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Noise Correlation Matrix Estimation for
Multi-Microphone Speech Enhancement
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Abstract—For multi-channel noise reduction algorithms like the
minimum variance distortionless response (MVDR) beamformer,
or the multi-channel Wiener filter, an estimate of the noise correla-
tion matrix is needed. For its estimation, it is often proposed in the
literature to use a voice activity detector (VAD). However, using a
VAD the estimated matrix can only be updated in speech absence.
As a result, during speech presence the noise correlation matrix
estimate does not follow changing noise fields with an appropriate
accuracy. This effect is further increased, as in nonstationary noise
voice activity detection is a rather difficult task, and false-alarms
are likely to occur. In this paper, we present and analyze an algo-
rithm that estimates the noise correlation matrix without using a
VAD. This algorithm is based on measuring the correlation of the
noisy input and a noise reference which can be obtained, e.g., by
steering a null towards the target source. When applied in combi-
nation with an MVDR beamformer, it is shown that the proposed
noise correlation matrix estimate results in a more accurate beam-
former response, a larger signal-to-noise ratio improvement and
a larger instrumentally predicted speech intelligibility when com-
pared to competing algorithms such as the generalized sidelobe
canceler, a VAD-based MVDR beamformer, and an MVDR based
on the noisy correlation matrix.

Index Terms—Multi-microphone, noise correlation matrix, noise
reduction, speech enhancement.

I. INTRODUCTION

T HE demand for speech processing applications like cell
phones, hearing aids, and speech recognition systems to

work anywhere and at anytime, makes them also more vulner-
able for disturbances like environmental noise. To reduce degra-
dations in terms of speech intelligibility and speech quality,
single- and multi-microphone noise reduction algorithms are
often employed. Although single-channel noise reduction algo-
rithms are generally able to increase speech quality, see, e.g.,
[1], improvements in terms of intelligibility are reported only
rarely. On the other hand, due to the possibility to perform spa-
tial filtering, multi-microphone noise reduction algorithms have
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a better ability to increase speech quality as well as intelligibility
of speech in noise [2]. Most often, single- and multi-channel
noise reduction algorithms are implemented in the temporal-
spectral domain, e.g., by computing a discrete Fourier trans-
form (DFT). Single-channel noise reduction algorithms then es-
timate the clean speech DFT coefficients by applying a gain to
the noisy DFT coefficients, e.g., [3]–[6], while multi-channel
NR algorithms estimate the clean speech DFT coefficients by
taking a linear combination of several noisy DFT coefficients
from multiple microphones and form a so-called beamformer,
e.g., [7]–[9].

One of the important parameters on which all single-channel
estimators depend, is the noise power spectral density (PSD).
This quantity is an unknown expected value and its estimation
is particularly difficult in nonstationary noise fields which are
common in many daily life situations. During the last decade
more research focused on the estimation of the noise PSD for
non-stationary noise sources. Important contributions on this
topic are the methods based on so-called minimum statistics
[10], [11]. Due to its underlying principle, the minimum sta-
tistics approach results in only little speech leakage into the
noise PSD estimate. However, the worst case delay of tracking
an increasing noise level at a particular frequency bin can be
rather long compared to the speed at which certain noise sources
tend to change. This motivated the further development of noise
PSD estimators that can estimate the noise PSD of nonstationary
noise sources with a shorter tracking delay, see, e.g., [12]–[15].

For multi-microphone noise reduction the noise PSD per mi-
crophone is extended with the noise cross power spectral densi-
ties between microphones, altogether known as the noise cross-
correlation matrix. Using the spatial information on the noise
field that is contained in the noise correlation matrix it is pos-
sible to adaptively steer a beamformer in the direction of in-
terest and to cancel or reduce the effect of noise sources in
other directions. This is done by multi-channel noise reduc-
tion methods like the minimum variance distortionless response
(MVDR) beamformer [16] and the multi-channel Wiener filter
[9]. The noise correlation matrix directly determines the spa-
tial filtering that is applied by these algorithms. Therefore, for
these types of algorithms to be able to optimally adapt to the
surrounding noise field, knowing the noise correlation matrix
with high accuracy is of high importance. Wrong estimates of
the noise correlation matrix can either lead to the situation that
disturbances from certain angles are not optimally suppressed,
or, worse, that noise coming from certain angles is amplified.

Similar as for the noise PSD, the noise correlation matrix is
an unknown expected value that needs to be estimated from the
noisy microphone signals. Although noise PSD estimation re-
ceived significant interest, estimation of the noise correlation
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matrix appear to have been less explored. Where estimation of
the noise PSD is challenging because noise sources can be non-
stationary across time, estimation of the noise correlation matrix
can be even more challenging since the noise field can also be
spatially nonstationary.

An approach that underlies many noise correlation matrix es-
timation methods is the usage of an energy-based voice activity
detector (VAD), see, e.g., [17]–[20]. Most of these methods rely
on a single-channel noise PSD estimator per microphone signal
and use this to determine speech presence. When speech is not
present, the off-diagonal terms of the noise correlation matrix
can then be updated by means of, e.g., exponential smoothing.
For noise sources that are stationary across time and space,
VAD-based estimation of the noise correlation matrix can be
sufficiently accurate. However, many noise sources encountered
in reality are nonstationary across time and space, e.g., consider
a passing car or passing train. The fact that a VAD does not
allow to update the correlation matrix estimate during speech
presence, might result for such temporally and/or spatially non-
stationary noise fields in a wrongly estimated noise correlation
matrix. As a consequence of this, the shape of the beamformer
response is adapted towards the wrong direction.

Other more recently developed methods that do not rely on a
VAD are based on additional assumptions on the type of noise
field. In [21], a method was proposed that relies on the assump-
tion that the noise field is diffuse. Two important examples of
diffuse noise fields are a spherically and cylindrically isotropic
noise field. Assuming the noise field to be spherically or cylin-
drically isotropic, it can be shown that the noise correlation ma-
trix is real, see, e.g., [22]. The method presented in [21] explic-
itly exploits this property and estimates therefore only the real
part of the noise correlation matrix. Another method that ex-
ploits the assumption of a diffuse noise field is for example used
in [23]. This method makes use of the fact that per frequency bin
the noise correlation matrix for a diffuse noise field can be de-
composed into a scalar, that is, the noise PSD, and a matrix that
is completely determined by the noise coherence function. For
the case of an ideally spherically or cylindrically isotropic noise
field, the coherence function is known [22] and depends only
on the inter-microphone distance. However, assuming a diffuse
noise field is not always realistic and is a strong limitation of
noise correlation matrix estimation.

Alternative procedures originally proposed by Frost [24]
and Griffiths and Jim [25] do not estimate the noise correlation
matrix directly, but estimate the filter coefficients of a linearly
constrained minimum variance (LCMV) or MVDR beamformer
in an adaptive manner. The algorithm proposed by Griffiths and
Jim is often referred to as the generalized sidelobe canceller
(GSC). Both adaptive methods employ a least-mean-square
(LMS) algorithm and allow accurate estimation of the filter
coefficients when the noise sources are rather stationary in both
space and time. However, their performance gets degraded
when noise sources tend to be more nonstationary in space and
time [26].

In this paper, we present a general method for estimation of
the noise correlation matrix for spatially and temporally nonsta-
tionary noise fields and an -dimensional microphone array.
The presented method exploits the fact that recently developed

noise PSD estimation algorithms can track a changing noise
PSD with a relatively low delay. In addition, similar as for the
GSC, the proposed approach exploits the fact that given the
propagation vector of the target source, a noise reference can be
obtained. However, different than with the GSC the proposed
method does not make use of LMS-based algorithms, but di-
rectly computes the elements of the noise correlation matrix.
The proposed method does not assume the noise field to be dif-
fuse and can estimate the noise correlation matrix also when
speech is present at the frequency bin under consideration.

The remainder of this paper is organized as follows. In
Section II, we present the notation and basic assumptions that
we use throughout this paper. Subsequently, in Section III we
present our proposed method for noise correlation estimation.
In Section IV, we make an estimation error analysis of the
proposed approach and present a method to reduce estimation
errors. In addition, we show in Section IV that when the pro-
posed method is combined with an MVDR-beamformer, that
under certain conditions the filter coefficients are insensitive for
certain estimation errors. In Section V, we present experimental
results and a discussion on the proposed method and reference
methods when applied in an environment with reverberation.
Finally, in Section VI concluding remarks are given.

II. NOTATION AND BASIC ASSUMPTIONS

In this paper, we consider a general multi-microphone setup
consisting of microphones. Each of the noisy microphone
signals is windowed on a frame-by-frame basis using a window
length and window shift , and transformed to the DFT do-
main, that is,

where denotes the noisy DFT coefficient for fre-
quency bin , time-frame and microphone number .
Further, denotes a time-domain sample for micro-
phone-number and denotes the time-domain window.
In a similar way, we define the clean speech and noise DFT
coefficients and , respectively. The DFT
coefficients are assumed to be random variables, indicated
by uppercase letters, and their corresponding realizations are
indicated by lowercase letters. Furthermore, bold-faced letters
indicate the use of matrices. The speech and noise DFT coeffi-
cients are assumed to be additive, i.e.,

(1)

and uncorrelated, i.e.,

(2)

where denotes the statistical expectation operator. We as-
sume the DFT coefficients to be independent across time and
frequency, and will therefore neglect time- and frequency-in-
dices for ease of notation. Let denote a vector con-
taining the noisy DFT coefficients for each of the micro-
phones, that is . Similarly, we define

and as the vectors containing the clean and noise
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microphone DFT coefficients of the microphones, respec-
tively. It is assumed that there is a single target source whose
acoustic path to the microphones is modeled by the fre-
quency dependent propagation vector . The
vector with clean speech DFT coefficients is therefore given by

, where is the clean speech DFT at the target speaker
location. Altogether this leads to the following compact vector
representation:

(3)

III. NOISE CORRELATION MATRIX ESTIMATION

In order to estimate the noise correlation matrix, we make
explicit use of the following three assumptions. At first, we as-
sume the propagation vector to be known. Second, we assume
that the noise PSD per microphone is known, and finally, we
make use of the assumption already expressed in (2), that is, the
noise and speech DFT coefficients are assumed to be uncorre-
lated across time, frequency, and microphones.

The noise correlation matrix is given by

...
. . .

(4)

where indicates complex conjugation. Estimation of this ma-
trix requires estimation of all elements in (4). In order to do so,
we make a distinction between the diagonal and off-diagonal el-
ements. The diagonal elements correspond to the noise PSD per
microphone, which can be estimated, e.g., by [10]–[15]. Thus,
with one of these estimators at hand, estimation of the noise
correlation matrix reduces to estimation of the off-diagonal ele-
ments only, i.e., the cross-correlation between noise DFT coef-
ficients at different microphones.

Based on the assumption that is given, it is possible to ob-
tain a noise reference for each microphone pair where the target
signal is completely canceled. Note, that this also holds for re-
verberant signals when describes the Fourier transforms of the
room impulse responses of the microphones.

Let denote the th element of . Further, let
be defined as the scaling that needs to be ap-

plied to obtain the clean speech DFT coefficient at microphone
number from the clean speech DFT coefficient at microphone
number , that is, . However, in the case that

models the room impulse response, special care needs to be
taken when contains zeros. When only the direct path is mod-
eled, does not contain any zeros and this problem does not
occur. A noise reference for element of the correlation
matrix is then obtained by

(5)

(6)

The estimation of the cross-term of the correlation ma-
trix can be done by exploiting the correlation between and

, that is,

(7)

(8)

where, in order to go from (7) to (8), use is made of the assump-
tion that speech and noise DFT coefficients are uncorrelated and
that the speech DFT coefficients are canceled in the noise ref-
erence . Thus, in this paper, we propose to estimate the
off-diagonal elements of the noise correlation matrix by
solving from (8), as

(9)

while the diagonal elements are obtained by using a single
channel PSD estimator from the literature.

IV. ESTIMATION ERROR ANALYSIS AND REDUCTION

The expression in (9) is based on the expected values
and that are unknown in practice

and have to be estimated from the available noisy speech
realizations.

The term is the noise PSD and can be estimated
using aforementioned low-delay noise PSD estimators. How-
ever, the estimated noise PSD can be over or underestimated,
which will introduce errors on the estimated cross-terms of the
noise correlation matrix. These errors on the estimated noise
PSD for microphone will be denoted by .

We use exponential smoothing to estimate the term
, as

(10)

where denotes an estimate of , and is computed
using (5) by using realizations of the noisy DFT coefficients

and . The derivation of (9) relies on the assumption that
speech and noise are uncorrelated. However, even when speech
and noise are truly uncorrelated, estimation of
based on realizations as in (10), i.e., and ,
will give rise to a nonzero contribution due to the speech con-
tained in . These estimation errors will be denoted by

.
In the following section, we will show that the estimation

errors can be reduced by exploiting the fact that the
noise correlation matrix is Hermitian symmetric and therefore
we have that . The off-diagonal
elements of can therefore be estimated as

(11)

where denotes an estimate of that also includes
estimation errors and/or . Moreover, in Sec-
tion IV-B we will show that when the proposed noise corre-
lation matrix estimator according to (11) is used in combina-
tion with an MVDR beamformer, that under far and free field
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conditions the final MVDR becomes completely independent
of the single-channel noise PSD estimate for each microphone
and therefore independent of the error .

A. Reduction of the Estimation Errors and

Taking the estimation of based on re-
alizations into account, we obtain a nonzero contri-
bution , even though

. Therefore, in-
stead of

(12)

we obtain

(13)

In addition, estimation of the noise PSD by means
of a noise PSD estimator leads to an estimate

(14)

where is the noise PSD estimate that would be
obtained by smoothing the noise realizations themselves, and

the estimation error with respect to . If we
take the estimated expected values from (13) and

from (14) into account and substitute them into (9),
we obtain

(15)

In order to reduce the presence of and we
can make use of the Hermitian symmetric property of . Let
us therefore consider the estimate of the complex conjugate of

, that is

(16)

Let denote the imaginary part. Exploiting Hermitian
symmetry by computing by means of (11) we

obtain (17)-(18), shown at the bottom of the page, with
. From (18) we see that the real parts of the two terms

in in are completely removed when
estimating by means of (11).

To further reduce the effect of the imaginary part of on
the estimate , the smoothing parameter can be in-
creased during periods where the signal-to-noise ratio (SNR) is
rather high.

In addition to the error reduction of when computing
by means of (11), also the errors due to

get reduced depending on the values of and . As-
suming that the estimation errors and are real-
izations of two uncorrelated zero-mean random processes
and , respectively, it follows from (18) that the variance re-
duction of noise PSD estimation errors becomes a factor

(19)

B. Reduced Estimation Errors With the MVDR

Let the MVDR filter coefficients be given by

(20)

Making use of the proposed method for noise correlation matrix
estimation, it can be shown that the MVDR-filter coefficients
become independent of the noise PSD, and therefore indepen-
dent of the estimation error . This holds in general when
the noise correlation matrix is computed based on (9). When
the noise correlation matrix is computed based on (11), i.e., by
exploiting Hermitian symmetry in order to reduce estimation er-
rors , this does not hold anymore in general, but can be
shown to still hold under the assumptions of a far and free field.

We will first consider the general situation when the noise cor-
relation matrix is computed based on (9) only, followed by the
situation where the noise correlation matrix is estimated based
on (11) in order to reduce the errors .

For notational convenience, we denote the noise PSD
at microphone by . Using the expression de-

rived in (9), the noise correlation matrix is given by (21), shown

(17)

(18)
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at the bottom of the page. Let and
be two matrices defined as

...
. . .

(22)
and

...
. . .

(23)

such that

(24)

Further, let be defined as the element-wise inverse of the prop-
agation vector multiplied by the noise PSD per microphone,
that is . This allows us to write

(25)

Using the decomposition of into matrices and we
can rewrite the numerator of (20) using the Sherman–Mor-
rison–Woodbury formula [27] as

(26)

(27)

(28)

To interpret the result of (28) we can rewrite (28) as

(29)

with the determinant of . The term in the nu-
merator of (29) can now be recognized as the adjugate of ,
i.e., , and the term in
the denominator of (29) can be recognized as the determinant
of obtained using the matrix determinant theorem from [28,
Th. 18.1.1], i.e,

(30)

In a similar way as the numerator of (20) was rewritten in
(26)–(28) we can write the denominator as

(31)

By substitution of the results from (28) and (31) into (20) we
then obtain for the MVDR filter-coefficients

(32)

The MVDR filter-coefficients have now become a function of
matrix only, and are therefore independent of the noise PSD

. Thus, estimation of using a single-channel noise PSD
estimator like [10] or [15] is in general not necessary, and, noise
PSD estimation errors will have no influence.

However, in the case that Hermitian symmetry is exploited by
means of (11), the result obtained in (32) does not hold anymore
in general. However, it still holds under the condition of a far and
free field.

Let the noise correlation matrix , when making use of (11),
be given by

(33)

with and
. Making use of the Sherman–Mor-

rison–Woodbury formula [27] along similar lines as in (26)–(32)
we can write the MVDR filter coefficients as

(34)
where indicates complex conjugation of the elements of .
The second term in (34) is still a function of the noise PSD per
channel via vector . However, under the condition of a far and
free field, and . Under this con-
dition, vector can be written as . Here denotes
the noise PSD, which is identical for all microphones in far and
free field. Substituting into (34), we obtain a similar
result as in (32), but now as a function of matrix , that is,

(35)

This shows that the proposed noise correlation matrix estimator
when based on (11) becomes also independent of the noise PSD
under the assumption of a free and far field.

...
. . .

(21)
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Fig. 1. Waveform of (a) modulated white Gaussian noise and (b) noise origi-
nating from a passing train.

V. EXPERIMENTAL RESULTS AND DISCUSSION

For the evaluation, we apply the proposed algorithm in an
MVDR beamformer. We assume that the sources are in free and
far field, and thus use (35) where , and

is given in (22). We thus exploit the symmetry of the noise
correlation matrix, as well as the matrix to reduce estimation
errors as proposed in Sections IV-A and IV-B. In addition, we
present in Section V-B a discussion on the influence of rever-
beration on the accuracy of noise correlation matrix estimation
for the proposed as well as the reference methods.

A. Experimental Results

For the evaluation of the proposed and reference methods
for noise correlation matrix estimation we consider an
microphone end-fire array with an inter-microphone distance
of 1 cm. All signals are sampled using a sampling frequency of
8 kHz. Processing of the signals is done on a frame-by-frame
basis using a frame-size of 256 samples, 50% overlap and a
square-root Hann analysis and synthesis window. The clean
speech data that is used in the experiments originates from
five different female and four different male speakers from
the TIMIT [29] database and has a duration of 30 seconds.
As noise sources we use temporally stationary white Gaussian
noise, modulated white Gaussian noise, and noise originating
from a passing train. In Fig. 1(a) and (b), example time-do-
main waveforms of the latter two noise sources are shown,
respectively. For the noise sources we use two different spatial
configurations. At first a situation where the noise source moves
in 30 seconds from 40 to 300 , and second a situation where
the noise source alternates position between 40 and 100 .
Each time the noise source remains spatially stationary for one
second before it switches to the other position. We refer to these
two spatial configurations as configuration 1 and configuration
2, respectively.

The noise and clean speech microphone signals are generated
synthetically by simulating the acoustic path from source to mi-
crophone, where a free-field situation is considered.

To compare the performance of the proposed and reference
methods, we employ the estimated correlation matrices of the
proposed and reference methods in an MVDR beamformer. Let

be defined as an estimate of a clean speech DFT coefficient.
The MVDR beamformer can then be expressed as

(36)

where is replaced by the noise correlation matrix estimated
by the method under consideration.

For evaluation of the proposed and reference methods we
use three different quality measures. At first we compute the
mean squared error between the ideal MVDR beamformer re-
sponse, where the noise correlation matrix is obtained using the
noise only signals, and the beamformer response based on filter
coefficients that are estimated using the proposed or reference
methods, that is,

where and are the estimated and ideal
beamformer responses, the direction, and the cardinality
of the set of all . Second, we use the segmental-SNR
defined as

(37)

where and denote a clean and enhanced time-domain
signal frame, and an index set to denote all clean speech
frames with energy within 35 dB of the maximum clean speech
frame energy.

Finally, to get an indication of the influence of noise corre-
lation matrix estimation on intelligibility, we use the recently
developed short-time objective intelligibility (STOI) measure
[30]. The STOI measure computes an average correlation co-
efficient which is monotonically related to
the average intelligibility of the sentence in question.

1) Proposed Method and Reduction of Estimation Errors: In
this section, we show that using the -matrix as proposed in
(35), instead of the noise correlation matrix itself, the robustness
of the MVDR beamformer is increased. The -matrix is given
by , and is given in (22).

The proposed method for noise correlation matrix estimation
depends on two expected values as indicated by (9), that are,

and . In addition, the diag-
onal elements of the cross-correlation matrix equal the noise
PSD . Estimation of these expected values will in-
troduce estimation errors as discussed in Section IV. As a first
experiment we evaluate to which extent these estimation errors
can be reduced by employing the presented modified noise cor-
relation matrix estimator of (11) and (35), respectively.

To do so, we estimate the noise PSD for each
microphone using the noise PSD estimator presented in [15].
The term in (9) is estimated by means
of exponential smoothing as expressed by (10). The smoothing
constant is set at . Whenever the a posteriori SNR,
i.e., , exceeds 7.8 dB, is increased to

for that time–frequency point to further reduce the
effect of the imaginary part of on the estimate .

We consider two different setups. At first a situation where
the target source is positioned at zero degrees, i.e., endfire di-
rection, and is degraded by white Gaussian noise in spatial con-
figuration 1. Second, we consider the situation where the target
speech source is positioned at 60 degrees and is degraded by
noise originating from a passing train in spatial configuration
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Fig. 2. (a) Results for a target source at the endfire direction (0 ) and a white
Gaussian noise source. The noise source moves in 30 seconds from 40 to 300 .
(b) Results for a target source at �60 and a train noise source. The position
of the noise source is alternating between �40 and 100 . Each time the noise
source remains spatially stationary for one second before it switches to the other
position.

2. In order to focus on estimation errors introduced by estima-
tion of and , we assume in
this experiment that the propagation vector is perfectly known
such that the speech signal is completely canceled and (6) is per-
fectly fulfilled. We can ensure this by creating the spatial signals
artificially in the short-time spectral domain. is then ob-
tained using (5).

In Fig. 2, three different versions of the proposed noise
correlation matrix estimator are compared in terms of the
beamformer response error. In addition we compare the per-
formance to an ideal MVDR beamformer that consists of
the proposed method for noise correlation matrix estimation
according to (11), but where the noise PSD per
microphone is computed by means of exponential smoothing
of the corresponding noise-only microphone signal, which
is usually not available in a practical situation. This MVDR
beamformer is used in order to obtain a performance bound
and is referred to in Fig. 2 as bound. The results are given for
different global, i.e., non-segmental, input SNRs.

From Fig. 2(a) and (b), we see that for the two different con-
figurations the proposed method according to (11) improves
over the original proposed method according to (9) with on
average 4.7 and 3.8 dB, respectively. Computing the MVDR
beamformer filter coefficients using (35) leads to a further re-
duction of the beamformer error response of 4.5 and 1.6 dB for
the two configurations, respectively. The performance of this
configuration almost coincides with the MVDR beamformer de-
noted by bound in Fig. 2. This can be explained by the fact
that this version of the proposed method in combination with
an MVDR beamformer overcomes all errors introduced to a
wrongly estimated noise PSD when the noise PSD per micro-
phone are identical in the far and free field case.

2) Comparison With Reference Methods: As the proposed
method according to (35) has shown to effectively reduce esti-
mation errors we continue in this section with an experimental
comparison between several reference methods and this version
of the proposed method for noise correlation matrix estimation.

For comparison we use three different reference methods. At
first, we compare the proposed approach with the noise correla-
tion matrix estimation based on a VAD presented in [17]. This
VAD-based procedure estimates the noise correlation matrix by
recursive averaging in speech pauses as indicated by a VAD.
The VAD in [17] is based on a minimum statistics noise power

spectral density estimate [10], where speech absence is decided,
when the recursively smoothed a posteriori SNR is smaller than
a threshold that we set at 1.2. Choosing a higher threshold might
lead to a less conservative VAD with somewhat faster noise PSD
update, but will also make it more likely to introduce speech
leakage in the noise correlation matrix estimate. The obtained
estimate of the noise correlation matrix is used in the MVDR
expression in (36).

Second, we also compare the results to an MVDR beam-
former, where instead of the noise correlation matrix the noisy
correlation matrix is used, i.e., . Under ideal condi-
tions, i.e., when is known and speech and noise are uncorre-
lated, it can be shown using the Sherman–Morrison–Woodbury
formula [27] that the MVDR based on yields the
same result as the MVDR based on , see, e.g., [16],
[26]. In order to estimate , we recursively smooth
realizations of over time with a smoothing constant

.
Third, we make a comparison to the GSC [25] as summarized

in [26, Table 47.2]. The GSC does not estimate the noise correla-
tion matrix, but estimates the filter coefficients that minimize the
output power constraining the target to be undistorted. The GSC
is implemented based on an adaptive LMS algorithm. Com-
paring the GSC to the aforementioned MVDR-based methods
is justified by the fact that the analytic expression of the GSC
can be shown to equal the MVDR beamformer under the con-
ditions used in this work [31].

In Figs. 3–5, comparisons are shown with the three afore-
mentioned reference algorithms in terms of the beamformer re-
sponse error, improvement in segmental SNR and STOI, respec-
tively. The target source is in all experiments positioned at an
angle degrees. In this section, we do not create the spa-
tial signals artificially in the short-time spectral domain as we
did in Section V-A1, but construct them by filtering the time-do-
main signals with the corresponding impulse response.

In order to compute the noise reference in (5) for ele-
ment of the noise correlation matrix the quantity is
needed. Notice that is related to the impulse response that
is used to construct the spatial signals. In this section, we do not
assume we know exactly, i.e., the Fourier transform of the
impulse response used to generate the spatial signals, as we did
in Section V-A1, but only make use of the fact that we know
the angle of the target source with respect to the array, i.e.,
degrees in this case. We then construct the propagation vector
using the following delay-only model:

(38)

with the speed of sound. Note that, in contrast to Section V-A1,
employing this will not result in a perfect cancellation of the
speech signal in (7), because we perform frame-by-frame pro-
cessing and the impulse response can be longer than a time-
frame.

From Figs. 3–5 we see that the proposed method improves
all three performance measures for all three noise sources and
both spatial noise configurations. The exact improvement de-
pends on input SNR, the type of noise source, spatial configu-
ration, and reference method. In terms of beamformer response
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Fig. 3. Comparison in terms of beamformer response error for a target source at
�60 and (a) temporally stationary white Gaussian noise and spatial configura-
tion 1, (b) temporally stationary white Gaussian noise and spatial configuration
2, (c) modulated white Gaussian noise and spatial configuration 1, (d) modu-
lated white Gaussian noise and spatial configuration 2, (e) passing train noise
and spatial configuration 1, and (f) passing train noise and spatial configuration
2.

error the improvement of the proposed method over the refer-
ence methods generally varies between 4 and 11 dB. In terms of
segmental SNR, the improvement is in the order of 2 to 7 dB.
In terms of STOI intelligibility improvements up to 0.1 can be
observed.

B. Noise Correlation Matrix Estimation and Reverberation

Most methods for noise correlation matrix estimation, in-
cluding the proposed method, assume speech and noise to be
uncorrelated. Clearly, in a scenario with reverberation, speech
is not completely uncorrelated with the reverberation. This jus-
tifies a further analysis of its consequences.

The MVDR beamformer depends on the propagation vector
and the correlation matrix . In free and far field, can be

perfectly modeled as a vector with fixed delay elements only,
say , i.e.,

(39)

For situations in an enclosure with reverberation, i.e., in a room
scenario, this model is too simplistic. In that case, ideally,
should be replaced by the acoustic transfer function (ATF), say

. Assuming the time frames to be sufficiently long, the mi-
crophones observe realizations of the following random vector
process, that is,

(40)

Fig. 4. Comparison in terms of segmental SNR improvement for a target source
at �60 and (a) temporally stationary white Gaussian noise and spatial con-
figuration 1, (b) temporally stationary white Gaussian noise and spatial con-
figuration 2, (c) modulated white Gaussian noise and spatial configuration 1,
(d) modulated white Gaussian noise and spatial configuration 2, (e) passing train
noise and spatial configuration 1, and (f) passing train noise and spatial config-
uration 2.

Fig. 5. Comparison in terms of STOI for a target source at�60 and (a) tempo-
rally stationary white Gaussian noise and spatial configuration 1, (b) temporally
stationary white Gaussian noise and spatial configuration 2, (c) modulated white
Gaussian noise and spatial configuration 1, (d) modulated white Gaussian noise
and spatial configuration 2, (e) passing train noise and spatial configuration 1,
and (f) passing train noise and spatial configuration 2.
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Assuming is known, and applying the MVDR filter coeffi-
cients to then obviously leads to

(41)

From (41) we see that due to knowing the ATF, the reverberation
is canceled completely and the filter output consists of the undis-
torted target clean speech DFT and additive processed noise.
However, knowing the ATF implies the room impulse response
(RIR) to be known. Since the RIR is generally very long and dif-
ficult to estimate, simpler models like the delay-only model in
(39) are often used and consequently, reverberation is not com-
pletely canceled.

Let denote the RIR with respect to the position of mi-
crophone and let denote the starting
time-sample of the window from which DFT coefficient
originates. Assuming that the RIR does not change within a
time-frame, say, it stays constant for some time, it is possible
to write the DFT coefficient of the reverberant speech for mi-
crophone as [32]

(42)

Based on (42) it is possible to write the DFT coefficient of the
reverberant speech in terms of a component consisting of the
direct path only, and a component consisting of all remaining
reflections, that are

(43)

where models the response due to the direct path and

(44)

respectively. The direct path component can be rewritten as
, where is the th el-

ement of the propagation vector as defined in Section II, which
takes care of the delay and damping that the direct path compo-
nent undergoes.

Neglecting time and frequency-bin indices for notational
convenience, we can write the DFT coefficients containing
the direct path component and the DFT coefficients con-
taining reflections only for the microphones using
vector notation as and

, respectively.
Altogether, can be written as

(45)

If we assume that is known instead of the ATF and apply
an MVDR to this noisy random vector process we obtain

(46)

From (46) we see that opposed to (41) the speech DFT coef-
ficients originating from the direct path are maintained undis-
torted, while now both the reduction of additive noise process

, as well as reduction of the reverberation depend on . Ide-
ally, the MVDR is distortionless in the direction of and min-
imizes the variance of the filter output as much as possible.
For the MVDR to be able to do so, is now given by

, where contains all
disturbances, i.e., the additive noise as well as all reflections.

Most methods for noise correlation matrix estimation, as well
as the generalized sidelobe canceller, do assume that the dis-
turbances are uncorrelated with the speech DFT coefficients.
Clearly, this does not hold in the case of reverberant speech,
as is correlated with . This raises the question to which
extent the proposed, as well as existing methods for noise cor-
relation matrix estimation, are robust with respect to reverber-
ation. Before presenting experimental results on noise correla-
tion matrix estimation for a situation with room reverberation,
we discuss how the proposed method and reference methods can
handle reverberant speech.

1) VAD-Based Noise Correlation Matrix Estimation: VAD-
based noise correlation matrix can only capture the character-
istics of the noise field in speech absence. This means, on the
one hand, that they cannot follow quickly changing noise fields
during speech presence, i.e., the contribution of to . On the
other hand, the contribution of the reverberation to can
only be captured at the end of speech activity in each frequency
bin. However, for moderately sized rooms, the reverberation tail
at the end of an utterance may often be too short to measure the
contribution of to the correlation matrix using recursive
smoothing. This problem gets even more crucial if the VAD is
prone to false decisions and indicates speech absence only with
a certain delay.

2) MVDR Based on the Noisy Correlation Matrix: Using the
Sherman–Morrison–Woodbury formula [27], it can be shown
that under certain conditions, the MVDR filter coefficients
based on the noisy correlation matrix equal the MVDR filter
coefficients based on the noise correlation matrix [26]

(47)

However, this relation only holds when and are
uncorrelated. For the reverberant situation where the exact
acoustic transfer function is unknown we obtain using the
Sherman–Morrison–Woodbury formula

This shows that the relation in (47) does not hold when
is correlated with and that the MVDR based on the noisy
correlation matrix is also not robust for reverberation when the
ATF is unknown.

3) Generalized Sidelobe Canceller: With the GSC, the
optimal filter coefficients are estimated using an adaptive LMS
algorithm. This adaptive algorithm estimates the optimal filter
coefficients, such that the correlation between a set of noise
references and a speech reference is minimized. Presence of
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reverberation in the noise reference might therefore lead to
elimination of the target speech in the output of the GSC. To
avoid this, an often used procedure is to employ VAD and
update the filter coefficients only when speech is absent, see
[33] for an analysis and references on how to limit speech
distortion resulting from speech leakage in the noise references.
However, using a VAD in combination with a GSC will lead to
similar problems as when using a VAD to directly estimate the
noise correlation matrix.

4) Proposed Method: An important aspect in the derivation
of the proposed method is that for each microphone pair
a noise reference denoted by can be obtained that is un-
correlated to the speech DFT coefficient at microphone number

. This is expressed by (8) and is a similar assumption that un-
derlies the derivation of the GSC. For the case that these noise
references are constructed based on knowledge of and not the
ATF , these noise references will contain speech reverberation
components that are correlated to the target speech DFT coeffi-
cient. Evaluation of (9) then gives rise to additional error terms
in the estimate of the off-diagonal elements. Assuming speech
and noise are uncorrelated and assuming a perfect noise PSD
we obtain

(48)

Note that the error term can be estimated and
compensated by assuming a statistical model for the room im-
pulse response as done in single channel speech dereverbera-
tion [34]. However, for simplicity we do not compensate for this
error-term in our experiments.

5) Experimental Results in Reverberant Situation: To inves-
tigate the robustness of the proposed and reference methods
with respect to reverberance we created two reverberant sce-
narios. The room dimensions are in both scenarios 4 4 4
meter with an microphone array in the center of the
room. The target source is positioned at one meter distance from
the array at degrees, i.e., the endfire direction. The mi-
crophones of the array have an inter-microphone distance of
1 cm. The reverberant microphone signals are created by con-
volving the free-field microphone signals with the room impulse
responses. Subsequently, the reverberant speech signals are de-
graded by modulated white Gaussian noise in spatial configu-
ration 2. Two different room impulse responses were used, one
with ms and one with ms. In the simu-
lation results we assume that the ATF is unknown, and use in-
stead the propagation vector based on a delay-only model for

in (39).
In Fig. 6 the comparison between the proposed and reference

methods for these two different reverberant scenarios is shown
in terms of the beamformer response error and improvement in
segmental SNR. It is clearly visible that the performance dif-
ferences between all methods have decreased compared to the
nonreverberant scenario. Also clearly visible is the fact that all
methods have smaller improvement in terms of segmental SNR
than in the non-reverberant case in Figs. 3(d) and 4(d). As al-

Fig. 6. Comparison in terms of (a) beamformer response error and room im-
pulse response with � � ��� ms and (b) segmental SNR improvement and
room impulse response with � � ���ms (c) beamformer response error and
room impulse response with � � ��� ms and (d) segmental SNR improve-
ment and room impulse response with � � ��� ms.

ready argued in Sections V-B1–V-B4, we can conclude that all
methods in this comparison are sensitive for reverberant speech.
For the spatially and temporally nonstationary noise field used
in this example the proposed approach generally still improves
performance, albeit to a much smaller degree than in the non-re-
verberant case.

VI. CONCLUSION

In this paper, we have presented and analyzed an estimator
of the noise correlation matrix which is needed in many
multi-channel noise reduction algorithms, e.g., the minimum
variance distortionless response (MVDR) beamformer or the
multi-channel Wiener filter. While in the literature it is usually
proposed to estimate the noise correlation matrix during speech
absence, the proposed approach can update the noise correlation
matrix also during speech presence. Thus, changing noise fields
can be tracked more accurately. For the proposed algorithm, the
diagonal elements of the cross-correlation matrix are estimated
using single-channel noise PSD estimators. The off-diagonal
elements are estimated by measuring the correlation between
the noisy input signal and a noise reference which can be
obtained, e.g., by steering a null towards the target source.

We have shown how estimation errors can be reduced. In ad-
dition, we have shown that when the proposed noise correla-
tion matrix estimator is applied in combination with an MVDR
beamformer under far and free field conditions, that the filter
coefficients become independent of the noise PSD.

We have employed the estimated noise correlation matrix
in an MVDR beamformer and have evaluated its performance
in terms of the beamformer response error, the segmental
signal-to-noise ratio improvement, and an instrumental mea-
sure for speech intelligibility. We have shown that the proposed
algorithm improves over algorithms such as the GSC, an
MVDR with VAD-based noise estimation, and an MVDR that
employs the correlation matrix of the noisy signal instead of
the noise signal.
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