Section III-B.

After estimating the noise periodogram via (7), the noise
power spectral density is then obtained from (7) via recursive
smoothing with [21]

(8)

Next, we show that the MMSE estimator (7) is biased when
the estimated quantities and differ from the true quantities

and , respectively. Taking the expected value of (7) with
respect to and stating the condition on the estimated quantities
explicitly, we obtain

(9)

where for this derivation we assume that and are not
functions of , and we employ partial integration or use [24, Eq.
3.381.4]. When and , we obtain from (9) that

, which means that the estimator
in (7) is unbiased. However, as argued in [20], [21], the estimator
(7) is biased when estimated quantities are used and

and/or , as then .

A. Interpretation as a Voice Activity Detector

In this section, we show that the MMSE estimator can be
interpreted as a VAD-based noise tracker when the a priori SNR
is estimated by means of a limited ML estimate, as proposed in
[21].

From (7), we see that MMSE solution results in a weighted
sum of the noisy observation and the previous estimate of the
spectral noise power . The two weights are functions of the a
priori SNR and gradually take values between zero and one,
resulting in a soft decision between and . However, in
[21] it was proposed to use a limited maximum-likelihood (ML)
estimate of the a priori SNR, which is obtained as

(10)
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where . One reason to use this esti-
mator for the a priori SNR is that it allows for the computation
of an analytic expression for the bias as expressed by (9). Sub-
stituting (10) into (7) we see that this MMSE estimator can be
seen as a VAD-based detector, i.e.,

.
(11)

Notice that using the a priori SNR estimator from (10) we thus
obtain a hard instead of a soft decision between the noisy ob-
servation and the estimate of the spectral noise power.

B. Bias Compensation

As argued in [20] and [21] the estimator (11) is biased when
estimated quantities are used. Similar to [21] we derive this bias
given that is estimated using (10), but distinguish between the
estimated and the true . Then, using [24, Eq. 3.381.1] we
find for the bias

(12)

where is the incomplete gamma function
[24, Eq. 8.350.1]. Under the assumption that the spectral noise
power is known, i.e., , it is shown in [21] that the
expectation of (11) is smaller than the true noise variance, i.e.,
an underestimation of with , when is small with
respect to . The final estimate of the spectral noise power is
then obtained in [21] as

Due to the nonstationarity of the spectral noise power across
time, besides an underestimation, overestimations can occur as
well, while the bias compensation in [21] can only account for
an underestimation of the noise periodogram. Note that in prin-
ciple (12) can also account for noise overestimation, as
for . However, strictly speaking, the parameters we
need in order to estimate the bias in (12) are the same as we
needed in the first place to compute (7).

C. Safety-Net

To overcome that the spectral noise power tracker stagnates
when the noise level would make an abrupt step from one seg-
ment to the next, in [21] a so-called safety-net is employed. In
this safety-net, the last 0.8 seconds of the noisy speech peri-
odogram, i.e., , are stored. The final estimate of the spec-
tral noise power is obtained by comparing the current noise
power estimate to the minimum of the last 0.8 seconds of ,
as

(13)
with the number of time-frames in the period of 0.8 seconds.

Instead of first using a limited maximum-likelihood (ML) es-
timate for the a priori SNR that results in the VAD of (11),

in this paper we argue that neither the bias compensation of
Section III-B nor the safety-net of Section III-C is necessary if
the hard decision of the VAD (11) is replaced by the soft deci-
sion of an SPP estimator.

IV. UNBIASED ESTIMATOR BASED ON AN SPP ESTIMATE

WITH FIXED PRIORS

In (11) of Section III-A, we have shown that the MMSE es-
timator (7) can be interpreted as a VAD-based spectral noise
power estimator when the limited ML estimate
is used to estimate the a priori SNR. In that case, the estimated
noise term is only updated when . This is
the reason that a bias compensation of (7) by (12) is necessary.

In this section, we propose to replace the hard decision of the
VAD by a soft decision SPP with fixed priors, making a bias
compensation unnecessary. Under speech presence uncertainty
an MMSE estimator for the noise periodogram is given by

(14)
where indicates speech absence, while indicates speech
presence.

A. Estimation of the Speech Presence Probability

Similar as for the derivation of (7), we assume that the speech
and noise complex coefficients are Gaussian distributed. Using
Bayes’ theorem, for the a posteriori SPP we have

(15)

Thus, to compute the a posteriori SPP we need models for the
a priori probabilities , as well as the like-
lihood functions for speech presence and speech ab-
sence . Without an observation, we assume that it is
equally likely that the time–frequency point under considera-
tion contains speech or not. Hence, we choose uniform priors,
i.e., , which can be considered a worst
case assumption [1]. In contrast to [16], these fixed priors are
independent of the observation.

The likelihood functions and in (15) in-
dicate how well the observation fits the modeling parame-
ters for speech presence and speech absence, respectively. As in
Section II, we assume the observation to be complex Gaussian
distributed. We thus model the likelihood under speech absence
by

(16)

while we model the likelihood under speech presence by

(17)

Notice that for the further derivation in this section, we make
a distinction between the distribution in (3) and the dis-
tribution in (17). While in (3) is the true local SNR,
in (17) the a priori SNR is a parameter of our model for
speech presence. As such, it reflects the SNR that is typical if
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speech were present [25], [26] and can also be interpreted as
a long-term SNR rather than the short-term local SNR. In the
radar or communication context, one would choose in order
to guarantee a specified performance in terms of false alarms
or missed detections [1]. Similarly, in Section IV-D we will
find the fixed optimal a priori SNR dB
by minimizing the total probability of error when the true a
priori SNR is uniformly distributed between and

, which corresponds to dB
and dB. Choosing a fixed a priori SNR has
the benefit of decoupling the noise power estimator from sub-
sequent steps in a speech enhancement framework, such as the
estimation of the speech power and the estimation of the clean
speech. Further, note that the likelihoods of speech presence and
absence (17), (16) differ only in the a priori SNR . Choosing
an optimal fixed a priori SNR, guarantees that the two models
for speech presence and speech absence differ, and thus enables
a posteriori SPP estimates close to zero in speech absence. This
is in contrast to [16], [18] where the a priori SNR is adaptively
estimated. The adaptation in [16], [18] yields a priori SNR es-
timates close to zero in speech absence such that the likelihood
functions (17), (16) are virtually the same and the a posteriori
SPP yields only the prior, as , in-
dependent of the observation . Thus, without further modifica-
tions, speech absence can not be detected when the adapted
is zero. To overcome this undesired behavior, in [16] also the
prior is adapted with respect to the observation. How-
ever, strictly speaking, this contradicts the definition of the a
priori SPP.

Substituting (16) and (17) into (15) we obtain for the a pos-
teriori SPP (e.g., [27])

(18)

where in this work, we assume . As in (7) we
employ the spectral noise power estimate of the previous frame,
i.e., in (16)–(18).

B. Derivation of and

We can solve (18) for the a posteriori SNR , and
obtain a function of and , as

(19)

Using the optimal a priori SNR dB in
(19), we see that already for speech presence probabilities

the a posteriori SNR satisfies . Thus,
when speech is present and is sufficiently large, we
can rewrite the ML estimate of the a priori SNR from (10) as

. The optimal estimator under speech presence can
now be computed as

(20)

which, similar to (11), follows from substitution of
into (7). Under speech absence we have and thus

(21)

Thus, with (20) and (21), the MMSE estimator under speech
presence uncertainty (14) turns into a soft weighting between
the noisy observation and the previous noise power estimate

similar to (7):

(22)

Here and the spectral noise power es-
timate from the previous frame is employed, i.e.,

. The spectral noise power is then obtained by a recursive
smoothing of as given in (8).

C. Avoiding Stagnation

If the noise power estimate underestimates the true noise
power , the a posteriori SPP in (18) will be overestimated.
From (22) it follows that then the noise power will not be tracked
as quickly as desired. In the extreme case, when heavily
underestimates the true noise power , the a posteriori SPP
tends to one, . Then, the noise power will not be
updated anymore, even though may be small with respect
to the true, but unknown, noise power .

To avoid a stagnation of the noise power update due to an un-
derestimated noise power, we check if the a posteriori SPP has
been close to one for a long time. For this we propose the fol-
lowing memory and computationally efficient algorithm. First,
we recursively smooth over time, as

(23)

Then, if this smoothed quantity is larger than 0.99, we conclude
that the update may have stagnated, and force the current a pos-
teriori SPP estimate to be lower than 0.99, as

else
(24)

This procedure fits well into the framework and is more memory
efficient than the safety-net of Section III-C as we do not need
to store 0.8 seconds of data.

D. Finding the optimal

We find a fixed optimal by minimizing the total proba-
bility of error, given by [28, Ch.
2], averaged over a priori SNR values that are of interest for the
considered application. Here and denote the missed-hit
and the false-alarm rates, respectively. We define a missed hit as
the probability that yields values lower than 0.5 even
though speech is present, and a false-alarm as the probability
that yields values larger than 0.5 even though speech
is absent. Assuming we know the true spectral noise power, i.e.,
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, the point where is referred to as
and results from (18)

(25)

We now want to quantify the false-alarm and missed-hit rates,
when the parameter for our speech presence model is given by

. For this, we compute the errors for input data with sev-
eral input SNR, when the speech absence and presence models
are given by (16) and (17) resulting in (18) and (25). Note that
the probability density function of the observed input data is
given by (3) and is a function of the true SNR , while the model
for speech presence (16) is a function of which represents
the SNR that is typical if speech were present. In speech absence
the local a priori SNR is zero and we have
given in (1).

False alarms occur when the input signal is noise only and the
magnitude of the noisy spectral coefficients is larger than .
Using [24, Eq. 3.381.9] the probability of the false-alarm rate
can be written as

(26)

Missed hits occur, when the input data is a speech-plus-noise
signal and the magnitude of the noisy spectral coefficients is
lower than . The probability of the missed-hit rate is given
by

(27)

We now find the optimal parameter for the speech pres-
ence model when the true input SNR is uniformly distributed
between and . For this, we minimize the total proba-
bility of error for all between and , as

(28)
where we denote the candidates for as , while is the
true, unknown SNR of the observed signal. Substituting

, and setting , we obtain with [24, Eq. 2.325.2]

Fig. 1. The total probability of error given in (29) as a function of the
candidates � for �� ��� �� � � 	� dB. The minimum corresponds to
�� ��� �� � � �
 dB.

(29)

with [24, Eq. 8.211.1]].
We choose a range for to that is realistic for the

application under consideration. As we compute the integral
in the linear domain, the influence of is rather small,
as long as , i.e., dB. We con-
sider dB for the lower bound, and

dB as an upper bound for a noise reduction
application. Then, choosing the a priori SNR to be uniformly
distributed between these values for and , we find the
optimal choice for to be dB. In Fig. 1,
the argument of (29) is plotted for several candidates .
Please note that is computed offline, and we use the same

dB for all time–frequency points
throughout the algorithm.

In Section V we show that the proposed approach based on
an SPP estimate with fixed priors results in similar results as the
estimator of [21], but neither requires a bias correction nor the
safety-net of Section III-C.

V. EVALUATION

In order to evaluate the proposed spectral noise power
estimator, in this section we make a comparison to the MS
approach [15] and the MMSE approach with bias compen-
sation (MMSE-BC) proposed in [21]. In Section V-A, we
evaluate the estimation accuracy of the competing noise power
estimators, while in Section V-B we analyze their compu-
tational complexity. Sound examples and the code of the
proposed estimator are available at http://www.speech.uni-old-
enburg.de/57158.html.

A. Estimation Accuracy

We first compare the logarithmic error between the estimated
spectral noise power and the reference spectral noise power.
Then we employ the estimated spectral noise power to esti-
mate the clean speech spectral coefficients. For the evaluation
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Fig. 2. Comparison of the results of the noise power estimators for modulated
white Gaussian noise.

we use 320 sentences of the TIMIT database [29] and several
synthetic and natural noise sources. The sampling rate is set at

kHz. We use a square-root Hann-window of length
for spectral analysis and synthesis, where successive

segments overlap by 50%.
For the evaluation we use several synthetic as well as natural

noise sources, that are, stationary white Gaussian noise, modu-
lated white Gaussian noise, traffic noise, nonstationary vacuum
cleaner noise, and babble noise. The modulated white Gaussian
noise is a synthetic nonstationary noise source that we generate
by a point-wise multiplication of the function

(30)

with a white Gaussian noise sequence. Here is the time-
sample index, and we choose Hz. The traffic noise is
recorded next to a rather busy street, where many cars pass by.
For the synthetic noise signals, i.e., the stationary white noise
and the modulated white noise, the true noise power is known
and is thus used for the evaluation. For the remaining nonsta-
tionary and thus non-ergodic noise sources the determination of
the true spectral noise power is impossible, as only one realiza-
tion of the random variable is available in each time–frequency
point. In these cases we use the periodogram of the noise-only
signal as an estimate of the true but unknown spectral noise
power, i.e., .

First, in Fig. 2, we compare the results of noise power esti-
mation when the input signal consists only of a modulated white
Gaussian noise signal. The true noise power is also given. We
averaged the results over 60 seconds of data, i.e., 15 periods of
4 seconds length. It can be seen that all estimators can not fully
follow the true noise power. For the considered example, the
MS approach [15] has the worst tracking capability. Further, it
can be seen that the MMSE-BC approach [21] has the tendency
to overestimate the noise power when the noise power is de-
creasing.

As in [19], we compare the estimated noise power to the
reference in terms of the log-error distortion measure. In
contrast to what was proposed in [19] we separate the error mea-
sure into overestimation and underestimation, i.e.,

(31)

where measures the contributions of an overestima-
tion of the true noise power, as

(32)

while measures the contributions of an underestima-
tion of the true noise power, as

(33)

Note that an overestimation of the true noise power as indi-
cated by is likely to result in an attenuation of the
speech signal in a speech enhancement framework and thus in
speech distortions. On the other hand, an underestimation of the
true noise power as indicated by results in a reduced
noise reduction and is likely to yield an increase of musical noise
when the estimated noise power is employed in a speech en-
hancement framework [30].

We also employ the estimated noise power in a standard
speech enhancement framework. For this we use the deci-
sion-directed estimation with a smoothing factor of 0.98 [2] to
obtain an estimate of the a priori SNR. The estimated a priori
SNR is then employed in a Wiener filter which is limited to
be larger than 17 dB. We employ the Wiener filter, as this is
the MMSE-optimal conditional estimator of the clean speech
spectral coefficients given that the speech and noise spectral
coefficients are complex Gaussian distributed, which fits the as-
sumptions we have made to derive the noise power estimators.
Still, for the sake of completeness, in Fig. 7 we also present
the results we obtain when a state-of-the-art super-Gaussian
estimator from [6] is used. For this filter, it is assumed that
speech spectral magnitudes are generalized Gamma distributed
with parameters and in [6].

We measure the performance in terms of the segmental noise
reduction and the segmental speech SNR as proposed by [5], as
well as the segmental SNR improvement. For this, the resynthe-
sized time-domain signals are segmented into non-overlapping
segments of 10-ms length. Speech SNR (spSSNR), noise reduc-
tion (NR), and segmental SNR (SSNR) are only evaluated in
signal segments that contain speech and are defined as follows:

(34)

(35)

(36)



1390 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 4, MAY 2012

Fig. 3. Quality measures for stationary white Gaussian noise. The lower part
of the bars in (a) represents the noise overestimation������ , while the upper
part represents the noise underestimation������ . The total height of the bars
gives the ������. (a) Log estimation error. (b) Segmental SNR improvement.
(c) Segmental speech SNR. (d) Segmental noise reduction.

where , is the time-domain sample index, is
the segment index, is the set of signal segments that contain
speech. In (34)–(36), we assume that the delay introduced by the
overlap-add is accounted for. We determine by choosing all
signal frames whose energy is larger than 45 dB with respect
to the maximum frame energy in the considered TIMIT signal.
Further, and are the speech and noise time-do-
main signal, and is the estimated clean-speech time-do-
main signal after applying the speech enhancement filter. The
quantities and are obtained by applying the same
speech enhancement filter coefficients that are applied to noisy
speech also to the speech-only and the noise-only signals. The
segmental speech SNR is a measure for speech distortions and
becomes larger the lower the speech distortions are. The noise
reduction NR indicates the relative noise reduction, while the
segmental SNR takes into account both noise reduction and
speech distortions. Note that for input SNRs below 0 dB, the
segmental SNR can always be improved by nulling all coeffi-
cients. Thus, we suggest that it should always be read together
with a measure for speech distortions.

The results of these evaluations are given in Figs. 3–6 for the
Wiener filter and in Fig. 7 for the super-Gaussian filter. The mea-
sure is indicated by the lower bars and the measure

by the gray upper bars. The sum of both error mea-
sures, , is given by the total height of the bars. It can be
seen that for the stationary white Gaussian noise signal (Fig. 3)
the MS approach has the lowest error and the largest
SNR improvement.

However, the results for the modulated white Gaussian noise
signal in Fig. 4, clearly show that the MS approach is not able to
track the noise spectral power with adequate speed and heavily

Fig. 4. Quality measures for modulated white Gaussian noise. As in Fig. 3,
the bars in (a) indicate noise overestimation and underestimation. (a) Log es-
timation error. (b) Segmental SNR improvement. (c) Segmental speech SNR.
(d) Segmental noise reduction.

Fig. 5. Quality measures for traffic noise. As in Fig. 3 the bars in (a) indicate
noise overestimation and underestimation. (a) Log estimation error. (b) Seg-
mental SNR improvement. (c) Segmental speech SNR. (d) Segmental noise re-
duction.

underestimates the noise spectral power. This results in large
values for [Fig. 4(a)] and in a low noise reduction
performance [Fig. 4(d)] that is likely to result in musical noise.
At the same time, as the noise reduction is less aggressive, this
also results in a larger speech SNR [Fig. 4(c)]. It can be seen
however that for the modulated noise, the MS approach results
in a poor tradeoff between noise reduction and speech distortion
as it results in lower segmental SNR improvements [Fig. 4(b)].
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Fig. 6. Quality measures for babble noise. As in Fig. 3 the bars in (a) indicate
noise overestimation and underestimation. (a) Log estimation error. (b) Seg-
mental SNR improvement. (c) Segmental speech SNR. (d) Segmental noise re-
duction.

Fig. 7. Quality measures for modulated white Gaussian noise. In contrast to
Fig. 4, we use here a super-Gaussian filter function from [6]. (a) Log estimation
error. (b) Segmental SNR improvement. (c) Segmental speech SNR. (d) Seg-
mental noise reduction.

Also for the natural nonstationary noise sources in Figs. 5
and 6, the MS approach yields the largest logarithmic estima-
tion error , the lowest noise reduction and the largest
speech SNR. However, for traffic noise [Fig. 5(b)], it performs
somewhat better in terms of the segmental SNR than the pro-
posed SPP approach and the MMSE estimator [21].

For almost all considered noise types, the bias-compensated
MMSE estimator [21] exhibits an error that is gen-
erally somewhat larger than for the other reference methods,

TABLE I
NORMALIZED PROCESSING TIME

which is likely to result in more attenuation of speech compo-
nents in a speech enhancement framework. The only exception
is babble noise, where noise overestimation is rather
similar for the proposed noise power estimators.

In Fig. 7, we show the results for modulated white Gaussian
noise, when the super-Gaussian filter function from [6] is used.
The results of the do not explicitly depend on the chosen
filter, as only the noise power estimator is evaluated. The re-
sults for the segmental SNR, segmental speech SNR and the
segmental noise reduction are similar to the results in Fig. 4, in
the sense that the MS approach yields the lowest noise reduc-
tion and the largest speech SNR, but also the lowest segmental
SNR improvement. The proposed SPP and the bias-compen-
sated MMSE estimator [21] yield rather similar results.

In general, the proposed low complexity approach based on
SPP results in similar and SNR improvement as the
MMSE-BC approach without requiring a bias compensation or
the safety-net of Section III-C. The proposed SPP approach has
the tendency to result in less noise overestimation, which is
likely to result in less attenuation of speech components, but
also results in slightly less noise reduction for low input SNRs.

B. Computational Complexity

In order to compare the different algorithms in terms of
computational complexity, we computed the processing time
of Matlab implementations of the three algorithms that are
compared in this section. The processing times for each algo-
rithm, normalized by the processing time of the proposed SPP
approach, are given in Table I. Notice that the numbers given in
table should be used as an indication. In general, they depend on
implementational details and settings, e.g., sampling frequency
and length of the fast Fourier transform (FFT). The numbers
in Table I reflect all necessary processing steps to compute the
spectral noise power, i.e., in order to highlight the complexity
of the spectral noise power estimation algorithms, the DFT and
inverse DFT necessary to transform a noisy signal frame to the
DFT domain and to transform the reconstructed signal back to
the time-domain are left out of this comparison on purpose.

The proposed SPP approach exhibits a computational com-
plexity that is lower than the computational complexity of the
MMSE-BC estimator [21] as the exponential function in (18)
is the only special function that has to be computed online,
while for the MMSE-BC approach, in addition to the exponen-
tial function, also the incomplete Gamma function in (12) has to
be either computed or tabulated. At the same time, the proposed
SPP approach is more memory efficient, as we do not need
the safety-net of Section III-C. To demonstrate the influence of
computing or tabulating the incomplete Gamma function on the
computational complexity of the MMSE-BC estimator, Table I
shows the relative computation time for the MMSE-BC esti-
mator with tabulated and computed incomplete Gamma func-
tion, denoted by MMSE BC and MMSE BC , respectively.
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The computational complexity of the MS approach is
somewhat higher than the computational complexity of both
MMSE BC and MMSE BC . Notice that the used imple-
mentation of the MS algorithm, as well as the implementation
of the MMSE-BC algorithm are both somewhat more efficient
than the implementations used in the comparison in [21]. This
explains the relatively smaller difference in estimated compu-
tational complexity between MMSE-BC and MS in Table I
compared to the table in [21].

VI. CONCLUSION

An important aspect of speech enhancement algorithms is the
estimation of the spectral noise power. Recently, it was proposed
to estimate this quantity by means of a minimum mean-square
error (MMSE)-based estimator [21]. This method is of low com-
putational complexity, while comparisons have shown [22] that
spectral noise power estimation performance is improved com-
pared to competing methods.

In this paper, we analyzed the MMSE-based estimator pre-
sented in [21] and further improved this method by presenting
a modified version.

From the presented analysis of the original MMSE-based es-
timator we showed that this algorithm can be interpreted as
a voice activity detector (VAD)-based noise power estimator,
where the noise power is updated only when speech absence is
signaled. This is due to the way in which the a priori signal-to-
noise ratio (SNR) is computed. As a consequence, the method
requires a bias compensation as was also originally proposed.

In the presented approach, we proposed to modify the
MMSE-based estimator such that use is made of a soft speech
presence probability (SPP) with fixed priors. As a result, the
estimator becomes automatically unbiased and is of an even
lower complexity than the reference MMSE-based approach.

From experimental results it followed that the presented soft
SPP-based approach generally achieves similar performance
as the original MMSE-based approach with the advantage
that no bias compensation is necessary and the computational
complexity is even lower.
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